

Recording Completion for Finding and Certifying Proofs in Equational Logic

Computational Logic, University of Innsbruck and School of Information Science, JAIST

29 May 2012

Outline

- Reminder: completion & conversions
- Extending completion to recording completion
- Certification
- Conclusion

• input: equational system and equation

$$E = \{ \mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{g} \}$$
 and $\mathrm{fgf} \stackrel{?}{\leftrightarrow_E^*} \mathrm{fgg}$

• input: equational system and equation

$$E = \{ \text{ff} \approx \text{f}, \text{ggf} \approx \text{g} \} \text{ and } \text{fgf} \stackrel{?}{\leftrightarrow_E^*} \text{fgg}$$

• result of completion: convergent rewrite system, equivalent to E
$$R = \{ \text{ff} \rightarrow \text{f}, \text{gf} \rightarrow \text{g}, \text{gg} \rightarrow \text{g} \}$$

•

• input: equational system and equation

$$E = \{ \text{ff} \approx f, \text{ggf} \approx g \} \text{ and } \text{fgf} \leftrightarrow_E^? \text{fgg}$$

• result of completion: convergent rewrite system, equivalent to E
$$R = \{ \text{ff} \rightarrow f, \text{gf} \rightarrow g, \text{gg} \rightarrow g \}$$

• answer question by comparing normal forms of lhs and rhs

$$\operatorname{fgf} \to_R^! \operatorname{fg} = \operatorname{fg} _R^! \leftarrow \operatorname{fgg}$$

• input: equational system and equation

$$E = \{ \text{ff} \approx f, \text{ggf} \approx g \} \text{ and } fgf \stackrel{?}{\leftrightarrow_E^*} fgg$$

result of completion: convergent rewrite system, equivalent to E
 $R = \{ \text{ff} \rightarrow f, \text{gf} \rightarrow g, \text{gg} \rightarrow g \}$
answer question by comparing normal forms of lhs and rhs
 $fgf \rightarrow_R^! fg = fg \stackrel{!}{_R} \leftarrow fgg$

• problem:

how to certify fgf \leftrightarrow_E^* fgg

• input: equational system and equation

$$E = \{ \text{ff} \approx f, \text{ggf} \approx g \} \text{ and } \text{fgf} \leftrightarrow_E^{\prime} \text{fgg}$$

result of completion: convergent rewrite system, equivalent to E
 $R = \{ \text{ff} \rightarrow f, \text{gf} \rightarrow g, \text{gg} \rightarrow g \}$
answer question by comparing normal forms of lhs and rhs
 $\text{fgf} \rightarrow_R^! \text{fg} = \text{fg}_R^! \leftarrow \text{fgg}$

problem:

how to certify fgf \leftrightarrow_E^* fgg

• two possibilities

• input: equational system and equation

$$E = \{ \text{ff} \approx f, \text{ggf} \approx g \} \text{ and } \text{fgf} \leftrightarrow_E^? \text{fgg}$$

result of completion: convergent rewrite system, equivalent to E
$$R = \{ \text{ff} \rightarrow f, \text{gf} \rightarrow g, \text{gg} \rightarrow g \}$$

answer question by comparing normal forms of lhs and rhs
$$f\text{gf} \rightarrow_R^! \text{fg} = \text{fg} \stackrel{!}{_R} \leftarrow \text{fgg}$$

• problem:

how to certify fgf \leftrightarrow_E^* fgg

- two possibilities
 - 1. convert normal form derivations of R into conversions of E

input: equational system and equation

$$E = \{ \text{ff} \approx f, \text{ggf} \approx g \} \text{ and } \text{fgf} \leftrightarrow_E^? \text{fgg}$$

• result of completion: convergent rewrite system, equivalent to E

$$R = \{ \text{ff} \rightarrow f, \text{gf} \rightarrow g, \text{gg} \rightarrow g \}$$

• answer question by comparing normal forms of lhs and rhs

$$f\text{gf} \rightarrow_R^! \text{fg} = \text{fg} \xrightarrow{l}_R \leftarrow \text{fgg}$$

how to certify fgf \leftrightarrow_{F}^{*} fgg

- two possibilities
 - 1. convert normal form derivations of R into conversions of E
 - 2. prove that R is convergent and that $\leftrightarrow_F^* = \leftrightarrow_R^*$

• input: equational system and equation

$$E = \{ \mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{g} \}$$
 and $\mathrm{fgf} \leftrightarrow_E^* \mathrm{fgg}$

2

• result of completion: convergent rewrite system, equivalent to E

$$R = \{\mathsf{ff} \to \mathsf{f}, \mathsf{gf} \to \mathsf{g}, \mathsf{gg} \to \mathsf{g}\}$$

· answer question by comparing normal forms of lhs and rhs

$$\mathsf{fgf} \to_R^! \mathsf{fg} = \mathsf{fg}_R \stackrel{!}{\to} \mathsf{fgg}$$

• problem:

how to certify $\operatorname{fgf} \leftrightarrow_E^* \operatorname{fgg}$

- two possibilities
 - 1. convert normal form derivations of R into conversions of E
 - 2. prove that R is convergent and that $\leftrightarrow_E^* = \leftrightarrow_R^*$
- both possibilities require more information from completion than R
- second possibility has the advantage that one can also certify $s \not\leftrightarrow_E^* t$

• input: equational system and equation

$$E = \{ \mathrm{ff} \approx \mathrm{f}, \mathrm{ggf} \approx \mathrm{g} \}$$
 and $\mathrm{fgf} \leftrightarrow_E^* \mathrm{fgg}$

2

• result of completion: convergent rewrite system, equivalent to E

$$R = \{\mathsf{ff} \to \mathsf{f}, \mathsf{gf} \to \mathsf{g}, \mathsf{gg} \to \mathsf{g}\}$$

· answer question by comparing normal forms of lhs and rhs

$$\mathsf{fgf} \to_R^! \mathsf{fg} = \mathsf{fg}_R \stackrel{!}{\to} \mathsf{fgg}$$

• problem:

how to certify $\operatorname{fgf} \leftrightarrow_E^* \operatorname{fgg}$

- two possibilities
 - 1. convert normal form derivations of R into conversions of E
 - 2. prove that R is convergent and that $\leftrightarrow_E^* = \leftrightarrow_R^*$
- both possibilities require more information from completion than R
- second possibility has the advantage that one can also certify $s \nleftrightarrow_F^* t$
- solution: extend completion to recording completion

