* INRIA & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon, France,

¥ University of Lyon & LIP (UMR CNRS/ENS Lyon/UCB Lyon1/INRIA), Lyon,

Estimation of Parallel Complexity with Rewriting

Techniques

Christophe Alias*, Carsten Fuhs', Laure Gonnord*

christophe.alias@ens-lyon.fr
T Birkbeck, University of London, United Kingdom,
carsten@dcs.bbk.ac.uk

France, laure.gonnord@ens-1lyon.fr

15th International Workshop on Termination
September 5, 2016, Obergurgl, Austria

-
= &Z z =ag UNIVERSITE
ens be tvon zea— U DE LYON

1/15



Context: HPC's Automatic Parallelization

Why Automatic Parallelization?
@ Most computers are parallel (end of Dennard scaling...)
e Writing/debugging a parallel program is (horribly) difficult

~» Automation is required...

2/15



Context: HPC's Automatic Parallelization

Why Automatic Parallelization?
@ Most computers are parallel (end of Dennard scaling...)
e Writing/debugging a parallel program is (horribly) difficult

~» Automation is required...

Challenges:
@ How to represent the computation? ~ data dependencies
@ How much parallelism? ~~ data dependencies
@ Which parallelism (scheduling)? ~~ data dependencies

@ Which resource allocation? ~ data dependencies

2/15



Context: HPC's Automatic Parallelization

Why Automatic Parallelization?
@ Most computers are parallel (end of Dennard scaling...)
e Writing/debugging a parallel program is (horribly) difficult

~» Automation is required...

Challenges:
@ How to represent the computation? ~ data dependencies
@ How much parallelism? ~~ data dependencies
@ Which parallelism (scheduling)? ~~ data dependencies

@ Which resource allocation? ~ data dependencies

® Bad news: checking data dependencies is undecidable.

2/15



Related Work and Contributions

Focus on regular imperative programs (polyhedral model)
® Unifying framework for program parallelization
©® Exact set of dependencies, all the parallelism is found

® Scalability issues

3/15



Related Work and Contributions

Focus on regular imperative programs (polyhedral model)
® Unifying framework for program parallelization
©® Exact set of dependencies, all the parallelism is found

® Scalability issues

Over-approximate the data dependencies
©® Scalable

® Can be (very) rough and miss most of the parallelism

3/15



Related Work and Contributions

Focus on regular imperative programs (polyhedral model)
® Unifying framework for program parallelization
©® Exact set of dependencies, all the parallelism is found

® Scalability issues

Over-approximate the data dependencies
©® Scalable

® Can be (very) rough and miss most of the parallelism

Contributions:
@ Assess the parallel complexity of (some) recursive programs
@ ... using monotone interpretations

e Extends of the polyhedral model to recursive programs

3/15



Parallel Complexity

//Compute y = Ax
fori:=0to N-1
L1: y[i] :=0;
for j :=0to N-1
021 ylil = yli] + aliGI*<Cl:

An = O(N)

)
[\S]
0—>0—>0

O—>0—>0—0

}

¢ ‘j:—)j;):@—»ﬁ)—){j_» .
|
—)i\—)(“—)ﬁ—)F )

—
—

%ﬁ
!
!

~
—

@ Minimum number of (parallel) computation steps assuming
unbounded parallel resources.

@ Solved on regular programs (polyhedral model)

@ Goal: recursive programs on trees!

4/15



Parallel Complexity — Methodology

J

fori:=0to N-1 °
l1: y[i] == 0; g
for j := 0 to N-1 Uy 5 3

20yl = vl + alI01*0; L‘%
1.

An = O(N) u
— i

© Divide an execution e into a sequence of operations O
— How to represent/approximate e? which grain?

—0—0
0—>0—>0

5/15



Parallel Complexity — Methodology

N

for i :=0to N-1
£y y[i] :=0; %
4y f

for j := 0 to N-1

—0—0
O0—>0—>0
—>0—>0

22 y[i] == y[i] + alilli*[i];

An = O(N) u

© Divide an execution e into a sequence of operations O
— How to represent/approximate e? which grain?

@ Compute the dependencies: —o C O, x O,
— Impact of approximation?

}i

g




Parallel Complexity — Methodology

N

for i :=0to N-1
£y y[i] :=0; %
4y f

for j := 0 to N-1

—0—0
O0—>0—>0
—>0—>0

22 y[i] == y[i] + alilli*[i];

An = O(N) u

© Divide an execution e into a sequence of operations O
— How to represent/approximate e? which grain?

}i

g

@ Compute the dependencies: —o C O, x O,
— Impact of approximation?

© Compute the parallel complexity: Ao := height(—)
— How to express A\e?




© Parallel complexity of regular programs

@ Parallel complexity of recursive programs

6/15



Polyhedral Model at a Glance

{1 0>0>0>0>0>0>0— i

for i := 0 to 2*N

ly: cfi] == 0;
fori:=0to N
forj:=0to N

L2 c[i+]] := c[i+j] + a[i]*b[j];

@ Automatic parallelization of regular loop nests with arrays

7/15



Polyhedral Model at a Glance

{ e>0>0>0>0>0>0— i

for i := 0 to 2*N

ly: cfi] == 0;
fori:=0to N
forj:=0to N

L2 c[i+]] := c[i+j] + a[i]*b[j];

@ Automatic parallelization of regular loop nests with arrays

@ e is decidable and can be analyzed (e.g. with ILP)
(61,1 = €]0,2N]
(ba,irj) (i) € [0, N]?
o Key analysis: array dependencies, affine scheduling

7/15



(Affine) Array Dependencies

fio—e0—0—0—o0—o0o0—+i

for i := 0 to 2*N J
£y: cfi] == 0;
fori:=0to N +ooo
forj:=0to N s
tor c[iHi] o= cfiti] + all*ol]; 2] E J i
oo o+ i

@ |dea: Given a consumer, find the last producer ~~ ILP.

