
Estimation of Parallel Complexity with Rewriting
Techniques

Christophe Alias?, Carsten Fuhs†, Laure Gonnord‡

? INRIA & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France,
christophe.alias@ens-lyon.fr

† Birkbeck, University of London, United Kingdom,
carsten@dcs.bbk.ac.uk

‡ University of Lyon & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon,
France, laure.gonnord@ens-lyon.fr

15th International Workshop on Termination
September 5, 2016, Obergurgl, Austria

1 / 15

Context: HPC's Automatic Parallelization

Why Automatic Parallelization?

Most computers are parallel (end of Dennard scaling...)

Writing/debugging a parallel program is (horribly) di�cult

 Automation is required...

Challenges:

How to represent the computation? data dependencies

How much parallelism? data dependencies

Which parallelism (scheduling)? data dependencies

Which resource allocation? data dependencies

/ Bad news: checking data dependencies is undecidable.

2 / 15

Context: HPC's Automatic Parallelization

Why Automatic Parallelization?

Most computers are parallel (end of Dennard scaling...)

Writing/debugging a parallel program is (horribly) di�cult

 Automation is required...

Challenges:

How to represent the computation? data dependencies

How much parallelism? data dependencies

Which parallelism (scheduling)? data dependencies

Which resource allocation? data dependencies

/ Bad news: checking data dependencies is undecidable.

2 / 15

Context: HPC's Automatic Parallelization

Why Automatic Parallelization?

Most computers are parallel (end of Dennard scaling...)

Writing/debugging a parallel program is (horribly) di�cult

 Automation is required...

Challenges:

How to represent the computation? data dependencies

How much parallelism? data dependencies

Which parallelism (scheduling)? data dependencies

Which resource allocation? data dependencies

/ Bad news: checking data dependencies is undecidable.

2 / 15

Related Work and Contributions

Focus on regular imperative programs (polyhedral model)

, Unifying framework for program parallelization

, Exact set of dependencies, all the parallelism is found

/ Scalability issues

Over-approximate the data dependencies

, Scalable

/ Can be (very) rough and miss most of the parallelism

Contributions:

Assess the parallel complexity of (some) recursive programs

... using monotone interpretations

Extends of the polyhedral model to recursive programs

3 / 15

Related Work and Contributions

Focus on regular imperative programs (polyhedral model)

, Unifying framework for program parallelization

, Exact set of dependencies, all the parallelism is found

/ Scalability issues

Over-approximate the data dependencies

, Scalable

/ Can be (very) rough and miss most of the parallelism

Contributions:

Assess the parallel complexity of (some) recursive programs

... using monotone interpretations

Extends of the polyhedral model to recursive programs

3 / 15

Related Work and Contributions

Focus on regular imperative programs (polyhedral model)

, Unifying framework for program parallelization

, Exact set of dependencies, all the parallelism is found

/ Scalability issues

Over-approximate the data dependencies

, Scalable

/ Can be (very) rough and miss most of the parallelism

Contributions:

Assess the parallel complexity of (some) recursive programs

... using monotone interpretations

Extends of the polyhedral model to recursive programs

3 / 15

Parallel Complexity

//Compute y = Ax
for i := 0 to N-1
`1: y[i] := 0;
for j := 0 to N-1
`2: y[i] := y[i] + a[i][j]*x[j];

λN = O(N)

`1 i

i

j

`2

Minimum number of (parallel) computation steps assuming
unbounded parallel resources.

Solved on regular programs (polyhedral model)

Goal: recursive programs on trees!

4 / 15

Parallel Complexity � Methodology

for i := 0 to N-1
`1: y[i] := 0;
for j := 0 to N-1
`2: y[i] := y[i] + a[i][j]*x[j];

λN = O(N)

`1 i

i

j

`2

1 Divide an execution e into a sequence of operations Oe

→ How to represent/approximate e? which grain?

2 Compute the dependencies: →e ⊆ Oe ×Oe

→ Impact of approximation?

3 Compute the parallel complexity: λe := height(→e)
→ How to express λe?

5 / 15

Parallel Complexity � Methodology

for i := 0 to N-1
`1: y[i] := 0;
for j := 0 to N-1
`2: y[i] := y[i] + a[i][j]*x[j];

λN = O(N)

`1 i

i

j

`2

1 Divide an execution e into a sequence of operations Oe

→ How to represent/approximate e? which grain?

