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Completion

• input: equational system and equation

E = {ff ≈ f, ggf ≈ g} and fgf
?
↔∗

E fgg

• result of completion: convergent rewrite system, equivalent to E

R = {ff→ f, gf→ g, gg→ g}
• answer question by comparing normal forms of lhs and rhs

fgf→!
R fg = fg !

R← fgg

• problem:

how to certify fgf↔∗
E fgg

• two possibilities

1. convert normal form derivations of R into conversions of E
2. prove that R is convergent and that ↔∗E =↔∗R

• both possibilities require more information from completion than R

• second possibility has the advantage that one can also certify s 6↔∗
E t

• solution: extend completion to recording completion
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Completion Rules

deduce (E ,R)

(E ∪ {s ≈ t},R)
if s R← u →R t

orient (E ∪ {s
.
≈ t},R)

(E ,R ∪ {s → t}) if s > t

simplify (E ∪ {s
.
≈ t},R)

(E ∪ {u
.
≈ t},R)

if s →R u

delete (E ∪ {s ≈ s},R)

(E ,R)

compose (E ,R ∪ {s → t})
(E ,R ∪ {s → u}) if t →R u

collapse (E ,R ∪ {s → t})
(E ∪ {u ≈ t},R)

if s
A→R u

• we will only be able to certify finite completion runs
⇒ new result: then strict-encompassment A can be dropped
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Let  be a step w.r.t. the completion rules
(without the strict encompassment condition)

Theorem (Soundness of completion, formalized in IsaFoR)

If (E , ∅) ∗ (∅,R) where all critical pairs of R have been generated,
then R is terminating, confluent, and ↔∗

E =↔∗
R .

IsaFoR: Isabelle Formalization of Rewriting
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Completion

E R inference rule
1 ff ≈ f
2 ggf ≈ g

1 ff→ f orient 1 →

2 ggf→ g orient 2 →

3 ggf ≈ gf deduce 2 , 1

4 g ≈ gf simplify 3 , 2

4 gf→ g orient 4 ←

5 gg ≈ g deduce 2 , 4

5 gg→ g orient 5 →

6 gf ≈ g collapse 2 , 5

7 g ≈ g simplify 6 , 4

delete 7

All other critical pairs can be deleted after simplification
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result of completion

E R
1 ff ≈ f 1 ff→ f
2 ggf ≈ g 4 gf→ g

5 gg→ g

7 / 18



Problem

• from completed rewrite system R one cannot infer how the rules have
been derived from E

⇒ no possibility to convert s →!
R t derivation into s ↔∗

E t conversion

⇒ no possibility to show ↔∗
E =↔∗

R (one can only show ↔∗
E ⊆ ↔∗

R)

Solution: recording completion

idea:

• each rule and equation is indexed

• extent completion process by history

• for each rule and equation there is a two step derivation in the history
how the rule or equation has been derived

• initial history: H0 = {i : s
i→ t

0
≈ t | s ≈ t ∈ E}
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Recording

Completion Rules

deduce (E ,R

,H

)

(E ∪ {

m :

s ≈ t},R

,H ∪ {m : s
j← u

k→ t}

)
if s

j

R← u

k

→R t

orient-l (E ∪ {

j :

s ≈ t},R

,H

)

(E ,R ∪ {

j :

s → t}

,H

)
if s > t

orient-r (E ∪ {

j :

s ≈ t},R

,H ∪ {j : s ◦ u • t}

)

(E ,R ∪ {

j :

t → s}

,H ∪ {j : t •−1 u ◦−1 s}

)
if t > s

simplify-l (E ∪ {

j :

s ≈ t},R

,H

)

(E ∪ {

m :

u ≈ t},R

,H ∪ {m : u
k← s

j→ t}

)
if s

k

→R u

simplify-r (E ∪ {

j :

s ≈ t},R

,H

)

(E ∪ {

m :

s ≈ u},R

,H ∪ {m : s
j→ t

k→ u}

)
if t

k

→R u

delete (E ∪ {

j :

s ≈ s},R

,H ∪ {j : s ◦ v • s}

)

(E ,R

,H

)

compose (E ,R ∪ {

j :

s → t}

,H

)

(E ,R ∪ {m : s → u}

,H ∪ {m : s
j→ t

k→ u}

)
if t

k

→R u

collapse (E ,R ∪ {

j :

s → t}

,H

)

(E ∪ {

m :

u ≈ t},R

,H ∪ {m : u
k← s

j→ t}

)
if s

k

→R u
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From Completion to Conversions

3 phases:

1. record (using Recording Completion)

2. compare

3. recall (two variants)
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record phase (Recording Completion)

