Estimation of Parallel Complexity with Rewriting Techniques

Christophe Alias*, Carsten Fuhs[†], Laure Gonnord[‡]

* INRIA & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France, christophe.alias@ens-lyon.fr [†] Birkbeck, University of London, United Kingdom, carsten@dcs.bbk.ac.uk [‡] University of Lyon & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France, laure.gonnord@ens-lyon.fr

> 15th International Workshop on Termination September 5, 2016, Obergurgl, Austria

Context: HPC's Automatic Parallelization

Why Automatic Parallelization?

- Most computers are parallel (end of Dennard scaling...)
- Writing/debugging a parallel program is (horribly) difficult
- ~ Automation is required...

Context: HPC's Automatic Parallelization

Why Automatic Parallelization?

- Most computers are parallel (end of Dennard scaling...)
- Writing/debugging a parallel program is (horribly) difficult
- → Automation is required...

Challenges:

- \bullet How to represent the computation? \leadsto data dependencies
- How much parallelism? ~> data dependencies
- Which parallelism (scheduling)? ~> data dependencies
- Which resource allocation? \rightsquigarrow data dependencies

Context: HPC's Automatic Parallelization

Why Automatic Parallelization?

- Most computers are parallel (end of Dennard scaling...)
- Writing/debugging a parallel program is (horribly) difficult
- → Automation is required...

Challenges:

- How to represent the computation? \rightsquigarrow data dependencies
- How much parallelism? ~> data dependencies
- Which parallelism (scheduling)? ~> data dependencies
- Which resource allocation? ~> data dependencies

😊 Bad news: checking data dependencies is undecidable.

Related Work and Contributions

Focus on regular imperative programs (polyhedral model)

- Unifying framework for program parallelization
- Exact set of dependencies, all the parallelism is found
- 🙁 Scalability issues

Related Work and Contributions

Focus on regular imperative programs (polyhedral model)

- Unifying framework for program parallelization
- Exact set of dependencies, all the parallelism is found
- 🙁 Scalability issues

Over-approximate the data dependencies

- 🙂 Scalable
- Can be (very) rough and miss most of the parallelism

Related Work and Contributions

Focus on regular imperative programs (polyhedral model)

- Unifying framework for program parallelization
- Exact set of dependencies, all the parallelism is found
- 🙁 Scalability issues

Over-approximate the data dependencies

- 🙂 Scalable
- Can be (very) rough and miss most of the parallelism

Contributions:

- Assess the parallel complexity of (some) recursive programs
- ... using monotone interpretations
- Extends of the polyhedral model to recursive programs

Parallel Complexity

- Minimum number of (parallel) computation steps assuming unbounded parallel resources.
- Solved on regular programs (polyhedral model)
- Goal: recursive programs on trees!

Parallel Complexity – Methodology

• Divide an execution e into a sequence of operations \mathcal{O}_e \rightarrow How to represent/approximate e? which grain?

Parallel Complexity – Methodology

- Divide an execution e into a sequence of operations O_e → How to represent/approximate e? which grain?
- ② Compute the dependencies: $\rightarrow_e \subseteq \mathcal{O}_e \times \mathcal{O}_e$ → Impact of approximation?

Parallel Complexity – Methodology

- Divide an execution e into a sequence of operations O_e → How to represent/approximate e? which grain?
- Compute the dependencies: →_e ⊆ O_e × O_e
 → Impact of approximation?
- Ompute the parallel complexity: λ_e := height(→_e)
 → How to express λ_e?

Parallel complexity of regular programs

Parallel complexity of recursive programs

Polyhedral Model at a Glance

• Automatic parallelization of regular loop nests with arrays

Polyhedral Model at a Glance

• Automatic parallelization of regular loop nests with arrays

• e is decidable and can be analyzed (e.g. with ILP) $\langle \ell_1, i \rangle : i \in [\![0, 2N]\!]$ $\langle \ell_2, i, j \rangle : (i, j) \in [\![0, N]\!]^2$

• Key analysis: array dependencies, affine scheduling

(Affine) Array Dependencies

• Idea: Given a consumer, find the last producer \rightsquigarrow ILP.

(Affine) Array Dependencies

• Idea: Given a consumer, find the last producer ~> ILP.

