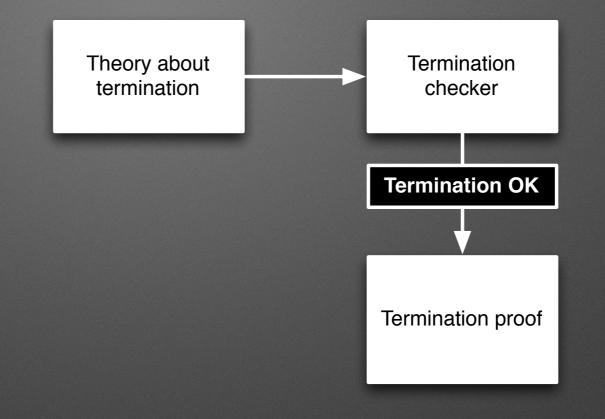
Certification of Termination for Integer Transition Systems

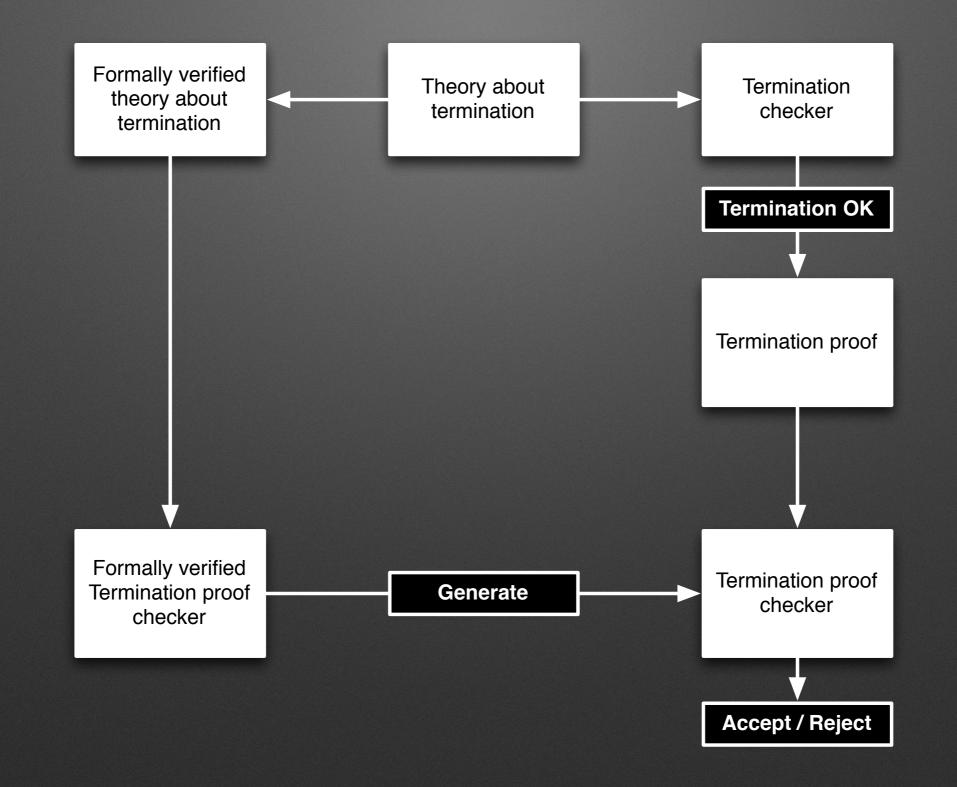
Marc Brockschmidt, Sebastiaan Joosten, René Thiemann and Akihisa Yamada Sebastiaan.Joosten@uibk.ac.at

