
SMT-Based Techniques in
Automated Termination Analysis

Carsten Fuhs

Birkbeck, University of London

6th September 2016

15th Workshop on Termination
Obergurgl, Austria

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

2/20

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)

2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

2/20

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)

3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

2/20

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

2/20

Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1

2/20

Termination analysis, in the era of automation

Question: Does program P terminate?

Approach:
Encode termination proof template to logical constraint ϕ, ask SMT solver
→ SMT = SATisfiability Modulo Theories, solve constraints like

4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

3/20

Termination analysis, in the era of automation

Question: Does program P terminate?

Approach:
Encode termination proof template to logical constraint ϕ, ask SMT solver

→ SMT = SATisfiability Modulo Theories, solve constraints like

4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

3/20

Termination analysis, in the era of automation

Question: Does program P terminate?

Approach:
Encode termination proof template to logical constraint ϕ, ask SMT solver
→ SMT = SATisfiability Modulo Theories, solve constraints like

4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

3/20

Termination analysis, in the era of automation

Question: Does program P terminate?

Approach:
Encode termination proof template to logical constraint ϕ, ask SMT solver
→ SMT = SATisfiability Modulo Theories, solve constraints like

4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3

Answer:

1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

3/20

Termination analysis, in the era of automation

Question: Does program P terminate?

Approach:
Encode termination proof template to logical constraint ϕ, ask SMT solver
→ SMT = SATisfiability Modulo Theories, solve constraints like

4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

3/20

Termination analysis, in the era of automation

Question: Does program P terminate?

Approach:
Encode termination proof template to logical constraint ϕ, ask SMT solver
→ SMT = SATisfiability Modulo Theories, solve constraints like

4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

3/20

Termination analysis, in the era of automation

Question: Does program P terminate?

Approach:
Encode termination proof template to logical constraint ϕ, ask SMT solver
→ SMT = SATisfiability Modulo Theories, solve constraints like

4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

3/20

The rest of this talk

Termination proving in two parallel worlds

1 Term Rewrite Systems (TRSs)
2 Imperative Programs

4/20

1 Term Rewrite Systems (TRSs)

2 Imperative Programs

5/20

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
no fixed order of rules to apply (Haskell: top to bottom)
untyped
no pre-defined data structures (integers, arrays, . . .)

6/20

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
no fixed order of rules to apply (Haskell: top to bottom)
untyped
no pre-defined data structures (integers, arrays, . . .)

6/20

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
no fixed order of rules to apply (Haskell: top to bottom)
untyped
no pre-defined data structures (integers, arrays, . . .)

6/20

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
no fixed order of rules to apply (Haskell: top to bottom)
untyped
no pre-defined data structures (integers, arrays, . . .)

6/20

Example (Division)

R =

minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) →R minus(s(0), 0) →R s(0)

Termination: No infinite evaluation sequences t1 →R t2 →R t3 →R . . .
Show termination using Dependency Pairs

7/20

Example (Division)

R =

minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) →R minus(s(0), 0) →R s(0)

Termination: No infinite evaluation sequences t1 →R t2 →R t3 →R . . .

Show termination using Dependency Pairs

7/20

Example (Division)

R =

minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) →R minus(s(0), 0) →R s(0)

Termination: No infinite evaluation sequences t1 →R t2 →R t3 →R . . .
Show termination using Dependency Pairs

7/20

Example (Division)

R =

minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently

7/20

Example (Division)

R =

minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)

Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently

7/20

Example (Division)

R =

minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently

7/20

Example (Division)

R =

minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently

7/20

Example (Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) % minus](x, y)

quot](s(x), s(y)) % minus](x, y)
quot](s(x), s(y)) % quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %

delete s→ t with s � t from DP
Find � automatically and efficiently

7/20

Example (Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently

7/20

Example (Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently
7/20

Polynomial interpretations

Get � via polynomial interpretations [·] over N [Lankford ’75]
→ ranking functions for rewriting

Example

∀x, y. x+ 1 = [

minus(s(x), s(y))

]

%

[

minus(x, y)

] = x

Use [·] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

� boils down to > over N

8/20

Polynomial interpretations

Get � via polynomial interpretations [·] over N [Lankford ’75]
→ ranking functions for rewriting

Example

∀x, y. x+ 1 = [

minus(s(x), s(y))

]

