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Outline

• How to assure termination?


• Program as labeled transition system


• Finding termination arguments


• What is essential in the proof of termination?


• What else can we check?



Program as labeled 
transition system (LTS)

• Place in the program => Label


• Variable update => Transition condition


• Termination => No infinite path from the start node



Program as LTS (example)

• function contains(List xs, y){ 
  while (xs != null){ 
    if (xs.elem.equals(y)) 
                          return true; 
    xs = xs.next; 
  } return false; 
}
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Conditional termination can be 
encoded as extra conditions

If all constraints are 
conjunctions of linear 

inequalities over Integers, we 
call it an ITS



Termination of LTS
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Termination of LTS
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Cooperation graph
v := 1

Only if v = 1

v := 0

v := 0

Result:  
- argument why the cycle cannot occur infinitely often 
- updated Cooperation graph



Termination-proof of LTS
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Infinite path through original 
=> 

Infinite path through cooperation graph
Original

A

B

coorporation-like graph

C

D

Cooperation like-graph



Termination-proof of LTS

finite (transitions R) ⟹ 
copy_prog T P R ⟹ 
lts T R ⟹ 
cooperation_SN T P ⟹ lts_termination T R



Termination-proof of LTS
• Give a function f(l,a)


• l: label


• a: assignment of variables in state with label l


• f is non-increasing for all (remaining) transitions


• f is decreasing for to-be-deleted transitions


• there is a bound, i.e. f cannot decrease infinitely often
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• f(B,x,y,z) = x 
f(D,x,y,z) = x


• e2 and e3 preserve this value. 
Proof: use x’ = x 
e1 strictly decreases it 
Proof: use x’ = x - 1


• Consequently, e1 cannot occur 
infinitely often (can be removed)
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Termination-proof of LTS
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• f(B,x,y,z) = 1 
f(D,x,y,z) = 2


• e2 strictly decreases the value 
Proof: use no equalities


• Consequently, e2 cannot occur 
infinitely often (can be removed)



Termination-proof of LTS
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• No transitions can be taken 
infinitely often


• Program terminates



Strengthening proofs

• Use invariants 

• Split nodes 

• Add helper-variables 

• Use of Lexicographic order in the decrease-function
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Proof of equivalence

A
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• Initial node: 
True => y ≥ 0  ||  y < 0 
proof by contradiction: 
y ≤ -1 && -y ≤ 0 
adding the inequalities gives: 
0 ≤ -1


• Similar proofs for the other 
transitions.



Proof of termination
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• In A’, the invariant y < 0 holds


• The edge from A’ to A’ can be 
eliminated through ranking function 
f(l,x,y) = x (using invariant y < 0)


• The edge from A’’ to A’’ can be 
eliminated through f(l,x,y) = y


• The edge from A’’ to A’ can be 
eliminated through 
f(l,x,y) = (l == A’ ? 0 : 1)



Proof of termination
• State LTS R


• Give an LTS P + invariants for each state 
+ a proof that the invariants hold 
+ a proof that P can simulate R 
+ a proof that cooperation graph P’ terminates


• If P’ has edges: give a function f, a set of edges T 
+ a proof for each edge in T that f decreases 
+ for other edges in P’: proof that f does not increase 
+ a proof of termination for P’ - T



Todo?

• Parser 

• Minor theory details 

• Anything that comes up during testing



Other properties?

• LTS allows non-determinism 

• Checking invariants (“safety checker”) can be used for: 

• Runtime / resource analysis (of linear bounds)



Other theories?
• Formalised currently: 

• Linear integer inequalities 

• Lexicographic combinations of arbitrary existing 
theories (curently only linear integer inequalities) 

• Many other theories can be expressed this way: 

• Booleans as 0/1 integers 

• Bitvectors as lists of Booleans



Other theories?

• Tell us about your proofs!  
sjcjoosten@gmail.com 

• Keep an eye out for CeTA 2.28:  
http://cl-informatik.uibk.ac.at/software/ceta/

mailto:sjcjoosten@gmail.com
http://cl-informatik.uibk.ac.at/software/ceta/

