Recording Completion for Finding and Certifying Proofs in Equational Logic

Thomas Sternagel, René Thiemann, Harald Zankl, and Christian Sternagel

Computational Logic, University of Innsbruck and School of Information Science, JAIST

29 May 2012

Outline

- Reminder: completion \& conversions
- Extending completion to recording completion
- Certification
- Conclusion

Completion

- input: equational system and equation

$$
E=\{\mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{~g}\} \quad \text { and } \quad \mathrm{fgf} \stackrel{?}{\leftrightarrow}{ }_{E}^{*} \mathrm{fgg}
$$

Completion

- input: equational system and equation

$$
E=\{\mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{~g}\} \quad \text { and } \quad \mathrm{fgf} \stackrel{?}{\leftrightarrow}_{E}^{*} \mathrm{fgg}
$$

- result of completion: convergent rewrite system, equivalent to E

$$
R=\{\mathrm{ff} \rightarrow \mathrm{f}, \mathrm{gf} \rightarrow \mathrm{~g}, \mathrm{gg} \rightarrow \mathrm{~g}\}
$$

Completion

- input: equational system and equation

$$
E=\{\mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{~g}\} \quad \text { and } \quad \mathrm{fgf} \stackrel{?}{\leftrightarrow}_{E}^{*} \mathrm{fgg}
$$

- result of completion: convergent rewrite system, equivalent to E

$$
R=\{\mathrm{ff} \rightarrow \mathrm{f}, \mathrm{gf} \rightarrow \mathrm{~g}, \mathrm{gg} \rightarrow \mathrm{~g}\}
$$

- answer question by comparing normal forms of lhs and rhs

$$
\mathrm{fgf} \rightarrow_{R}^{!} \mathrm{fg}=\mathrm{fg}{ }_{R}^{!} \leftarrow \mathrm{fgg}
$$

Completion

- input: equational system and equation

$$
E=\{\mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{~g}\} \quad \text { and } \quad \mathrm{fgf} \stackrel{?}{\leftrightarrow}_{E}^{*} \mathrm{fgg}
$$

- result of completion: convergent rewrite system, equivalent to E

$$
R=\{\mathrm{ff} \rightarrow \mathrm{f}, \mathrm{gf} \rightarrow \mathrm{~g}, \mathrm{gg} \rightarrow \mathrm{~g}\}
$$

- answer question by comparing normal forms of lhs and rhs

$$
\mathrm{fgf} \rightarrow!\mathrm{fg}_{R}=\mathrm{fg}{ }_{R}^{!} \leftarrow \mathrm{fgg}
$$

- problem:

$$
\text { how to certify fgf } \leftrightarrow_{E}^{*} \text { fgg }
$$

Completion

- input: equational system and equation

$$
E=\{\mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{~g}\} \quad \text { and } \quad \mathrm{fgf} \stackrel{?}{\leftrightarrow}_{E}^{*} \mathrm{fgg}
$$

- result of completion: convergent rewrite system, equivalent to E

$$
R=\{\mathrm{ff} \rightarrow \mathrm{f}, \mathrm{gf} \rightarrow \mathrm{~g}, \mathrm{gg} \rightarrow \mathrm{~g}\}
$$

- answer question by comparing normal forms of lhs and rhs

$$
\mathrm{fgf} \rightarrow!\mathrm{fg}_{R}=\mathrm{fg}{ }_{R}^{!} \leftarrow \mathrm{fgg}
$$

- problem:

$$
\text { how to certify fgf } \leftrightarrow_{E}^{*} \text { fgg }
$$

- two possibilities

Completion

- input: equational system and equation

$$
E=\{\mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{~g}\} \quad \text { and } \quad \mathrm{fgf} \stackrel{?}{\leftrightarrow}_{E}^{*} \mathrm{fgg}
$$

- result of completion: convergent rewrite system, equivalent to E

$$
R=\{\mathrm{ff} \rightarrow \mathrm{f}, \mathrm{gf} \rightarrow \mathrm{~g}, \mathrm{gg} \rightarrow \mathrm{~g}\}
$$

- answer question by comparing normal forms of lhs and rhs

$$
\mathrm{fgf} \rightarrow_{R}^{!} \mathrm{fg}=\mathrm{fg}{ }_{R}^{!} \leftarrow \mathrm{fgg}
$$

- problem:

$$
\text { how to certify fgf } \leftrightarrow_{E}^{*} \text { fgg }
$$

- two possibilities

1. convert normal form derivations of R into conversions of E

Completion

- input: equational system and equation

$$
E=\{\mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{~g}\} \quad \text { and } \quad \mathrm{fgf} \stackrel{?}{\leftrightarrow}_{E}^{*} \mathrm{fgg}
$$

- result of completion: convergent rewrite system, equivalent to E

$$
R=\{\mathrm{ff} \rightarrow \mathrm{f}, \mathrm{gf} \rightarrow \mathrm{~g}, \mathrm{gg} \rightarrow \mathrm{~g}\}
$$

- answer question by comparing normal forms of lhs and rhs

$$
\mathrm{fgf} \rightarrow!
$$

- problem:

$$
\text { how to certify fgf } \leftrightarrow_{E}^{*} \text { fgg }
$$

- two possibilities

1. convert normal form derivations of R into conversions of E
2. prove that R is convergent and that $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*}$

Completion

- input: equational system and equation

$$
E=\{\mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{~g}\} \quad \text { and } \quad \mathrm{fgf} \stackrel{?}{\leftrightarrow}{ }_{E}^{*} \mathrm{fgg}
$$

- result of completion: convergent rewrite system, equivalent to E

$$
R=\{\mathrm{ff} \rightarrow \mathrm{f}, \mathrm{gf} \rightarrow \mathrm{~g}, \mathrm{gg} \rightarrow \mathrm{~g}\}
$$

- answer question by comparing normal forms of lhs and rhs

$$
\mathrm{fgf} \rightarrow!\mathrm{fg}_{R}=\mathrm{fg}{ }_{R}^{!} \leftarrow \mathrm{fgg}
$$

- problem:

$$
\text { how to certify fgf } \leftrightarrow_{E}^{*} \text { fgg }
$$

- two possibilities

1. convert normal form derivations of R into conversions of E
2. prove that R is convergent and that $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*}$

- both possibilities require more information from completion than R
- second possibility has the advantage that one can also certify $s \not \psi_{E}^{*} t$

Completion

- input: equational system and equation

$$
E=\{\mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{~g}\} \quad \text { and } \quad \mathrm{fgf} \stackrel{?}{\leftrightarrow}{ }_{E}^{*} \mathrm{fgg}
$$

- result of completion: convergent rewrite system, equivalent to E

$$
R=\{\mathrm{ff} \rightarrow \mathrm{f}, \mathrm{gf} \rightarrow \mathrm{~g}, \mathrm{gg} \rightarrow \mathrm{~g}\}
$$

- answer question by comparing normal forms of lhs and rhs

$$
\mathrm{fgf} \rightarrow!\mathrm{fg}_{R}=\mathrm{fg}{ }_{R}^{!} \leftarrow \mathrm{fgg}
$$

- problem:

$$
\text { how to certify fgf } \leftrightarrow_{E}^{*} \text { fgg }
$$

- two possibilities

1. convert normal form derivations of R into conversions of E
2. prove that R is convergent and that $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*}$