Completion Rules

deduce	$\frac{(E,R)}{(E\cup\{s\approx t\},R)}$	$\text{if } s _{R} \leftarrow u \rightarrow_{R} t$
orient	$\frac{(E \cup \{s \stackrel{.}{\approx} t\}, R)}{(E, R \cup \{s \rightarrow t\})}$	if $s > t$
simplify	$\frac{(E \cup \{s \stackrel{.}{\approx} t\}, R)}{(E \cup \{u \stackrel{.}{\approx} t\}, R)}$	$\text{if } s \to_R u$
delete	$\frac{(E \cup \{s \approx s\}, R)}{(E, R)}$	
compose	$\frac{(E, R \cup \{s \to t\})}{(E, R \cup \{s \to u\})}$	$\text{if } t \to_R u$
collapse	$\frac{(E, R \cup \{s \to t\})}{(E \cup \{u \approx t\}, R)}$	$\text{if } s \stackrel{\exists}{\to}_R u$

Completion Rules

deduce	$\frac{(E,R)}{(E\cup\{s\approx t\},R)}$	$\text{if } s _{R} \leftarrow u \rightarrow_{R}$
orient	$\frac{(E \cup \{s \stackrel{.}{\approx} t\}, R)}{(E, R \cup \{s \rightarrow t\})}$	if $s > t$
simplify	$\frac{(E \cup \{s \stackrel{.}{\approx} t\}, R)}{(E \cup \{u \stackrel{.}{\approx} t\}, R)}$	$\text{if } s \to_R u$
delete	$\frac{(E \cup \{s \approx s\}, R)}{(E, R)}$	
compose	$\frac{(E, R \cup \{s \to t\})}{(E, R \cup \{s \to u\})}$	$\text{if } t \to_R u$
collapse	$\frac{(E, R \cup \{s \to t\})}{(E \cup \{u \approx t\}, R)}$	$\text{if } s \to_R u$

we will only be able to certify finite completion runs
 ⇒ new result: then strict-encompassment □ can be dropped

t

Let \rightsquigarrow be a step w.r.t. the completion rules (without the strict encompassment condition)

Theorem (Soundness of completion, formalized in IsaFoR)

If $(E, \emptyset) \rightsquigarrow^* (\emptyset, R)$ where all critical pairs of R have been generated, then R is terminating, confluent, and $\leftrightarrow_E^* = \leftrightarrow_R^*$.

IsaFoR: Isabelle Formalization of Rewriting

E(1) ff \approx f (2) ggf \approx g R

inference rule

E(1) ff \approx f (2) ggf \approx g R

 $\textcircled{1} \mathsf{f} \mathsf{f} \to \mathsf{f}$

inference rule

 $\text{orient}\;(1)\rightarrow$

E(1) ff \approx f (2) ggf \approx g R

$\begin{array}{c} \textcircled{1} & \mathsf{f} \to \mathsf{f} \\ \textcircled{2} & \mathsf{ggf} \to \mathsf{g} \end{array}$

inference rule

 $\begin{array}{c} \text{orient } \textcircled{1} \rightarrow \\ \text{orient } \textcircled{2} \rightarrow \end{array}$

E(1) ff \approx f (2) ggf \approx g

(3) ggf \approx gf

R

 $\begin{array}{c} \textcircled{1} & \mathsf{f} \to \mathsf{f} \\ \textcircled{2} & \mathsf{ggf} \to \mathsf{g} \end{array}$

inference rule

orient $(1) \rightarrow$ orient $(2) \rightarrow$ deduce (2), (1)

E(1) ff \approx f (2) ggf \approx g

R

 $\begin{array}{c} (1) \text{ ff} \rightarrow \text{f} \\ (2) \text{ ggf} \rightarrow \text{g} \end{array}$

inference rule

 $\begin{array}{l} \text{orient } (\underline{1}) \rightarrow \\ \text{orient } (\underline{2}) \rightarrow \\ \text{deduce } (\underline{2}), \ (\underline{1}) \\ \text{simplify } (\underline{3}), \ (\underline{2}) \end{array}$

E(1) ff \approx f (2) ggf \approx g

R

 $\begin{array}{c} (1) \text{ ff} \rightarrow \text{f} \\ (2) \text{ ggf} \rightarrow \text{g} \end{array}$

(4) gf \rightarrow g

inference rule

orient $(1) \rightarrow$ orient $(2) \rightarrow$ deduce (2), (1)simplify (3), (2)orient $(4) \leftarrow$

E(1) ff \approx f (2) ggf \approx g

 $\frac{3 \text{ ggf} \approx \text{gf}}{4 \text{ g} \approx \text{gf}}$

(5) gg \approx g

R

 $\begin{array}{c} (1) \text{ ff} \to f \\ (2) \text{ ggf} \to g \end{array}$

(4) gf \rightarrow g

inference rule

orient $(1) \rightarrow$ orient $(2) \rightarrow$ deduce (2), (1)simplify (3), (2)orient $(4) \leftarrow$ deduce (2), (4)

E(1) ff \approx f (2) ggf \approx g

 \bigcirc gg \approx g

R

 $\begin{array}{c} (1) \text{ ff} \rightarrow \text{f} \\ (2) \text{ ggf} \rightarrow \text{g} \end{array}$

(4)
$$gf \rightarrow g$$

(5) $gg \rightarrow g$

inference rule

orient $(1) \rightarrow$ orient $(2) \rightarrow$ deduce (2), (1)simplify (3), (2)orient $(4) \leftarrow$ deduce (2), (4)orient $(5) \rightarrow$

E(1) ff \approx f (2) ggf \approx g

 $\frac{3 \text{ ggf} \approx \text{gf}}{4 \text{ g} \approx \text{gf}}$

 \bigcirc gg \approx g

 \bigcirc gf \approx g

R

 $\begin{array}{c} (1) \text{ ff} \rightarrow \text{f} \\ \hline 2 \text{ ggf} \rightarrow \text{g} \end{array}$

(4)
$$gf \rightarrow g$$

(5) $gg \rightarrow g$

inference rule

orient $(1) \rightarrow$ orient $(2) \rightarrow$ deduce (2), (1)simplify (3), (2)orient $(4) \leftarrow$ deduce (2), (4)orient $(5) \rightarrow$ collapse (2), (5)

E(1) ff \approx f (2) ggf \approx g

 \bigcirc gg \approx g

R

 $\begin{array}{c} (1) \text{ ff} \rightarrow \text{f} \\ \hline 2 \text{ ggf} \rightarrow \text{g} \end{array}$

