
Certification of Termination
for Integer Transition Systems

Marc Brockschmidt, Sebastiaan Joosten, René Thiemann and Akihisa Yamada
Sebastiaan.Joosten@uibk.ac.at  

Supported by FWF project Y 757

Reliable software
Termination

checker

Termination proof

Termination OK

Theory about
termination

Formally verified
Termination proof

checker

Formally verified
theory about
termination

Termination proof
checkerGenerate

Accept / Reject

Reliable software
Termination

checker

Termination proof

Termination OK

Theory about
termination

Formally verified
Termination proof

checker

Formally verified
theory about
termination

Termination proof
checkerGenerate

Accept / Reject

Reliable software
Termination

checker

Termination proof

Termination OK

Theory about
termination

Formally verified
Termination proof

checker

Formally verified
theory about
termination

Termination proof
checkerGenerate

Accept / RejectIsabelle / HOL

Outline

• How to assure termination?

• Program as labeled transition system

• Finding termination arguments

• What is essential in the proof of termination?

• What else can we check?

Program as labeled
transition system (LTS)

• Place in the program => Label

• Variable update => Transition condition

• Termination => No infinite path from the start node

Program as LTS (example)

• function contains(List xs, y){ 
 while (xs != null){ 
 if (xs.elem.equals(y)) 
 return true; 
 xs = xs.next; 
 } return false; 
}

start

1

2

3

1b

xc = 0

xs.elem == y

xc' = xc - 1
y' = y

xs.elem != y

xc' = xc
y' = y

xc != 0

xc != 0
xc ≥ 0

Program as LTS (example)

• function contains(List xs, y){ 
 while (xs != null){ 
 if (xs.elem.equals(y)) 
 return true; 
 xs = xs.next; 
 } return false; 
}

start

1

2

3

1b

xc = 0

xs.elem == y

xc' = xc - 1
y' = y

xs.elem != y

xc' = xc
y' = y

xc != 0

xc != 0
xc ≥ 0

Conditional termination can be 
encoded as extra conditions

If all constraints are
conjunctions of linear

inequalities over Integers, we
call it an ITS

Termination of LTS
Original

LTS

A

B

coorporation graph

C

D

C

D

X

X

Better termination proving through cooperation  
Marc Brockschmidt, Byron Cook, Carsten Fuhs

Cooperation graph

Termination of LTS
Original

LTS

A

B

coorporation graph

C

D

C

D

X

X

Cooperation graph
v := 1

Only if v = 1

v := 0

v := 0

Result:  
- argument why the cycle cannot occur infinitely often
- updated Cooperation graph

Termination-proof of LTS
Original

A

B

coorporation-like graph

C

D

Cooperation like-graph

Infinite path through original 
=> 

Infinite path through cooperation graph
Original

A

B

coorporation-like graph

C

D

Cooperation like-graph

Termination-proof of LTS

finite (transitions R) ⟹
copy_prog T P R ⟹
lts T R ⟹
cooperation_SN T P ⟹ lts_termination T R

Termination-proof of LTS
• Give a function f(l,a)

• l: label

• a: assignment of variables in state with label l

• f is non-increasing for all (remaining) transitions

• f is decreasing for to-be-deleted transitions

• there is a bound, i.e. f cannot decrease infinitely often

Termination-proof of LTS

A

C

Original
LTS

x' = x - 1
y' = ?
x > 0

x ≤ 0
y' = y
x' = x

y' = y - 1
x' = x
y > 0

A

C

x' = x - 1
y' = ?
x > 0

x ≤ 0
y' = y
x' = x

y' = y - 1
x' = x
y > 0

D
e1

e2 e3

B

x' = x - 1
y' = ?
x > 0

x ≤ 0
y' = y
x' = x

y' = y - 1
x' = x
y > 0

Termination-proof of LTS

A

C

x' = x - 1
y' = ?
x > 0

x ≤ 0
y' = y
x' = x

y' = y - 1
x' = x
y > 0

D
e1

e2 e3

B

x' = x - 1
y' = ?
x > 0

x ≤ 0
y' = y
x' = x

y' = y - 1
x' = x
y > 0

• f(B,x,y,z) = x 
f(D,x,y,z) = x

• e2 and e3 preserve this value.
Proof: use x’ = x 
e1 strictly decreases it 
Proof: use x’ = x - 1

• Consequently, e1 cannot occur
infinitely often (can be removed)