- both possibilities require more information from completion than R
- second possibility has the advantage that one can also certify $s \not \psi_{E}^{*} t$
- solution: extend completion to recording completion

Completion Rules

deduce $\frac{(E, R)}{(E \cup\{s \approx t\}, R)} \quad$ if $s_{R} \leftarrow u \rightarrow_{R} t$
orient

$$
\frac{(E \cup\{s \dot{\approx} t\}, R)}{(E, R \cup\{s \rightarrow t\})} \quad \text { if } s>t
$$

simplify
$\frac{(E \cup\{s \dot{\sim} t\}, R)}{(E \cup\{u \dot{\sim} t\}, R)} \quad$ if $s \rightarrow_{R} u$
delete
$\frac{(E \cup\{s \approx s\}, R)}{(E, R)}$
compose
$\frac{(E, R \cup\{s \rightarrow t\})}{(E, R \cup\{s \rightarrow u\})} \quad$ if $t \rightarrow_{R} u$
collapse $\frac{(E, R \cup\{s \rightarrow t\})}{(E \cup\{u \approx t\}, R)} \quad$ if $s \exists_{R} u$

Completion Rules

deduce $\frac{(E, R)}{(E \cup\{s \approx t\}, R)} \quad$ if $s_{R} \leftarrow u \rightarrow_{R} t$
orient $\quad \frac{(E \cup\{s \dot{\sim} t\}, R)}{(E, R \cup\{s \rightarrow t\})} \quad$ if $s>t$
simplify
$\frac{(E \cup\{s \dot{\sim} t\}, R)}{(E \cup\{u \dot{\sim} t\}, R)} \quad$ if $s \rightarrow_{R} u$
delete $\frac{(E \cup\{s \approx s\}, R)}{(E, R)}$
compose

$$
\frac{(E, R \cup\{s \rightarrow t\})}{(E, R \cup\{s \rightarrow u\})} \quad \text { if } t \rightarrow_{R} u
$$

collapse $\frac{(E, R \cup\{s \rightarrow t\})}{(E \cup\{u \approx t\}, R)} \quad$ if $s \rightarrow_{R} u$

- we will only be able to certify finite completion runs
\Rightarrow new result: then strict-encompassment \sqsupset can be dropped

Let \rightsquigarrow be a step w.r.t. the completion rules (without the strict encompassment condition)

Theorem (Soundness of completion, formalized in IsaFoR)
If $(E, \emptyset) \rightsquigarrow^{*}(\emptyset, R)$ where all critical pairs of R have been generated, then R is terminating, confluent, and $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*}$.

IsaFoR: Isabelle Formalization of Rewriting

Completion

E
 (1) $\mathrm{ff} \approx \mathrm{f}$
 (2) $\operatorname{ggf} \approx g$

 Rinference rule

Completion

E
 (1) $f f \approx f$
 (2) $\operatorname{ggf} \approx g$

inference rule
orient (1) \rightarrow

Completion

inference rule
orient (1) \rightarrow
orient (2) \rightarrow

Completion

E

(1) $\mathrm{ff} \rightarrow \mathrm{f}$
(2) $g g f \rightarrow g$
(3) $g g f \approx g f$

R

inference rule
orient (1) \rightarrow
orient (2) \rightarrow
deduce (2), (1)

Completion

inference rule
orient (1) \rightarrow
orient (2) \rightarrow
deduce (2), (1)
simplify (3), (2)

Completion

E

R
(1) $\mathrm{ff} \rightarrow \mathrm{f}$
(2) $g g f \rightarrow g$
(4) $\mathrm{gf} \rightarrow \mathrm{g}$
inference rule
orient (1) \rightarrow
orient (2) \rightarrow
deduce (2), (1)
simplify (3), (2)
orient (4) \leftarrow

Completion

inference rule
orient (1) \rightarrow orient (2) \rightarrow deduce (2), (1)
simplify (3), (2)
orient (4) \leftarrow
deduce (2), (4)

Completion

R
(1) $\mathrm{ff} \rightarrow \mathrm{f}$
(2) $g g f \rightarrow g$
(4) $\mathrm{gf} \rightarrow \mathrm{g}$
(5) $\mathrm{gg} \rightarrow \mathrm{g}$
inference rule
orient (1) \rightarrow
orient (2) \rightarrow
deduce (2), (1)
simplify (3), (2)
orient (4) \leftarrow deduce (2), (4) orient (5) \rightarrow

Completion

E
 (1) $\mathrm{ff} \approx f$

(4) $g \approx g f$
(5) $g g \approx g$
(6) $\mathrm{gf} \approx \mathrm{g}$
(4) $g f \rightarrow g$
(5) $\mathrm{gg} \rightarrow \mathrm{g}$
R
inference rule
(1) $\mathrm{ff} \rightarrow \mathrm{f}$

orient (1) \rightarrow
orient (2) \rightarrow
deduce (2), (1)
simplify (3), (2)
orient (4) \leftarrow deduce (2), (4)
orient (5) \rightarrow
collapse (2), (5)

Completion

E
 (1) $\mathrm{ff} \approx f$

(4) $g \approx g f$
(5) $g g \approx g$
(6) $g f \approx g$
(7) $g \approx g$

R

(1) $\mathrm{ff} \rightarrow \mathrm{f}$

(4) $g f \rightarrow g$
(5) $\mathrm{gg} \rightarrow \mathrm{g}$
inference rule
orient (1) \rightarrow orient (2) \rightarrow deduce (2), (1) simplify (3), (2)
orient (4) \leftarrow deduce (2), (4)
orient (5) \rightarrow collapse (2), (5)
simplify (6), (4)

Completion

(5) $g g \approx g$

(7) $g \approx g$

R

(1) $\mathrm{ff} \rightarrow \mathrm{f}$

(4) $g f \rightarrow g$
(5) $\mathrm{gg} \rightarrow \mathrm{g}$
inference rule
orient (1) \rightarrow
orient (2) \rightarrow
deduce (2), (1)
simplify (3), (2)
orient (4) \leftarrow
deduce (2), (4)
orient (5) \rightarrow collapse (2), (5)
simplify (6), (4)
delete (7)

Completion

(4) $g f \rightarrow g$
(5) $g g \approx g$
(5) $\mathrm{gg} \rightarrow \mathrm{g}$
inference rule

orient (1) \rightarrow orient (2) \rightarrow deduce (2), (1)
simplify (3), (2)
orient (4) \leftarrow deduce (2), (4)
orient (5) \rightarrow collapse (2), (5)
simplify (6), (4) delete (7)

All other critical pairs can be deleted after simplification

result of completion

E
(1) $\mathrm{ff} \approx \mathrm{f}$
(2) $\operatorname{ggf} \approx \mathrm{g}$

Problem

- from completed rewrite system R one cannot infer how the rules have been derived from E
\Rightarrow no possibility to convert $s \rightarrow{ }_{R}^{!} t$ derivation into $s \leftrightarrow_{E}^{*} t$ conversion
\Rightarrow no possibility to show $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*} \quad$ (one can only show $\leftrightarrow_{E}^{*} \subseteq \leftrightarrow_{R}^{*}$)