(4) gf
$$\rightarrow$$
 g

(5) gg \rightarrow g

inference rule

orient $(1) \rightarrow$ orient $(2) \rightarrow$ deduce (2), (1)simplify (3), (2)orient $(4) \leftarrow$ deduce (2), (4)orient $(5) \rightarrow$ collapse (2), (5)simplify (6), (4)

E(1) ff \approx f (2) ggf \approx g

 $\frac{3 \text{ ggf} \approx \text{gf}}{4 \text{ g} \approx \text{gf}}$

 \bigcirc gg \approx g

R

 $\begin{array}{c} (1) \text{ ff} \rightarrow \text{f} \\ \hline 2 \text{ ggf} \rightarrow \text{g} \end{array}$

(4) $gf \rightarrow g$

(5) gg \rightarrow g

inference rule

orient $(1) \rightarrow$ orient $(2) \rightarrow$ deduce (2), (1)simplify (3), (2)orient $(4) \leftarrow$ deduce (2), (4)orient $(5) \rightarrow$ collapse (2), (5)simplify (6), (4)delete (7)

E	
$\frac{3 \text{ ggf} \approx \text{gf}}{4 \text{ g} \approx \text{gf}}$	
(5) gg \approx g	
⑥ gf ≈ g ⑦ g ≈ g	

R

 $\begin{array}{c} \textcircled{1} & \text{ff} \to \text{f} \\ \hline & \textcircled{2} & \text{ggf} \to \text{g} \end{array}$

(4)
$$gf \rightarrow g$$

(5) gg
$$\rightarrow$$
 g

inference rule

orient $(1) \rightarrow$ orient $(2) \rightarrow$ deduce (2), (1)simplify (3), (2)orient $(4) \leftarrow$ deduce (2), (4)orient $(5) \rightarrow$ collapse (2), (5)simplify (6), (4)delete (7)

All other critical pairs can be deleted after simplification

result of completion

 $\begin{array}{c} R \\ (1) \mbox{ ff} \rightarrow \mbox{ f} \\ (4) \mbox{ gf} \rightarrow \mbox{ g} \\ (5) \mbox{ gg} \rightarrow \mbox{ g} \end{array}$

- from completed rewrite system R one cannot infer how the rules have been derived from E
- \Rightarrow no possibility to convert $s \rightarrow_R^! t$ derivation into $s \leftrightarrow_E^* t$ conversion
- $\Rightarrow \text{ no possibility to show } \leftrightarrow_E^* = \leftrightarrow_R^* \quad \text{ (one can only show } \leftrightarrow_E^* \subseteq \leftrightarrow_R^*\text{)}$

- from completed rewrite system R one cannot infer how the rules have been derived from E
- \Rightarrow no possibility to convert $s \rightarrow_R^! t$ derivation into $s \leftrightarrow_E^* t$ conversion
- $\Rightarrow \text{ no possibility to show } \leftrightarrow_E^* = \leftrightarrow_R^* \quad \text{ (one can only show } \leftrightarrow_E^* \subseteq \leftrightarrow_R^*\text{)}$

Solution: recording completion

idea:

- each rule and equation is indexed
- extent completion process by history

- from completed rewrite system R one cannot infer how the rules have been derived from E
- \Rightarrow no possibility to convert $s \rightarrow_R^! t$ derivation into $s \leftrightarrow_E^* t$ conversion
- $\Rightarrow \text{ no possibility to show } \leftrightarrow_E^* = \leftrightarrow_R^* \quad \text{ (one can only show } \leftrightarrow_E^* \subseteq \leftrightarrow_R^*\text{)}$

Solution: recording completion

idea:

- each rule and equation is indexed
- extent completion process by history
- for each rule and equation there is a two step derivation in the history how the rule or equation has been derived

- from completed rewrite system R one cannot infer how the rules have been derived from E
- \Rightarrow no possibility to convert $s \rightarrow_R^! t$ derivation into $s \leftrightarrow_E^* t$ conversion
- $\Rightarrow \text{ no possibility to show } \leftrightarrow_E^* = \leftrightarrow_R^* \quad \text{ (one can only show } \leftrightarrow_E^* \subseteq \leftrightarrow_R^*\text{)}$

Solution: recording completion

idea:

- each rule and equation is indexed
- extent completion process by history
- for each rule and equation there is a two step derivation in the history how the rule or equation has been derived
- initial history: $H_0 = \{i : s \xrightarrow{i} t \approx^0 t \mid s \approx t \in E\}$

Completion Rules

deduce	(<i>E</i> , <i>R</i>)	if $s \to \leftarrow u \to p t$
	$(E \cup \{ s \approx t\}, R)$	
orient-l	$rac{(E\cup \{ spprox t\}, R)}{(E, R\cup \{ s ightarrow t\})}$	if $s > t$
orient-r	$\frac{(E \cup \{ s \approx t\}, R)}{(E, R \cup \{ t \rightarrow s\})}$	if $t > s$
simplify-l	$\frac{(E \cup \{ s \approx t\}, R)}{(E \cup \{ u \approx t\}, R)}$	$if \; \boldsymbol{s} \to_R \; \boldsymbol{u}$
simplify-r	$\frac{(E \cup \{ s \approx t\}, R)}{(E \cup \{ s \approx u\}, R)}$	$ \text{if } t \to_R u \\$
delete	$\frac{(E \cup \{ s \approx s\}, R)}{(E, R)}$	
compose	$\frac{(E, R \cup \{ s \to t\})}{(E, R \cup \{m : s \to u\})}$	$\text{if } t \to_R u$
collapse	$\frac{(E, R \cup \{ s \to t\})}{(E \cup \{ u \approx t\}, R)}$	$if\; s \to_R \; u$

deduce	(<i>E</i> , <i>R</i> , <i>H</i>)	if $s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} v t$
	$(E \cup \{m : s \approx t\}, R, H \cup \{m : s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} t\})$	
orient-l	$\frac{(E \cup \{ s \approx t\}, R)}{(E, R \cup \{ s \rightarrow t\})}$	if $s > t$
orient-r	$\frac{(E \cup \{ s \approx t\}, R)}{(E, R \cup \{ t \rightarrow s\})}$	if $t > s$
simplify-l	$\frac{(E \cup \{ s \approx t\}, R)}{(E \cup \{ u \approx t\}, R)}$	$if \; \boldsymbol{s} \to_R \; \boldsymbol{u}$
simplify-r	$\frac{(E \cup \{ s \approx t\}, R)}{(E \cup \{ s \approx u\}, R)}$	if $t \to_R u$
delete	$\frac{(E \cup \{ s \approx s\}, R)}{(E, R)}$	
compose	$\frac{(E, R \cup \{ s \to t\})}{(E, R \cup \{m : s \to u\})}$	$ \text{if } t \to_R u \\$
collapse	$\frac{(E, R \cup \{ s \to t \})}{(E \cup \{ u \approx t \}, R)}$	$\text{if } s \to_R u$

