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Termination analysis, classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...]
This may take the form of a quantity which is asserted to decrease
continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)
2 Prove f to have a lower bound (“vanish when the machine stops”)
3 Prove that f decreases over time

Example (Termination can be simple)

while x > 0:
x = x − 1
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Termination analysis, in the era of automation

Question: Does program P terminate?

Approach:
Encode termination proof template to logical constraint ϕ, ask SMT solver
→ SMT = SATisfiability Modulo Theories, solve constraints like

4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3

Answer:
1 ϕ satisfiable, model M :
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only a proof step at a time
→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating
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The rest of this talk

Termination proving in two parallel worlds

1 Term Rewrite Systems (TRSs)
2 Imperative Programs
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1 Term Rewrite Systems (TRSs)

2 Imperative Programs
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What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions
(and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
no fixed order of rules to apply (Haskell: top to bottom)
untyped
no pre-defined data structures (integers, arrays, . . .)
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Example (Division)

R =


minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) → minus](x, y)

quot](s(x), s(y)) → minus](x, y)
quot](s(x), s(y)) → quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) →R minus(s(0), 0) →R s(0)

Termination: No infinite evaluation sequences t1 →R t2 →R t3 →R . . .
Show termination using Dependency Pairs
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Dependency Pairs [Arts, Giesl, TCS ’00 ]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06 ] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s→ t with s � t from DP

Find � automatically and efficiently
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Polynomial interpretations

Get � via polynomial interpretations [ · ] over N [Lankford ’75]
→ ranking functions for rewriting

Example

∀x, y. x+ 1 = [

minus(s(x), s(y))

]

%

[

minus(x, y)

] = x

Use [ · ] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[ f(t1, . . . , tn)] = [ f ]([t1], . . . , [tn])

� boils down to > over N

8/20
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Example (Constraints for Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Use interpretation [ · ] over N with

[quot]](x1, x2) = x1 + x2 . [minus]](x1, x2) = x1 + x2
[quot](x1, x2) = x1 + x2 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints

y DP = ∅
y termination of division algorithm proved �
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Remark

Polynomial interpretations play several roles for program analysis:

Ranking function: [quot]] and [minus]]

Summary: [quot] and [minus]

Abstraction: [0] and [s]
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Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix a degree, use pol. interpretation with parametric coefficients:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate quantifiers ∀x, y by absolute positiveness criterion
[Hong, Jakuš, JAR ’98 ]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N
y Prove termination of given term rewrite system
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Extensions

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

can model behavior of functions more closely:
[pred](x1) = max(x1 − 1, 0)
automation via encoding to non-linear constraints, more complex
Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05 ]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp,
LPAR ’10; Borralleras et al, JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08 ]
linear interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
automation: constraints with more complex atoms
several flavors: plus-times-semiring, max-plus-semiring [Koprowski,
Waldmann, Acta Cyb. ’09 ], . . .

. . .
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Recipe

Automate your own weakly monotone interpretations

1 Pick suitable well-founded algebra (A,≥, >) and operations on A

2 Use templates for interpretations [ f ]
3 Get arithmetic inequalities

s � t y ∀~x. [s] > [t]

4 Use sound quantifier elimination to remove ∀~x
5 Feed quantifier-free SMT formula to suitable SMT solver

(or encode to a SAT problem)
6 Enjoy!
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Further extensions

Constrained term rewriting [Fuhs et al, RTA ’09; Kop, Nishida, FroCoS ’13;
Rocha, Meseguer, Muñoz, WRLA ’14; . . . ]

term rewriting with predefined operations from SMT theories, e.g.
integer arithmetic, . . .
target language for translations from programming languages

Complexity analysis
[Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . . ]
Can re-use termination machinery to infer and prove statements like
“runtime complexity of this TRS is in O(n3)”

13/20



Further extensions

Constrained term rewriting [Fuhs et al, RTA ’09; Kop, Nishida, FroCoS ’13;
Rocha, Meseguer, Muñoz, WRLA ’14; . . . ]

term rewriting with predefined operations from SMT theories, e.g.
integer arithmetic, . . .
target language for translations from programming languages

Complexity analysis
[Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . . ]
Can re-use termination machinery to infer and prove statements like
“runtime complexity of this TRS is in O(n3)”

13/20



SMT solvers from termination analysis

Annual SMT-COMP, division QF_NIA (Quantifier-Free Non-linear Integer
Arithmetic)

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt

(spin-off of TTT2)

2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 Yices

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours in the last years)
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1 Term Rewrite Systems (TRSs)

2 Imperative Programs
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Papers on termination of imperative programs often about integers as data

Example (Imperative program)

`0:

if x ≥ 0:

`1:

while x 6= 0:

`2:

x = x − 1

Does this program terminate?

Example (Equivalent translation to transition system)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0]
`2(x) → `1(x− 1)
`1(x) → `3(x) [x == 0]

Oh no! `1(−1)→ `2(−1)→ `1(−2)→ `2(−2)→ `1(−3)→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2
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Proving termination with invariants

Example (Transition system with invariants)

`0(x) → `1(x) [x ≥ 0]
`1(x) → `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) → `1(x− 1) [x ≥ 0]
`1(x) → `3(x) [x == 0 ∧ x ≥ 0]

Prove termination by ranking function [ · ] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints e.g.:
x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives
model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04, Alias et al, SAS ’10]
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Searching for invariants using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation
[Otto et al., RTA ’10; Ströder et al, IJCAR ’14, . . . ]

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06 ]
→ prove termination of single program runs
→ termination argument often generalizes

. . . also cooperating with removal of terminating rules (as for TRSs):
T2 [Brockschmidt, Cook, Fuhs, CAV ’13 ]

Using Max-SMT
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13 ]

Nowadays all SMT-based!
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Extensions

Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al,
TACAS ’14, Larraz et al, CAV ’14, Cook et al, FMCAD ’14, . . . ]

Complexity bounds
[Alias et al, SAS ’10, Flores-Montoya, Hähnle, APLAS ’14, Sinn, Zuleger,
Veith, CAV ’14, Hoffmann, Shao, JFP ’15, Brockschmidt et al,
TOPLAS ’16, . . . ]

CTL∗ model checking for infinite state systems based on termination
and non-termination provers
[Cook, Khlaaf, Piterman, CAV ’15 ]

Beyond sequential programs on integers:
structs/classes [Berdine et al, CAV ’06; Otto et al, RTA ’10; . . . ]
arrays (pointer arithmetic) [Ströder et al, IJCAR ’14, . . . ]
multi-threaded programs [Cook et al, PLDI ’07, . . . ]
IEEE floating-point numbers [Maurica, Mesnard, Payet, SAC ’16]
. . .
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Conclusion

Automated termination analysis for term rewriting and for imperative
programs developed in parallel over the last ∼ 15 years

Term rewriting: need to encode how to represent data structures
Imperative programs: need to consider reachability and invariants
Since a few years cross-fertilization
Automation heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SMT solver!
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