%

[

minus(x, y)

] = x

Use [·] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

� boils down to > over N

8/20

Polynomial interpretations

Get � via polynomial interpretations [·] over N [Lankford ’75]
→ ranking functions for rewriting

Example

∀x, y. x+ 1 = [minus(s(x), s(y))] ≥ [minus(x, y)] = x

Use [·] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

� boils down to > over N

8/20

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 + x2 . [minus]](x1, x2) = x1 + x2
[quot](x1, x2) = x1 + x2 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints

y DP = ∅
y termination of division algorithm proved �

9/20

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 + x2 . [minus]](x1, x2) = x1 + x2
[quot](x1, x2) = x1 + x2 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints

y DP = ∅
y termination of division algorithm proved �

9/20

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 + x2 . [minus]](x1, x2) = x1 + x2
[quot](x1, x2) = x1 + x2 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints
y DP = ∅
y termination of division algorithm proved �

9/20

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 + x2 . [minus]](x1, x2) = x1 + x2
[quot](x1, x2) = x1 + x2 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints
y DP = ∅
y termination of division algorithm proved �

9/20

Remark

Polynomial interpretations play several roles for program analysis:

Ranking function: [quot]] and [minus]]

Summary: [quot] and [minus]

Abstraction: [0] and [s]

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 + x2 . [minus]](x1, x2) = x1 + x2
[quot](x1, x2) = x1 + x2 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints
y DP = ∅
y termination of division algorithm proved �

9/20

Remark

Polynomial interpretations play several roles for program analysis:

Ranking function: [quot]] and [minus]]

Summary: [quot] and [minus]

Abstraction: [0] and [s]

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 + x2 . [minus]](x1, x2) = x1 + x2
[quot](x1, x2) = x1 + x2 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints
y DP = ∅
y termination of division algorithm proved �

9/20

Remark

Polynomial interpretations play several roles for program analysis:

Ranking function: [quot]] and [minus]]

Summary: [quot] and [minus]

Abstraction: [0] and [s]

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 + x2 . [minus]](x1, x2) = x1 + x2
[quot](x1, x2) = x1 + x2 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints
y DP = ∅
y termination of division algorithm proved �

9/20

Remark

Polynomial interpretations play several roles for program analysis:

Ranking function: [quot]] and [minus]]

Summary: [quot] and [minus]

Abstraction: [0] and [s]

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate quantifiers ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

10/20

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate quantifiers ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

10/20

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate quantifiers ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

10/20

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate quantifiers ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

10/20

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate quantifiers ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

10/20

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate quantifiers ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

10/20

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate quantifiers ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

10/20

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate quantifiers ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system

10/20

Extensions

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

can model behavior of functions more closely:
[pred](x1) = max(x1 − 1, 0)
automation via encoding to non-linear constraints, more complex
Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp,
LPAR ’10; Borralleras et al, JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
linear interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
automation: constraints with more complex atoms
several flavors: plus-times-semiring, max-plus-semiring [Koprowski,
Waldmann, Acta Cyb. ’09], . . .

. . .

11/20

Extensions

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

can model behavior of functions more closely:
[pred](x1) = max(x1 − 1, 0)
automation via encoding to non-linear constraints, more complex
Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp,
LPAR ’10; Borralleras et al, JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
linear interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
automation: constraints with more complex atoms
several flavors: plus-times-semiring, max-plus-semiring [Koprowski,
Waldmann, Acta Cyb. ’09], . . .

. . .

11/20

Extensions

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

can model behavior of functions more closely:
[pred](x1) = max(x1 − 1, 0)
automation via encoding to non-linear constraints, more complex
Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp,
LPAR ’10; Borralleras et al, JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
linear interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
automation: constraints with more complex atoms
several flavors: plus-times-semiring, max-plus-semiring [Koprowski,
Waldmann, Acta Cyb. ’09], . . .

. . .

11/20

Extensions

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

can model behavior of functions more closely:
[pred](x1) = max(x1 − 1, 0)
automation via encoding to non-linear constraints, more complex
Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp,
LPAR ’10; Borralleras et al, JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
linear interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
automation: constraints with more complex atoms
several flavors: plus-times-semiring, max-plus-semiring [Koprowski,
Waldmann, Acta Cyb. ’09], . . .

