A Characterization of **Quasi-Decreasingness***

Christian Sternagel Thomas Sternagel

University of Innsbruck, Austria

September 5, 2016

15th WST

*Supported by the Austrian Science Fund (FWF): P27502

Outline

4 Automation & Experiments

 Characterizing and proving operational termination of deterministic conditional term rewriting systems
F. Schernhammer, B. Gramlich, doi: 10.1016/j.jlap.2009.08.001, JLAP, 2010.

 Characterizing and proving operational termination of deterministic conditional term rewriting systems
F. Schernhammer, B. Gramlich, doi: 10.1016/j.jlap.2009.08.001, JLAP, 2010.

 Characterizing and proving operational termination of deterministic conditional term rewriting systems
F. Schernhammer, B. Gramlich, doi: 10.1016/j.jlap.2009.08.001, JLAP, 2010.

CSRS $U_{CS}(\mathcal{R}) \mu$ -terminating on original terms

quasi-decreasing DCTRS ${\cal R}$

cs-quasi-reductive $U_{CS}(\mathcal{R})$

 Characterizing and proving operational termination of deterministic conditional term rewriting systems
F. Schernhammer, B. Gramlich, doi: 10.1016/j.jlap.2009.08.001, JLAP, 2010.

Basics

- $\bullet \ \approx \ \text{interpreted} \ \text{as} \ \rightarrow^*_{\mathcal{R}}$
- $\bullet \ \ell \not\in \mathcal{V}$
- $\mathcal{V}(r) \subseteq \mathcal{V}(\ell, c)$
- $\mathcal{V}(s_i) \subseteq \mathcal{V}(\ell, t_1, \dots, t_{i-1})$

Unraveling $U(\mathcal{R})$ 7/20

 $\alpha \colon \ell \to r \Leftarrow s_1 \approx t_1, s_2 \approx t_2, \dots, s_n \approx t_n \in \mathcal{R} (\mathcal{F})$

Unraveling $U(\mathcal{R})$ 7/20 $\alpha: \ell \to r \Leftarrow s_1 \approx t_1, s_2 \approx t_2, \dots, s_n \approx t_n \in \mathcal{R}$ (F)

$$\ell \to U_1^\alpha(s_1, \mathsf{v}(\ell))$$

Unraveling $U(\mathcal{R})$ 7/20

 $\alpha: \ell \to r \Leftarrow s_1 \approx t_1 s_2 \approx t_2, \dots, s_n \approx t_n \in \mathcal{R} (\mathcal{F})$

$$\begin{array}{c} \ell \to U_1^{\alpha}(s_1, \mathbf{v}(\ell)) \\ \hline U_1^{\alpha}(t_1, \mathbf{v}(\ell)) \to U_2^{\alpha}(s_2, \mathbf{v}(\ell), \mathbf{ev}(t_1)) \end{array}$$

Context-Sensitive Unraveling $U_{CS}(\mathcal{R})$ 7/20

$$\alpha \colon \ell \to r \Leftarrow s_1 \approx t_1, s_2 \approx t_2, \dots, s_n \approx t_n \in \mathcal{R} (\mathcal{F})$$

$$\begin{split} \ell &\to U_1^{\alpha}(s_1, \mathbf{v}(\ell)) \\ U_1^{\alpha}(t_1, \mathbf{v}(\ell)) &\to U_2^{\alpha}(s_2, \mathbf{v}(\ell), \mathbf{ev}(t_1)) \\ &\vdots \\ U_n^{\alpha}(t_n, \mathbf{v}(\ell), \mathbf{ev}(t_1, \dots, t_{n-1})) &\to r \end{split}$$

