
Termination of term graph rewriting

Hans Zantema

Technische Universiteit Eindhoven and Radboud Universiteit Nijmegen
Joined work with Dennis Nolte and Barbara König

Workshop on Termination, Obergurgl, September, 2016

Hans Zantema Termination of term graph rewriting

Term rewriting

A term rewrite system (TRS) is a set of rules `→ r , in which `, r
are terms, typically containing variables

If t is a term, and σ maps variables to terms, then tσ is the term
obtained from t by replacing every variable x by σ(x)

Term rewriting = if a subterm is of the shape `σ for some rule
`→ r , then it may be replaced by rσ

This is a widely applied standard way of computation

Hans Zantema Termination of term graph rewriting

Term rewriting

A term rewrite system (TRS) is a set of rules `→ r , in which `, r
are terms, typically containing variables

If t is a term, and σ maps variables to terms, then tσ is the term
obtained from t by replacing every variable x by σ(x)

Term rewriting = if a subterm is of the shape `σ for some rule
`→ r , then it may be replaced by rσ

This is a widely applied standard way of computation

Hans Zantema Termination of term graph rewriting

Term rewriting

A term rewrite system (TRS) is a set of rules `→ r , in which `, r
are terms, typically containing variables

If t is a term, and σ maps variables to terms, then tσ is the term
obtained from t by replacing every variable x by σ(x)

Term rewriting = if a subterm is of the shape `σ for some rule
`→ r , then it may be replaced by rσ

This is a widely applied standard way of computation

Hans Zantema Termination of term graph rewriting

Term rewriting

A term rewrite system (TRS) is a set of rules `→ r , in which `, r
are terms, typically containing variables

If t is a term, and σ maps variables to terms, then tσ is the term
obtained from t by replacing every variable x by σ(x)

Term rewriting = if a subterm is of the shape `σ for some rule
`→ r , then it may be replaced by rσ

This is a widely applied standard way of computation

Hans Zantema Termination of term graph rewriting

Term rewriting

A term rewrite system (TRS) is a set of rules `→ r , in which `, r
are terms, typically containing variables

If t is a term, and σ maps variables to terms, then tσ is the term
obtained from t by replacing every variable x by σ(x)

Term rewriting = if a subterm is of the shape `σ for some rule
`→ r , then it may be replaced by rσ

This is a widely applied standard way of computation

Hans Zantema Termination of term graph rewriting

Sharing

For efficient implementation of terms and term rewriting a subterm
occurring twice should be stored only once

In this way terms are represented by DAGs (directed acyclic
graphs) rather than by trees

Hans Zantema Termination of term graph rewriting

Sharing

For efficient implementation of terms and term rewriting a subterm
occurring twice should be stored only once

In this way terms are represented by DAGs (directed acyclic
graphs) rather than by trees

Hans Zantema Termination of term graph rewriting

Sharing

For efficient implementation of terms and term rewriting a subterm
occurring twice should be stored only once

In this way terms are represented by DAGs (directed acyclic
graphs) rather than by trees

Hans Zantema Termination of term graph rewriting

Sharing

For efficient implementation of terms and term rewriting a subterm
occurring twice should be stored only once

In this way terms are represented by DAGs (directed acyclic
graphs) rather than by trees

Hans Zantema Termination of term graph rewriting

In rewriting DAGs it is natural not to duplicate dags

For instance, by

x ∗ (y + z)→ (x ∗ y) + (x ∗ z)

in rewriting terms = trees, the subterm corresponding to x is
duplicated, while in rewriting DAGs the subterm corresponding to
x only gets an extra incoming arrow