8/15



(Affine) Array Dependencies

fio—e0—0—0—o0—o0o0—+i

for i := 0 to 2*N J
£y: cfi] == 0;
fori:=0to N +ooo
forj:=0to N o P
U0 cfi+]] := c[i+j] + a[i]*b[i]; 2 L E ;
7 q
o—o—oW+i

@ |dea: Given a consumer, find the last producer ~~ ILP.

@ —y is an affine relation:

(lo,i—1,j+1) —p (l2,i,)) I >0Nj <N
<€17 > —N <£270ai> OS’SN
(1,1 = (layi—N,N) :N<i<2N

8/15



(Affine) Array Dependencies

g

0<1j<]\1>0j<\
(i—1,741) = (i)

@ |dea: Given a consumer, find the last producer ~ ILP.

@ —y is an affine relation:
<£2,l'—1,j+1> —>N<£2,I',j> Pi>0N <N
(b1,1y —n (£2,0,1) 0<i<N
(61,i> —N <£2,I.—N,N> N < i <2N

9/15



(Affine) Scheduling

N <i<2N: 0<i<N:
(i

(i) = (i = N, N)
0ra(53) = (1,1

0<i,j<N,i>0j<N:
(i—=1,7+1) = (i.5)

o Assign each operation (¢, X) with a timestamp 6,(X) € N%.
o Correctness: (¢,X) —n (', ¥) = 0o(X) < 0p(¥)
o Affine schedule: y(X) = A%+ b ~ ILP.

10/ 15



(Affine) Scheduling

N <i<2N: 0<i<N:
(i

(i) = (i = N, N)
0ra(id) = (1.3)

0<i,j<N,i>0j<N:
(i-1,j+1) = (i,])

Assign each operation (¢, X) with a timestamp 6,(X) € N%.

Correctness: (€, X) —n (', ¥) = 04(X) < 0p(¥)
Affine schedule: 6,(X) = AX + b ~ ILP.

Bonus: reverse the order: termination algorithm! [RanK, 2010]

10/ 15



Cross Fertilization

HPC community TCS community

Data Dependence Graph | Integer transition system
Schedule Ranking function

Latency Computational complexity
Recursive schedule Monotonic interpretations

11/15



Target: recursive programs on trees

public int treeMax() {
int leftMax = Integer .MIN_VALUE;
int rightMax = Integer .MIN_VALUE;

if (this.left != null)
leftMax = this.left.treeMax();
if (this.right != null)

rightMax = this.right.treeMax();
return Math.max(this.val,
Math.max (leftMax, rightMax));

@ Each node (subtree) of t is an operation of e.

@ —, can be encoded as a term rewrite system (TRS):
dep(Tree(val, left, right)) — dep(left)
dep(Tree(val, left, right)) — dep(right)

@ How to schedule (check the termination of) a TRS?
~~ With monotone interpretations! [AProVE, KoAT]




Putting it all together

public int treeMax() {
int leftMax = Integer .MIN_VALUE;
int rightMax = Integer .MIN_VALUE;

if (this.left != null)
leftMax = this.left.treeMax();
if (this.right != null)

rightMax = this.right.treeMax();
return Math.max(this.val,
Math.max (leftMax, rightMax));

¥
Monotone interpretation Parallel complexity
[eplCx) =x —
[Tree](x1,x0,x3) = X0+ x3 + 1 A = O(height(t))
[deplCa) = —
[Tree](x1,x2,x3) = max(xz,x3) + 1 Ar = O(height(t))

13/15



What happens on regular programs?

for(i=0; i<=N; i++)
for (j=0; j<=N; j++)
//Block S J
{
mi[il[j]l = Integer.MIN_VALUE;
for (k=1; k<=i; k++)
mi[il[j] = max(m1[il[j],H[i-kI[j] + wlk]);

m2[il[j]l = Integer.MIN_VALUE;

for (k=1; k<=j; k++) ® ®
m2[il[j] = max(m2[il[j]1,H[i1[j-k] + Wlk]); o o o
H[il[j]l = max(0,H(i-1,j-1)+s(alil,b[i]), I — |

m1[il1[j]1,m2[i]1[j1);

dep(i,j) — dep(i—1,j-1):0<i<n0<j<n
dep(i,j) —dep(i—k,j):0<i<n0<j<nl<k<i
dep(i,j) —dep(i,j—¥):0<i<n0<;<nl<l<y

Result: [dep](x1,x2) = x1 + x2 An < 2n

Same as in the polyhedral model!

14/15



Conclusion

Position:

o Automatic parallelization can take profit of monotonic
interpretations.

@ Extension of affine scheduling to recursive programs

Locks:
@ How to define/find the best schedule?
@ How to count the steps?
@ Steps towards a parallelizing compiler:

o Computation partitioning?
o Generation of the parallel code given a schedule?