Replacement map

if $f/k \in \mathcal{F}$ then $\{1, \ldots, k\}$ else $\{1\}$

Context-Sensitive Unraveling $U_{CS}(\mathcal{R})$ 7/20

$$\alpha \colon \ell \to r \Leftarrow s_1 \approx t_1, s_2 \approx t_2, \dots, s_n \approx t_n \in \mathcal{R} (\mathcal{F})$$

$$\begin{split} \ell &\to U_1^{\alpha}(s_1, \mathbf{v}(\ell)) \\ U_1^{\alpha}(t_1, \mathbf{v}(\ell)) &\to U_2^{\alpha}(s_2, \mathbf{v}(\ell), \mathbf{ev}(t_1)) \\ &\vdots \\ U_n^{\alpha}(t_n, \mathbf{v}(\ell), \mathbf{ev}(t_1, \dots, t_{n-1})) &\to r \end{split}$$

Replacement map

if $f/k \in \mathcal{F}$ then $\{1, \ldots, k\}$ else $\{1\}$

Theorem (Simulation completeness)

 $\rightarrow_{\mathcal{R}} \subseteq \rightarrow^+_{U_{\mathsf{CS}}(\mathcal{R})}$

 μ -termination

 $\begin{array}{l} \text{CSRS} \ (\mathcal{R},\mu), \rightarrow_{\mathcal{R},\mu} \text{ terminating:} \\ \mathcal{R} \ \mu\text{-terminating} \end{array}$

 μ -termination on original terms CSRS (\mathcal{R}, μ) , no infinite $\rightarrow_{\mathcal{R}, \mu}$ -reductions from $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $\mathcal{R} \ \mu$ -terminating on original terms μ -termination on original terms CSRS (\mathcal{R}, μ) , no infinite $\rightarrow_{\mathcal{R}, \mu}$ -reductions from $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $\mathcal{R} \ \mu$ -terminating on original terms

 μ -restricted proper subterm relation

 \triangleright restricted to positions induced by μ : \triangleright_{μ}

 μ -termination on original terms CSRS (\mathcal{R}, μ) , no infinite $\rightarrow_{\mathcal{R}, \mu}$ -reductions from $\mathcal{T}(\mathcal{F}, \mathcal{V})$: $\mathcal{R} \ \mu$ -terminating on original terms

 μ -restricted proper subterm relation

 \triangleright restricted to positions induced by μ : \triangleright_{μ}

Lemma

 $\rhd_\mu\cdot \mathop{\rightarrow}_\mu \subseteq \mathop{\rightarrow}_\mu\cdot \mathop{\rhd}_\mu$

DCTRS \mathcal{R} (\mathcal{F}) is *quasi-decreasing* if there is \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$: 1 well-founded \succ

DCTRS \mathcal{R} (\mathcal{F}) is *quasi-decreasing* if there is \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$: 1 well-founded \succ 2 $\succ = (\succ \cup \rhd)^+$

DCTRS \mathcal{R} (\mathcal{F}) is *quasi-decreasing* if there is \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$:

- 1 well-founded \succ
- $\mathbf{2} \succ = (\succ \cup \rhd)^+$
- $\exists \rightarrow_{\mathcal{R}} \subseteq \succ$

DCTRS \mathcal{R} (\mathcal{F}) is *quasi-decreasing* if there is \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$:

- 1 well-founded \succ
- $\mathbf{2} \succ = (\succ \cup \rhd)^+$
- $\exists \rightarrow_{\mathcal{R}} \subseteq \succ$
- $\begin{array}{l} \blacksquare \quad \forall \ell \to r \Leftarrow s_1 \approx t_1, \dots, s_n \approx t_n \in \mathcal{R}, \\ \sigma \colon \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V}), \ 0 \leqslant i < n \\ \forall 1 \leqslant j \leqslant i. \ s_j \sigma \to_{\mathcal{R}}^* t_j \sigma \longrightarrow \ell \sigma \succ s_{i+1} \sigma \end{array}$

Proof

Theorem

DCTRS \mathcal{R} : $U_{CS}(\mathcal{R}) \ \mu$ -terminating on $\mathcal{T}(\mathcal{F}, \mathcal{V}) \implies \mathcal{R}$ quasi-decreasing

Theorem

DCTRS \mathcal{R} : $U_{\mathsf{CS}}(\mathcal{R}) \ \mu$ -terminating on $\mathcal{T}(\mathcal{F}, \mathcal{V}) \implies \mathcal{R}$ quasi-decreasing