Problem

- from completed rewrite system R one cannot infer how the rules have been derived from E
\Rightarrow no possibility to convert $s \rightarrow_{R}^{!} t$ derivation into $s \leftrightarrow_{E}^{*} t$ conversion
\Rightarrow no possibility to show $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*} \quad$ (one can only show $\leftrightarrow_{E}^{*} \subseteq \leftrightarrow_{R}^{*}$)

Solution: recording completion

idea:

- each rule and equation is indexed
- extent completion process by history

Problem

- from completed rewrite system R one cannot infer how the rules have been derived from E
\Rightarrow no possibility to convert $s \rightarrow_{R}^{!} t$ derivation into $s \leftrightarrow_{E}^{*} t$ conversion
\Rightarrow no possibility to show $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*} \quad$ (one can only show $\leftrightarrow_{E}^{*} \subseteq \leftrightarrow_{R}^{*}$)

Solution: recording completion

idea:

- each rule and equation is indexed
- extent completion process by history
- for each rule and equation there is a two step derivation in the history how the rule or equation has been derived

Problem

- from completed rewrite system R one cannot infer how the rules have been derived from E
\Rightarrow no possibility to convert $s \rightarrow{ }_{R}^{!} t$ derivation into $s \leftrightarrow_{E}^{*} t$ conversion
\Rightarrow no possibility to show $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*} \quad$ (one can only show $\leftrightarrow_{E}^{*} \subseteq \leftrightarrow_{R}^{*}$)

Solution: recording completion

idea:

- each rule and equation is indexed
- extent completion process by history
- for each rule and equation there is a two step derivation in the history how the rule or equation has been derived
- initial history: $H_{0}=\{i: s \xrightarrow{i} t \stackrel{0}{\approx} t \mid s \approx t \in E\}$

Completion Rules

deduce	(E, R)	if $s_{R} \leftarrow u \rightarrow_{R} t$
	$\overline{(E \cup\{ } \quad s \approx t\}, R$)	
orient-1	$\left.\frac{(E \cup\{\langle\approx t\}, R)}{(E, R \cup\{s \rightarrow t\}}\right)$	if $s>t$
orient-r	$(E \cup\{\quad s \approx t\}, R$	if $t>$
	$\overline{(E, R \cup\{t \rightarrow s\}}$	if $t>s$
simplify-I	$(E \cup\{s \approx t\}, R)$	if $s \rightarrow R$
	$\overline{(E \cup\{~} \quad\left(\begin{array}{l}\text { (}\end{array}\right.$	
simplify-r	$(E \cup\{s \approx t\}, R)$	if $t \rightarrow R u$
	$(E \cup\{\quad s \approx u\}, R$)	
delete	$(E \cup\{s \approx s\}, R$)	
	(E,R)	
compose	$(E, R \cup\{s \rightarrow t\})$	
	$\overline{(E, R \cup\{m: s \rightarrow u\}}$	
collapse	$(E, R \cup\{s \rightarrow t\})$	if s
	$(E \cup\{\quad u \approx t\}, R$)	

Recording Completion Rules

deduce	(E,R,H)	if $s_{R}{ }_{\text {j }}{ }^{\text {a }}$
orient-1	$(E \cup\{s \approx t\}, R)$	if $s>t$
orient-r		if $t>s$
	$\overline{(E, R \cup\{t \rightarrow s\}})$	
simplify-1	$(E \cup\{$ d $s \approx t\}, R)$	if $s \rightarrow R u$
	$\begin{array}{ll}(E \cup\{ & u \approx t\}, R \\ & (E \cup\{\quad s \approx t\}, R)\end{array}$	
simplify-r		if $t \rightarrow R u$
	$\begin{aligned} & (E \cup\{\quad s \approx u\}, R \\ & \left(\begin{array}{l} (E \cup\{\quad s \approx s\}, R \\ \hline(E, R) \end{array}\right. \end{aligned}$	
delete		
compose	$(E, R \cup\{s \rightarrow t\})$	if $t \rightarrow{ }_{R} u$
	$\overline{(E, R \cup\{m: s \rightarrow u\}})$	
collapse	$(E, R \cup\{s \rightarrow t\})$	$\text { if } s \rightarrow_{R} u$
	$(E \cup\{\quad \cup \approx t\}, R$)	

Recording Completion Rules

deduce	(E, R, H)	
	$\overline{(E \cup\{m: s \approx t\}, R, H \cup\{m: s \stackrel{j}{\leftarrow} u \xrightarrow{k} t\})}$	
orient-1	$\frac{(E \cup\{j: s \approx t\}, R, H)}{(E, R \cup\{j: s \rightarrow t\}, H)}$	if $s>t$
orient-r	$(E \cup\{\quad s \approx t\}, R$	if $t>s$
	$\overline{(E, R \cup\{t \rightarrow s\}}$	
simplify-I	$(E \cup\{s \approx t\}, R)$	if $s \rightarrow R u$
	$\overline{(E \cup\{~} \quad \cup \approx t\}, R$)	
simplify-r	$(E \cup\{s \approx t\}, R)$	if $t \rightarrow R u$
	$(E \cup\{\quad s \approx u\}, R$)	
delete	$(E \cup\{s \approx s\}, R$)	
	(E, R)	
compose	$(E, R \cup\{s \rightarrow t\})$	if $t \rightarrow{ }_{R} u$
	$\overline{(E, R \cup\{m: s \rightarrow u\}}$	
collapse	$(E, R \cup\{s \rightarrow t\})$	$\text { if } s \rightarrow R u$
	$(E \cup\{\quad u \approx t\}, R$)	

Recording Completion Rules

deduce	(E, R, H)	
	$\overline{(E \cup\{m: s \approx t\}, R, H \cup\{m: s \stackrel{j}{\leftarrow} u \xrightarrow{k} t\})}$	
orient-I	$\frac{(E \cup\{j: s \approx t\}, R, H)}{(E, R \cup\{j: s \rightarrow t\}, H)}$	if $s>t$
orient-r	$\frac{(E \cup\{j: s \approx t\}, R, H \cup\{j: s \circ u \bullet t\})}{\left(E, R \cup\{j: t \rightarrow s\}, H \cup\left\{j: t \bullet^{-1} u \circ^{-1} s\right\}\right)}$	if $t>s$
simplify-I	$(E \cup\{\quad s \approx t\}, R \quad)$	if $s \rightarrow_{R} u$
simplify-r	$(E \cup\{\quad s \approx t\}, R \quad)$	if $t \rightarrow R u$
	$(E \cup\{\quad s \approx u\}, R$)	
delete	$(E \cup\{s \approx s\}, R$)	if $t \rightarrow_{R} u$
	(E,R)	
compose	$(E, R \cup\{\quad s \rightarrow t\} \quad)$	
	$(E, R \cup\{m: s \rightarrow u\} \quad)$	
collapse	$(E, R \cup\{s \rightarrow t\})$	
	$(E \cup\{\quad u \approx t\}, R \quad)$	