Supported by FWF project Y 757

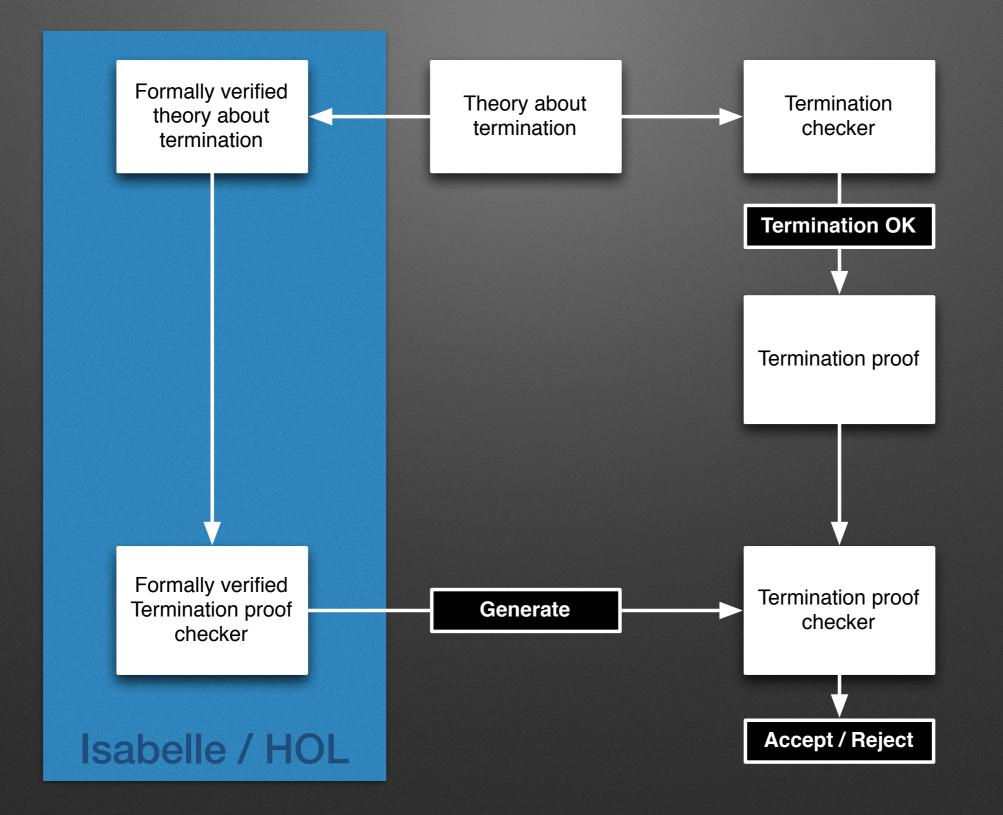
Reliable software



Reliable software



Reliable software



Outline

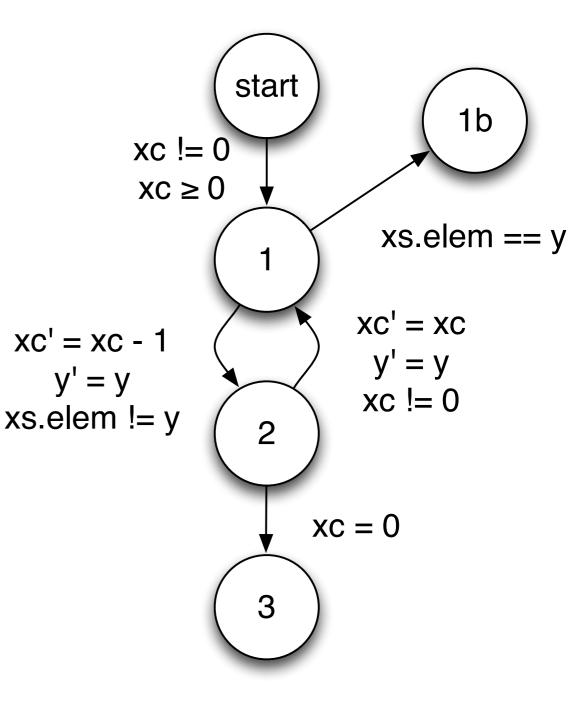
- How to assure termination?
 - Program as labeled transition system
 - Finding termination arguments
- What is essential in the proof of termination?
- What else can we check?