With the three rules

f (x , a, b)→ f (x , x , x), c → a, c → b

the infinite term reduction

f (c , a, b)→ f (c, c , c)→ f (c, a, c)→ f (c , a, b)→ · · ·

can not be mimicked in DAG rewriting without doing intermediate
unsharing

Hans Zantema Termination of term graph rewriting

In rewriting DAGs it is natural not to duplicate dags

For instance, by

x ∗ (y + z)→ (x ∗ y) + (x ∗ z)

in rewriting terms = trees, the subterm corresponding to x is
duplicated, while in rewriting DAGs the subterm corresponding to
x only gets an extra incoming arrow

With the three rules

f (x , a, b)→ f (x , x , x), c → a, c → b

the infinite term reduction

f (c , a, b)→ f (c, c , c)→ f (c, a, c)→ f (c , a, b)→ · · ·

can not be mimicked in DAG rewriting without doing intermediate
unsharing

Hans Zantema Termination of term graph rewriting

In rewriting DAGs it is natural not to duplicate dags

For instance, by

x ∗ (y + z)→ (x ∗ y) + (x ∗ z)

in rewriting terms = trees, the subterm corresponding to x is
duplicated, while in rewriting DAGs the subterm corresponding to
x only gets an extra incoming arrow

With the three rules

f (x , a, b)→ f (x , x , x), c → a, c → b

the infinite term reduction

f (c , a, b)→ f (c, c , c)→ f (c, a, c)→ f (c , a, b)→ · · ·

can not be mimicked in DAG rewriting without doing intermediate
unsharing

Hans Zantema Termination of term graph rewriting

So if variables are duplicated, not every term rewriting reduction
can be mimicked by DAG rewriting.

If either the rewrite systems is non-duplicating, or it is orthogonal
(no overlap between left hand sides), then every term rewriting
reduction can be mimicked by DAG rewriting

In all cases we assume the rewrite system is left-linear (no duplicate
variables in left hand sides), otherwise it is not clear how to rewrite

What happens if we allow graphs with cycles?

They may represent infinite terms

Hans Zantema Termination of term graph rewriting

So if variables are duplicated, not every term rewriting reduction
can be mimicked by DAG rewriting.

If either the rewrite systems is non-duplicating, or it is orthogonal
(no overlap between left hand sides), then every term rewriting
reduction can be mimicked by DAG rewriting

In all cases we assume the rewrite system is left-linear (no duplicate
variables in left hand sides), otherwise it is not clear how to rewrite

What happens if we allow graphs with cycles?

They may represent infinite terms

Hans Zantema Termination of term graph rewriting

So if variables are duplicated, not every term rewriting reduction
can be mimicked by DAG rewriting.

If either the rewrite systems is non-duplicating, or it is orthogonal
(no overlap between left hand sides), then every term rewriting
reduction can be mimicked by DAG rewriting

In all cases we assume the rewrite system is left-linear (no duplicate
variables in left hand sides), otherwise it is not clear how to rewrite

What happens if we allow graphs with cycles?

They may represent infinite terms

Hans Zantema Termination of term graph rewriting

So if variables are duplicated, not every term rewriting reduction
can be mimicked by DAG rewriting.

If either the rewrite systems is non-duplicating, or it is orthogonal
(no overlap between left hand sides), then every term rewriting
reduction can be mimicked by DAG rewriting

In all cases we assume the rewrite system is left-linear (no duplicate
variables in left hand sides), otherwise it is not clear how to rewrite

What happens if we allow graphs with cycles?

They may represent infinite terms

Hans Zantema Termination of term graph rewriting

So if variables are duplicated, not every term rewriting reduction
can be mimicked by DAG rewriting.

If either the rewrite systems is non-duplicating, or it is orthogonal
(no overlap between left hand sides), then every term rewriting
reduction can be mimicked by DAG rewriting

In all cases we assume the rewrite system is left-linear (no duplicate
variables in left hand sides), otherwise it is not clear how to rewrite

What happens if we allow graphs with cycles?