Recording Completion Rules

deduce	(E, R, H)	if $s_{R} \stackrel{j}{\leftarrow}$ 促 ${ }_{\text {k }} t$
orient-I	$\frac{(E \cup\{j: s \approx t\}, R, H)}{(E, R \cup\{j: s \rightarrow t\}, H)}$	if $s>t$
orient-r	$\frac{(E \cup\{j: s \approx t\}, R, H \cup\{j: s \circ u \bullet t\})}{\left(E, R \cup\{j: t \rightarrow s\}, H \cup\left\{j: t \bullet^{-1} u o^{-1} s\right\}\right)}$	if $t>s$
simplify-I	$\frac{(E \cup\{j: s \approx t\}, R, H)}{\left(E \cup\{m: u \approx t\}, R, H \cup\left\{m: u \leftarrow^{k} s \xrightarrow{j} t\right\}\right)}$	
simplify-r	$(E \cup\{s \approx t\}, R \quad)$	if $t \rightarrow R u$
	$(E \cup\{\quad s \approx u\}, R$	
delete	$(E, R \quad)$	if $t \rightarrow_{R} u$
compose	$(E, R \cup\{s \rightarrow t\})$	
	$\overline{(E, R \cup\{m: s \rightarrow u\}}$	
collapse	$(E, R \cup\{s \rightarrow t\})$	if $s \rightarrow_{R} u$
	$(E \cup\{\quad u \approx t\}, R \quad)$	

Recording Completion Rules

deduce	(E,R,H)	
	$\overline{(E \cup\{m: s \approx t\}, R, H \cup\{m: s \stackrel{j}{\leftarrow} u \xrightarrow{k} t\})}$	
orient-I	$\frac{(E \cup\{j: s \approx t\}, R, H)}{(E, R \cup\{j: s \rightarrow t\}, H)}$	if $s>t$
orient-r	$\frac{(E \cup\{j: s \approx t\}, R, H \cup\{j: s \circ u \bullet t\})}{\left(E, R \cup\{j: t \rightarrow s\}, H \cup\left\{j: t \bullet^{-1} u \circ^{-1} s\right\}\right)}$	if $t>s$
simplify-I	$\frac{(E \cup\{j: s \approx t\}, R, H)}{\left(E \cup\{m: u \approx t\}, R, H \cup\left\{m: u{ }^{k} s \stackrel{j}{\rightarrow} t\right\}\right)}$	if $s \xrightarrow{k} R u$
simplify-r	$\frac{(E \cup\{j: s \approx t\}, R, H)}{(E \cup\{m: s \approx u\}, R, H \cup\{m: s \xrightarrow{j} t \xrightarrow{k} u\})}$	if $t \xrightarrow{\substack{*}} u$
delete	$\frac{(E \cup\{\quad s \approx s\}, R}{(E, R \quad)}$	
compose	$\frac{(E, R \cup\{s \rightarrow t\})}{(E, R \cup\{m: s \rightarrow u\}}$	if $t \rightarrow_{R} u$
collapse	$(E, R \cup\{m: s \rightarrow u\}$ $(E, R \cup\{\quad s \rightarrow t\} \quad)$	${ }_{s} \rightarrow_{R} u$
	$(E \cup\{\quad u \approx t\}, R \quad)$	

Recording Completion Rules

deduce	(E, R, H)	
deauce	$\overline{(E \cup\{m: s \approx t\}, R, H \cup\{m: s \stackrel{j}{\leftarrow} u \xrightarrow{k} t\})}$	
orient-I	$\frac{(E \cup\{j: s \approx t\}, R, H)}{(E, R \cup\{j: s \rightarrow t\}, H)}$	if $s>t$
orient-r	$\frac{(E \cup\{j: s \approx t\}, R, H \cup\{j: s \circ u \bullet t\})}{\left(E, R \cup\{j: t \rightarrow s\}, H \cup\left\{j: t \bullet^{-1} u \circ^{-1} s\right\}\right)}$	if $t>s$
simplify-I	$\frac{(E \cup\{j: s \approx t\}, R, H)}{\left(E \cup\{m: u \approx t\}, R, H \cup\left\{m: u{ }_{\leftarrow}^{k} s \xrightarrow{j} t\right\}\right)}$	if $s \rightarrow{ }_{\text {l }}{ }_{R} u$
simplify-r	$\frac{(E \cup\{j: s \approx t\}, R, H)}{(E \cup\{m: s \approx u\}, R, H \cup\{m: s \xrightarrow{j} t \xrightarrow{k} u\})}$	if $t \xrightarrow{k}{ }_{R} u$
delete	$\frac{(E \cup\{j: s \approx s\}, R, H \cup\{j: s \circ v \bullet s\})}{(E, R, H)}$	
compose	$(E, R \cup\{s \rightarrow t\})$	if $t \rightarrow_{R} u$
	$(E, R \cup\{m: s \rightarrow u\} \quad)$	
collapse	$(E, R \cup\{s \rightarrow t\})$	if $s \rightarrow_{R} u$
	$(E \cup\{\quad u \approx t\}, R \quad)$	

Recording Completion Rules

deduce	(E, R, H)	
deduce	$\overline{\left(E \cup\{m: s \approx t\}, R, H \cup\left\{m: s{ }_{\sim}^{j} u^{k}{ }^{k} t\right\}\right)}$	if $s_{R} \leftarrow u \rightarrow R{ }^{\text {a }}$
orient-I	$\frac{(E \cup\{j: s \approx t\}, R, H)}{(E, R \cup\{j: s \rightarrow t\}, H)}$	if $s>t$
orient-r	$\frac{(E \cup\{j: s \approx t\}, R, H \cup\{j: s \circ u \bullet t\})}{\left(E, R \cup\{j: t \rightarrow s\}, H \cup\left\{j: t \bullet^{-1} u \circ^{-1} s\right\}\right)}$	if $t>s$
simplify-I	$\frac{(E \cup\{j: s \approx t\}, R, H)}{\left(E \cup\{m: u \approx t\}, R, H \cup\left\{m: u{ }^{k} s \stackrel{j}{\rightarrow} t\right\}\right)}$	if $s \rightarrow{ }_{\text {l }}{ }_{R} u$
simplify-r	$\frac{(E \cup\{j: s \approx t\}, R, H)}{(E \cup\{m: s \approx u\}, R, H \cup\{m: s \xrightarrow{j} t \xrightarrow{k} u\})}$	if $t \stackrel{\text { k }}{ }$ R u
delete	$\frac{(E \cup\{j: s \approx s\}, R, H \cup\{j: s \circ v \bullet s\})}{(E, R, H)}$	
compose	$\frac{(E, R \cup\{j: s \rightarrow t\}, H)}{(E, R \cup\{m: s \rightarrow u\}, H \cup\{m: s \xrightarrow{j} t \xrightarrow{k} u\})}$	if $t \xrightarrow{k}{ }_{R} u$
collapse	$(E, R \cup\{s \rightarrow t\})$	if $s \rightarrow_{R} u$

