Non-termination of String and Cycle Rewriting by Automata

Hans Zantema and Alexander Fedotov

Eindhoven, Nijmegen The Netherlands

WST, September, 2016

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-termination

Hans Zantema and Alexander Fedotov Non-termination of String and Cycle Rewriting by Automata

・ロト ・回ト ・ヨト ・ヨト

э.

A rewrite system is *non-terminating* if there is an infinite sequence t_0, t_1, t_2, \ldots such that $t_i \rightarrow t_{i+1}$ for all *i*:

$$t_0 \rightarrow t_1 \rightarrow t_2 \cdots$$

イロト 不得 トイヨト イヨト

A rewrite system is *non-terminating* if there is an infinite sequence t_0, t_1, t_2, \ldots such that $t_i \rightarrow t_{i+1}$ for all *i*:

$$t_0 \rightarrow t_1 \rightarrow t_2 \cdots$$

First we focus on string rewriting:

- a set $\mathcal R$ of rules $\ell \to r$ are given, for strings ℓ, r
- a step is a replacement of an occurrence of ℓ by r for a rule $\ell \rightarrow r$ in \mathcal{R} :

 $u\ell v \rightarrow_R urv$ for all $\ell \rightarrow r$ in \mathcal{R} and all strings u, v

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

A rewrite system is *non-terminating* if there is an infinite sequence t_0, t_1, t_2, \ldots such that $t_i \rightarrow t_{i+1}$ for all *i*:

$$t_0 \rightarrow t_1 \rightarrow t_2 \cdots$$

First we focus on string rewriting:

- a set $\mathcal R$ of rules $\ell \to r$ are given, for strings ℓ, r
- a step is a replacement of an occurrence of ℓ by r for a rule $\ell \rightarrow r$ in \mathcal{R} :

 $u\ell v \rightarrow_R urv$ for all $\ell \rightarrow r$ in \mathcal{R} and all strings u, v

Later we will consider cycle rewriting

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

イロト イポト イヨト イヨト

э

 search for a *loop* = finite computation from a term t to a term containing an instance of t as a subterm: t →* C[tσ],

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

- search for a *loop* = finite computation from a term t to a term containing an instance of t as a subterm: t →* C[tσ],
- search for other patterns from which infinite computations easily follow (Emmes, Enger, Giesl, 2012)

- search for a *loop* = finite computation from a term t to a term containing an instance of t as a subterm: t →* C[tσ],
- search for other patterns from which infinite computations easily follow (Emmes, Enger, Giesl, 2012)
- search for automaton for which accepting language implies non-termination (Endrullis, Zantema, RTA 2015)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

- search for a *loop* = finite computation from a term t to a term containing an instance of t as a subterm: t →* C[tσ],
- search for other patterns from which infinite computations easily follow (Emmes, Enger, Giesl, 2012)
- search for automaton for which accepting language implies non-termination (Endrullis, Zantema, RTA 2015)

We focus on this last approach, and will exend it to cycle rewriting

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

 $ab \rightarrow bbaa$ is non-terminating since it admits a loop:

abb
ightarrow bbaab
ightarrow bb abb aa

goes on forever since the instance abb can be rewritten forever

 $ab \rightarrow bbaa$ is non-terminating since it admits a loop:

$$abb
ightarrow bbaab
ightarrow bb abb aa$$

goes on forever since the instance abb can be rewritten forever

Are all non-terminating systems looping?

イロン 不同 とくほう イロン

 $ab \rightarrow bbaa$ is non-terminating since it admits a loop:

$$abb
ightarrow bbaab
ightarrow bb \underbrace{abb}_{abb} aa$$

goes on forever since the instance abb can be rewritten forever

Are all non-terminating systems looping?

No [GeserZantema1999]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

 $ab \rightarrow bbaa$ is non-terminating since it admits a loop:

$$abb
ightarrow bbaab
ightarrow bb \underbrace{abb}_{abb} aa$$

goes on forever since the instance abb can be rewritten forever

Are all non-terminating systems looping?