They may represent infinite terms

Hans Zantema Termination of term graph rewriting

Example

represents the infinite term

f ω = f (f (f (f (f (· · ·)))))

Hans Zantema Termination of term graph rewriting

Example

represents the infinite term

f ω = f (f (f (f (f (· · ·)))))

Hans Zantema Termination of term graph rewriting

Term graphs

Such a graph is called a term graph, in which all nodes are labeled
by operation symbols, and a node labeled by f of arity n has
exactly n numbered outgoing edges

More precisely:

Definition

A term graph over a signature Σ is a triple (V , lab, succ) in which

V is a finite set of nodes (vertices)

lab : V → Σ is a partial labeling function

succ : V → V ∗ is the partial successor function having the
same domain as lab, such that
∀v ∈ V : |succ(v)| = ar(lab(v))

Terms are interpreted as term graphs where lab and succ are
undefined for variables

Hans Zantema Termination of term graph rewriting

Term graphs

Such a graph is called a term graph, in which all nodes are labeled
by operation symbols, and a node labeled by f of arity n has
exactly n numbered outgoing edges

More precisely:

Definition

A term graph over a signature Σ is a triple (V , lab, succ) in which

V is a finite set of nodes (vertices)

lab : V → Σ is a partial labeling function

succ : V → V ∗ is the partial successor function having the
same domain as lab, such that
∀v ∈ V : |succ(v)| = ar(lab(v))

Terms are interpreted as term graphs where lab and succ are
undefined for variables

Hans Zantema Termination of term graph rewriting

Term graphs

Such a graph is called a term graph, in which all nodes are labeled
by operation symbols, and a node labeled by f of arity n has
exactly n numbered outgoing edges

More precisely:

Definition

A term graph over a signature Σ is a triple (V , lab, succ) in which

V is a finite set of nodes (vertices)

lab : V → Σ is a partial labeling function

succ : V → V ∗ is the partial successor function having the
same domain as lab, such that
∀v ∈ V : |succ(v)| = ar(lab(v))

Terms are interpreted as term graphs where lab and succ are
undefined for variables

Hans Zantema Termination of term graph rewriting

This numbering is essential since we want to distinguish the term
graphs corresponding to the terms f (a, b) and f (b, a)

Hans Zantema Termination of term graph rewriting

Term graph rewriting

How to apply a term rewrite rule `→ r on a term graph?

Basic idea:

Find a match of ` in the graph
Add r to the graph, connecting root and variables to those of
the match of `

Precise definition is given by a double push-out:

where L,R are the term graphs of `, r , I is the interface (describing
which parts of L are connected to which parts of R), and G is the
graph that is rewritten to H

Hans Zantema Termination of term graph rewriting

Term graph rewriting

How to apply a term rewrite rule `→ r on a term graph?

Basic idea:

Find a match of ` in the graph
Add r to the graph, connecting root and variables to those of
the match of `

Precise definition is given by a double push-out:

where L,R are the term graphs of `, r , I is the interface (describing
which parts of L are connected to which parts of R), and G is the
graph that is rewritten to H

Hans Zantema Termination of term graph rewriting

Term graph rewriting

How to apply a term rewrite rule `→ r on a term graph?

Basic idea:

Find a match of ` in the graph
Add r to the graph, connecting root and variables to those of
the match of `

Precise definition is given by a double push-out:

where L,R are the term graphs of `, r , I is the interface (describing
which parts of L are connected to which parts of R), and G is the
graph that is rewritten to H

Hans Zantema Termination of term graph rewriting

Term graph rewriting

How to apply a term rewrite rule `→ r on a term graph?

Basic idea:

Find a match of ` in the graph
Add r to the graph, connecting root and variables to those of
the match of `

Precise definition is given by a double push-out:

where L,R are the term graphs of `, r , I is the interface (describing
which parts of L are connected to which parts of R), and G is the
graph that is rewritten to H

Hans Zantema Termination of term graph rewriting

What to do with the rest of `?