2 Compute the dependencies: →e ⊆ Oe ×Oe

→ Impact of approximation?

3 Compute the parallel complexity: λe := height(→e)
→ How to express λe?

5 / 15

Parallel Complexity � Methodology

for i := 0 to N-1
`1: y[i] := 0;
for j := 0 to N-1
`2: y[i] := y[i] + a[i][j]*x[j];

λN = O(N)

`1 i

i

j

`2

1 Divide an execution e into a sequence of operations Oe

→ How to represent/approximate e? which grain?

2 Compute the dependencies: →e ⊆ Oe ×Oe

→ Impact of approximation?

3 Compute the parallel complexity: λe := height(→e)
→ How to express λe?

5 / 15

Outline

1 Parallel complexity of regular programs

2 Parallel complexity of recursive programs

6 / 15

Polyhedral Model at a Glance

for i := 0 to 2*N
`1: c[i] := 0;

for i := 0 to N
for j := 0 to N
`2: c[i+j] := c[i+j] + a[i]*b[j];

`1 i

i

j

`2

Automatic parallelization of regular loop nests with arrays

e is decidable and can be analyzed (e.g. with ILP)
〈`1, i〉 : i ∈ J0, 2NK
〈`2, i , j〉 : (i , j) ∈ J0,NK2

Key analysis: array dependencies, a�ne scheduling

7 / 15

Polyhedral Model at a Glance

for i := 0 to 2*N
`1: c[i] := 0;

for i := 0 to N
for j := 0 to N
`2: c[i+j] := c[i+j] + a[i]*b[j];

`1 i

i

j

`2

Automatic parallelization of regular loop nests with arrays

e is decidable and can be analyzed (e.g. with ILP)
〈`1, i〉 : i ∈ J0, 2NK
〈`2, i , j〉 : (i , j) ∈ J0,NK2

Key analysis: array dependencies, a�ne scheduling

7 / 15

(A�ne) Array Dependencies

for i := 0 to 2*N
`1: c[i] := 0;

for i := 0 to N
for j := 0 to N
`2: c[i+j] := c[i+j] + a[i]*b[j];

`1 i

i

j

`2

Idea: Given a consumer, �nd the last producer ILP.

→N is an a�ne relation:
〈`2, i − 1, j + 1〉 →N 〈`2, i , j〉 : i > 0 ∧ j < N

〈`1, i〉 →N 〈`2, 0, i〉 : 0 ≤ i ≤ N

〈`1, i〉 →N 〈`2, i − N,N〉 : N < i ≤ 2N

8 / 15

(A�ne) Array Dependencies

for i := 0 to 2*N
`1: c[i] := 0;

for i := 0 to N
for j := 0 to N
`2: c[i+j] := c[i+j] + a[i]*b[j];

`1 i

i

j

`2

Idea: Given a consumer, �nd the last producer ILP.

→N is an a�ne relation:
〈`2, i − 1, j + 1〉 →N 〈`2, i , j〉 : i > 0 ∧ j < N

〈`1, i〉 →N 〈`2, 0, i〉 : 0 ≤ i ≤ N

〈`1, i〉 →N 〈`2, i − N,N〉 : N < i ≤ 2N

8 / 15

(A�ne) Array Dependencies

`1

`2

0 ≤ i ≤ N :
(i)→ (0, i)

N < i ≤ 2N :
(i)→ (i−N,N)

0 ≤ i, j ≤ N, i > 0, j < N :
(i− 1, j + 1)→ (i, j)

`1 i

i

j

`2

Idea: Given a consumer, �nd the last producer ILP.

→N is an a�ne relation:
〈`2, i − 1, j + 1〉 →N 〈`2, i , j〉 : i > 0 ∧ j < N

〈`1, i〉 →N 〈`2, 0, i〉 : 0 ≤ i ≤ N

〈`1, i〉 →N 〈`2, i − N,N〉 : N < i ≤ 2N

9 / 15

(A�ne) Scheduling

`1

`2

θ`1(i) = (0)

θ`2(i, j) = (1, i)

0 ≤ i ≤ N :
(i)→ (0, i)

N < i ≤ 2N :
(i)→ (i−N,N)

0 ≤ i, j ≤ N, i > 0, j < N :
(i− 1, j + 1)→ (i, j)

`1 i

i

j

`2

Assign each operation 〈`,~x〉 with a timestamp θ`(~x) ∈ Nd` .