Recording Completion Rules

deduce	(E, R, H)	
deduce	$\overline{(E \cup\{m: s \approx t\}, R, H \cup\{m: s \stackrel{j}{\leftarrow} u \xrightarrow{k} t\})}$	$s_{R} \leftarrow u \rightarrow_{R} t$
orient-I	$\frac{(E \cup\{j: s \approx t\}, R, H)}{(E, R \cup\{j: s \rightarrow t\}, H)}$	if $s>t$
orient-r	$\frac{(E \cup\{j: s \approx t\}, R, H \cup\{j: s \circ u \bullet t\})}{\left(E, R \cup\{j: t \rightarrow s\}, H \cup\left\{j: t \bullet^{-1} u \circ^{-1} s\right\}\right)}$	if $t>s$
simplify-I	$\frac{(E \cup\{j: s \approx t\}, R, H)}{\left(E \cup\{m: u \approx t\}, R, H \cup\left\{m: u{ }^{k} s \stackrel{j}{\rightarrow} t\right\}\right)}$	if $s \xrightarrow{k}^{k} u$
simplify-r	$\frac{(E \cup\{j: s \approx t\}, R, H)}{(E \cup\{m: s \approx u\}, R, H \cup\{m: s \xrightarrow{j} t \xrightarrow{k} u\})}$	if $t \xrightarrow{k} R u$
delete	$\frac{(E \cup\{j: s \approx s\}, R, H \cup\{j: s \circ v \bullet s\})}{(E, R, H)}$	
compose	$\frac{(E, R \cup\{j: s \rightarrow t\}, H)}{(E, R \cup\{m: s \rightarrow u\}, H \cup\{m: s \xrightarrow{j} t \xrightarrow{k} u\})}$	if $t \xrightarrow{k}{ }_{R} u$
collapse	$\frac{(E, R \cup\{j: s \rightarrow t\}, H)}{\left(E \cup\{m: u \approx t\}, R, H \cup\left\{m: u{ }^{k} s \xrightarrow{j} t\right\}\right)}$	if $s \rightarrow_{R}^{k} u$

From Completion to Conversions

3 phases:

1. record (using Recording Completion)
2. compare
3. recall (two variants)

record phase (Recording Completion)

E
R
H

(1) $\mathrm{ff} \approx \mathrm{f}$
 (2) $\operatorname{ggf} \approx g$

(1) $\mathrm{ff} \xrightarrow{1} \mathrm{f} \underset{\sim}{0} \mathrm{f}$
(2) $\operatorname{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$
inference rule

record phase (Recording Completion)

E
(1) $\mathrm{ff} \approx f$
(2) $\operatorname{ggf} \approx g$
R
H
(1) $\mathrm{ff} \xrightarrow{1} \mathrm{f} \underset{\sim}{0} \mathrm{f}$
(2) $\operatorname{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$
(1) $\mathrm{ff} \rightarrow \mathrm{f}$
inference rule
orient-I (1)

record phase (Recording Completion)

R
H
(1) $\mathrm{ff} \xrightarrow{1} \mathrm{f} \underset{\approx}{\approx} \mathrm{f}$
(2) $\operatorname{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$
(1) $\mathrm{ff} \rightarrow \mathrm{f}$
(2) $g g f \rightarrow g$
inference rule
orient-I (1)
orient-I (2)

record phase (Recording Completion)

(3) $\mathrm{ggf} \approx \mathrm{gf}$
R
H
(1) $\mathrm{ff} \xrightarrow{1} f \stackrel{0}{\approx} f$
(2) $\mathrm{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$
(1) $\mathrm{ff} \rightarrow f$
(2) $\mathrm{ggf} \rightarrow \mathrm{g}$
(3) $\mathrm{ggf} \stackrel{1}{\leftarrow} \mathrm{ggff} \xrightarrow{2} \mathrm{gf}$
inference rule
orient-I (1)
orient-I (2)
deduce (2), (1)

record phase (Recording Completion)

R
(1) $\mathrm{ff} \rightarrow f$
(2) $\mathrm{ggf} \rightarrow \mathrm{g}$
(3) $g g f \approx g f$
(4) $g \approx g f$
(1) $\mathrm{ff} \xrightarrow{1} f \stackrel{0}{\approx} f$
(2) $\mathrm{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$

H

orient-I (1)
orient-I (2)
(3) $\mathrm{ggf} \stackrel{1}{\leftarrow}$ ggff $\xrightarrow{2}$ gf deduce (2), (1)
(4) $\mathrm{g} \stackrel{2}{\leftarrow} \mathrm{ggf} \xrightarrow{3} \mathrm{gf}$
inference rule

record phase (Recording Completion)

R

(1) $\mathrm{ff} \xrightarrow{1} \mathrm{f} \underset{\approx}{\approx} \mathrm{f}$
(2) $\operatorname{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$
(1) $\mathrm{ff} \rightarrow \mathrm{f}$
(2) $g g f \rightarrow g$

$$
\text { (2) } \mathrm{ggt} \rightarrow \mathrm{~g}
$$

$$
\square
$$

(3) $\operatorname{ggf} \stackrel{1}{\leftarrow}$ ggff $\xrightarrow{2}$ gf
(4) $g{ }_{2}^{2}{ }^{2} g f^{3} \xrightarrow{3} g f$
(4) $\mathrm{gf} \stackrel{3}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
inference rule
orient-I (1)
orient-I (2)
deduce (2), (1)
simplify-l (3), (2)
orient-r (4)

record phase (Recording Completion)

E	R	H	inference rule
(1) $\mathrm{ff} \approx \mathrm{f}$		(1) $\mathrm{ff} \xrightarrow{1} \mathrm{f} \stackrel{0}{\approx} \mathrm{f}$	
(2) $g g f \approx g$		(2) $\operatorname{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$	
	(1) $\mathrm{ff} \rightarrow \mathrm{f}$ (2) $\operatorname{ggf} \rightarrow \mathrm{g}$		orient-I (1) orient-I (2)
(3) $g \underline{g} f \approx g f$		(3) ggf $\stackrel{1}{\leftarrow}$ ggff $\xrightarrow{2} \mathrm{gf}$	deduce (2), (1)
(4) $g \approx g f$		(4) $\mathrm{g} \stackrel{2}{\stackrel{2}{2} \mathrm{ggf}} \stackrel{3}{\longrightarrow} \mathrm{gf}$	simplify-I (3), (2)
	(4) $\mathrm{gf} \rightarrow \mathrm{g}$	(4) $\mathrm{gff} \stackrel{3}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$	orient-r (4)
(5) $\mathrm{gg} \approx \mathrm{g}$		(5) $\mathrm{gg} \stackrel{4}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$	deduce (2), (4)

record phase (Recording Completion)

E	R	H	inference rule
(1) $\mathrm{ff} \approx f$		(1) $\mathrm{ff} \xrightarrow{1} \mathrm{f} \stackrel{0}{\approx} \mathrm{f}$	
(2) $g g f \approx g$		(2) $\operatorname{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$	
	(1) $\mathrm{ff} \rightarrow \mathrm{f}$ (2) $\operatorname{ggf} \rightarrow \mathrm{g}$		orient-I (1) orient-I (2)
(3) $g g f \approx g f$		(3) $\mathrm{ggf} \stackrel{1}{\leftarrow}$ ggff $\stackrel{2}{\longrightarrow} \mathrm{gf}$	deduce (2), (1)
(4) $g \approx g f$	(4) $g f \rightarrow g$	(4) $g \stackrel{ }{2}_{\stackrel{2}{2}} g g{ }^{3} \xrightarrow{3} g f$ (4) $\mathrm{gf} \stackrel{3}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$	simplify-I (3), (2) orient-r (4)
(5) $\mathrm{gg} \approx \mathrm{g}$	(5) $\mathrm{gg} \rightarrow \mathrm{g}$	(5) $\mathrm{gg} \stackrel{4}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$	deduce (2), (4) orient-I (5)

record phase (Recording Completion)