Program as labeled transition system (LTS)

- Place in the program => Label
- Variable update => Transition condition
- Termination => No infinite path from the start node

Program as LTS (example)

function contains(List xs, y){
 while (xs != null){
 if (xs.elem.equals(y))
 return true;
 xs = xs.next;
 } return false;
 }



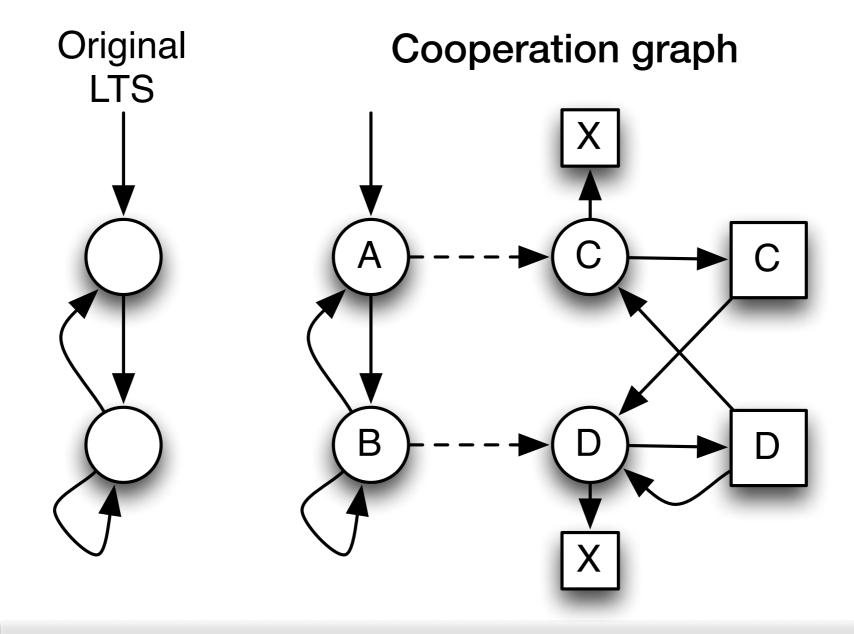
Program as LTS (example)

Conditional termination can be encoded as extra conditions

1b xc != 0 function contains(List xs, y){ $xc \ge 0$ while (xs != null){ xs.elem == y if (xs.elem.equals(y)) XC' = XCreturn true; xc' = xc - 1 $\mathbf{v}' = \mathbf{v}$ $\mathbf{y'} = \mathbf{y}$ xs = xs.next;xc != 0 xs.elem != y 2 } return false; xc = 0If all constraints are conjunctions of linear 3 inequalities over Integers, we call it an ITS