Two options:

Remove it: the basic version, or

Keep it: the extended version

The extended version was studied before, and is a natural
semantics if one is interested in the unfolded, possibly infinite
term, and everything is considered modulo sharing/unsharing

However, when considering term graphs as finite objects, and
implicit sharing or unsharing is not allowed, then the basic version
is the most natural one

cycle rewriting ≈ term graph rewriting in basic version with unary
symbols only

Hans Zantema Termination of term graph rewriting

What to do with the rest of `?

Two options:

Remove it: the basic version, or

Keep it: the extended version

The extended version was studied before, and is a natural
semantics if one is interested in the unfolded, possibly infinite
term, and everything is considered modulo sharing/unsharing

However, when considering term graphs as finite objects, and
implicit sharing or unsharing is not allowed, then the basic version
is the most natural one

cycle rewriting ≈ term graph rewriting in basic version with unary
symbols only

Hans Zantema Termination of term graph rewriting

What to do with the rest of `?

Two options:

Remove it: the basic version, or

Keep it: the extended version

The extended version was studied before, and is a natural
semantics if one is interested in the unfolded, possibly infinite
term, and everything is considered modulo sharing/unsharing

However, when considering term graphs as finite objects, and
implicit sharing or unsharing is not allowed, then the basic version
is the most natural one

cycle rewriting ≈ term graph rewriting in basic version with unary
symbols only

Hans Zantema Termination of term graph rewriting

What to do with the rest of `?

Two options:

Remove it: the basic version, or

Keep it: the extended version

The extended version was studied before, and is a natural
semantics if one is interested in the unfolded, possibly infinite
term, and everything is considered modulo sharing/unsharing

However, when considering term graphs as finite objects, and
implicit sharing or unsharing is not allowed, then the basic version
is the most natural one

cycle rewriting ≈ term graph rewriting in basic version with unary
symbols only

Hans Zantema Termination of term graph rewriting

What to do with the rest of `?

Two options:

Remove it: the basic version, or

Keep it: the extended version

The extended version was studied before, and is a natural
semantics if one is interested in the unfolded, possibly infinite
term, and everything is considered modulo sharing/unsharing

However, when considering term graphs as finite objects, and
implicit sharing or unsharing is not allowed, then the basic version
is the most natural one

cycle rewriting ≈ term graph rewriting in basic version with unary
symbols only

Hans Zantema Termination of term graph rewriting

What to do with the rest of `?

Two options:

Remove it: the basic version, or

Keep it: the extended version

The extended version was studied before, and is a natural
semantics if one is interested in the unfolded, possibly infinite
term, and everything is considered modulo sharing/unsharing

However, when considering term graphs as finite objects, and
implicit sharing or unsharing is not allowed, then the basic version
is the most natural one

cycle rewriting ≈ term graph rewriting in basic version with unary
symbols only

Hans Zantema Termination of term graph rewriting

Example

Is the single rule f (g(x))→ f (x) terminating?

In the basic version: yes, since in every step a g -node is removed

In the extended version: no

corresponding to rewriting f (gω) to itself

Hans Zantema Termination of term graph rewriting

Example

Is the single rule f (g(x))→ f (x) terminating?

In the basic version: yes, since in every step a g -node is removed

In the extended version: no

corresponding to rewriting f (gω) to itself

Hans Zantema Termination of term graph rewriting

Example

Is the single rule f (g(x))→ f (x) terminating?

In the basic version: yes, since in every step a g -node is removed

In the extended version: no

corresponding to rewriting f (gω) to itself

Hans Zantema Termination of term graph rewriting

Example

Is the single rule f (g(x))→ f (x) terminating?