Proof outline

Assume $U_{CS}(\mathcal{R})$ μ -terminating on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ and find \succ :

- 1 well-founded \succ
- $\mathbf{2} \succ = (\succ \cup \rhd)^+$
- $\exists \rightarrow_{\mathcal{R}} \subseteq \succ$

$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$ $\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^+ \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$

1 well-foundedness of \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$:

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\to_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^+ \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{split}$$

 $\blacksquare \text{ well-foundedness of } \succ \text{ on } \mathcal{T}(\mathcal{F}, \mathcal{V}):$

(1) $t_1 \succ t_2 \succ t_3 \succ \ldots \quad \forall t_i \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ assume

$$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$$
$$\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$$
$$\texttt{1} \text{ well-foundedness of } \succ \text{ on } \mathcal{T}(\mathcal{F}, \mathcal{V})\text{:}$$

(1) $t_1 \succ t_2 \succ t_3 \succ \dots \quad \forall t_i \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ assume (2) $\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})}$ well-founded on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ by (\dagger)

$$\begin{split} &U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F},\mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F},\mathcal{V}) \times \mathcal{T}(\mathcal{F},\mathcal{V})) & (\star) \\ & \blacksquare \text{ well-foundedness of } \succ \text{ on } \mathcal{T}(\mathcal{F},\mathcal{V}): \\ & (1) \ t_{1} \succ t_{2} \succ t_{3} \succ \dots & \forall t_{i} \in \mathcal{T}(\mathcal{F},\mathcal{V}) & \text{ assume} \\ & (2) \ \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \text{ well-founded on } \mathcal{T}(\mathcal{F},\mathcal{V}) & \text{ by } (\dagger) \end{split}$$

(3) $s_1 \to_{U_{\mathsf{CS}}(\mathcal{R})/\triangleright_{\mu}} \cdot \to_{U_{\mathsf{CS}}(\mathcal{R})/\triangleright_{\mu}} \cdots s_1 \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ assume

$$\begin{array}{ll} U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F},\mathcal{V}) & (\dagger) \\ \succ \stackrel{\mathsf{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F},\mathcal{V}) \times \mathcal{T}(\mathcal{F},\mathcal{V})) & (\star) \\ & \blacksquare \ \text{well-foundedness of } \succ \text{ on } \mathcal{T}(\mathcal{F},\mathcal{V}) & \text{assume} \\ (1) \ t_{1} \succ t_{2} \succ t_{3} \succ \dots & \forall t_{i} \in \mathcal{T}(\mathcal{F},\mathcal{V}) & \text{assume} \\ (2) \ \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \text{ well-founded on } \mathcal{T}(\mathcal{F},\mathcal{V}) & \text{by } (\dagger) \\ (3) \ s_{1} \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})/\rhd_{\mu}} \cdot \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})/\succ_{\mu}} \cdots & s_{1} \in \mathcal{T}(\mathcal{F},\mathcal{V}) & \text{assume} \\ (4) \ s_{1} \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cdot \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cdots & \text{by } \succ_{\mu} \cdot \rightarrow_{\mu} \subseteq \rightarrow_{\mu} \cdot \succ_{\mu} \end{array}$$

12/20

$$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$$
$$\succ \stackrel{\mathsf{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$$

1 well-foundedness of \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$:

(1) $t_1 \succ t_2 \succ t_3 \succ \dots \quad \forall t_i \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ assume (2) $\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})}$ well-founded on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ by (\dagger) (3) $s_1 \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})/\triangleright_{\mu}} \cdots \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})/\triangleright_{\mu}} \cdots s_1 \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ assume (4) $s_1 \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cdots \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cdots$ by $\triangleright_{\mu} \cdot \rightarrow_{\mu} \subseteq \rightarrow_{\mu} \cdot \triangleright_{\mu}$ (5) $\forall t \in \mathcal{T}(\mathcal{F}, \mathcal{V}). t \text{ is } \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})/\triangleright_{\mu}}\text{-terminating}$ by \notin with (2)

$$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$$
$$\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$$

