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DCTRS 6/20

`→ r ⇐ s1 ≈ t1, . . . , sk ≈ tk︸ ︷︷ ︸
c

• ≈ interpreted as →∗R
• ` 6∈ V
• V(r) ⊆ V(`, c)

• V(si) ⊆ V(`, t1, . . . , ti−1)



Context-Sensitive

Unraveling U(R) 7/20

α : `→ r ⇐ s1 ≈ t1, s2 ≈ t2, . . . , sn ≈ tn ∈ R (F)

`→ Uα1 (s1, v(`))

Uα1 (t1, v(`))→ Uα2 (s2, v(`), ev(t1))

...

Uαn (tn, v(`), ev(t1, . . . , tn−1))→ r

Replacement map

if f/k ∈ F then {1, . . . , k} else {1}

Theorem (Simulation completeness)

→R ⊆ →+
UCS(R)
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Context-Sensitive Rewriting 8/20

µ-termination

CSRS (R, µ), →R,µ terminating:
R µ-terminating

µ-termination on original terms

CSRS (R, µ), no infinite →R,µ-reductions from T (F ,V):
R µ-terminating on original terms

µ-restricted proper subterm relation

B restricted to positions induced by µ: Bµ

Lemma

Bµ · →µ ⊆ →µ ·Bµ
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Quasi-Decreasingness 9/20

DCTRS R (F) is quasi-decreasing if there is � on T (F ,V):

1 well-founded �

2 � = (� ∪B)+

3 →R ⊆ �
4 ∀`→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn ∈ R,
σ : V → T (F ,V), 0 6 i < n:
∀1 6 j 6 i. sjσ →∗R tjσ −→ `σ � si+1σ
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DCTRS R:
UCS(R) µ-terminating on T (F ,V) =⇒ R quasi-decreasing

Proof outline

Assume UCS(R) µ-terminating on T (F ,V) and find �:
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Proof I 12/20

UCS(R) µ-terminating on T (F ,V) (†)

� def
= (→UCS(R) ∪Bµ)+ ∩ (T (F ,V)× T (F ,V)) (?)

1 well-foundedness of � on T (F ,V):

(1) t1 � t2 � t3 � . . . ∀ti ∈ T (F ,V) assume

(2) →UCS(R) well-founded on T (F ,V) by (†)
(3) s1 →UCS(R)/Bµ · →UCS(R)/Bµ · · · s1 ∈ T (F ,V) assume

(4) s1 →UCS(R) · →UCS(R) · · · by Bµ · →µ ⊆ →µ ·Bµ

(5) ∀t ∈ T (F ,V). t is →UCS(R)/Bµ-terminating by  with (2)

(6) Bµ well-founded by definition

(7) case analysis on # of UCS(R)-steps

• finite:

 by (6)

• infinite:

 by (5)
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Proof II 13/20

UCS(R) µ-terminating on T (F ,V) (†)

� def
= (→UCS(R) ∪Bµ)+ ∩ (T (F ,V)× T (F ,V)) (?)

2 (� ∪B)+ ⊆ �:

• s (� ∪B)n+1 t assume

• induction on n

• s (� ∪B) t base case (n = 0)

• s B t
• s Bµ t because s, t ∈ T (F ,V)
• s � t by (?)

• s (� ∪B) u (� ∪B)k+1 t step case (n = k + 1)

• s � u see base case
• u � t by induction hypothesis
• s � t by transitivity
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R UCS(R)

AProVE MU-TERM VMTL AProVE MU-TERM VMTL

YES 80 78 80 78 78 79
NO – 12 – – – –

U(R)

AProVE MU-TERM NaTT TTT2 VMTL total

YES 81 78 77 78 78 84
NO – – – – – 12

Table: (Non-)quasi-decreasingness of 103 DCTRSs from Cops.
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Context-Sensitive Quasi-Reductivity 20/20

CSRS R (F) is context-sensitively quasi-reductive if there is

• F ′ ⊇ F
• µ (with µ(f) = {1, . . . , n} for every n-ary f ∈ F)

• partial order �µ on T (F ′,V)

such that:

• well-founded �µ
• µ-monotonic �µ
• ∀`→ r ⇐ s1 ≈ t1, . . . , sk ≈ tk, σ : V → T (F ,V), 0 6 i 6
k − 1:

• ∀1 6 j 6 i. sjσ �µ tjσ −→ `σ (�µ ∪Bµ)
+
si+1σ

• ∀1 6 j 6 k. sjσ �µ tjσ −→ `σ �µ rσ
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