. . .
11/20

Recipe

Automate your own weakly monotone interpretations

1 Pick suitable well-founded algebra (A,≥, >) and operations on A

2 Use templates for interpretations [f]
3 Get arithmetic inequalities

s � t y ∀~x. [s] > [t]

4 Use sound quantifier elimination to remove ∀~x
5 Feed quantifier-free SMT formula to suitable SMT solver

(or encode to a SAT problem)
6 Enjoy!

12/20

Recipe

Automate your own weakly monotone interpretations

1 Pick suitable well-founded algebra (A,≥, >) and operations on A

2 Use templates for interpretations [f]

3 Get arithmetic inequalities

s � t y ∀~x. [s] > [t]

4 Use sound quantifier elimination to remove ∀~x
5 Feed quantifier-free SMT formula to suitable SMT solver

(or encode to a SAT problem)
6 Enjoy!

12/20

Recipe

Automate your own weakly monotone interpretations

1 Pick suitable well-founded algebra (A,≥, >) and operations on A

2 Use templates for interpretations [f]
3 Get arithmetic inequalities

s � t y ∀~x. [s] > [t]

4 Use sound quantifier elimination to remove ∀~x
5 Feed quantifier-free SMT formula to suitable SMT solver

(or encode to a SAT problem)
6 Enjoy!

12/20

Recipe

Automate your own weakly monotone interpretations

1 Pick suitable well-founded algebra (A,≥, >) and operations on A

2 Use templates for interpretations [f]
3 Get arithmetic inequalities

s � t y ∀~x. [s] > [t]

4 Use sound quantifier elimination to remove ∀~x

5 Feed quantifier-free SMT formula to suitable SMT solver
(or encode to a SAT problem)

6 Enjoy!

12/20

Recipe

Automate your own weakly monotone interpretations

1 Pick suitable well-founded algebra (A,≥, >) and operations on A

2 Use templates for interpretations [f]
3 Get arithmetic inequalities

s � t y ∀~x. [s] > [t]

4 Use sound quantifier elimination to remove ∀~x
5 Feed quantifier-free SMT formula to suitable SMT solver

(or encode to a SAT problem)

6 Enjoy!

12/20

Recipe

Automate your own weakly monotone interpretations

1 Pick suitable well-founded algebra (A,≥, >) and operations on A

2 Use templates for interpretations [f]
3 Get arithmetic inequalities

s � t y ∀~x. [s] > [t]

4 Use sound quantifier elimination to remove ∀~x
5 Feed quantifier-free SMT formula to suitable SMT solver

(or encode to a SAT problem)
6 Enjoy!

12/20

Further extensions

Constrained term rewriting [Fuhs et al, RTA ’09; Kop, Nishida, FroCoS ’13;
Rocha, Meseguer, Muñoz, WRLA ’14; . . .]

term rewriting with predefined operations from SMT theories, e.g.
integer arithmetic, . . .
target language for translations from programming languages

Complexity analysis
[Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . .]
Can re-use termination machinery to infer and prove statements like
“runtime complexity of this TRS is in O(n3)”

13/20

Further extensions

Constrained term rewriting [Fuhs et al, RTA ’09; Kop, Nishida, FroCoS ’13;
Rocha, Meseguer, Muñoz, WRLA ’14; . . .]

term rewriting with predefined operations from SMT theories, e.g.
integer arithmetic, . . .
target language for translations from programming languages

Complexity analysis
[Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . .]
Can re-use termination machinery to infer and prove statements like
“runtime complexity of this TRS is in O(n3)”

13/20

SMT solvers from termination analysis

Annual SMT-COMP, division QF_NIA (Quantifier-Free Non-linear Integer
Arithmetic)

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt

(spin-off of TTT2)

2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 Yices

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours in the last years)

14/20

SMT solvers from termination analysis

Annual SMT-COMP, division QF_NIA (Quantifier-Free Non-linear Integer
Arithmetic)

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt (spin-off of TTT2)
2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 Yices

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours in the last years)

14/20

SMT solvers from termination analysis

Annual SMT-COMP, division QF_NIA (Quantifier-Free Non-linear Integer
Arithmetic)

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt (spin-off of TTT2)
2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 Yices

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours in the last years)

14/20

1 Term Rewrite Systems (TRSs)

2 Imperative Programs

15/20

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0:

if x ≥ 0:

`1:

while x 6= 0:

`2:

x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

16/20

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0:

if x ≥ 0:

`1:

while x 6= 0:

`2:

x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

16/20

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

16/20

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

16/20

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z

⇒ Find invariant x ≥ 0 at `1, `2

16/20

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

16/20

Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0: if x ≥ 0:
`1: while x 6= 0:
`2: x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) → `1(x− 1) [x ≥ 0]
`1(x) → `3(x) [x == 0 ∧ x ≥ 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2

16/20

Proving termination with invariants

Example (Transition system with invariants)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) → `1(x− 1) [x ≥ 0]
`1(x) → `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:
x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

17/20

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:
x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

17/20

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:
x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

17/20

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:
x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

17/20

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:
x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.

More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

17/20

Proving termination with invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:
x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]

17/20

Searching for invariants using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation
[Otto et al., RTA ’10; Ströder et al, IJCAR ’14, . . .]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
→ prove termination of single program runs
→ termination argument often generalizes

. . . also cooperating with removal of terminating rules (as for TRSs):
T2 [Brockschmidt, Cook, Fuhs, CAV ’13]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

18/20

Searching for invariants using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation
[Otto et al., RTA ’10; Ströder et al, IJCAR ’14, . . .]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
→ prove termination of single program runs
→ termination argument often generalizes

. . . also cooperating with removal of terminating rules (as for TRSs):
T2 [Brockschmidt, Cook, Fuhs, CAV ’13]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

18/20

Searching for invariants using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation
[Otto et al., RTA ’10; Ströder et al, IJCAR ’14, . . .]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
→ prove termination of single program runs
→ termination argument often generalizes

. . . also cooperating with removal of terminating rules (as for TRSs):
T2 [Brockschmidt, Cook, Fuhs, CAV ’13]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

18/20

Searching for invariants using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation
[Otto et al., RTA ’10; Ströder et al, IJCAR ’14, . . .]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
→ prove termination of single program runs
→ termination argument often generalizes

. . . also cooperating with removal of terminating rules (as for TRSs):
T2 [Brockschmidt, Cook, Fuhs, CAV ’13]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

18/20

Searching for invariants using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation
[Otto et al., RTA ’10; Ströder et al, IJCAR ’14, . . .]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
→ prove termination of single program runs
→ termination argument often generalizes

. . . also cooperating with removal of terminating rules (as for TRSs):
T2 [Brockschmidt, Cook, Fuhs, CAV ’13]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

18/20

Searching for invariants using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation
[Otto et al., RTA ’10; Ströder et al, IJCAR ’14, . . .]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
→ prove termination of single program runs
→ termination argument often generalizes

. . . also cooperating with removal of terminating rules (as for TRSs):
T2 [Brockschmidt, Cook, Fuhs, CAV ’13]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

18/20

Extensions

Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al,
TACAS ’14, Larraz et al, CAV ’14, Cook et al, FMCAD ’14, . . .]

Complexity bounds
[Alias et al, SAS ’10, Flores-Montoya, Hähnle, APLAS ’14, Sinn, Zuleger,
Veith, CAV ’14, Hoffmann, Shao, JFP ’15, Brockschmidt et al,
TOPLAS ’16, . . .]

CTL∗ model checking for infinite state systems based on termination
and non-termination provers
[Cook, Khlaaf, Piterman, CAV ’15]

Beyond sequential programs on integers:
structs/classes [Berdine et al, CAV ’06; Otto et al, RTA ’10; . . .]
arrays (pointer arithmetic) [Ströder et al, IJCAR ’14, . . .]
multi-threaded programs [Cook et al, PLDI ’07, . . .]
IEEE floating-point numbers [Maurica, Mesnard, Payet, SAC ’16]
. . .

19/20

Extensions

Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al,
TACAS ’14, Larraz et al, CAV ’14, Cook et al, FMCAD ’14, . . .]

Complexity bounds
[Alias et al, SAS ’10, Flores-Montoya, Hähnle, APLAS ’14, Sinn, Zuleger,
Veith, CAV ’14, Hoffmann, Shao, JFP ’15, Brockschmidt et al,
TOPLAS ’16, . . .]