E	R	H	inference rule
(1) $\mathrm{ff} \approx \mathrm{f}$		(1) $\mathrm{ff} \xrightarrow{1} \mathrm{f} \stackrel{0}{\approx} \mathrm{f}$	
(2) $g g f \approx g$		(2) $\operatorname{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$	
	(1) $\mathrm{ff} \rightarrow \mathrm{f}$ (2) $g g f \rightarrow g$		orient-I (1) orient-I (2)
(3) $\mathrm{ggf} \approx \mathrm{gf}$		(3) $\mathrm{ggf} \stackrel{1}{\leftarrow}$ ggff $\xrightarrow{2} \mathrm{gf}$	deduce (2), (1)
(4) $g \approx g f$		(4) $\mathrm{g} \stackrel{2}{2} \mathrm{ggf}{ }^{3} \mathrm{gf}$	simplify-l (3), (2)
	(4) $\mathrm{gf} \rightarrow \mathrm{g}$	(4) $\mathrm{gf} \stackrel{3}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$	orient-r (4)
(5) $\mathrm{gg} \approx \mathrm{g}$		(5) $\mathrm{gg} \stackrel{4}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$	deduce (2), (4)
	(5) $\mathrm{gg} \rightarrow \mathrm{g}$		orient-I (5)
(6) $\mathrm{gf} \approx \mathrm{g}$		(6) $\mathrm{gf} \stackrel{5}{\leftarrow} \mathrm{ggf} \stackrel{2}{\rightarrow} \mathrm{~g}$	collapse (2), (5)

record phase (Recording Completion)

E	R	H	inference rule
(1) $\mathrm{ff} \approx \mathrm{f}$		(1) $\mathrm{ff} \xrightarrow{1} \mathrm{f} \underset{\sim}{0} \mathrm{f}$	
(2) $g g f \approx g$		(2) $\mathrm{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$	
	(1) $\mathrm{ff} \rightarrow f$ (2) $g g f>g$		orient-l (1) orient-I (2)
(3) $g \underline{g} f \approx g f$		(3) ggf $\stackrel{1}{\leftarrow}$ ggff $\stackrel{2}{\longrightarrow} \mathrm{gf}$	deduce (2), (1)
(4) $g \approx g f$		(4) $\mathrm{g} \stackrel{{ }_{2}^{2}}{\stackrel{2}{2} \mathrm{gff}}{ }^{3} \mathrm{gff}$	simplify-I (3), (2)
	(4) $\mathrm{gf} \rightarrow \mathrm{g}$	(4) $\mathrm{gf} \stackrel{3}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$	orient-r (4)
(5) $\mathrm{gg} \approx \mathrm{g}$	(5) $\mathrm{gg} \rightarrow \mathrm{g}$	(5) $\mathrm{gg} \stackrel{4}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$	deduce (2), (4) orient-I (5)
(6) $\mathrm{gf} \approx \mathrm{g}$		(6) $\mathrm{gf} \stackrel{5}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$	collapse (2), (5)
(7) $\mathrm{g} \approx \mathrm{g}$		(7) $\mathrm{g} \stackrel{4}{\leftarrow} \mathrm{gf} \xrightarrow{6} \mathrm{~g}$	simplify-I (6), (4)

record phase (Recording Completion)

E	R	H	inference rule
(1) $\mathrm{ff} \approx \mathrm{f}$		(1) $\mathrm{ff} \xrightarrow{1} \mathrm{f} \stackrel{0}{\approx} \mathrm{f}$	
(2) $g g f \approx g$		(2) $\operatorname{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$	
	(1) $\mathrm{ff} \rightarrow \mathrm{f}$ (2) $g g f \rightarrow g$		orient-I (1) orient-I (2)
(3) g gf $\approx g f$		(3) $\mathrm{ggf} \stackrel{1}{\leftarrow} \mathrm{ggff} \stackrel{2}{\rightarrow} \mathrm{gf}$	deduce (2), (1)
(4) $g \approx g f$	(4) $\mathrm{gf} \rightarrow \mathrm{g}$		simplify-l (3), (2) orient-r (4)
(5) $\mathrm{gg} \approx \mathrm{g}$	(5) $\mathrm{gg} \rightarrow \mathrm{g}$	(5) $\mathrm{gg} \stackrel{4}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$	deduce (2), (4) orient-l (5)
(6) $\mathrm{gf} \approx \mathrm{g}$		(6) $\mathrm{gf} \stackrel{5}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$	collapse (2), (5)
(7) $g \approx g$			simplify-I (6), (4) delete (7)

result of record phase

E
R
(1) $\mathrm{ff} \rightarrow \mathrm{f}$
(4) $g f \rightarrow g$
(5) $g g \rightarrow g$

H
(1) $\mathrm{ff} \xrightarrow{1} \mathrm{f} \stackrel{0}{\approx} \mathrm{f}$
(2) $\operatorname{ggf} \xrightarrow{2} \mathrm{~g} \stackrel{0}{\approx} \mathrm{~g}$
(3) $\operatorname{ggf} \stackrel{1}{\leftarrow}$ ggff $\xrightarrow{2} \mathrm{gf}$
(4) $\mathrm{gf} \stackrel{3}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
(5) $\mathrm{gg} \stackrel{4}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
(6) $\mathrm{gf} \stackrel{5}{\leftarrow}$ ggf $\xrightarrow{2} \mathrm{~g}$

result of record phase

E
R
(1) $\mathrm{ff} \rightarrow \mathrm{f}$
(4) $g f \rightarrow g$
(5) $g g \rightarrow g$

H

(2) $g g^{2}, g \approx g$
(3) $\operatorname{ggf} \stackrel{1}{\leftarrow} \operatorname{ggff} \stackrel{2}{\rightarrow} \mathrm{gf}$
(4) $\operatorname{gf} \stackrel{3}{\leftarrow} \operatorname{ggf} \stackrel{2}{\longrightarrow} g$
(5) $\operatorname{gg} \stackrel{4}{\leftarrow} \operatorname{ggf} \xrightarrow{2} g$
(6) $\operatorname{gf} \stackrel{5}{\leftarrow} \operatorname{ggf} \stackrel{2}{\longrightarrow} g$

compare phase

$$
\mathrm{fgf} \stackrel{?}{\leftrightarrow_{E}^{*}} \mathrm{fgg}
$$

compare phase

$\mathrm{fgf} \stackrel{?}{\leftrightarrow}{ }_{E}^{*} \mathrm{fgg}$
use R to reduce lhs and rhs to normal form

R \{
(1) $\mathrm{ff} \rightarrow \mathrm{f}$
(4) $\mathrm{gf} \rightarrow \mathrm{g}$
(5) $\mathrm{gg} \rightarrow \mathrm{g}$
\}

compare phase

$\mathrm{fgf} \stackrel{?}{\leftrightarrow}{ }_{E}^{*} \mathrm{fgg}$
use R to reduce lhs and rhs to normal form

R \{
(1) $\mathrm{ff} \rightarrow \mathrm{f}$
(4) $\mathrm{gf} \rightarrow \mathrm{g}$
(5) $\mathrm{gg} \rightarrow \mathrm{g}$
\}
$\mathrm{fgf} \stackrel{4}{\rightarrow} \mathrm{fg} \stackrel{5}{\leftarrow} \underline{\mathrm{fgg}}$

recall phase (first variant)

while there are rules with indices not in E replace them with the corresponding sequence from H

$$
\mathrm{fgf} \stackrel{4}{\rightarrow} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}
$$

recall phase (first variant)

while there are rules with indices not in E replace them with the corresponding sequence from H
$\mathrm{fgf} \stackrel{4}{\rightarrow} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$

