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Our goal:

Given a number of abstract rewrite properties and a number n,
find a model of n elements satisfying these properties

Example:

Can we find three rewrite relations such that the union of any two
of them is both terminating and confluent, but the union of all
three is not confluent?

Solution for n = 6:

in which the three relations are indicated by solid black, dashed red
and dotted blue arrows, respectively
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For every rewrite relation introduce n2 boolean variables Rij

indicating whether (i , j) is in the relation or not

Express all requirements by propositional formulas in the
boolean variables

Apply a SAT solver on the result
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Main approach

Fix the number n

For every rewrite relation introduce n2 boolean variables Rij

indicating whether (i , j) is in the relation or not

Express all requirements by propositional formulas in the
boolean variables

Apply a SAT solver on the result

In case of satisfiability: extract the solution from the resulting
satisfying assignment
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Termination

Confluence

Normal forms
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R−1 · S ⊆ (S ∪ R∗) · (R−1)∗
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Main questions

How to express the standard rewrite properties like

Termination

Confluence

Normal forms

Commutation properties like

R−1 · S ⊆ (S ∪ R∗) · (R−1)∗

For expressing most of these properties auxiliary relations will be
needed
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Termination

Theorem

A binary relation R on a finite set is terminating if and only a

binary relation S on the same set exists that is transitive and

irreflexive, and for which R ⊆ S
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Termination

Theorem

A binary relation R on a finite set is terminating if and only a

binary relation S on the same set exists that is transitive and

irreflexive, and for which R ⊆ S

Proof:
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Termination

Theorem

A binary relation R on a finite set is terminating if and only a

binary relation S on the same set exists that is transitive and

irreflexive, and for which R ⊆ S

Proof:

(only if)
Choose S = R+, this is irreflexive since R is acyclic
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Termination

Theorem

A binary relation R on a finite set is terminating if and only a

binary relation S on the same set exists that is transitive and

irreflexive, and for which R ⊆ S

Proof:

(only if)
Choose S = R+, this is irreflexive since R is acyclic

(if)
If S is transitive and R ⊆ S , then R+ ⊆ S
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Termination

Theorem

A binary relation R on a finite set is terminating if and only a

binary relation S on the same set exists that is transitive and

irreflexive, and for which R ⊆ S

Proof:

(only if)
Choose S = R+, this is irreflexive since R is acyclic

(if)
If S is transitive and R ⊆ S , then R+ ⊆ S

Hence R+ is irreflexive, hence R is acyclic = terminating
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Termination

Theorem

A binary relation R on a finite set is terminating if and only a

binary relation S on the same set exists that is transitive and

irreflexive, and for which R ⊆ S
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Theorem

A binary relation R on a finite set is terminating if and only a

binary relation S on the same set exists that is transitive and

irreflexive, and for which R ⊆ S

Using this theorem the requirement of termination of a relation R

can be expressed in a SAT formula:
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Termination

Theorem

A binary relation R on a finite set is terminating if and only a

binary relation S on the same set exists that is transitive and

irreflexive, and for which R ⊆ S

Using this theorem the requirement of termination of a relation R

can be expressed in a SAT formula:

Introduce an auxiliary relation S by n2 extra variables Sij and
express

R ⊆ S by
∧

i ,j(Rij → Sij)

S is irreflexive by
∧
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Termination

Theorem

A binary relation R on a finite set is terminating if and only a

binary relation S on the same set exists that is transitive and

irreflexive, and for which R ⊆ S

Using this theorem the requirement of termination of a relation R

can be expressed in a SAT formula:

Introduce an auxiliary relation S by n2 extra variables Sij and
express

R ⊆ S by
∧

i ,j(Rij → Sij)

S is irreflexive by
∧

i ¬Sii

S is transitive by
∧

i ,j ,k((Sij ∧ Sjk) → Sik)
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Composition

T = R · S is expressed by

∧

i ,j

(Tij ↔
∨

k

(Rik ∧ Skj))

Hans Zantema Finding Examples in Abstract Rewriting



Composition

T = R · S is expressed by

∧

i ,j

(Tij ↔
∨

k

(Rik ∧ Skj))

In particular, we can express T = R · R = R2
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Composition

T = R · S is expressed by

∧

i ,j

(Tij ↔
∨

k

(Rik ∧ Skj))

In particular, we can express T = R · R = R2

Similarly, we express

peak(R, S) = R−1 · S

and
valley(R, S) = R · S−1
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Transitive reflexive closure

Theorem

Let R be a relation on a set of n elements and let k = ⌈log2 n⌉
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Transitive reflexive closure

Theorem

Let R be a relation on a set of n elements and let k = ⌈log2 n⌉

Let Ri be relations for i = 1, 2, . . . , k, satisfying

R1 = I ∪ R ∪ R2
, and Ri+1 = Ri ∪ R2

i for i = 1, . . . , k − 1

Then Rk = R∗
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Transitive reflexive closure

Theorem

Let R be a relation on a set of n elements and let k = ⌈log2 n⌉

Let Ri be relations for i = 1, 2, . . . , k, satisfying

R1 = I ∪ R ∪ R2
, and Ri+1 = Ri ∪ R2

i for i = 1, . . . , k − 1

Then Rk = R∗

So for expressing the relation R∗ for a given binary relation R

introduce auxiliary relations R1, R2, . . . ,Rk and create formulas
expressing R1 = I ∪ R ∪ R2 for I being the identity, and
Ri+1 = Ri ∪ R2

i for i = 1, . . . , k − 1
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Transitive reflexive closure

