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Non-termination

A rewrite system is non-terminating if there is an infinite sequence
t0, t1, t2, . . . such that ti → ti+1 for all i :

t0 → t1 → t2 · · ·

First we focus on string rewriting:

a set R of rules `→ r are given, for strings `, r

a step is a replacement of an occurrence of ` by r for a rule
`→ r in R:
u`v →R urv for all `→ r in R and all strings u, v

Later we will consider cycle rewriting
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Techniques for proving non-termination of string and term
rewriting

search for a loop = finite computation from a term t to a
term containing an instance of t as a subterm: t →∗ C [tσ],

search for other patterns from which infinite computations
easily follow (Emmes, Enger, Giesl, 2012)

search for automaton for which accepting language implies
non-termination (Endrullis, Zantema, RTA 2015)

We focus on this last approach, and will exend it to cycle rewriting
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Example
ab → bbaa is non-terminating since it admits a loop:

abb → bbaab → bb abb︸︷︷︸ aa

goes on forever since the instance abb can be rewritten forever

Are all non-terminating systems looping?

No [GeserZantema1999]

Example

bL→ bR, Ra→ aR, Rb → Lab, aL→ La

is non-terminating:

bLb → bRb → bLab → bRab → baRb → baLab → bLaab

→+ bLaaab →+ bLaaaab →+ · · ·

but does not admit a loop
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Basic idea our approach

If there is a set L of terms or strings such that

L 6= ∅

L is closed under rewriting: if t ∈ L and t → u then u ∈ L,
and

L does not contain normal forms: if t ∈ L then ∃u : t → u

then the system is non-terminating: start by t0 ∈ L, and for
i = 0, 1, 2, . . . choose ti+1 such that ti → ti+1

Even non-WN
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The approach

Search for a regular L described by a finite automaton by
expressing the above requirements in a SAT formula, and let a
SAT solver do the work

Example

For
bL→ bR, Ra→ aR, Rb → Lab, aL→ La

a compatible language L is described by the regular expression

b a∗ (L + R) a∗ b

also described by the automaton
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SAT solving

Fixing a rewrite system and a number n, we want to find an
automaton A on n states fully automatically such that its
accepting language L satisfies all our requirements, hence proving
non-termination

How to do this?

Introduce mn2 boolean variables vija describing whether there is an
a-transition from state i to state j , for i , j running over all n states,
and a running over all m symbols

Build a formula on these variables that is satisfiable if and only if
the accepting language L satisfies all our requirements

Apply a SAT solver to this formula: if it is satisfiable then L
satisfies the requirements proving non-termination
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Expressing the requirements (RTA2015)

L 6= ∅: there is a path in A from the initial state to a final
state

Closed under rewriting (overapproximation):
for every rule `→ r and every two states i , j in A for which
there is a path labeled by ` from i to j , there is also a path
labeled by r from i to j

L contains no normal forms:
In a preprocessing build an automaton A′ exactly accepting
the normal forms, then in the product automaton A×A′ there
should be no path from the initial state to a state (f , f ′) for
which f is final in A and f ′ is final in A′
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Observations (RTA2015)

This works well: for many examples a corresponding proof of
non-termination is found fully automatically by a SAT solver,
where all earlier techniques fail

Extends to term rewriting by applying tree automata, yielding
the first automatic non-termination proof for the S-rule

a(a(a(S , x), y), z)→ a(a(x , z), a(y , z))

being one of the building blocks of combinatory logic

Not only for non-WN: variants also apply to prove
non-termination for systems that are WN

New insights (2016)

Exploit simulations

Extend the approach to cycle rewriting
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Simulations

A relation ∼ on the states of an automaton is called a simulation if
for every p, q, r , a such that p ∼ q and p

a→ r , there exists a state
s such that q

a→ s and r ∼ s:

p
a→ r

o o
q

a→ s

Consequence: for any string u we have

p
u→ r

o o
q

u→ s

A backward simulation is a simulation in the automaton obtained
by reversing all arrows
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Simulations are helpful for the properties for string rewriting:

Closed under rewriting:
for every rule `→ r and every two states i , j in A for which
there is a path labeled by ` from i to j , no path labeled by r
from i to j is required, but only from i ′ to j ′ for i ′, j ′ related to
i , j by suitable simulations

L contains no normal forms:
No big product automaton required any more: if M accepts
non-normal forms, then for L = L(A) we require L ⊆ L(M),
to be expressed by simulating any path from initial to final in
A by a similar path in M
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Cycle rewriting

Cycle rewriting is string rewriting modulo cyclic shift, that is, the
equivalence relation ' defined by uv ' vu for all u, v

Termination of cycle rewriting is a stronger property than
termination of string rewriting, for instance,

ab → ba

is terminating in string rewriting, but not in cycle rewriting

[ZBK14] and [SZ15] present techniques for proving termination of
cycle rewriting, but how to prove non-termination?

First approach: search for pattern uv →+ vu+

We adapt our automata based approach for cycle rewriting
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Non-termination of cycle rewriting

Theorem

Let R be an SRS over Σ and L ⊆ Σ∗ satisfy

L 6= ∅,

if `→ r ∈ R, u, v ∈ Σ∗ and u`v ∈ L then either urv ∈ L or
there exist r1 6= ε 6= r2 such that r = r1r2 and r2vur1 ∈ L,

if `1`2 → r ∈ R, u ∈ Σ∗ and `2u`1 ∈ L, then there exist r1, r2
such that r = r1r2 and r2ur1 ∈ L,

L ⊆ L′ for L′ consisting of all strings for which a cyclic shift
can be rewritten

Then R is not cycle terminating
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By building an automaton M satisfying L(M) = L′ in advance, all
these properties can be expressed in SAT by exploiting forward and
backward simulations

Example
R = {00a→ a0, 1a→ a01}

The above approach yields

Indeed L = {0100a, 01a0} satisfies all properties
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Conclusions

We summarized the method for non-termination of string
rewriting from RTA2015

Instead of looking for a particular infinite computation, we
look for a (regular) language (= set of strings) with some
properties from which non-termination easily follows

Properties are expressed in a SAT formula; as often in
(non-)termination the real search for a proof is done by a SAT
solver

We exploited simulations to improve this approach

We extended the approach to cycle rewriting, again exploiting
simulations

Thank you
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