Correctness: 〈`,~x〉 →N 〈`′, ~y〉 ⇒ θ`(~x)� θ`′(~y)

A�ne schedule: θ`(~x) = A~x + ~b ILP.

Bonus: reverse the order: termination algorithm! [RanK, 2010]

10 / 15

(A�ne) Scheduling

`1

`2

θ`1(i) = (0)

θ`2(i, j) = (1, i)

0 ≤ i ≤ N :
(i)→ (0, i)

N < i ≤ 2N :
(i)→ (i−N,N)

0 ≤ i, j ≤ N, i > 0, j < N :
(i− 1, j + 1)→ (i, j)

`1 i

i

j

`2

Assign each operation 〈`,~x〉 with a timestamp θ`(~x) ∈ Nd` .

Correctness: 〈`,~x〉 →N 〈`′, ~y〉 ⇒ θ`(~x)� θ`′(~y)

A�ne schedule: θ`(~x) = A~x + ~b ILP.

Bonus: reverse the order: termination algorithm! [RanK, 2010]

10 / 15

Cross Fertilization

HPC community TCS community

Data Dependence Graph Integer transition system
Schedule Ranking function
Latency Computational complexity

Recursive schedule Monotonic interpretations

11 / 15

Target: recursive programs on trees

public int treeMax () {

int leftMax = Integer.MIN_VALUE;

int rightMax = Integer.MIN_VALUE;

if (this.left != null)

leftMax = this.left.treeMax ();

if (this.right != null)

rightMax = this.right.treeMax ();

return Math.max(this.val ,

Math.max(leftMax , rightMax));

}

2

3 4

7

Each node (subtree) of t is an operation of e.

→e can be encoded as a term rewrite system (TRS):

dep(Tree(val , left, right)) → dep(left)
dep(Tree(val , left, right)) → dep(right)

How to schedule (check the termination of) a TRS?

 With monotone interpretations! [AProVE, KoAT]

12 / 15

Putting it all together

public int treeMax () {

int leftMax = Integer.MIN_VALUE;

int rightMax = Integer.MIN_VALUE;

if (this.left != null)

leftMax = this.left.treeMax ();

if (this.right != null)

rightMax = this.right.treeMax ();

return Math.max(this.val ,

Math.max(leftMax , rightMax));

}

24,3

31,1 42,2

71,1

Monotone interpretation Parallel complexity

[dep](x1) = x1
[Tree](x1, x2, x3) = x2 + x3 + 1

λt = O(height(t))
[dep](x1) = x1

[Tree](x1, x2, x3) = max(x2, x3) + 1
λt = O(height(t))

13 / 15

What happens on regular programs?

for(i=0; i<=N; i++)
for (j=0; j<=N; j++)

//Block S

{
m1[i][j] = Integer.MIN_VALUE;
for(k=1; k<=i; k++)

m1[i][j] = max(m1[i][j],H[i-k][j] + W[k]);

m2[i][j] = Integer.MIN_VALUE;
for(k=1; k<=j; k++)

m2[i][j] = max(m2[i][j],H[i][j-k] + W[k]);

H[i][j] = max(0,H(i-1,j-1)+s(a[i],b[i]),
m1[i][j],m2[i][j]);

}

j

i

dep(i , j) → dep(i − 1, j − 1) : 0 ≤ i ≤ n, 0 ≤ j ≤ n

dep(i , j) → dep(i − k , j) : 0 ≤ i ≤ n, 0 ≤ j ≤ n, 1 ≤ k ≤ i

dep(i , j) → dep(i , j − `) : 0 ≤ i ≤ n, 0 ≤ j ≤ n, 1 ≤ ` ≤ j

Result: [dep](x1, x2) = x1 + x2 λn ≤ 2n

Same as in the polyhedral model!

14 / 15

Conclusion

Position:

Automatic parallelization can take pro�t of monotonic
interpretations.

Extension of a�ne scheduling to recursive programs

Locks:

How to de�ne/�nd the best schedule?

How to count the steps?

Steps towards a parallelizing compiler:

Computation partitioning?

Generation of the parallel code given a schedule?

15 / 15