CTL∗ model checking for infinite state systems based on termination
and non-termination provers
[Cook, Khlaaf, Piterman, CAV ’15]

Beyond sequential programs on integers:
structs/classes [Berdine et al, CAV ’06; Otto et al, RTA ’10; . . .]
arrays (pointer arithmetic) [Ströder et al, IJCAR ’14, . . .]
multi-threaded programs [Cook et al, PLDI ’07, . . .]
IEEE floating-point numbers [Maurica, Mesnard, Payet, SAC ’16]
. . .

19/20

Extensions

Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al,
TACAS ’14, Larraz et al, CAV ’14, Cook et al, FMCAD ’14, . . .]

Complexity bounds
[Alias et al, SAS ’10, Flores-Montoya, Hähnle, APLAS ’14, Sinn, Zuleger,
Veith, CAV ’14, Hoffmann, Shao, JFP ’15, Brockschmidt et al,
TOPLAS ’16, . . .]

CTL∗ model checking for infinite state systems based on termination
and non-termination provers
[Cook, Khlaaf, Piterman, CAV ’15]

Beyond sequential programs on integers:
structs/classes [Berdine et al, CAV ’06; Otto et al, RTA ’10; . . .]
arrays (pointer arithmetic) [Ströder et al, IJCAR ’14, . . .]
multi-threaded programs [Cook et al, PLDI ’07, . . .]
IEEE floating-point numbers [Maurica, Mesnard, Payet, SAC ’16]
. . .

19/20

Extensions

Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al,
TACAS ’14, Larraz et al, CAV ’14, Cook et al, FMCAD ’14, . . .]

Complexity bounds
[Alias et al, SAS ’10, Flores-Montoya, Hähnle, APLAS ’14, Sinn, Zuleger,
Veith, CAV ’14, Hoffmann, Shao, JFP ’15, Brockschmidt et al,
TOPLAS ’16, . . .]

CTL∗ model checking for infinite state systems based on termination
and non-termination provers
[Cook, Khlaaf, Piterman, CAV ’15]

Beyond sequential programs on integers:
structs/classes [Berdine et al, CAV ’06; Otto et al, RTA ’10; . . .]
arrays (pointer arithmetic) [Ströder et al, IJCAR ’14, . . .]
multi-threaded programs [Cook et al, PLDI ’07, . . .]
IEEE floating-point numbers [Maurica, Mesnard, Payet, SAC ’16]
. . .

19/20

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years

Term rewriting: need to encode how to represent data structures
Imperative programs: need to consider reachability and invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SMT solver!

20/20

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures

Imperative programs: need to consider reachability and invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SMT solver!

20/20

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs: need to consider reachability and invariants

Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SMT solver!

20/20

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs: need to consider reachability and invariants
Since a few years cross-fertilization

Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SMT solver!

20/20

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs: need to consider reachability and invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation

Needs of termination analysis have also led to better SMT solvers
More information:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SMT solver!

20/20

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs: need to consider reachability and invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers

More information:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SMT solver!

20/20

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs: need to consider reachability and invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SMT solver!

20/20

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs: need to consider reachability and invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SMT solver!

20/20

Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years
Term rewriting: need to encode how to represent data structures
Imperative programs: need to consider reachability and invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information:

http://termination-portal.org

Behind (almost) every successful termination prover . . .
. . . there is a powerful SMT solver!

20/20

References I

C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional
rankings, program termination, and complexity bounds of flowchart
programs. In SAS ’10, pages 117–133, 2010.

T. Arts and J. Giesl. Termination of term rewriting using dependency
pairs. Theoretical Computer Science, 236(1-2):133–178, 2000.

J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic
termination proofs for programs with shape-shifting heaps. In CAV ’06,
pages 386–400, 2006.

C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, and
A. Rubio. SAT modulo linear arithmetic for solving polynomial
constraints. Journal of Automated Reasoning, 48(1):107–131, 2012.

M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated
detection of non-termination and NullPointerExceptions for Java
Bytecode. In FoVeOOS ’11, pages 123–141, 2012.

21/20

References II

M. Brockschmidt, B. Cook, and C. Fuhs. Better termination proving
through cooperation. In CAV ’13, pages 413–429, 2013.

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl.
Analyzing runtime and size complexity of integer programs. ACM
TOPLAS, 38(4), 2016.

H.-Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. W. O’Hearn. Proving
nontermination via safety. In TACAS ’14, pages 156–171, 2014.

B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety.
In CAV ’06, pages 415–418, 2006a.