•
$$\rightarrow_N$$
 is an affine relation:
 $\langle \ell_2, i-1, j+1 \rangle \rightarrow_N \langle \ell_2, i, j \rangle : i > 0 \land j < N$
 $\langle \ell_1, i \rangle \rightarrow_N \langle \ell_2, 0, i \rangle : 0 \le i \le N$
 $\langle \ell_1, i \rangle \rightarrow_N \langle \ell_2, i-N, N \rangle : N < i \le 2N$

(Affine) Array Dependencies

• Idea: Given a consumer, find the last producer \rightsquigarrow ILP. • \rightarrow_N is an affine relation: $\langle \ell_2, i - 1, j + 1 \rangle \rightarrow_N \langle \ell_2, i, j \rangle : i > 0 \land j < N$ $\langle \ell_1, i \rangle \rightarrow_N \langle \ell_2, 0, i \rangle : 0 \le i \le N$ $\langle \ell_1, i \rangle \rightarrow_N \langle \ell_2, i - N, N \rangle : N < i \le 2N$

(Affine) Scheduling

• Assign each operation $\langle \ell, \vec{x} \rangle$ with a timestamp $\theta_{\ell}(\vec{x}) \in \mathbb{N}^{d_{\ell}}$.

- Correctness: $\langle \ell, \vec{x} \rangle \rightarrow_N \langle \ell', \vec{y} \rangle \Rightarrow \theta_\ell(\vec{x}) \ll \theta_{\ell'}(\vec{y})$
- Affine schedule: $\theta_{\ell}(\vec{x}) = A\vec{x} + \vec{b} \rightsquigarrow ILP$.

(Affine) Scheduling

• Assign each operation $\langle \ell, \vec{x} \rangle$ with a timestamp $heta_\ell(\vec{x}) \in \mathbb{N}^{d_\ell}$.

- Correctness: $\langle \ell, \vec{x} \rangle \rightarrow_N \langle \ell', \vec{y} \rangle \Rightarrow \theta_\ell(\vec{x}) \ll \theta_{\ell'}(\vec{y})$
- Affine schedule: $\theta_{\ell}(\vec{x}) = A\vec{x} + \vec{b} \rightsquigarrow \text{ILP}.$
- Bonus: reverse the order: termination algorithm! [RanK, 2010]

HPC community	TCS community
Data Dependence Graph	Integer transition system
Schedule	Ranking function
Latency	Computational complexity
Recursive schedule	Monotonic interpretations

Target: recursive programs on trees

- Each node (subtree) of t is an operation of e.
- \rightarrow_e can be encoded as a term rewrite system (TRS): dep(Tree(val, left, right)) \rightarrow dep(left) dep(Tree(val, left, right)) \rightarrow dep(right)
- How to schedule (check the termination of) a TRS?
- → With monotone interpretations! [AProVE, KoAT]

Putting it all together

Monotone interpretation	Parallel complexity	
$[dep](x_1) = x_1$	$\lambda_{i} = O(height(t))$	
$[Tree](x_1, x_2, x_3) = x_2 + x_3 + 1$	$x_t = O(\operatorname{neight}(t))$	
$[dep](x_1) = x_1$	= O(hoight(t))	
$[Tree](x_1, x_2, x_3) = max(x_2, x_3) + 1$	$\lambda_t = O(\text{neight}(t))$	

What happens on regular programs?

$$\begin{array}{l} \operatorname{dep}(i,j) & \to \operatorname{dep}(i-1,j-1): 0 \leq i \leq n, 0 \leq j \leq n \\ \operatorname{dep}(i,j) & \to \operatorname{dep}(i-k,j): 0 \leq i \leq n, 0 \leq j \leq n, 1 \leq k \leq i \\ \operatorname{dep}(i,j) & \to \operatorname{dep}(i,j-\ell): 0 \leq i \leq n, 0 \leq j \leq n, 1 \leq \ell \leq j \end{array}$$

$$\begin{array}{l} \operatorname{Result:} \ [\operatorname{dep}](x_1,x_2) = x_1 + x_2 & \lambda_n \leq 2n \\ \operatorname{Same as in the polyhedral model!} \end{array}$$

Position:

- Automatic parallelization can take profit of monotonic interpretations.
- Extension of affine scheduling to recursive programs

Locks:

- How to define/find the best schedule?
- How to count the steps?
- Steps towards a parallelizing compiler:
 - Computation partitioning?
 - Generation of the parallel code given a schedule?