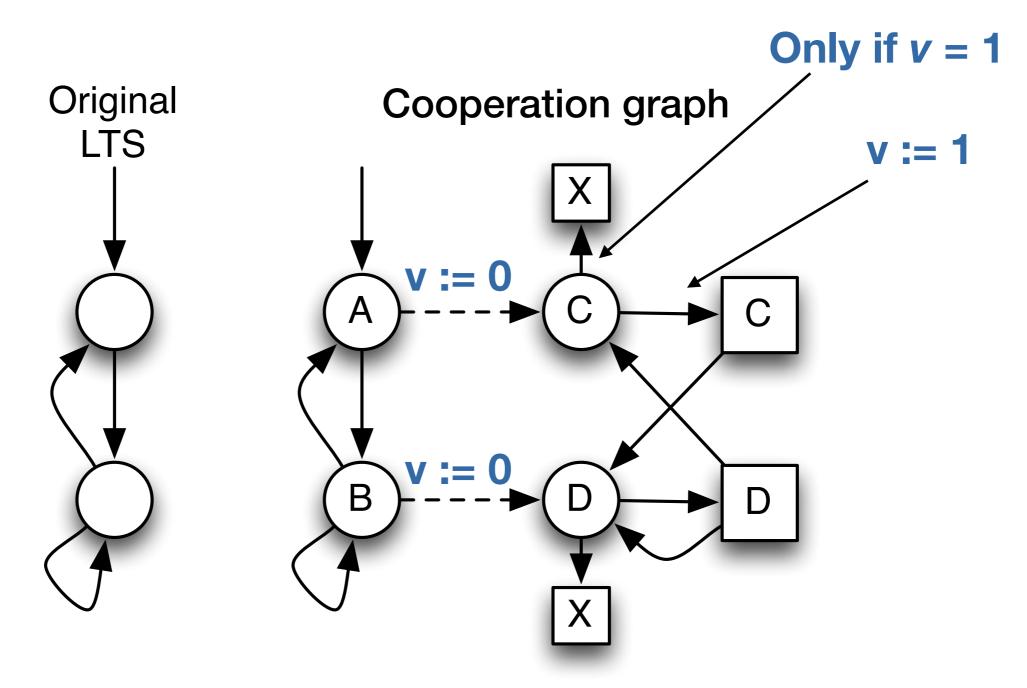
start

Termination of LTS



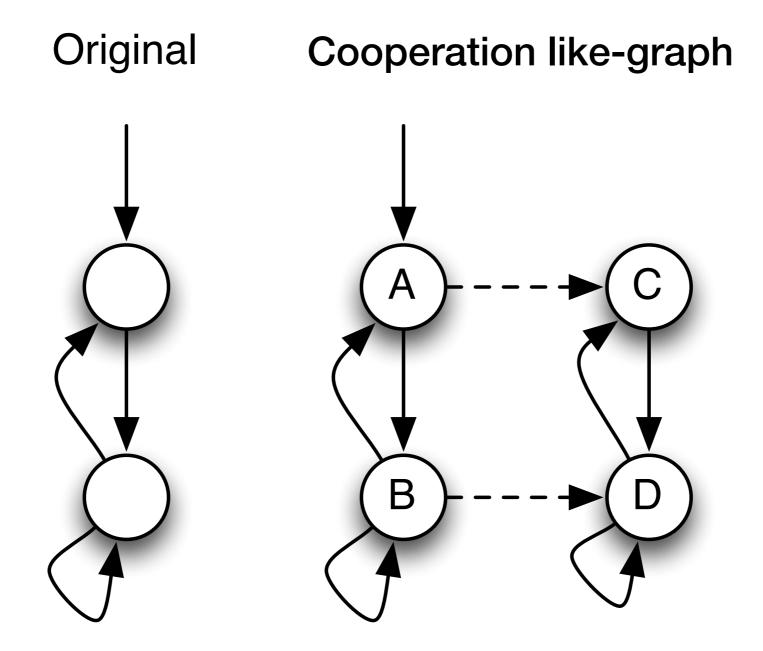
Better termination proving through cooperation Marc Brockschmidt, Byron Cook, Carsten Fuhs

Termination of LTS



Result:

- argument why the cycle cannot occur infinitely often
- updated Cooperation graph