E R H inference rule

1 ff ≈ f 1 ff
1→ f

0
≈ f

2 ggf ≈ g 2 ggf
2→ g

0
≈ g

1 ff→ f orient-l 1

2 ggf→ g orient-l 2

3 ggf ≈ gf 3 ggf
1← ggff

2→ gf deduce 2 , 1

4 g ≈ gf 4 g
2← ggf

3→ gf simplify-l 3 , 2

4 gf→ g 4 gf
3← ggf

2→ g orient-r 4

5 gg ≈ g 5 gg
4← ggf

2→ g deduce 2 , 4

5 gg→ g orient-l 5

6 gf ≈ g 6 gf
5← ggf

2→ g collapse 2 , 5

7 g ≈ g 7 g
4← gf

6→ g simplify-l 6 , 4

delete 7
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result of record phase

E R H

1 ff ≈ f 1 ff→ f 1 ff
1→ f

0
≈ f

2 ggf ≈ g 4 gf→ g 2 ggf
2→ g

0
≈ g

5 gg→ g 3 ggf
1← ggff

2→ gf

4 gf
3← ggf

2→ g

5 gg
4← ggf

2→ g

6 gf
5← ggf

2→ g
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compare phase

fgf
?
↔∗

E fgg

use R to reduce lhs and rhs to normal form

R {
1 ff→ f
4 gf→ g
5 gg→ g

}

fgf
4→ fg

5← fgg
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recall phase (first variant)

while there are rules with indices not in E replace them with the
corresponding sequence from H

fgf
4→ fg

5← fgg

fgf
3← fggf

2→ fg
5← fgg

fgf
2← fggff

1→ fggf
2→ fg

5← fgg

fgf
2← fggff

1→ fggf
2→ fg

2← fggf
4→ fgg

fgf
2← fggff

1→ fggf
2→ fg

2← fggf
3← fgggf

2→ fgg

fgf
2← fggff

1→ fggf
2→ fg

2← fggf
2← fgggff

1→ fgggf
2→ fgg

E H

1 ff ≈ f 3 ggf
1← ggff

2→ gf

2 ggf ≈ g 4 gf
3← ggf

2→ g

5 gg
4← ggf

2→ g

6 gf
5← ggf

2→ g

context
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Problem with recall phase

• expansion can lead to exponential blow up

⇒ KBCV (completion tool implementing recording completion)
hits resource bounds during recall phase

Solution: second variant of recall phase

• for every (required) history entry i : si ◦ ui • ti derive si ↔∗
E ti

• to this end use sm ↔∗ tm for all m < i as hypothesis

⇒ essentially, just dump (required) history as certificate

• finally have R ⊆ {si → ti | i ≤ imax} ⊆ ↔∗
E and hence ↔∗

R ⊆ ↔∗
E

⇒ linear size certificate, no problem for KBCV
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Certification

• first possibility: obtain conversion s ↔∗
E t

• trivial

• second possibility: show that R is complete and ↔∗
E =↔∗

R

• requires termination certificate (already present in IsaFoR)

• requires local confluence certificate (unification + critical pair lemma)

• for checking ↔∗E ⊆ ↔∗R : check s ↓R = t ↓R for all s ≈ t ∈ E

• for checking ↔∗E ⊇ ↔∗R : use recall phase of recording completion

• remarks on formalizations

• tedious (especially when dealing with positions in critical pair lemma)

• observation: infinite set of variables is essential

• example: let R be a confluent TRS over T (F ,V),
then it does not follow that R is confluent over T (F ∪ F ′,V)

⇒ signature extensions for confluence require infinite set of variables
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Experiments

• KBCV 1.6 using recording completion (first variant of recall phase)

• KBCV 1.7 using recording completion (second variant of recall phase)

• MKBTT using a variant of recording completion

• CeTA is certifier, extracted from IsaFoR

• 115 equational systems, 300 seconds timeout

Tool Completed Time Cert. CeTA accept time timeout

KBCV 1.6 86 7767 84 80 1483 4
KBCV 1.7 86 7735 86 86 13 0
MKBTT 80 1514 80 80 92 0

Total 94 94 94

Slothrop 71 without certification
MAXCOMP 86 without certification
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Conclusion

• encompassment condition is not required for finite completion runs

• recording completion to derive ↔∗
R ⊆ ↔∗

E

• recall phase is linear if intermediate lemmas are used

• tools for certified completion are available
(KBCV, MKBTT, IsaFoR + CeTA)

• alternative approach to obtain conversions is available in CiME3 for
ordered completion

• future work: study relationship in more detail

18 / 18



Conclusion

• encompassment condition is not required for finite completion runs

• recording completion to derive ↔∗
R ⊆ ↔∗

E

• recall phase is linear if intermediate lemmas are used

• tools for certified completion are available
(KBCV, MKBTT, IsaFoR + CeTA)

• alternative approach to obtain conversions is available in CiME3 for
ordered completion

• future work: study relationship in more detail

18 / 18