No [GeserZantema1999]

Example

$$bL \rightarrow bR, \ Ra \rightarrow aR, \ Rb \rightarrow Lab, \ aL \rightarrow La$$

is non-terminating:

 $bLb \rightarrow bRb \rightarrow bLab \rightarrow bRab \rightarrow baRb \rightarrow baLab \rightarrow bLaab$

$$ightarrow^+$$
 bLaaab $ightarrow^+$ bLaaaab $ightarrow^+ \cdots$

but does not admit a loop

Hans Zantema and Alexander Fedotov

Non-termination of String and Cycle Rewriting by Automata

-

< □ > < □ > < □ >

• $\mathcal{L} \neq \emptyset$

イロン イロン イヨン イヨン

- $\mathcal{L} \neq \emptyset$
- \mathcal{L} is closed under rewriting: if $t \in \mathcal{L}$ and $t \rightarrow u$ then $u \in \mathcal{L}$, and

-

- $\mathcal{L} \neq \emptyset$
- \mathcal{L} is closed under rewriting: if $t \in \mathcal{L}$ and $t \rightarrow u$ then $u \in \mathcal{L}$, and
- $\mathcal L$ does not contain normal forms: if $t \in \mathcal L$ then $\exists u: t
 ightarrow u$

- $\mathcal{L} \neq \emptyset$
- \mathcal{L} is closed under rewriting: if $t \in \mathcal{L}$ and $t \rightarrow u$ then $u \in \mathcal{L}$, and
- $\mathcal L$ does not contain normal forms: if $t\in\mathcal L$ then $\exists u:t
 ightarrow u$

then the system is non-terminating: start by $t_0 \in \mathcal{L}$, and for i = 0, 1, 2, ... choose t_{i+1} such that $t_i \rightarrow t_{i+1}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

- $\mathcal{L} \neq \emptyset$
- \mathcal{L} is closed under rewriting: if $t \in \mathcal{L}$ and $t \rightarrow u$ then $u \in \mathcal{L}$, and
- $\mathcal L$ does not contain normal forms: if $t \in \mathcal L$ then $\exists u: t
 ightarrow u$

then the system is non-terminating: start by $t_0 \in \mathcal{L}$, and for i = 0, 1, 2, ... choose t_{i+1} such that $t_i \rightarrow t_{i+1}$

Even non-WN

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Search for a *regular* \mathcal{L} described by a finite automaton by expressing the above requirements in a SAT formula, and let a SAT solver do the work

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Search for a *regular* \mathcal{L} described by a finite automaton by expressing the above requirements in a SAT formula, and let a SAT solver do the work

Example

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Search for a *regular* \mathcal{L} described by a finite automaton by expressing the above requirements in a SAT formula, and let a SAT solver do the work

Example

For

$$bL \rightarrow bR, \ Ra \rightarrow aR, \ Rb \rightarrow Lab, \ aL \rightarrow La$$

a compatible language $\ensuremath{\mathcal{L}}$ is described by the regular expression

 $b a^* (L+R) a^* b$

Search for a *regular* \mathcal{L} described by a finite automaton by expressing the above requirements in a SAT formula, and let a SAT solver do the work

Example

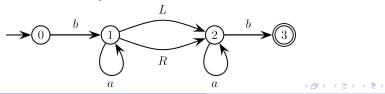
For

$$bL \rightarrow bR, \ Ra \rightarrow aR, \ Rb \rightarrow Lab, \ aL \rightarrow La$$

a compatible language ${\mathcal L}$ is described by the regular expression

 $b a^* (L+R) a^* b$

also described by the automaton



Non-termination of String and Cycle Rewriting by Automata

SAT solving

Hans Zantema and Alexander Fedotov Non-termination of String and Cycle Rewriting by Automata

・ロト ・回ト ・ヨト ・ヨト

æ

How to do this?

How to do this?

Introduce mn^2 boolean variables v_{ija} describing whether there is an *a*-transition from state *i* to state *j*, for *i*, *j* running over all *n* states, and *a* running over all *m* symbols

イロト 不得 トイヨト イヨト 二日

How to do this?

Introduce mn^2 boolean variables v_{ija} describing whether there is an *a*-transition from state *i* to state *j*, for *i*, *j* running over all *n* states, and *a* running over all *m* symbols

Build a formula on these variables that is satisfiable if and only if the accepting language ${\cal L}$ satisfies all our requirements

イロト 不得 とくほ とくほ とうほう

How to do this?