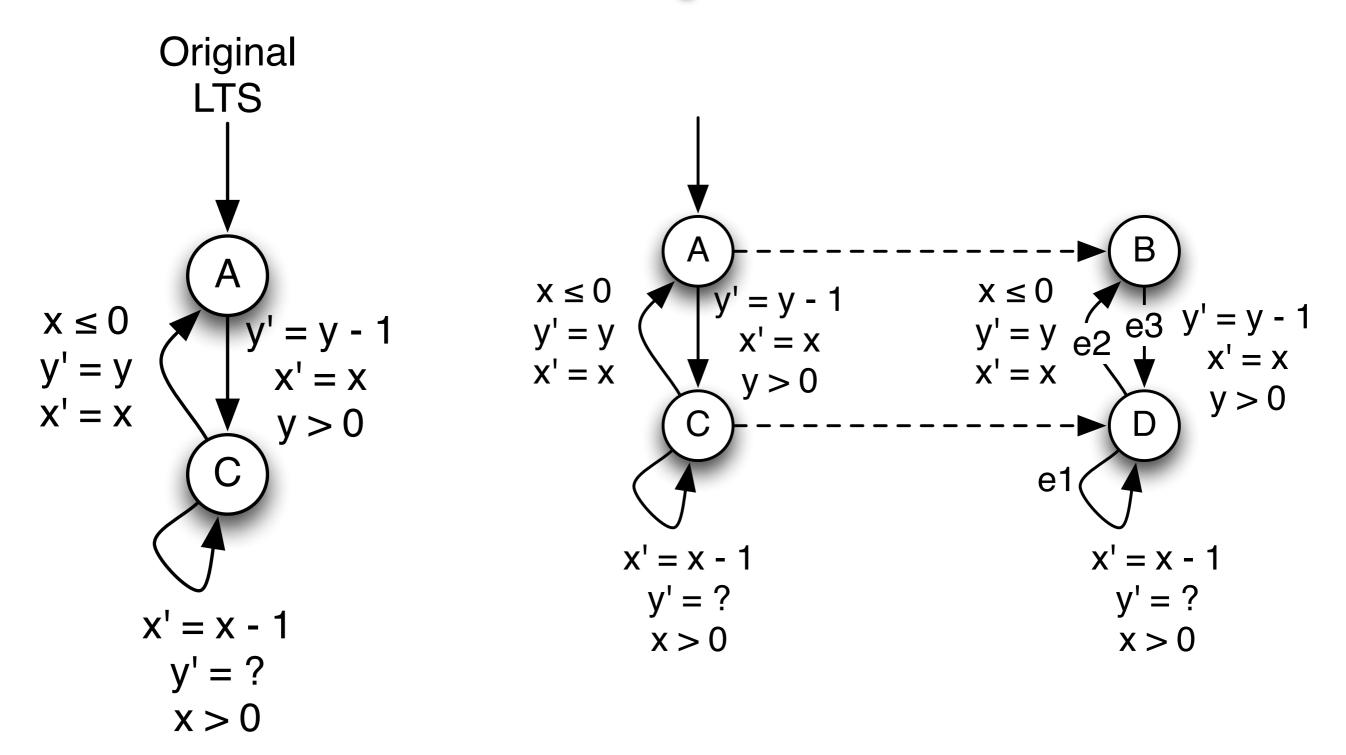


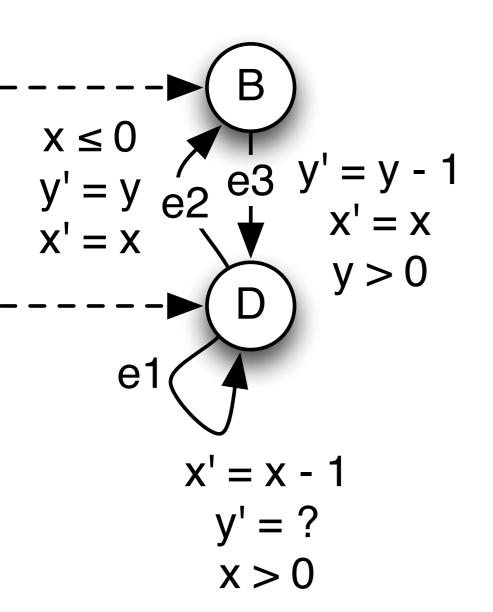
Infinite path through original => Infinite path through cooperation graph Original **Cooperation like-graph** Α () B \Box

lemma initial_cooperation_program:
 assumes fin: "finite (transitions R)"
 and copy: "copy_prog R"
 and lts: "lts R"
 and SN: "cooperation_SN P"
 shows "lts termination R"

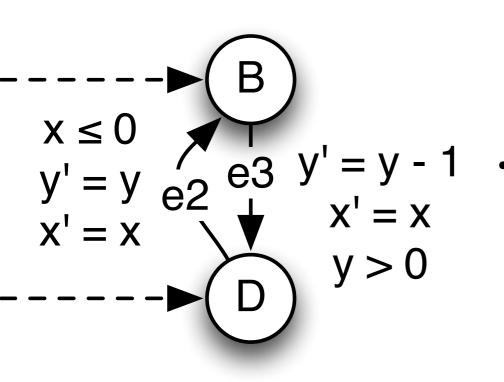
finite (transitions R) \Rightarrow copy_prog T P R \Rightarrow Its T R \Rightarrow cooperation_SN T P \Rightarrow Its_termination T R

- Give a function f(I,a)
 - I: label
 - a: assignment of variables in state with label I
- f is non-increasing for all (remaining) transitions
- f is decreasing for to-be-deleted transitions
- there is a bound, i.e. f cannot decrease infinitely often