deduce	(<i>E</i> , <i>R</i> , <i>H</i>)	if $s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} p t$
	$(E \cup \{m : s \approx t\}, R, H \cup \{m : s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} t\})$	
orient-l	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E, R \cup \{j : s \to t\}, H)}$	if $s > t$
orient-r	$\frac{(E \cup \{ s \approx t\}, R)}{(E, R \cup \{ t \rightarrow s\})}$	if $t > s$
simplify-l	$\frac{(E \cup \{ s \approx t\}, R)}{(E \cup \{ u \approx t\}, R)}$	$if \; \boldsymbol{s} \to_R \; \boldsymbol{u}$
simplify-r	$\frac{(E \cup \{ s \approx t\}, R)}{(E \cup \{ s \approx u\}, R)}$	if $t \to_R u$
delete	$\frac{(E \cup \{ s \approx s\}, R)}{(E, R)}$	
compose	$\frac{(E, R \cup \{ s \to t\})}{(E, R \cup \{m : s \to u\})}$	$\text{if } t \to_R u$
collapse	$\frac{(E, R \cup \{ s \to t\})}{(E \cup \{ u \approx t\}, R)}$	$\text{if } s \to_R u$

deduce	(<i>E</i> , <i>R</i> , <i>H</i>)	if $s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} v t$
	$(E \cup \{m : s \approx t\}, R, H \cup \{m : s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} t\})$	
orient-l	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E, R \cup \{j : s \rightarrow t\}, H)}$	if $s > t$
orient-r	$\frac{(E \cup \{j : s \approx t\}, R, H \cup \{j : s \circ u \bullet t\})}{(E, R \cup \{j : t \rightarrow s\}, H \cup \{j : t \bullet^{-1} u \circ^{-1} s\})}$	if $t > s$
simplify-l	$\frac{(E \cup \{ s \approx t\}, R)}{(E \cup \{ u \approx t\}, R)}$	$if \; \boldsymbol{s} \to_R \; \boldsymbol{u}$
simplify-r	$\frac{(E \cup \{ s \approx t\}, R)}{(E \cup \{ s \approx u\}, R)}$	if $t \to_R u$
delete	$\frac{(E \cup \{ s \approx s\}, R)}{(E, R)}$	
compose	$\frac{(E, R \cup \{ s \to t\})}{(E, R \cup \{m : s \to u\})}$	$\text{if } t \to_R u$
collapse	$\frac{(E, R \cup \{ s \to t\})}{(E \cup \{ u \approx t\}, R)}$	$if \; \boldsymbol{s} \to_R \; \boldsymbol{u}$

deduce	(<i>E</i> , <i>R</i> , <i>H</i>)	if $s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} v t$
	$(E \cup \{m : s \approx t\}, R, H \cup \{m : s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} t\})$	
orient-l	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E, R \cup \{j : s \rightarrow t\}, H)}$	if $s > t$
orient-r	$\frac{(E \cup \{j : s \approx t\}, R, H \cup \{j : s \circ u \bullet t\})}{(E, R \cup \{j : t \rightarrow s\}, H \cup \{j : t \bullet^{-1} u \circ^{-1} s\})}$	if <i>t</i> > <i>s</i>
simplify-l	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E \cup \{m : u \approx t\}, R, H \cup \{m : u \stackrel{k}{\leftarrow} s \stackrel{j}{\rightarrow} t\})}$	if $s \stackrel{k}{\rightarrow_R} u$
simplify-r	$\frac{(E \cup \{ s \approx t\}, R)}{(E \cup \{ s \approx u\}, R)}$	$ \text{if } t \to_R u \\$
delete	$\frac{(E \cup \{ s \approx s\}, R)}{(E, R)}$	
compose	$\frac{(E, R \cup \{ s \to t\})}{(E, R \cup \{m : s \to u\})}$	$\text{if } t \to_R u$
collapse	$\frac{(E, R \cup \{ s \to t \})}{(E \cup \{ u \approx t \}, R)}$	$ \text{if } s \to_R u \\$
deduce	(<i>E</i> , <i>R</i> , <i>H</i>)	if $s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} e t$
------------	---	---
	$(E \cup \{m : s \approx t\}, R, H \cup \{m : s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} t\})$	
orient-l	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E, R \cup \{j : s \rightarrow t\}, H)}$	if $s > t$
orient-r	$\frac{(E \cup \{j : s \approx t\}, R, H \cup \{j : s \circ u \bullet t\})}{(E, R \cup \{j : t \rightarrow s\}, H \cup \{j : t \bullet^{-1} u \circ^{-1} s\})}$	if $t > s$
simplify-l	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E \cup \{m : u \approx t\}, R, H \cup \{m : u \stackrel{k}{\leftarrow} s \stackrel{j}{\rightarrow} t\})}$	if $s \stackrel{k}{\rightarrow_R} u$
simplify-r	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E \cup \{m : s \approx u\}, R, H \cup \{m : s \xrightarrow{j} t \xrightarrow{k} u\})}$	if $t \xrightarrow{k}_{R} u$
delete	$\frac{(E \cup \{ s \approx s\}, R)}{(E, R)}$	
compose	$\frac{(E, R \cup \{ s \to t\})}{(E, R \cup \{m : s \to u\})}$	if $t \to_R u$
collapse	$\frac{(E, R \cup \{ s \to t\})}{(E \cup \{ u \approx t\}, R)}$	$if\; \boldsymbol{s} \to_R \; \boldsymbol{u}$

deduce	(<i>E</i> , <i>R</i> , <i>H</i>)	if $s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} v t$
	$(E \cup \{m : s \approx t\}, R, H \cup \{m : s \leftarrow u \xrightarrow{j} u \xrightarrow{k} t\})$	
orient-l	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E, R \cup \{j : s \rightarrow t\}, H)}$	if $s > t$
orient-r	$\frac{(E \cup \{j : s \approx t\}, R, H \cup \{j : s \circ u \bullet t\})}{(E, R \cup \{j : t \rightarrow s\}, H \cup \{j : t \bullet^{-1} u \circ^{-1} s\})}$	if $t > s$
simplify-l	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E \cup \{m : u \approx t\}, R, H \cup \{m : u \stackrel{k}{\leftarrow} s \stackrel{j}{\rightarrow} t\})}$	if $s \stackrel{k}{\rightarrow_R} u$
simplify-r	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E \cup \{m : s \approx u\}, R, H \cup \{m : s \xrightarrow{j} t \xrightarrow{k} u\})}$	if $t \stackrel{k}{\to_R} u$
delete	$\frac{(E \cup \{j: s \approx s\}, R, H \cup \{j: s \circ v \bullet s\})}{(E, R, H)}$	
compose	$\frac{(E, R \cup \{ s \to t\})}{(E, R \cup \{m : s \to u\})}$	$if \ t \to_R \ u$
collapse	$\frac{(E, R \cup \{ s \to t \})}{(E \cup \{ u \approx t \}, R)}$	$if\; \boldsymbol{s} \to_R \; \boldsymbol{u}$