Introduce mn^2 boolean variables v_{ija} describing whether there is an *a*-transition from state *i* to state *j*, for *i*, *j* running over all *n* states, and *a* running over all *m* symbols

Build a formula on these variables that is satisfiable if and only if the accepting language ${\cal L}$ satisfies all our requirements

Apply a SAT solver to this formula: if it is satisfiable then \mathcal{L} satisfies the requirements proving non-termination

Hans Zantema and Alexander Fedotov Non-termination of String and Cycle Rewriting by Automata

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

• $\mathcal{L} \neq \emptyset$: there is a path in A from the initial state to a final state

イロト 不得 トイヨト イヨト

- $\mathcal{L} \neq \emptyset$: there is a path in A from the initial state to a final state
- Closed under rewriting (overapproximation): for every rule l→ r and every two states i, j in A for which there is a path labeled by l from i to j, there is also a path labeled by r from i to j

< ロ > < 同 > < 回 > < 回 > < □ > <

- $\mathcal{L} \neq \emptyset$: there is a path in A from the initial state to a final state
- Closed under rewriting (overapproximation): for every rule l→ r and every two states i, j in A for which there is a path labeled by l from i to j, there is also a path labeled by r from i to j
- $\mathcal L$ contains no normal forms:

In a preprocessing build an automaton A' exactly accepting the normal forms, then in the product automaton $A \times A'$ there should be no path from the initial state to a state (f, f') for which f is final in A and f' is final in A'

Observations (RTA2015)

Hans Zantema and Alexander Fedotov Non-termination of String and Cycle Rewriting by Automata

<ロ> <同> <同> < 同> < 同>

Observations (RTA2015)

• This works well: for many examples a corresponding proof of non-termination is found fully automatically by a SAT solver, where all earlier techniques fail

(人間) (人) (人) (人) (人) (人)

- This works well: for many examples a corresponding proof of non-termination is found fully automatically by a SAT solver, where all earlier techniques fail
- Extends to *term rewriting* by applying *tree automata*, yielding the first automatic non-termination proof for the *S*-rule

$$a(a(a(S,x),y),z) \rightarrow a(a(x,z),a(y,z))$$

being one of the building blocks of combinatory logic

イロト 不得 トイヨト イヨト 二日

- This works well: for many examples a corresponding proof of non-termination is found fully automatically by a SAT solver, where all earlier techniques fail
- Extends to *term rewriting* by applying *tree automata*, yielding the first automatic non-termination proof for the *S*-rule

$$a(a(a(S,x),y),z) \rightarrow a(a(x,z),a(y,z))$$

being one of the building blocks of combinatory logic

 Not only for non-WN: variants also apply to prove non-termination for systems that are WN

イロト 不得 とくほ とくほ とうほう

- This works well: for many examples a corresponding proof of non-termination is found fully automatically by a SAT solver, where all earlier techniques fail
- Extends to *term rewriting* by applying *tree automata*, yielding the first automatic non-termination proof for the *S*-rule

 $a(a(a(S,x),y),z) \rightarrow a(a(x,z),a(y,z))$

being one of the building blocks of combinatory logic

 Not only for non-WN: variants also apply to prove non-termination for systems that are WN

New insights (2016)

- This works well: for many examples a corresponding proof of non-termination is found fully automatically by a SAT solver, where all earlier techniques fail
- Extends to *term rewriting* by applying *tree automata*, yielding the first automatic non-termination proof for the *S*-rule

 $a(a(a(S,x),y),z) \rightarrow a(a(x,z),a(y,z))$

being one of the building blocks of combinatory logic

 Not only for non-WN: variants also apply to prove non-termination for systems that are WN

New insights (2016)

• Exploit simulations

- This works well: for many examples a corresponding proof of non-termination is found fully automatically by a SAT solver, where all earlier techniques fail
- Extends to *term rewriting* by applying *tree automata*, yielding the first automatic non-termination proof for the *S*-rule

 $a(a(a(S,x),y),z) \rightarrow a(a(x,z),a(y,z))$

being one of the building blocks of combinatory logic

• Not only for non-WN: variants also apply to prove non-termination for systems that are WN

New insights (2016)

- Exploit simulations
- Extend the approach to cycle rewriting

Hans Zantema and Alexander Fedotov Non-termination of String and Cycle Rewriting by Automata

<ロ> (四) (四) (三) (三) (三) (三)

A relation \sim on the states of an automaton is called a *simulation* if for every p, q, r, a such that $p \sim q$ and $p \xrightarrow{a} r$, there exists a state s such that $q \xrightarrow{a} s$ and $r \sim s$:

$$\begin{array}{ccc} p & \stackrel{a}{\rightarrow} & r \\ \downarrow & & \downarrow \\ q & \stackrel{a}{\rightarrow} & s \end{array}$$

A relation \sim on the states of an automaton is called a *simulation* if for every p, q, r, a such that $p \sim q$ and $p \xrightarrow{a} r$, there exists a state s such that $q \xrightarrow{a} s$ and $r \sim s$:

$$p \stackrel{a}{\rightarrow} r$$

$$\downarrow \qquad \downarrow$$

$$q \stackrel{a}{\rightarrow} s$$

Consequence: for any string *u* we have

$$\begin{array}{cccc} p & \stackrel{u}{\rightarrow} & r \\ \wr & & \wr \\ q & \stackrel{u}{\rightarrow} & s \end{array}$$