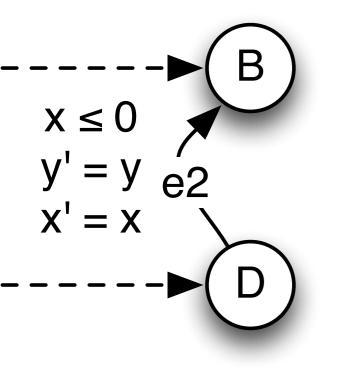
- f(B,x,y,z) = xf(D,x,y,z) = x
- e2 and e3 preserve this value.
 Proof: use x' = x
 e1 strictly decreases it
 Proof: use x' = x 1
- Consequently, e1 cannot occur infinitely often (can be removed)



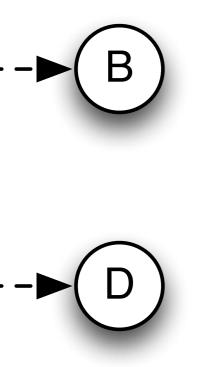
• f(B,x,y,z) = yf(D,x,y,z) = y

e2 preserves this value.
Proof: use y' = y
e3 strictly decreases it
Proof: use y' = y - 1

 Consequently, e3 cannot occur infinitely often (can be removed)



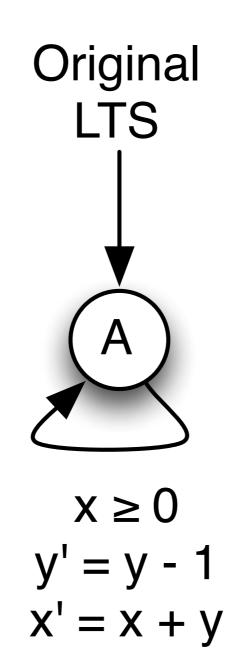
- f(B,x,y,z) = 1f(D,x,y,z) = 2
- e2 strictly decreases the value Proof: use no equalities
- Consequently, e2 cannot occur infinitely often (can be removed)