1 well-foundedness of \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$:

(1) $t_1 \succ t_2 \succ t_3 \succ \dots \quad \forall t_i \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ assume (2) $\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})}$ well-founded on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ by (†) (3) $s_1 \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})/\triangleright_{\mu}} \cdot \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})/\triangleright_{\mu}} \cdots s_1 \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ assume (4) $s_1 \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cdot \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cdots$ by $\triangleright_{\mu} \cdot \rightarrow_{\mu} \subseteq \rightarrow_{\mu} \cdot \triangleright_{\mu}$ (5) $\forall t \in \mathcal{T}(\mathcal{F}, \mathcal{V}). t \text{ is } \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})/\triangleright_{\mu}}$ -terminating by \notin with (2) (6) \triangleright_{μ} well-founded by definition

$$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$$
$$\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$$

1 well-foundedness of \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$:

(1) $t_1 \succ t_2 \succ t_3 \succ \dots \forall t_i \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ assume (2) $\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})}$ well-founded on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ by (\dagger) (3) $s_1 \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})/\triangleright_{\mu}} \cdots \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})/\triangleright_{\mu}} \cdots s_1 \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ assume (4) $s_1 \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cdots \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cdots$ by $\triangleright_{\mu} \cdot \rightarrow_{\mu} \subseteq \rightarrow_{\mu} \cdot \triangleright_{\mu}$ (5) $\forall t \in \mathcal{T}(\mathcal{F}, \mathcal{V}). t \text{ is } \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})/\triangleright_{\mu}}\text{-terminating}$ by $\notin \text{ with } (2)$ (6) \triangleright_{μ} well-founded by definition (7) case analysis on # of $U_{\mathsf{CS}}(\mathcal{R})\text{-steps}$

$$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$$
$$\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$$

1 well-foundedness of \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$:

$$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$$
$$\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$$

1 well-foundedness of \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$:
$$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$$
$$\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$$

12/20

1 well-foundedness of
$$\succ$$
 on $\mathcal{T}(\mathcal{F}, \mathcal{V})$:

$$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$$
$$\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$$

1 well-foundedness of \succ on $\mathcal{T}(\mathcal{F}, \mathcal{V})$:

(1) $t_1 \succ t_2 \succ t_3 \succ \ldots \quad \forall t_i \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ (2) $\rightarrow_{U_{CS}(\mathcal{R})}$ well-founded on $\mathcal{T}(\mathcal{F}, \mathcal{V})$ (3) $s_1 \rightarrow_{U \in S}(\mathcal{R}) / \rhd_{\mu} \cdot \rightarrow_{U \in S}(\mathcal{R}) / \rhd_{\mu} \cdots s_1 \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ assume (4) $s_1 \rightarrow_{U_{CS}(\mathcal{R})} \cdots \rightarrow_{U_{CS}(\mathcal{R})} \cdots$ by $\triangleright_{\mu} \cdot \rightarrow_{\mu} \subseteq \rightarrow_{\mu} \cdot \triangleright_{\mu}$ (5) $\forall t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$. $t \text{ is } \rightarrow_{U \in \mathcal{R}}(\mathcal{R}) / \rhd_u$ -terminating by \notin with (2) (6) \triangleright_{μ} well-founded by definition (7) case analysis on # of $U_{CS}(\mathcal{R})$ -steps • finite: 4 • infinite: 🖌

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\to_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^+ \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{split}$$

$2 (\succ \cup \rhd)^+ \subseteq \succ:$

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\to_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^+ \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{split}$$

$(\succ \cup \rhd)^+ \subseteq \succ:$

• $s \ (\succ \cup \rhd)^{n+1} t$ assume

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{split}$$

$2 (\succ \cup \rhd)^+ \subseteq \succ:$

- $s \ (\succ \cup \rhd)^{n+1} t$ assume
- induction on n

$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$ $\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$ (\star) $\texttt{2} \ (\succ \cup \rhd)^{+} \subseteq \succ:$