E	H
(1) $\mathrm{ff} \approx \mathrm{f}$	(3) $\mathrm{ggf} \stackrel{1}{\leftarrow} \mathrm{ggff} \xrightarrow{2} \mathrm{gf}$
(2) $\operatorname{ggf} \approx \mathrm{g}$	(4) $\mathrm{gff} \stackrel{3}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
	(5) $\mathrm{gg} \stackrel{4}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
ntext	(6) $\mathrm{gf} \stackrel{5}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$

recall phase (first variant)

while there are rules with indices not in E replace them with the corresponding sequence from H
$\mathrm{fgf} \stackrel{4}{\rightarrow} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$

E	H
(1) $\mathrm{ff} \approx \mathrm{f}$	(3) ggf $\stackrel{1}{\leftarrow} \mathrm{ggff} \stackrel{2}{\longrightarrow} \mathrm{gf}$
(2) $\operatorname{ggf} \approx \mathrm{g}$	(4) $\mathrm{gf} \stackrel{3}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
	(5) $\mathrm{gg} \stackrel{4}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
text	(6) $\mathrm{gf} \stackrel{5}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$

$\mathrm{fgf} \stackrel{3}{\leftarrow} \mathrm{fggf} \stackrel{2}{\rightarrow} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$
context
(6) $\mathrm{gf} \stackrel{5}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
$\mathrm{fgf} \stackrel{2}{\leftarrow} \mathrm{fggff} \xrightarrow{1} \mathrm{fggf} \xrightarrow{2} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$

recall phase (first variant)

while there are rules with indices not in E replace them with the corresponding sequence from H
$\mathrm{fgf} \stackrel{4}{\rightarrow} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$

E	H
(1) $\mathrm{ff} \approx \mathrm{f}$	(3) ggf $\stackrel{1}{\leftarrow}$ ggff $\stackrel{2}{\longrightarrow} \mathrm{gf}$
(2) $\operatorname{ggf} \approx \mathrm{g}$	(4) $\mathrm{gf} \stackrel{3}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
	(5) $\mathrm{gg} \stackrel{4}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
ntext	(6) $\mathrm{gf} \stackrel{5}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$

$\mathrm{fgf} \stackrel{3}{\leftarrow} \mathrm{fggf} \stackrel{2}{\rightarrow} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$
context
(3) $\mathrm{ggf} \stackrel{1}{\leftarrow} \mathrm{ggff} \xrightarrow{2} \mathrm{gf}$ \square
$\mathrm{fgf} \stackrel{2}{\leftarrow} \mathrm{fggff} \xrightarrow{1} \mathrm{fggf} \xrightarrow{2} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$
$\mathrm{fgf} \stackrel{2}{\leftarrow} \mathrm{fggff} \xrightarrow{\frac{1}{\rightarrow}} \mathrm{fggf} \stackrel{2}{\rightarrow} \mathrm{fg} \stackrel{2}{\leftarrow} \mathrm{fggf} \xrightarrow{4} \mathrm{fgg}$
recall phase (first variant)
while there are rules with indices not in E replace them with the corresponding sequence from H

E H
$\mathrm{fgf} \stackrel{4}{\rightarrow} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$
(1) $\mathrm{ff} \approx \mathrm{f}$
(3) ggf $\stackrel{1}{\leftarrow}$ ggff $\xrightarrow{2}$ gf
(2) $\mathrm{ggf} \approx \mathrm{g}$
(4) $\mathrm{gf} \stackrel{3}{\leftarrow} \mathrm{ggf} \stackrel{2}{\longrightarrow} \mathrm{~g}$
$\mathrm{fgf} \stackrel{3}{\leftarrow} \mathrm{fggf} \xrightarrow{2} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$
(5) $\mathrm{gg} \stackrel{4}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
context
(6) $\mathrm{gf} \stackrel{5}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
fgf $\stackrel{2}{\leftarrow}$ fggff $\xrightarrow{1}$ fggf $\xrightarrow{2} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$ fg \square
$\mathrm{fgf} \stackrel{2}{\leftarrow} \mathrm{fggff} \xrightarrow{1} \mathrm{fggf} \stackrel{2}{\longrightarrow} \mathrm{fg} \stackrel{2}{\leftarrow} \mathrm{fggf} \xrightarrow{4} \mathrm{fgg}$
$\mathrm{fgf} \stackrel{2}{\leftarrow}$ fggff $\xrightarrow{1}$ fggf $\stackrel{2}{\rightarrow} \mathrm{fg} \stackrel{2}{\leftarrow} \mathrm{fggf} \stackrel{3}{\leftarrow}$ fgggf $\stackrel{2}{\rightarrow} \mathrm{fgg}$
recall phase (first variant)
while there are rules with indices not in E replace them with the corresponding sequence from H
$E \quad H$
$\mathrm{fgf} \stackrel{4}{\rightarrow} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$
(1) $\mathrm{ff} \approx \mathrm{f}$
(3) $\operatorname{ggf} \stackrel{1}{\leftarrow}$ ggff $\xrightarrow{2}$ gf
(2) $\operatorname{ggf} \approx g$
(4) $\mathrm{gf} \stackrel{3}{\leftarrow} \operatorname{ggf} \xrightarrow{2} \mathrm{~g}$
$\mathrm{fgf} \stackrel{3}{\leftarrow} \mathrm{fggf} \stackrel{2}{\rightarrow} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$
(5) $\mathrm{gg} \stackrel{4}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
context
(6) $\mathrm{gf} \stackrel{5}{\leftarrow} \mathrm{ggf} \xrightarrow{2} \mathrm{~g}$
$\mathrm{fgf} \stackrel{2}{\leftarrow} \mathrm{fggff} \stackrel{1}{\rightarrow} \mathrm{fggf} \stackrel{2}{\rightarrow} \mathrm{fg} \stackrel{5}{\leftarrow} \mathrm{fgg}$ fg \square
fgf $\stackrel{2}{\leftarrow}$ fggff $\stackrel{1}{\rightarrow}$ fggf $\stackrel{2}{\longrightarrow}$ fg $\stackrel{2}{\leftarrow}$ fggf $\stackrel{4}{\rightarrow}$ fgg
fgf $\stackrel{2}{\leftarrow}$ fggff $\xrightarrow{1}$ fggf $\stackrel{2}{\rightarrow} \mathrm{fg} \stackrel{2}{\leftarrow}$ fggf $\stackrel{3}{\leftarrow} \mathrm{fgggf} \stackrel{2}{\rightarrow} \mathrm{fgg}$
fgf $\stackrel{2}{\leftarrow}$ fggff $\stackrel{1}{\rightarrow}$ fggf $\stackrel{2}{\rightarrow} \mathrm{fg} \stackrel{2}{\leftarrow}$ fggf $\stackrel{2}{\leftarrow}$ fgggff $\xrightarrow{\frac{1}{\rightarrow}}$ fgggf $\stackrel{2}{\rightarrow} \mathrm{fgg}$

Problem with recall phase

- expansion can lead to exponential blow up
$\Rightarrow \mathrm{KBCV}$ (completion tool implementing recording completion) hits resource bounds during recall phase