A relation \sim on the states of an automaton is called a *simulation* if for every p, q, r, a such that $p \sim q$ and $p \xrightarrow{a} r$, there exists a state s such that $q \xrightarrow{a} s$ and $r \sim s$:

$$p \stackrel{a}{\rightarrow} r$$

$$\downarrow \qquad \downarrow$$

$$q \stackrel{a}{\rightarrow} s$$

Consequence: for any string u we have

$$\begin{array}{cccc} p & \stackrel{u}{\rightarrow} & r \\ \wr & & \wr \\ q & \stackrel{u}{\rightarrow} & s \end{array}$$

A *backward simulation* is a simulation in the automaton obtained by reversing all arrows

Hans Zantema and Alexander Fedotov

Non-termination of String and Cycle Rewriting by Automata

Simulations are helpful for the properties for string rewriting:

・ロン ・部 と ・ ヨ と ・ ヨ と …

Simulations are helpful for the properties for string rewriting:

• Closed under rewriting:

for every rule $\ell \to r$ and every two states i, j in A for which there is a path labeled by ℓ from i to j, no path labeled by rfrom i to j is required, but only from i' to j' for i', j' related to i, j by suitable simulations

イロト 不得 トイヨト イヨト 二日

Simulations are helpful for the properties for string rewriting:

• Closed under rewriting:

for every rule $\ell \to r$ and every two states i, j in A for which there is a path labeled by ℓ from i to j, no path labeled by rfrom i to j is required, but only from i' to j' for i', j' related to i, j by suitable simulations

• \mathcal{L} contains no normal forms: No big product automaton required any more: if M accepts non-normal forms, then for $\mathcal{L} = L(A)$ we require $\mathcal{L} \subseteq L(M)$, to be expressed by simulating any path from initial to final in A by a similar path in M

イロト 不得 とくほ とくほ とうほう

Cycle rewriting

Hans Zantema and Alexander Fedotov Non-termination of String and Cycle Rewriting by Automata

<ロ> <同> <同> < 同> < 同>

æ

ヘロト ヘヨト ヘヨト ヘヨト

Termination of cycle rewriting is a stronger property than termination of string rewriting, for instance,

ab
ightarrow ba

is terminating in string rewriting, but not in cycle rewriting

Termination of cycle rewriting is a stronger property than termination of string rewriting, for instance,

ab
ightarrow ba

is terminating in string rewriting, but not in cycle rewriting

[ZBK14] and [SZ15] present techniques for proving termination of cycle rewriting, but how to prove non-termination?

Termination of cycle rewriting is a stronger property than termination of string rewriting, for instance,

ab
ightarrow ba

is terminating in string rewriting, but not in cycle rewriting

[ZBK14] and [SZ15] present techniques for proving termination of cycle rewriting, but how to prove non-termination?

First approach: search for pattern $uv \rightarrow^+ vu^+$

Termination of cycle rewriting is a stronger property than termination of string rewriting, for instance,

ab
ightarrow ba

is terminating in string rewriting, but not in cycle rewriting

[ZBK14] and [SZ15] present techniques for proving termination of cycle rewriting, but how to prove non-termination?

First approach: search for pattern $uv \rightarrow^+ vu^+$

We adapt our automata based approach for cycle rewriting

Let R be an SRS over Σ and $L \subseteq \Sigma^*$ satisfy

Hans Zantema and Alexander Fedotov Non-termination of String and Cycle Rewriting by Automata

Э

э

▲□ ► < □ ► </p>

Let R be an SRS over Σ and $L\subseteq \Sigma^*$ satisfy

Hans Zantema and Alexander Fedotov Non-termination of String and Cycle Rewriting by Automata

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Let R be an SRS over Σ and $L\subseteq \Sigma^*$ satisfy

- $L \neq \emptyset$,
- if l→ r ∈ R, u, v ∈ Σ* and ulv ∈ L then either urv ∈ L or there exist r₁ ≠ ε ≠ r₂ such that r = r₁r₂ and r₂vur₁ ∈ L,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let R be an SRS over Σ and $L\subseteq \Sigma^*$ satisfy