B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for
systems code. In PLDI ’06, pages 415–426, 2006b.

B. Cook, A. Podelski, and A. Rybalchenko. Proving thread
termination. In PLDI ’07, pages 320–330, 2007.

22/20

References III

B. Cook, C. Fuhs, K. Nimkar, and P. W. O’Hearn. Disproving
termination with overapproximation. In FMCAD ’14, pages 67–74,
2014.

B. Cook, H. Khlaaf, and N. Piterman. On automation of CTL*
verification for infinite-state systems. In CAV ’15, Part I, pages 13–29,
2015.

J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for
proving termination of term rewriting. Journal of Automated
Reasoning, 40(2–3):195–220, 2008.

A. Flores-Montoya and R. Hähnle. Resource analysis of complex
programs with cost equations. In APLAS ’14, pages 275–295, 2014.

C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann,
and H. Zankl. SAT solving for termination analysis with polynomial
interpretations. In SAT ’07, pages 340–354, 2007.

23/20

References IV

C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann,
and H. Zankl. Maximal termination. In RTA ’08, pages 110–125,
2008a.

C. Fuhs, R. Navarro-Marset, C. Otto, J. Giesl, S. Lucas, and
P. Schneider-Kamp. Search techniques for rational polynomial orders.
In AISC ’08, pages 109–124, 2008b.

C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke.
Proving termination of integer term rewriting. In RTA ’09, pages
32–47, 2009.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing
and improving dependency pairs. Journal of Automated Reasoning, 37
(3):155–203, 2006.

A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G.
Xu. Proving non-termination. In POPL ’08, pages 147–158, 2008.

24/20

References V

N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool:
Techniques and features. Information and Computation, 205(4):
474–511, 2007.

N. Hirokawa and G. Moser. Automated complexity analysis based on
the dependency pair method. In IJCAR ’08, pages 364–379, 2008.

J. Hoffmann and Z. Shao. Type-based amortized resource analysis with
integers and arrays. Journal of Functional Programming, 25, 2015.

H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of
Automated Reasoning, 21(1):23–38, 1998.

C. Kop and N. Nishida. Term rewriting with logical constraints. In
FroCoS ’13, pages 343–358, 2013.

A. Koprowski and J. Waldmann. Max/plus tree automata for
termination of term rewriting. Acta Cybernetica, 19(2):357–392, 2009.

25/20

References VI

D. S. Lankford. Canonical algebraic simplification in computational
logic. Technical Report ATP-25, University of Texas, 1975.

D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. Proving
termination of imperative programs using Max-SMT. In FMCAD ’13,
pages 218–225, 2013.

S. Lucas. Polynomials over the reals in proofs of termination: from
theory to practice. RAIRO - Theoretical Informatics and Applications,
39(3):547–586, 2005.

F. Maurica, F. Mesnard, and É. Payet. Termination analysis of
floating-point programs using parameterizable rational approximations.
In SAC ’16, pages 1674–1679, 2016.

L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime
complexity of term rewriting by dependency pairs. Journal of
Automated Reasoning, 51(1):27–56, 2013.

26/20

References VII

C. Otto, M. Brockschmidt, C. v. Essen, and J. Giesl. Automated
termination analysis of Java Bytecode by term rewriting. In RTA ’10,
pages 259–276, 2010.

A. Podelski and A. Rybalchenko. A complete method for the synthesis
of linear ranking functions. In VMCAI ’04, pages 239–251, 2004.

C. Rocha, J. Meseguer, and C. A. Muñoz. Rewriting modulo SMT and
open system analysis. In WRLA ’14, pages 247–262, 2014.

M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static
analysis for bound analysis and amortized complexity analysis. In
CAV ’14, pages 745–761, 2014.

T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel,
and P. Schneider-Kamp. Proving termination and memory safety for
programs with pointer arithmetic. In IJCAR ’14, pages 208–223, 2014.

27/20

References VIII

A. M. Turing. Checking a large routine. In Report of a Conference on
High Speed Automatic Calculating Machines, pages 67–69, 1949.

H. Zankl and A. Middeldorp. Satisfiability of non-linear (ir)rational
arithmetic. In LPAR (Dakar) ’10, pages 481–500, 2010.

28/20

	Term Rewrite Systems (TRSs)
	Imperative Programs