9/18

deduce	(<i>E</i> , <i>R</i> , <i>H</i>)	if $s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} v t$
	$(E \cup \{m : s \approx t\}, R, H \cup \{m : s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} t\})$	
orient-l	$\frac{(E \cup \{j: s \approx t\}, R, H)}{(E, R \cup \{j: s \rightarrow t\}, H)}$	if s > t
orient-r	$\frac{(E \cup \{j : s \approx t\}, R, H \cup \{j : s \circ u \bullet t\})}{(E, R \cup \{j : t \rightarrow s\}, H \cup \{j : t \bullet^{-1} u \circ^{-1} s\})}$	if $t > s$
simplify-l	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E \cup \{m : u \approx t\}, R, H \cup \{m : u \stackrel{k}{\leftarrow} s \stackrel{j}{\rightarrow} t\})}$	if $s \stackrel{k}{\rightarrow_R} u$
simplify-r	$\frac{(E \cup \{j : s \approx t\}, R, H)}{(E \cup \{m : s \approx u\}, R, H \cup \{m : s \xrightarrow{j} t \xrightarrow{k} u\})}$	if $t \stackrel{k}{\to_R} u$
delete	$\frac{(E \cup \{j: s \approx s\}, R, H \cup \{j: s \circ v \bullet s\})}{(E, R, H)}$	
compose	$\frac{(E, R \cup \{j : s \to t\}, H)}{(E, R \cup \{m : s \to u\}, H \cup \{m : s \xrightarrow{j} t \xrightarrow{k} u\})}$	if $t \stackrel{k}{\rightarrow}_{R} u$
collapse	$\frac{(E, R \cup \{ s \to t\})}{(E \cup \{ u \approx t\}, R)}$	$if\; \boldsymbol{s} \to_R \; \boldsymbol{u}$

9/18

$$\begin{array}{c|c} \mbox{deduce} & (E,R,H) & \mbox{if } s_R \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow}_R t \\ \hline (E \cup \{m:s \approx t\}, R, H \cup \{m:s \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow} t\}) & \mbox{if } s_R \stackrel{j}{\leftarrow} u \stackrel{k}{\rightarrow}_R t \\ \hline \mbox{orient-l} & (E \cup \{j:s \approx t\}, R, H) & \mbox{if } s > t \\ \hline \mbox{orient-r} & (E \cup \{j:s \approx t\}, R, H \cup \{j:s \circ u \bullet t\}) & \mbox{if } t > s \\ \hline \mbox{simplify-l} & (E \cup \{j:s \approx t\}, R, H \cup \{j:t \bullet^{-1} u \circ^{-1} s\}) & \mbox{if } t > s \\ \hline \mbox{simplify-l} & (E \cup \{j:s \approx t\}, R, H) & \mbox{if } s \stackrel{k}{\rightarrow}_R u \\ \hline \mbox{simplify-r} & (E \cup \{j:s \approx t\}, R, H) & \mbox{if } s \stackrel{k}{\rightarrow}_R u \\ \hline \mbox{delete} & (E \cup \{j:s \approx s\}, R, H \cup \{m:s \stackrel{j}{\rightarrow} t \stackrel{k}{\rightarrow} u\}) & \ \mbox{if } t \stackrel{k}{\rightarrow}_R u \\ \hline \mbox{delete} & (E \cup \{j:s \approx s\}, R, H \cup \{m:s \stackrel{j}{\rightarrow} t \stackrel{k}{\rightarrow} u\}) & \ \mbox{if } t \stackrel{k}{\rightarrow}_R u \\ \hline \mbox{compose} & (E, R \cup \{j:s \rightarrow t\}, H) & \ \mbox{if } t \stackrel{k}{\rightarrow}_R u \\ \hline \mbox{collapse} & (E, R \cup \{j:s \rightarrow t\}, R, H \cup \{m:u \stackrel{k}{\leftarrow} s \stackrel{j}{\rightarrow} t\}) & \ \mbox{if } s \stackrel{k}{\rightarrow}_R u \\ \hline \mbox{collapse} & (E, R \cup \{j:s \rightarrow t\}, R, H \cup \{m:u \stackrel{k}{\leftarrow} s \stackrel{j}{\rightarrow} t\}) & \ \mbox{if } s \stackrel{k}{\rightarrow}_R u \\ \hline \\mbox{if } s \stackrel{k}{\rightarrow}_R u \\ \hline \mbox{if } s \stackrel{k}{\rightarrow}_R u \\ \hline \mbo$$

9/18

From Completion to Conversions

- 3 phases:
 - 1. record (using Recording Completion)
 - 2. compare
 - 3. recall (two variants)

ERH① ff \approx f① ff $\xrightarrow{1}$ f $\stackrel{0}{\approx}$ f② ggf \approx g② ggf $\xrightarrow{2}$ g $\stackrel{0}{\approx}$ g

inference rule

R

E(1) ff ~ f (2) ggf ~ g

(1) $ff \rightarrow f$

$$H$$
(1) ff $\xrightarrow{1} f \approx^{0} f$
(2) ggf $\xrightarrow{2} g \approx^{0} g$

inference rule

 $\text{orient-I} \ (1)$

 $\textcircled{1} \mathsf{f} \mathsf{f} \to \mathsf{f}$

(2) $ggf \rightarrow g$

R

E(1) ff ~ f (2) ggf ~ g

$$H$$
(1) ff $\xrightarrow{1}{\rightarrow}$ f \approx^{0}_{\approx} f
(2) ggf $\xrightarrow{2}$ g \approx^{0}_{\approx} g

inference rule

orient-l ① orient-l ②

Ε	R	Н	inference rule
(1) ff \approx f		(1) ff $\xrightarrow{1}{\rightarrow}$ f $\stackrel{0}{\approx}$ f	
$2 \text{ ggf} \approx \text{g}$		(2) $\operatorname{ggf} \xrightarrow{2} \operatorname{g} \overset{0}{\approx} \operatorname{g}$	
	$\textcircled{1} f f \to f$		orient-l (1)
	(2) $ggf \rightarrow g$		orient-l (2)
\bigcirc ggf \approx gf		$ (3) \operatorname{ggf} \stackrel{1}{\leftarrow} \operatorname{ggff} \stackrel{2}{\rightarrow} \operatorname{gf} $	deduce (2), (1)
(4) $g \approx gf$		$(4) g \stackrel{2}{\leftarrow} ggf \stackrel{3}{\rightarrow} gf$	simplify-l ③,
	(4) $gf \rightarrow g$	(4) gf $\stackrel{3}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g	orient-r ④