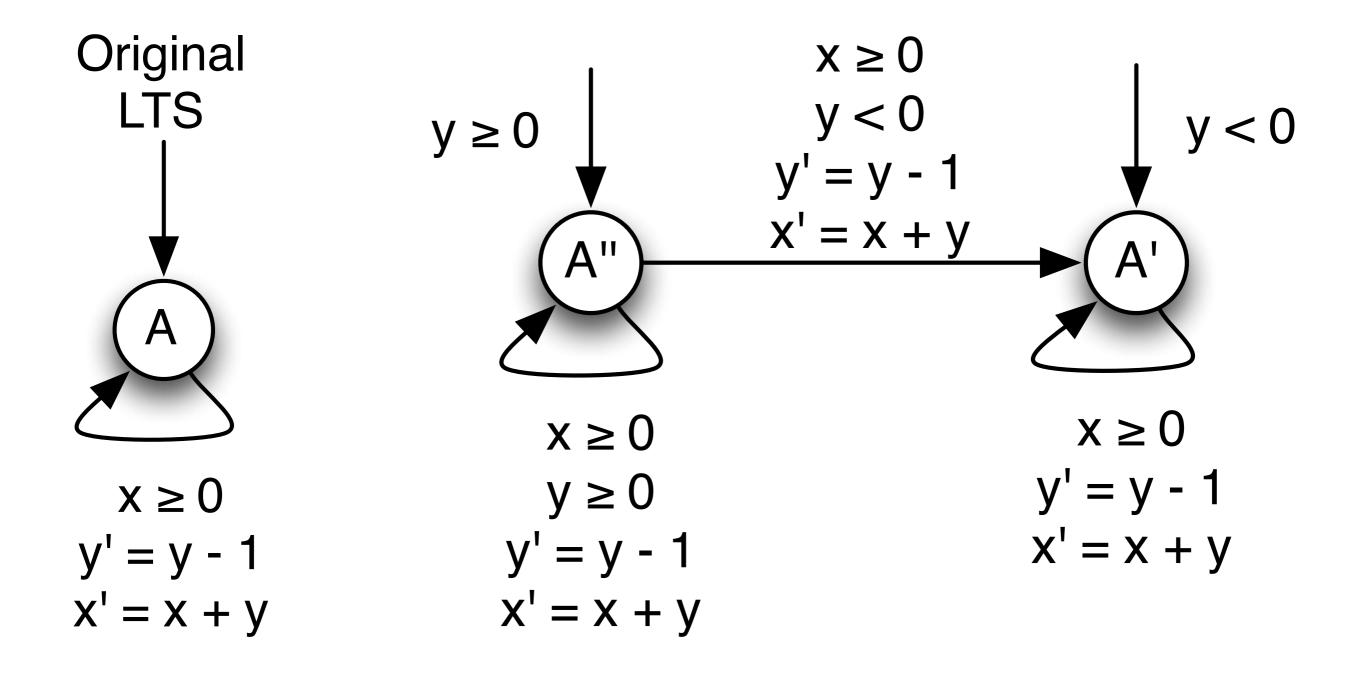


- No transitions can be taken infinitely often
- Program terminates

Strengthening proofs

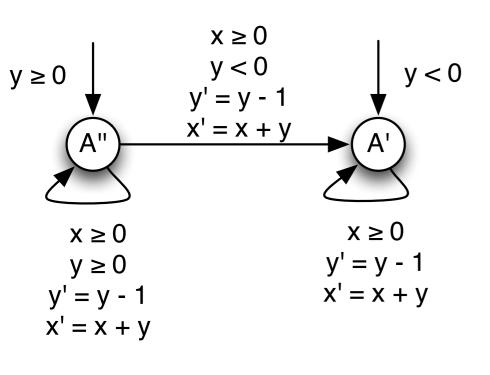
- Use invariants
- Split nodes
- Add helper-variables
- Use of Lexicographic order in the decrease-function





Proof of equivalence

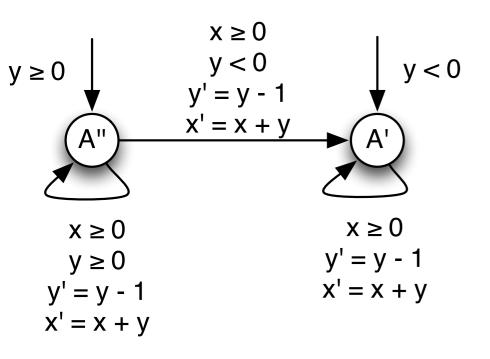
Original LTS A $x \ge 0$ y' = y - 1x' = x + y



- Initial node: True => y ≥ 0 || y < 0 proof by contradiction: y ≤ -1 && -y ≤ 0 adding the inequalities gives: 0 ≤ -1
- Similar proofs for the other transitions.

Proof of termination

- In A', the invariant y < 0 holds
- The edge from A' to A' can be eliminated through ranking function f(l,x,y) = x (using invariant y < 0)



Original LTS

 $X \ge 0$

y' = y - 1

 $\mathbf{X}' = \mathbf{X} + \mathbf{V}$

- The edge from A" to A" can be eliminated through f(l,x,y) = y
- The edge from A" to A' can be eliminated through f(l,x,y) = (l == A' ? 0 : 1)

Proof of termination

- State LTS R
- Give an LTS P + invariants for each state

 + a proof that the invariants hold
 + a proof that P can simulate R
 + a proof that cooperation graph P' terminates
- If P' has edges: give a function f, a set of edges T
 + a proof for each edge in T that f decreases
 + for other edges in P': proof that f does not increase
 + a proof of termination for P' T

- Parser
- Minor theory details
- Anything that comes up during testing

Other properties?

- LTS allows non-determinism
- Checking invariants ("safety checker") can be used for:
 - Runtime / resource analysis (of linear bounds)

Other theories?

- Formalised currently:
 - Linear integer inequalities
 - Lexicographic combinations of arbitrary existing theories (curently only linear integer inequalities)
- Many other theories can be expressed this way:
 - Booleans as 0/1 integers
 - Bitvectors as lists of Booleans

Other theories?

- Tell us about your proofs!
 <u>sjcjoosten@gmail.com</u>
- Keep an eye out for CeTA 2.28: <u>http://cl-informatik.uibk.ac.at/software/ceta/</u>