In the basic version: yes, since in every step a g -node is removed

In the extended version: no

corresponding to rewriting f (gω) to itself

Hans Zantema Termination of term graph rewriting

Termination of term graph rewriting is strictly stronger than
termination of term rewriting, both in the basic and extended
version

Example

f (g(x))→ g(f (x)) is terminating as a term rewrite system

rewrites to itself both in the basic and extended version, hence is
not terminating

Hans Zantema Termination of term graph rewriting

Termination of term graph rewriting is strictly stronger than
termination of term rewriting, both in the basic and extended
version

Example

f (g(x))→ g(f (x)) is terminating as a term rewrite system

rewrites to itself both in the basic and extended version, hence is
not terminating

Hans Zantema Termination of term graph rewriting

Termination of term graph rewriting is strictly stronger than
termination of term rewriting, both in the basic and extended
version

Example

f (g(x))→ g(f (x)) is terminating as a term rewrite system

rewrites to itself both in the basic and extended version, hence is
not terminating

Hans Zantema Termination of term graph rewriting

Termination of term graph rewriting is strictly stronger than
termination of term rewriting, both in the basic and extended
version

Example

f (g(x))→ g(f (x)) is terminating as a term rewrite system

rewrites to itself both in the basic and extended version, hence is
not terminating

Hans Zantema Termination of term graph rewriting

For both versions, more general, for any term graph rewrite system
(TGRS) given by rules L← I → R, we wonder how to prove
termination

For a related notion, namely graph transformation systems (GTS)
in 2014 and 2015 we developed techniques for proving termination
automatically, and implemented this in our tool Grez

GTS is extensively studied and used; standard semantics also based
on double push-out

Main idea: transform TGRS to GTS in such a way that
termination of resulting GTS implies termination of original TGRS

Hans Zantema Termination of term graph rewriting

For both versions, more general, for any term graph rewrite system
(TGRS) given by rules L← I → R, we wonder how to prove
termination

For a related notion, namely graph transformation systems (GTS)
in 2014 and 2015 we developed techniques for proving termination
automatically, and implemented this in our tool Grez

GTS is extensively studied and used; standard semantics also based
on double push-out

Main idea: transform TGRS to GTS in such a way that
termination of resulting GTS implies termination of original TGRS

Hans Zantema Termination of term graph rewriting

For both versions, more general, for any term graph rewrite system
(TGRS) given by rules L← I → R, we wonder how to prove
termination

For a related notion, namely graph transformation systems (GTS)
in 2014 and 2015 we developed techniques for proving termination
automatically, and implemented this in our tool Grez

GTS is extensively studied and used; standard semantics also based
on double push-out

Main idea: transform TGRS to GTS in such a way that
termination of resulting GTS implies termination of original TGRS

Hans Zantema Termination of term graph rewriting

For both versions, more general, for any term graph rewrite system
(TGRS) given by rules L← I → R, we wonder how to prove
termination

For a related notion, namely graph transformation systems (GTS)
in 2014 and 2015 we developed techniques for proving termination
automatically, and implemented this in our tool Grez

GTS is extensively studied and used; standard semantics also based
on double push-out

Main idea: transform TGRS to GTS in such a way that
termination of resulting GTS implies termination of original TGRS

Hans Zantema Termination of term graph rewriting

Difference between TGRS and GTS

TG = term graph in TGRS
G = graph in GTS

Sometimes TG has a root: not desired for covering cycle
rewriting

In G the edges are labeled, in TG the nodes

In G a node may have any number of outgoing edges, in TG
there are exactly n numbered outgoing edges where n is the
arity of the label of the node

We have to transform TG to G, and give two ways to do so: the
function encoding and the number encoding

Hans Zantema Termination of term graph rewriting

Difference between TGRS and GTS

TG = term graph in TGRS
G = graph in GTS

Sometimes TG has a root: not desired for covering cycle
rewriting

In G the edges are labeled, in TG the nodes

In G a node may have any number of outgoing edges, in TG
there are exactly n numbered outgoing edges where n is the
arity of the label of the node

We have to transform TG to G, and give two ways to do so: the
function encoding and the number encoding