2

E	R	Н	inference rule
$(1) \text{ ff} \approx \text{f}$		(1) ff $\stackrel{1}{\rightarrow}$ f $\stackrel{0}{\approx}$ f	
\bigcirc ggf \approx g		(2) $\operatorname{ggf} \xrightarrow{2} \operatorname{g} \overset{0}{\approx} \operatorname{g}$	
	$\textcircled{1} f f \to f$		orient-l 🛈
	(2) $ggf \rightarrow g$		orient-l (2)
\bigcirc ggf \approx gf		$(3) \operatorname{ggf} \stackrel{1}{\leftarrow} \operatorname{ggff} \stackrel{2}{\rightarrow} \operatorname{gf}$	deduce (2), (1)
(4) $g \approx gf$		$(4) g \stackrel{2}{\leftarrow} ggf \stackrel{3}{\rightarrow} gf$	simplify-l ③, ②
	(4) $gf \to g$	(4) gf $\stackrel{3}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g	orient-r ④
(5) gg \approx g		(5) gg $\stackrel{4}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g	deduce ②, ④

E	R	Н	inference rule
(1) ff \approx f		(1) ff $\stackrel{1}{\rightarrow}$ f $\stackrel{0}{\approx}$ f	
\bigcirc ggf \approx g		(2) $\operatorname{ggf} \xrightarrow{2} \operatorname{g} \overset{0}{\approx} \operatorname{g}$	
	$\textcircled{1} f f \to f$		orient-l 🛈
	(2) $ggf \rightarrow g$		orient-l (2)
\bigcirc ggf \approx gf		$(3) ggf \xleftarrow{1}{\leftarrow} ggff \xrightarrow{2} gf$	deduce (2), (1)
\bigcirc g \approx gf			simplify-l ③, ②
	(4) $gf \to g$	(4) gf $\stackrel{3}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g	orient-r ④
\bigcirc gg \approx g		(5) $gg \stackrel{4}{\leftarrow} ggf \stackrel{2}{\rightarrow} g$	deduce (2) , (4)
	(5) gg \rightarrow g		orient-l (5)

R F Н inference rule (1) ff $\xrightarrow{1}{\rightarrow}$ f \approx^{0} f 1 ff \approx f (2) $ggf \xrightarrow{2} g \approx 0^{2} g$ $ggf \approx g$ (1) $ff \rightarrow f$ orient-l (1) orient-l (2) (2) ggf \rightarrow g (3) ggf $\stackrel{1}{\leftarrow}$ ggff $\stackrel{2}{\rightarrow}$ gf deduce (2), (1)(3) ggt pprox gf (4) $e \stackrel{2}{\leftarrow} eef \stackrel{3}{\rightarrow} ef$ $(4) e \approx ef$ simplify-I (3), (2) (4) gf $\stackrel{3}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g (4) gf \rightarrow g orient-r (4) (5) $gg \xleftarrow{4}{\leftarrow} ggf \xrightarrow{2}{\rightarrow} g$ deduce (2), (4) $5) \text{ gg} \approx \text{g}$ orient-1 (5) (5) $gg \rightarrow g$ (6) gf $\stackrel{5}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g collapse (2), (5) (6) gf \approx g

Ε	R	Н
$\textcircled{1} f f \approx f$		(1) ff $\xrightarrow{1}$ f \approx^{0} f
\bigcirc ggf \approx g		(2) ggf $\stackrel{2}{\rightarrow}$ g $\stackrel{0}{\approx}$ g
	$\textcircled{1} f f \to f$	
	$2 \text{ ggf} \rightarrow \text{g}$	
\bigcirc ggf \approx gf		$(3) \operatorname{ggf} \stackrel{1}{\leftarrow} \operatorname{ggff} \stackrel{2}{\rightarrow} \operatorname{gf}$
\bigcirc g \approx gf		$(4) g \stackrel{2}{\leftarrow} ggf \stackrel{3}{\rightarrow} gf$
	(4) gf \rightarrow g	(4) gf $\stackrel{3}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g
\bigcirc gg \approx g		(5) gg $\stackrel{4}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g
	(5) $gg \rightarrow g$	
\bigcirc gf \approx g		(6) gf $\stackrel{5}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g
\bigcirc g \approx g		$ (7) g \stackrel{4}{\leftarrow} gf \stackrel{6}{\rightarrow} g $

inference rule

orient-l ① orient-l (2) deduce (2), (1)simplify-I (3), (2) orient-r (4) deduce (2), (4)orient-l (5) collapse (2), (5) simplify-I (6), (4)

E	R	Н
(1) ff \approx f		① ff
\bigcirc ggf \approx g		(2) g
	(1) $ff \to f$	
	$\textcircled{2 ggf} \rightarrow g$	
\bigcirc ggf \approx gf		3 g
(4) $g \approx gf$		(4) g
	(4) $gf \to g$	(4) g
\bigcirc gg \approx g		(5) g
	(5) gg \rightarrow g	
\bigcirc gf \approx g		6 g
$(7) g \approx g$		(7) g