- $L \neq \emptyset$,
- if l→ r ∈ R, u, v ∈ Σ* and ulv ∈ L then either urv ∈ L or there exist r₁ ≠ ε ≠ r₂ such that r = r₁r₂ and r₂vur₁ ∈ L,
- if $\ell_1\ell_2 \rightarrow r \in R$, $u \in \Sigma^*$ and $\ell_2 u \ell_1 \in L$, then there exist r_1, r_2 such that $r = r_1r_2$ and $r_2ur_1 \in L$,

< 日 > < 同 > < 三 > < 三 >

Let R be an SRS over Σ and $L \subseteq \Sigma^*$ satisfy

- $L \neq \emptyset$,
- if l→ r ∈ R, u, v ∈ Σ* and ulv ∈ L then either urv ∈ L or there exist r₁ ≠ ε ≠ r₂ such that r = r₁r₂ and r₂vur₁ ∈ L,
- if $\ell_1\ell_2 \rightarrow r \in R$, $u \in \Sigma^*$ and $\ell_2 u \ell_1 \in L$, then there exist r_1, r_2 such that $r = r_1r_2$ and $r_2ur_1 \in L$,
- L ⊆ L' for L' consisting of all strings for which a cyclic shift can be rewritten

Let R be an SRS over Σ and $L\subseteq \Sigma^*$ satisfy

- $L \neq \emptyset$,
- if l→ r ∈ R, u, v ∈ Σ* and ulv ∈ L then either urv ∈ L or there exist r₁ ≠ ε ≠ r₂ such that r = r₁r₂ and r₂vur₁ ∈ L,
- if $\ell_1\ell_2 \rightarrow r \in R$, $u \in \Sigma^*$ and $\ell_2 u \ell_1 \in L$, then there exist r_1, r_2 such that $r = r_1r_2$ and $r_2ur_1 \in L$,
- L ⊆ L' for L' consisting of all strings for which a cyclic shift can be rewritten

Then R is not cycle terminating

< 日 > < 同 > < 三 > < 三 >

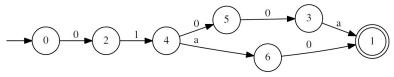
-

Example

 $R = \{00a \rightarrow a0, 1a \rightarrow a01\}$

Example $R = \{00a \rightarrow a0, 1a \rightarrow a01\}$

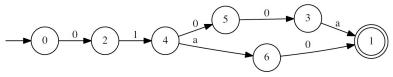
The above approach yields



< 日 > < 同 > < 三 > < 三 >

Example $R = \{00a \rightarrow a0, 1a \rightarrow a01\}$

The above approach yields



Indeed $L = \{0100a, 01a0\}$ satisfies all properties

(日) (同) (日) (日) (日)

Hans Zantema and Alexander Fedotov Non-termination of String and Cycle Rewriting by Automata

<ロ> (四) (四) (三) (三) (三) (三)

• We summarized the method for non-termination of string rewriting from RTA2015

・ロト ・回ト ・ヨト ・ヨト

-

- We summarized the method for non-termination of string rewriting from RTA2015
- Instead of looking for a particular infinite computation, we look for a (regular) language (= set of strings) with some properties from which non-termination easily follows

-

- We summarized the method for non-termination of string rewriting from RTA2015
- Instead of looking for a particular infinite computation, we look for a (regular) language (= set of strings) with some properties from which non-termination easily follows
- Properties are expressed in a SAT formula; as often in (non-)termination the real search for a proof is done by a SAT solver

イロト 不得 トイヨト イヨト 二日

- We summarized the method for non-termination of string rewriting from RTA2015
- Instead of looking for a particular infinite computation, we look for a (regular) language (= set of strings) with some properties from which non-termination easily follows
- Properties are expressed in a SAT formula; as often in (non-)termination the real search for a proof is done by a SAT solver
- We exploited simulations to improve this approach

イロト 不得 トイヨト イヨト 二日

- We summarized the method for non-termination of string rewriting from RTA2015
- Instead of looking for a particular infinite computation, we look for a (regular) language (= set of strings) with some properties from which non-termination easily follows
- Properties are expressed in a SAT formula; as often in (non-)termination the real search for a proof is done by a SAT solver
- We exploited simulations to improve this approach
- We extended the approach to cycle rewriting, again exploiting simulations

- We summarized the method for non-termination of string rewriting from RTA2015
- Instead of looking for a particular infinite computation, we look for a (regular) language (= set of strings) with some properties from which non-termination easily follows
- Properties are expressed in a SAT formula; as often in (non-)termination the real search for a proof is done by a SAT solver
- We exploited simulations to improve this approach
- We extended the approach to cycle rewriting, again exploiting simulations
- Thank you