Hans Zantema Termination of term graph rewriting

Difference between TGRS and GTS

TG = term graph in TGRS
G = graph in GTS

Sometimes TG has a root: not desired for covering cycle
rewriting

In G the edges are labeled, in TG the nodes

In G a node may have any number of outgoing edges, in TG
there are exactly n numbered outgoing edges where n is the
arity of the label of the node

We have to transform TG to G, and give two ways to do so: the
function encoding and the number encoding

Hans Zantema Termination of term graph rewriting

Difference between TGRS and GTS

TG = term graph in TGRS
G = graph in GTS

Sometimes TG has a root: not desired for covering cycle
rewriting

In G the edges are labeled, in TG the nodes

In G a node may have any number of outgoing edges, in TG
there are exactly n numbered outgoing edges where n is the
arity of the label of the node

We have to transform TG to G, and give two ways to do so: the
function encoding and the number encoding

Hans Zantema Termination of term graph rewriting

Difference between TGRS and GTS

TG = term graph in TGRS
G = graph in GTS

Sometimes TG has a root: not desired for covering cycle
rewriting

In G the edges are labeled, in TG the nodes

In G a node may have any number of outgoing edges, in TG
there are exactly n numbered outgoing edges where n is the
arity of the label of the node

We have to transform TG to G, and give two ways to do so: the
function encoding and the number encoding

Hans Zantema Termination of term graph rewriting

Difference between TGRS and GTS

TG = term graph in TGRS
G = graph in GTS

Sometimes TG has a root: not desired for covering cycle
rewriting

In G the edges are labeled, in TG the nodes

In G a node may have any number of outgoing edges, in TG
there are exactly n numbered outgoing edges where n is the
arity of the label of the node

We have to transform TG to G, and give two ways to do so: the
function encoding and the number encoding

Hans Zantema Termination of term graph rewriting

Function encoding

For every symbol f of arity n introduce symbols f1, . . . , fn

Give the n numbered outgoing edges of a node labeled by f , new
labels f1, . . . , fn

Hans Zantema Termination of term graph rewriting

Function encoding

For every symbol f of arity n introduce symbols f1, . . . , fn

Give the n numbered outgoing edges of a node labeled by f , new
labels f1, . . . , fn

Hans Zantema Termination of term graph rewriting

Function encoding

For every symbol f of arity n introduce symbols f1, . . . , fn

Give the n numbered outgoing edges of a node labeled by f , new
labels f1, . . . , fn

Hans Zantema Termination of term graph rewriting

Function encoding

For every symbol f of arity n introduce symbols f1, . . . , fn

Give the n numbered outgoing edges of a node labeled by f , new
labels f1, . . . , fn

Hans Zantema Termination of term graph rewriting

Number encoding

Keep every symbol f and add new labels 1, . . . , n for n being the
highest arity

For every node labeled by f create an edge labeled by f to a fresh
node

From the fresh node create edges labeled by 1, . . . , ar(f) to the
successor nodes

Hans Zantema Termination of term graph rewriting

Number encoding

Keep every symbol f and add new labels 1, . . . , n for n being the
highest arity

For every node labeled by f create an edge labeled by f to a fresh
node

From the fresh node create edges labeled by 1, . . . , ar(f) to the
successor nodes

Hans Zantema Termination of term graph rewriting

Number encoding

Keep every symbol f and add new labels 1, . . . , n for n being the
highest arity

For every node labeled by f create an edge labeled by f to a fresh
node

From the fresh node create edges labeled by 1, . . . , ar(f) to the
successor nodes

Hans Zantema Termination of term graph rewriting

Number encoding

Keep every symbol f and add new labels 1, . . . , n for n being the
highest arity

For every node labeled by f create an edge labeled by f to a fresh
node

From the fresh node create edges labeled by 1, . . . , ar(f) to the
successor nodes

Hans Zantema Termination of term graph rewriting

Number encoding

Keep every symbol f and add new labels 1, . . . , n for n being the
highest arity