Theorem

Let R be a relation on a set of n elements and let k = ⌈log2 n⌉

Let Ri be relations for i = 1, 2, . . . , k, satisfying

R1 = I ∪ R ∪ R2
, and Ri+1 = Ri ∪ R2

i for i = 1, . . . , k − 1

Then Rk = R∗

So for expressing the relation R∗ for a given binary relation R

introduce auxiliary relations R1, R2, . . . ,Rk and create formulas
expressing R1 = I ∪ R ∪ R2 for I being the identity, and
Ri+1 = Ri ∪ R2

i for i = 1, . . . , k − 1

Then Rk describes the desired relation R∗
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Confluence

By specifying S = R∗ in this way, we express confluence by

peak(S , S) ⊆ valley(S , S)

and local confluence by

peak(R, R) ⊆ valley(S , S)
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By specifying S = R∗ in this way, we express confluence by

peak(S , S) ⊆ valley(S , S)

and local confluence by

peak(R, R) ⊆ valley(S , S)

Applying a SAT solver on the combination of

¬(peak(S , S) ⊆ valley(S , S))

and local confluence for n = 4 yields the well-known example
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Confluence

By specifying S = R∗ in this way, we express confluence by

peak(S , S) ⊆ valley(S , S)

and local confluence by

peak(R, R) ⊆ valley(S , S)

Applying a SAT solver on the combination of

¬(peak(S , S) ⊆ valley(S , S))

and local confluence for n = 4 yields the well-known example

Adding termination of R yields an unsatisfiable formula, as
expected due to Newman’s Lemma
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Completeness

Complete = confluent and terminating
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Completeness

Complete = confluent and terminating

Completess can be expressed by the combination of confluence and
termination using Ω(log n) auxiliary relations
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Completeness

Complete = confluent and terminating

Completess can be expressed by the combination of confluence and
termination using Ω(log n) auxiliary relations

It can be done much more efficient using only two auxiliary
relations by

Theorem

A binary relation R on a finite set is complete if and only if two

binary relations S and T exist such that

R ⊆ S

S is transitive and irreflexive
∧

i (Tii ∨
∨

j Rij)∧
i ,j((Sij ∧ Tjj) → Tij)∧
i ,j ,k,j 6=k ¬(Tij ∧ Tik)
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We defined an input format in which rewriting properties can be
specified directly:
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compl, where compl(R) means that R is complete,
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The tool CARPA

We defined an input format in which rewriting properties can be
specified directly:

sn, where sn(R) means that R is terminating,

cr, wcr, wn, un,

compl, where compl(R) means that R is complete,

subs, where subs(R, S) means that R ⊆ S ,

trans, where trans(R) means that R is transitive,

nf, where nf(x , R) means that x is a normal form with
respect to R, and

red, where red(x , y , R) means that (x , y) ∈ R,
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The tool CARPA

We defined an input format in which rewriting properties can be
specified directly:

sn, where sn(R) means that R is terminating,

cr, wcr, wn, un,

compl, where compl(R) means that R is complete,

subs, where subs(R, S) means that R ⊆ S ,

trans, where trans(R) means that R is transitive,

nf, where nf(x , R) means that x is a normal form with
respect to R, and

red, where red(x , y , R) means that (x , y) ∈ R,

union, comp(osition), peak, val, transitive closure, · · ·
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Our tool CARPA (Counter examples of Abstract Rewriting
Produced Automatically)
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The tool CARPA

Our tool CARPA (Counter examples of Abstract Rewriting
Produced Automatically)

reads the number n and a list of requirements in this format,
like
cr(1)

x1=peak(1,2)

x2=trc(1)

x3=val(2,x2)

subs(x1,x3)
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reads the number n and a list of requirements in this format,
like
cr(1)

x1=peak(1,2)

x2=trc(1)

x3=val(2,x2)

subs(x1,x3)

builds a formula for it,

calls a SAT solver, and
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The tool CARPA

Our tool CARPA (Counter examples of Abstract Rewriting
Produced Automatically)

reads the number n and a list of requirements in this format,
like
cr(1)

x1=peak(1,2)

x2=trc(1)

x3=val(2,x2)

subs(x1,x3)

builds a formula for it,

calls a SAT solver, and

transforms the result back to the desired example, or reports
that no solution exists
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Example

Let R and S be two complete binary relations satisfying

R−1 · S ⊆ (S ∪ R∗) · (R−1)∗

Can we conclude that the union is confluent?
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Example

Let R and S be two complete binary relations satisfying

R−1 · S ⊆ (S ∪ R∗) · (R−1)∗

Can we conclude that the union is confluent?

No

R steps: solid black arrows; S steps: dashed red arrows
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As a SAT solver we experimented with minisat and Yices;
the distributed version uses Yices

Termination and completeness were expressed by one or two
auxiliary relations, for transitive closure and confluence we
needed log n auxiliary relations
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Conclusions

We developed technigues to express abstract rewriting
properties like termination, confluence, completeness, in
propositional formulas

We implemented this in a tool CARPA, that reads a list of
rewriting properties and automatically finds an example,
exploiting these techniques and SAT solving

As a SAT solver we experimented with minisat and Yices;
the distributed version uses Yices

Termination and completeness were expressed by one or two
auxiliary relations, for transitive closure and confluence we
needed log n auxiliary relations

More examples are welcome
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