Problem with recall phase

- expansion can lead to exponential blow up
\Rightarrow KBCV (completion tool implementing recording completion) hits resource bounds during recall phase

Solution: second variant of recall phase

- for every (required) history entry $i: s_{i} \circ u_{i} \bullet t_{i}$ derive $s_{i} \leftrightarrow_{E}^{*} t_{i}$
- to this end use $s_{m} \leftrightarrow^{*} t_{m}$ for all $m<i$ as hypothesis
\Rightarrow essentially, just dump (required) history as certificate

Problem with recall phase

- expansion can lead to exponential blow up
\Rightarrow KBCV (completion tool implementing recording completion) hits resource bounds during recall phase

Solution: second variant of recall phase

- for every (required) history entry $i: s_{i} \circ u_{i} \bullet t_{i}$ derive $s_{i} \leftrightarrow_{E}^{*} t_{i}$
- to this end use $s_{m} \leftrightarrow^{*} t_{m}$ for all $m<i$ as hypothesis
\Rightarrow essentially, just dump (required) history as certificate
- finally have $R \subseteq\left\{s_{i} \rightarrow t_{i} \mid i \leq i_{\max }\right\} \subseteq \leftrightarrow_{E}^{*}$ and hence $\leftrightarrow_{R}^{*} \subseteq \leftrightarrow_{E}^{*}$
\Rightarrow linear size certificate, no problem for KBCV

Certification

- first possibility: obtain conversion $s \leftrightarrow_{E}^{*} t$
- trivial

Certification

- first possibility: obtain conversion $s \leftrightarrow_{E}^{*} t$
- trivial
- second possibility: show that R is complete and $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*}$
- requires termination certificate (already present in IsaFoR)
- requires local confluence certificate (unification + critical pair lemma)

Certification

- first possibility: obtain conversion $s \leftrightarrow_{E}^{*} t$
- trivial
- second possibility: show that R is complete and $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*}$
- requires termination certificate (already present in IsaFoR)
- requires local confluence certificate (unification + critical pair lemma)
- for checking $\leftrightarrow_{E}^{*} \subseteq \leftrightarrow_{R}^{*}:$ check $s \downarrow_{\mathcal{R}}=t \downarrow_{\mathcal{R}}$ for all $s \approx t \in E$
- for checking $\leftrightarrow_{E}^{*} \supseteq \leftrightarrow_{R}^{*}$: use recall phase of recording completion

Certification

- first possibility: obtain conversion $s \leftrightarrow_{E}^{*} t$
- trivial
- second possibility: show that R is complete and $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*}$
- requires termination certificate (already present in IsaFoR)
- requires local confluence certificate (unification + critical pair lemma)
- for checking $\leftrightarrow_{E}^{*} \subseteq \leftrightarrow_{R}^{*}:$ check $s \downarrow_{\mathcal{R}}=t \downarrow_{\mathcal{R}}$ for all $s \approx t \in E$
- for checking $\leftrightarrow_{E}^{*} \supseteq \leftrightarrow_{R}^{*}$: use recall phase of recording completion
- remarks on formalizations

Certification

- first possibility: obtain conversion $s \leftrightarrow_{E}^{*} t$
- trivial
- second possibility: show that R is complete and $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*}$
- requires termination certificate (already present in IsaFoR)
- requires local confluence certificate (unification + critical pair lemma)
- for checking $\leftrightarrow_{E}^{*} \subseteq \leftrightarrow_{R}^{*}:$ check $s \downarrow_{\mathcal{R}}=t \downarrow_{\mathcal{R}}$ for all $s \approx t \in E$
- for checking $\leftrightarrow_{E}^{*} \supseteq \leftrightarrow_{R}^{*}$: use recall phase of recording completion
- remarks on formalizations
- tedious (especially when dealing with positions in critical pair lemma)

Certification

- first possibility: obtain conversion $s \leftrightarrow_{E}^{*} t$
- trivial
- second possibility: show that R is complete and $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*}$
- requires termination certificate (already present in IsaFoR)
- requires local confluence certificate (unification + critical pair lemma)
- for checking $\leftrightarrow_{E}^{*} \subseteq \leftrightarrow_{R}^{*}:$ check $s \downarrow_{\mathcal{R}}=t \downarrow_{\mathcal{R}}$ for all $s \approx t \in E$
- for checking $\leftrightarrow_{E}^{*} \supseteq \leftrightarrow_{R}^{*}$: use recall phase of recording completion
- remarks on formalizations
- tedious (especially when dealing with positions in critical pair lemma)
- observation: infinite set of variables is essential

Certification

- first possibility: obtain conversion $s \leftrightarrow_{E}^{*} t$
- trivial
- second possibility: show that R is complete and $\leftrightarrow_{E}^{*}=\leftrightarrow_{R}^{*}$
- requires termination certificate (already present in IsaFoR)
- requires local confluence certificate (unification + critical pair lemma)
- for checking $\leftrightarrow_{E}^{*} \subseteq \leftrightarrow_{R}^{*}$: check $s \downarrow_{\mathcal{R}}=t \downarrow_{\mathcal{R}}$ for all $s \approx t \in E$
- for checking $\leftrightarrow_{E}^{*} \supseteq \leftrightarrow_{R}^{*}$: use recall phase of recording completion
- remarks on formalizations
- tedious (especially when dealing with positions in critical pair lemma)
- observation: infinite set of variables is essential
- example: let R be a confluent TRS over $\mathcal{T}(\mathcal{F}, \mathcal{V})$, then it does not follow that R is confluent over $\mathcal{T}\left(\mathcal{F} \cup \mathcal{F}^{\prime}, \mathcal{V}\right)$
\Rightarrow signature extensions for confluence require infinite set of variables

Experiments

- KBCV 1.6 using recording completion (first variant of recall phase)
- KBCV 1.7 using recording completion (second variant of recall phase)
- MKBTT using a variant of recording completion
- CeTA is certifier, extracted from IsaFoR
- 115 equational systems, 300 seconds timeout

Experiments

- KBCV 1.6 using recording completion (first variant of recall phase)
- KBCV 1.7 using recording completion (second variant of recall phase)
- MKBTT using a variant of recording completion
- CeTA is certifier, extracted from IsaFoR
- 115 equational systems, 300 seconds timeout

Tool	Completed	Time	Cert.	CeTA accept	time	timeout
KBCV 1.6	86	7767	84	80	1483	4
KBCV 1.7	86	7735	86	86	13	0
MKBTT	80	1514	80	80	92	0
Total	94		94	94		

Slothrop
MAXCOMP
71 without certification
86 without certification

Conclusion

- encompassment condition is not required for finite completion runs
- recording completion to derive $\leftrightarrow_{R}^{*} \subseteq \leftrightarrow_{E}^{*}$
- recall phase is linear if intermediate lemmas are used
- tools for certified completion are available (KBCV, MKBTT, IsaFoR + CeTA)

Conclusion

- encompassment condition is not required for finite completion runs
- recording completion to derive $\leftrightarrow_{R}^{*} \subseteq \leftrightarrow_{E}^{*}$
- recall phase is linear if intermediate lemmas are used
- tools for certified completion are available (KBCV, MKBTT, IsaFoR + CeTA)
- alternative approach to obtain conversions is available in CiME3 for ordered completion
- future work: study relationship in more detail