$\stackrel{1}{\rightarrow} f \stackrel{0}{\approx} f$ $\mathrm{gf} \stackrel{2}{\rightarrow} \mathrm{g} \stackrel{0}{\approx} \mathrm{g}$ $\operatorname{gf} \stackrel{1}{\leftarrow} \operatorname{ggff} \stackrel{2}{\rightarrow} \operatorname{gf}$ $\xrightarrow{2} \text{ggf} \xrightarrow{3} \text{gf}$ $f \stackrel{3}{\leftarrow} ggf \stackrel{2}{\rightarrow} g$ $e \stackrel{4}{\leftarrow} eef \stackrel{2}{\rightarrow} e$ $f \stackrel{5}{\leftarrow} ggf \stackrel{2}{\rightarrow} g$ $\xrightarrow{4} \text{ gf} \xrightarrow{6} \text{g}$

inference rule

orient-l (1) orient-l (2) deduce (2), (1)simplify-I (3), (2) orient-r (4) deduce (2), (4)orient-1 (5) collapse (2), (5) simplify-I (6), (4) delete (7)

result of record phase

ER(1) ff \approx f(1) ff \rightarrow f(2) ggf \approx g(4) gf \rightarrow g

$$(4) gf \rightarrow g$$
$$(5) gg \rightarrow g$$

$$H$$
(1) ff $\xrightarrow{1} f \approx^{0} f$
(2) ggf $\xrightarrow{2} g \approx^{0} g$
(3) ggf $\xrightarrow{1} ggff \xrightarrow{2} gf$
(4) gf $\xrightarrow{3} ggf \xrightarrow{2} g$
(5) gg $\xleftarrow{4} ggf \xrightarrow{2} g$
(6) gf $\xleftarrow{5} ggf \xrightarrow{2} g$

result of record phase

ER(1) ff \approx f(1) ff \rightarrow f(2) ggf \approx g(4) gf \rightarrow g

H
(1) ff
$$\xrightarrow{1} f \approx f \approx f$$

(2) ggf $\xrightarrow{2} g \approx g$
(3) ggf $\xrightarrow{1} ggff \xrightarrow{2} gf$
(4) gf $\xrightarrow{3} ggf \xrightarrow{2} g$
(5) gg $\xleftarrow{4} ggf \xrightarrow{2} g$
(6) gf $\xleftarrow{5} ggf \xrightarrow{2} g$

compare phase

$$\stackrel{?}{\operatorname{\mathsf{fgf}}} \stackrel{\circ}{\leftrightarrow^*_E} \operatorname{\mathsf{fgg}}$$

compare phase

$$fgf \leftrightarrow^{?}_{E} fgg$$

use R to reduce lhs and rhs to normal form

$$R \{ (1) \text{ ff} \rightarrow f \\ (4) \text{ gf} \rightarrow g \\ (5) \text{ gg} \rightarrow g \\ \}$$

compare phase

$$fgf \leftrightarrow^{?}_{E} fgg$$

use ${\it R}$ to reduce lhs and rhs to normal form

$$R \{ (1) \text{ ff} \to f \\ (4) \text{ gf} \to g \\ (5) \text{ gg} \to g \\ \}$$
$$fgf \xrightarrow{4} fg \xleftarrow{5} fgg$$

while there are rules with indices not in ${\it E}$ replace them with the corresponding sequence from ${\it H}$

$$\mathsf{fgf} \xrightarrow{4} \mathsf{fg} \xleftarrow{5} \mathsf{fgg}$$

$$E H$$
(1) ff \approx f
(3) ggf $\stackrel{1}{\leftarrow}$ ggff $\stackrel{2}{\rightarrow}$ gf
(2) ggf \approx g
(4) gf $\stackrel{3}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g
(5) gg $\stackrel{4}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g
(6) gf $\stackrel{5}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g

while there are rules with indices not in ${\it E}$ replace them with the corresponding sequence from ${\it H}$

$$\mathsf{fgf} \stackrel{4}{\to} \mathsf{fg} \stackrel{5}{\leftarrow} \mathsf{fgg}$$

$$\mathsf{fgf} \stackrel{3}{\leftarrow} \mathsf{fggf} \stackrel{2}{\rightarrow} \mathsf{fg} \stackrel{5}{\leftarrow} \mathsf{fgg}$$

$$E H$$

(1) ff \approx f (3) ggf $\stackrel{1}{\leftarrow}$ ggff $\stackrel{2}{\rightarrow}$ gf
(2) ggf \approx g (4) gf $\stackrel{3}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g
(5) gg $\stackrel{4}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g
context (6) gf $\stackrel{5}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g

while there are rules with indices not in ${\it E}$ replace them with the corresponding sequence from ${\it H}$

 $\mathsf{fgf} \stackrel{4}{\to} \mathsf{fg} \stackrel{5}{\leftarrow} \mathsf{fgg}$

$$\mathsf{fgf} \stackrel{3}{\leftarrow} \mathsf{fggf} \stackrel{2}{\rightarrow} \mathsf{fg} \stackrel{5}{\leftarrow} \mathsf{fgg}$$

 $\mathsf{fgf} \stackrel{2}{\leftarrow} \mathsf{fggff} \stackrel{1}{\to} \mathsf{fggf} \stackrel{2}{\to} \mathsf{fg} \stackrel{5}{\leftarrow} \mathsf{fgg}$

E H(1) ff \approx f (3) ggf $\stackrel{1}{\leftarrow}$ ggff $\stackrel{2}{\rightarrow}$ gf (2) ggf \approx g (4) gf $\stackrel{3}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g (5) gg $\stackrel{4}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g context (6) gf $\stackrel{5}{\leftarrow}$ ggf $\stackrel{2}{\rightarrow}$ g

while there are rules with indices not in E replace them with the corresponding sequence from HF

$$fgf \stackrel{4}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{3}{\leftarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{2}{\leftarrow} fggf \stackrel{4}{\rightarrow} fgg$$

ы

while there are rules with indices not in E replace them with the corresponding sequence from H

$$fgf \stackrel{4}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{3}{\leftarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{2}{\leftarrow} fggf \stackrel{4}{\rightarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{2}{\leftarrow} fggf \stackrel{4}{\rightarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{2}{\leftarrow} fggf \stackrel{4}{\rightarrow} fgg$$

while there are rules with indices not in E replace them with the corresponding sequence from H. .

$$fgf \stackrel{4}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{3}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{3}{\leftarrow} fggff \stackrel{2}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{5}{\leftarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{2}{\leftarrow} fggf \stackrel{4}{\rightarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{2}{\leftarrow} fggf \stackrel{3}{\leftarrow} fgggf \stackrel{2}{\rightarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{2}{\leftarrow} fggf \stackrel{3}{\leftarrow} fgggf \stackrel{2}{\rightarrow} fgg$$

$$fgf \stackrel{2}{\leftarrow} fggff \stackrel{1}{\rightarrow} fggf \stackrel{2}{\rightarrow} fg \stackrel{2}{\leftarrow} fggf \stackrel{3}{\leftarrow} fgggf \stackrel{2}{\rightarrow} fgg$$

_

Problem with recall phase

- expansion can lead to exponential blow up
- \Rightarrow KBCV (completion tool implementing recording completion) hits resource bounds during recall phase

Problem with recall phase

- expansion can lead to exponential blow up
- \Rightarrow KBCV (completion tool implementing recording completion) hits resource bounds during recall phase