Termination-proof of LTS

A

C

x' = x - 1
y' = ?
x > 0

x ≤ 0
y' = y
x' = x

y' = y - 1
x' = x
y > 0

D
e1

e2 e3

B

x' = x - 1
y' = ?
x > 0

x ≤ 0
y' = y
x' = x

y' = y - 1
x' = x
y > 0

• f(B,x,y,z) = y 
f(D,x,y,z) = y

• e2 preserves this value. 
Proof: use y’ = y 
e3 strictly decreases it 
Proof: use y’ = y - 1

• Consequently, e3 cannot occur
infinitely often (can be removed)

Termination-proof of LTS

A

C

x' = x - 1
y' = ?
x > 0

x ≤ 0
y' = y
x' = x

y' = y - 1
x' = x
y > 0

D
e1

e2 e3

B

x' = x - 1
y' = ?
x > 0

x ≤ 0
y' = y
x' = x

y' = y - 1
x' = x
y > 0

• f(B,x,y,z) = 1 
f(D,x,y,z) = 2

• e2 strictly decreases the value 
Proof: use no equalities

• Consequently, e2 cannot occur
infinitely often (can be removed)

Termination-proof of LTS

A

C

x' = x - 1
y' = ?
x > 0

x ≤ 0
y' = y
x' = x

y' = y - 1
x' = x
y > 0

D
e1

e3

B

x' = x - 1
y' = ?
x > 0

y' = y - 1
x' = x
y > 0

• No transitions can be taken
infinitely often

• Program terminates

Strengthening proofs

• Use invariants

• Split nodes

• Add helper-variables

• Use of Lexicographic order in the decrease-function

Termination-proof of LTS

A

Original
LTS

x ≥ 0
y' = y - 1
x' = x + y

Termination-proof of LTS

A

Original
LTS

x ≥ 0
y' = y - 1
x' = x + y

A''

x ≥ 0
y ≥ 0

y' = y - 1
x' = x + y

A'

y ≥ 0 y < 0

x ≥ 0
y' = y - 1
x' = x + y

x ≥ 0
y < 0

y' = y - 1
x' = x + y

Proof of equivalence

A

Original
LTS

x ≥ 0
y' = y - 1
x' = x + y

A''

x ≥ 0
y ≥ 0

y' = y - 1
x' = x + y

A'

y ≥ 0 y < 0

x ≥ 0
y' = y - 1
x' = x + y

x ≥ 0
y < 0

y' = y - 1
x' = x + y

• Initial node: 
True => y ≥ 0 || y < 0 
proof by contradiction: 
y ≤ -1 && -y ≤ 0 
adding the inequalities gives: 
0 ≤ -1

• Similar proofs for the other
transitions.

Proof of termination

A

Original
LTS

x ≥ 0
y' = y - 1
x' = x + y

A''

x ≥ 0
y ≥ 0

y' = y - 1
x' = x + y

A'

y ≥ 0 y < 0

x ≥ 0
y' = y - 1
x' = x + y

x ≥ 0
y < 0

y' = y - 1
x' = x + y

• In A’, the invariant y < 0 holds

• The edge from A’ to A’ can be
eliminated through ranking function
f(l,x,y) = x (using invariant y < 0)

• The edge from A’’ to A’’ can be
eliminated through f(l,x,y) = y

• The edge from A’’ to A’ can be
eliminated through 
f(l,x,y) = (l == A’ ? 0 : 1)

Proof of termination
• State LTS R

• Give an LTS P + invariants for each state 
+ a proof that the invariants hold 
+ a proof that P can simulate R 
+ a proof that cooperation graph P’ terminates

• If P’ has edges: give a function f, a set of edges T 
+ a proof for each edge in T that f decreases 
+ for other edges in P’: proof that f does not increase 
+ a proof of termination for P’ - T

Todo?

• Parser

• Minor theory details

• Anything that comes up during testing

Other properties?

• LTS allows non-determinism

• Checking invariants (“safety checker”) can be used for:

• Runtime / resource analysis (of linear bounds)

Other theories?
• Formalised currently:

• Linear integer inequalities

• Lexicographic combinations of arbitrary existing
theories (curently only linear integer inequalities)

• Many other theories can be expressed this way:

• Booleans as 0/1 integers

• Bitvectors as lists of Booleans

Other theories?

• Tell us about your proofs!  
sjcjoosten@gmail.com

• Keep an eye out for CeTA 2.28:  
http://cl-informatik.uibk.ac.at/software/ceta/

mailto:sjcjoosten@gmail.com
http://cl-informatik.uibk.ac.at/software/ceta/