For every node labeled by f create an edge labeled by f to a fresh
node

From the fresh node create edges labeled by 1, . . . , ar(f) to the
successor nodes

Hans Zantema Termination of term graph rewriting

Both encodings are sound, that is, termination of transformed GTS
implies termination of original TGRS

Function encoding is not complete:
f (a, b)→ f (b, b), f (b, a)→ f (a, a) is terminating (both basic and
extended), but its function encoding is a non-terminating GTS

Number encoding is complete for basic version

Both have value: there are examples where Grez succeeds for the
one and fails for the other, in both directions

Example requiring heavy techniques from Grez:

f (x , a(b(y))) → f (c(d(x)), y)
f (c(x), y) → f (x , a(y))
f (d(x), y) → f (x , b(y))

Surprise: AProVE fails to prove the weaker property of TRS
termination

Hans Zantema Termination of term graph rewriting

Both encodings are sound, that is, termination of transformed GTS
implies termination of original TGRS

Function encoding is not complete:
f (a, b)→ f (b, b), f (b, a)→ f (a, a) is terminating (both basic and
extended), but its function encoding is a non-terminating GTS

Number encoding is complete for basic version

Both have value: there are examples where Grez succeeds for the
one and fails for the other, in both directions

Example requiring heavy techniques from Grez:

f (x , a(b(y))) → f (c(d(x)), y)
f (c(x), y) → f (x , a(y))
f (d(x), y) → f (x , b(y))

Surprise: AProVE fails to prove the weaker property of TRS
termination

Hans Zantema Termination of term graph rewriting

Both encodings are sound, that is, termination of transformed GTS
implies termination of original TGRS

Function encoding is not complete:
f (a, b)→ f (b, b), f (b, a)→ f (a, a) is terminating (both basic and
extended), but its function encoding is a non-terminating GTS

Number encoding is complete for basic version

Both have value: there are examples where Grez succeeds for the
one and fails for the other, in both directions

Example requiring heavy techniques from Grez:

f (x , a(b(y))) → f (c(d(x)), y)
f (c(x), y) → f (x , a(y))
f (d(x), y) → f (x , b(y))

Surprise: AProVE fails to prove the weaker property of TRS
termination

Hans Zantema Termination of term graph rewriting

Both encodings are sound, that is, termination of transformed GTS
implies termination of original TGRS

Function encoding is not complete:
f (a, b)→ f (b, b), f (b, a)→ f (a, a) is terminating (both basic and
extended), but its function encoding is a non-terminating GTS

Number encoding is complete for basic version

Both have value: there are examples where Grez succeeds for the
one and fails for the other, in both directions

Example requiring heavy techniques from Grez:

f (x , a(b(y))) → f (c(d(x)), y)
f (c(x), y) → f (x , a(y))
f (d(x), y) → f (x , b(y))

Surprise: AProVE fails to prove the weaker property of TRS
termination

Hans Zantema Termination of term graph rewriting

Both encodings are sound, that is, termination of transformed GTS
implies termination of original TGRS

Function encoding is not complete:
f (a, b)→ f (b, b), f (b, a)→ f (a, a) is terminating (both basic and
extended), but its function encoding is a non-terminating GTS

Number encoding is complete for basic version

Both have value: there are examples where Grez succeeds for the
one and fails for the other, in both directions

Example requiring heavy techniques from Grez:

f (x , a(b(y))) → f (c(d(x)), y)
f (c(x), y) → f (x , a(y))
f (d(x), y) → f (x , b(y))

Surprise: AProVE fails to prove the weaker property of TRS
termination

Hans Zantema Termination of term graph rewriting

Summary, conclusions

Term rewriting is a basic framework for computation

Sharing is desired for efficiency reasons, by which terms are
represented by term graphs

Allowing cycles in term graphs corresponds to rational terms:
possibly infinite terms, but having finitely many distinct
subterms