Solution: second variant of recall phase

- for every (required) history entry $i : s_i \circ u_i \bullet t_i$ derive $s_i \leftrightarrow_E^* t_i$
- to this end use $s_m \leftrightarrow^* t_m$ for all m < i as hypothesis
- \Rightarrow essentially, just dump (required) history as certificate

Problem with recall phase

- expansion can lead to exponential blow up
- \Rightarrow KBCV (completion tool implementing recording completion) hits resource bounds during recall phase

Solution: second variant of recall phase

- for every (required) history entry $i : s_i \circ u_i \bullet t_i$ derive $s_i \leftrightarrow_E^* t_i$
- to this end use $s_m \leftrightarrow^* t_m$ for all m < i as hypothesis
- \Rightarrow essentially, just dump (required) history as certificate
 - finally have $R \subseteq \{s_i \to t_i \mid i \leq i_{max}\} \subseteq \leftrightarrow_E^*$ and hence $\leftrightarrow_R^* \subseteq \leftrightarrow_E^*$
- $\Rightarrow\,$ linear size certificate, no problem for KBCV

- first possibility: obtain conversion $s \leftrightarrow_E^* t$
 - trivial

- first possibility: obtain conversion $s \leftrightarrow_E^* t$
 - trivial
- second possibility: show that R is complete and $\leftrightarrow_E^* = \leftrightarrow_R^*$
 - requires termination certificate (already present in IsaFoR)
 - requires local confluence certificate (unification + critical pair lemma)

- first possibility: obtain conversion $s \leftrightarrow_E^* t$
 - trivial
- second possibility: show that R is complete and $\leftrightarrow_E^* = \leftrightarrow_R^*$
 - requires termination certificate (already present in IsaFoR)
 - requires local confluence certificate (unification + critical pair lemma)
 - for checking $\leftrightarrow_E^* \subseteq \leftrightarrow_R^*$: check $s \downarrow_R = t \downarrow_R$ for all $s \approx t \in E$
 - for checking $\leftrightarrow_E^* \supseteq \leftrightarrow_R^*$: use recall phase of recording completion

- first possibility: obtain conversion $s \leftrightarrow_E^* t$
 - trivial
- second possibility: show that R is complete and $\leftrightarrow_E^* = \leftrightarrow_R^*$
 - requires termination certificate (already present in IsaFoR)
 - requires local confluence certificate (unification + critical pair lemma)
 - for checking $\leftrightarrow_E^* \subseteq \leftrightarrow_R^*$: check $s \downarrow_R = t \downarrow_R$ for all $s \approx t \in E$
 - for checking $\leftrightarrow_E^* \supseteq \leftrightarrow_R^*$: use recall phase of recording completion
- remarks on formalizations

- first possibility: obtain conversion $s \leftrightarrow_E^* t$
 - trivial
- second possibility: show that R is complete and $\leftrightarrow_E^* = \leftrightarrow_R^*$
 - requires termination certificate (already present in IsaFoR)
 - requires local confluence certificate (unification + critical pair lemma)
 - for checking $\leftrightarrow_E^* \subseteq \leftrightarrow_R^*$: check $s \downarrow_R = t \downarrow_R$ for all $s \approx t \in E$
 - for checking $\leftrightarrow_E^* \supseteq \leftrightarrow_R^*$: use recall phase of recording completion
- remarks on formalizations
 - tedious (especially when dealing with positions in critical pair lemma)

- first possibility: obtain conversion $s \leftrightarrow_E^* t$
 - trivial
- second possibility: show that R is complete and $\leftrightarrow_E^* = \leftrightarrow_R^*$
 - requires termination certificate (already present in IsaFoR)
 - requires local confluence certificate (unification + critical pair lemma)
 - for checking $\leftrightarrow_E^* \subseteq \leftrightarrow_R^*$: check $s \downarrow_R = t \downarrow_R$ for all $s \approx t \in E$
 - for checking $\leftrightarrow_E^* \supseteq \leftrightarrow_R^*$: use recall phase of recording completion
- remarks on formalizations
 - tedious (especially when dealing with positions in critical pair lemma)
 - observation: infinite set of variables is essential
Certification

- first possibility: obtain conversion $s \leftrightarrow_E^* t$
 - trivial
- second possibility: show that R is complete and $\leftrightarrow_E^* = \leftrightarrow_R^*$
 - requires termination certificate (already present in IsaFoR)
 - requires local confluence certificate (unification + critical pair lemma)
 - for checking $\leftrightarrow_E^* \subseteq \leftrightarrow_R^*$: check $s \downarrow_R = t \downarrow_R$ for all $s \approx t \in E$
 - for checking $\leftrightarrow_E^* \supseteq \leftrightarrow_R^*$: use recall phase of recording completion
- remarks on formalizations
 - tedious (especially when dealing with positions in critical pair lemma)
 - observation: infinite set of variables is essential
 - example: let R be a confluent TRS over T(F, V), then it does not follow that R is confluent over T(F ∪ F', V)
 - \Rightarrow signature extensions for confluence require infinite set of variables

Experiments

- KBCV 1.6 using recording completion (first variant of recall phase)
- KBCV 1.7 using recording completion (second variant of recall phase)
- MKBTT using a variant of recording completion
- CeTA is certifier, extracted from IsaFoR
- 115 equational systems, 300 seconds timeout

Experiments

- KBCV 1.6 using recording completion (first variant of recall phase)
- KBCV 1.7 using recording completion (second variant of recall phase)
- MKBTT using a variant of recording completion
- CeTA is certifier, extracted from IsaFoR
- 115 equational systems, 300 seconds timeout

Tool	Completed	Time	Cert.	CeTA accept	time	timeout
KBCV 1.6	86	7767	84	80	1483	4
KBCV 1.7	86	7735	86	86	13	0
MKBTT	80	1514	80	80	92	0
Total	94		94	94		

Slothrop	71	without certification
MAXCOMP	86	without certification

Conclusion

- encompassment condition is not required for finite completion runs
- recording completion to derive $\leftrightarrow_R^* \subseteq \leftrightarrow_E^*$
- recall phase is linear if intermediate lemmas are used
- tools for certified completion are available (KBCV, MKBTT, IsaFoR + CeTA)

Conclusion

- encompassment condition is not required for finite completion runs
- recording completion to derive $\leftrightarrow_R^* \subseteq \leftrightarrow_E^*$
- recall phase is linear if intermediate lemmas are used
- tools for certified completion are available (KBCV, MKBTT, IsaFoR + CeTA)
- alternative approach to obtain conversions is available in C*i*ME3 for ordered completion
- future work: study relationship in more detail