Term graph rewriting defined in double push-out framework

Two natural ways to interpret term rewriting on term graphs:
basic and extended

Proving termination by transforming TGRS to GTS

Drastically extends set of benchmarks for GTS termination
proofs

Hans Zantema Termination of term graph rewriting

Summary, conclusions

Term rewriting is a basic framework for computation

Sharing is desired for efficiency reasons, by which terms are
represented by term graphs

Allowing cycles in term graphs corresponds to rational terms:
possibly infinite terms, but having finitely many distinct
subterms

Term graph rewriting defined in double push-out framework

Two natural ways to interpret term rewriting on term graphs:
basic and extended

Proving termination by transforming TGRS to GTS

Drastically extends set of benchmarks for GTS termination
proofs

Hans Zantema Termination of term graph rewriting

Summary, conclusions

Term rewriting is a basic framework for computation

Sharing is desired for efficiency reasons, by which terms are
represented by term graphs

Allowing cycles in term graphs corresponds to rational terms:
possibly infinite terms, but having finitely many distinct
subterms

Term graph rewriting defined in double push-out framework

Two natural ways to interpret term rewriting on term graphs:
basic and extended

Proving termination by transforming TGRS to GTS

Drastically extends set of benchmarks for GTS termination
proofs

Hans Zantema Termination of term graph rewriting

Summary, conclusions

Term rewriting is a basic framework for computation

Sharing is desired for efficiency reasons, by which terms are
represented by term graphs

Allowing cycles in term graphs corresponds to rational terms:
possibly infinite terms, but having finitely many distinct
subterms

Term graph rewriting defined in double push-out framework

Two natural ways to interpret term rewriting on term graphs:
basic and extended

Proving termination by transforming TGRS to GTS

Drastically extends set of benchmarks for GTS termination
proofs

Hans Zantema Termination of term graph rewriting

Summary, conclusions

Term rewriting is a basic framework for computation

Sharing is desired for efficiency reasons, by which terms are
represented by term graphs

Allowing cycles in term graphs corresponds to rational terms:
possibly infinite terms, but having finitely many distinct
subterms

Term graph rewriting defined in double push-out framework

Two natural ways to interpret term rewriting on term graphs:
basic and extended

Proving termination by transforming TGRS to GTS

Drastically extends set of benchmarks for GTS termination
proofs

Hans Zantema Termination of term graph rewriting

Summary, conclusions

Term rewriting is a basic framework for computation

Sharing is desired for efficiency reasons, by which terms are
represented by term graphs

Allowing cycles in term graphs corresponds to rational terms:
possibly infinite terms, but having finitely many distinct
subterms

Term graph rewriting defined in double push-out framework

Two natural ways to interpret term rewriting on term graphs:
basic and extended

Proving termination by transforming TGRS to GTS

Drastically extends set of benchmarks for GTS termination
proofs

Hans Zantema Termination of term graph rewriting

Summary, conclusions

Term rewriting is a basic framework for computation

Sharing is desired for efficiency reasons, by which terms are
represented by term graphs

Allowing cycles in term graphs corresponds to rational terms:
possibly infinite terms, but having finitely many distinct
subterms

Term graph rewriting defined in double push-out framework

Two natural ways to interpret term rewriting on term graphs:
basic and extended

Proving termination by transforming TGRS to GTS

Drastically extends set of benchmarks for GTS termination
proofs

Hans Zantema Termination of term graph rewriting

Summary, conclusions

Term rewriting is a basic framework for computation

Sharing is desired for efficiency reasons, by which terms are
represented by term graphs

Allowing cycles in term graphs corresponds to rational terms:
possibly infinite terms, but having finitely many distinct
subterms

Term graph rewriting defined in double push-out framework

Two natural ways to interpret term rewriting on term graphs:
basic and extended

Proving termination by transforming TGRS to GTS

Drastically extends set of benchmarks for GTS termination
proofs

Hans Zantema Termination of term graph rewriting