- $s \ (\succ \cup \rhd)^{n+1} t$ assume
- induction on n
- $s (\succ \cup \rhd) t$

base case (n = 0)

$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$ $\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$ (\star)

- $s \ (\succ \cup \rhd)^{n+1} t$ assume
- induction on n
- $s (\succ \cup \rhd) t$
 - $\bullet \ s \rhd t$

base case (n = 0)

$\begin{aligned} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\to_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{aligned}$ $& \mathbf{2} & (\succ \cup \rhd)^{+} \subseteq \succ: \\ \bullet & s & (\succ \cup \rhd)^{n+1} t & \text{assume} \\ \bullet & \text{induction on } n \\ \bullet & s & (\succ \cup \rhd) t & \text{base case } (n = 0) \end{aligned}$

- $s \triangleright t$
- $s \vartriangleright_{\mu} t$

because $s, t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$

$$\begin{split} & U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ & \succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \\ & \blacksquare \ (\succ \cup \rhd)^{+} \subseteq \succ : \\ & \bullet \ s \ (\succ \cup \rhd)^{n+1} \ t & \text{assume} \\ & \bullet \ \text{induction on } n \\ & \bullet \ s \ (\succ \cup \rhd) \ t & \text{base case } (n = 0) \\ & \bullet \ s \rhd t & \end{split}$$

- $s \rhd_{\mu} t$
- $s \succ t$

because $s, t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$ by (*)

$$\begin{split} & U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F},\mathcal{V}) & (\dagger) \\ & \succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F},\mathcal{V}) \times \mathcal{T}(\mathcal{F},\mathcal{V})) & (\star) \\ & \textcircled{2} \ (\succ \cup \rhd)^{+} \subseteq \succ : \\ & \bullet \ s \ (\succ \cup \rhd)^{n+1} \ t & \text{assume} \\ & \bullet \ \text{induction on } n \\ & \bullet \ s \ (\succ \cup \rhd) \ t & \text{base case } (n=0) \\ & \bullet \ s \ \succ \ t & \text{because } s, t \in \mathcal{T}(\mathcal{F},\mathcal{V}) \\ & \bullet \ s \ \leftarrow \ t & \text{by } (\star) \\ & \bullet \ s \ (\succ \cup \rhd) \ u \ (\succ \cup \rhd)^{k+1} \ t & \text{step case } (n=k+1) \end{split}$$

$$\begin{split} & U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F},\mathcal{V}) & (\dagger) \\ & \succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F},\mathcal{V}) \times \mathcal{T}(\mathcal{F},\mathcal{V})) & (\star) \\ & \blacksquare \ (\succ \cup \rhd)^{+} \subseteq \succ : \\ & \bullet \ s \ (\succ \cup \rhd)^{n+1} \ t & \text{assume} \\ & \bullet \ \text{induction on } n \\ & \bullet \ s \ (\succ \cup \rhd) \ t & \text{base case } (n = 0) \\ & \bullet \ s \ \succ \ t & \text{because } s, t \in \mathcal{T}(\mathcal{F},\mathcal{V}) \\ & \bullet \ s \ \succ \ t & \text{by } (\star) \\ & \bullet \ s \ \succ \ u & \text{see base case} \end{split}$$

$U_{CS}(\mathcal{R})$ $\mu\text{-terminating on }\mathcal{T}(\mathcal{F},\mathcal{V})$	(†)
$\succ \stackrel{\text{\tiny def}}{=} (\rightarrow_{U_{CS}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V}))$	(*)
2 $(\succ \cup \rhd)^+ \subseteq \succ$:	
• $s \ (\succ \cup \rhd)^{n+1} t$	assume
• induction on n	
• $s (\succ \cup \rhd) t$	base case $(n=0)$
• $s \triangleright t$	
• $s \vartriangleright_{\mu} t$	because $s,t\in\mathcal{T}(\mathcal{F},\mathcal{V})$
• $s \succ t$	by (*)
• $s (\succ \cup \rhd) u (\succ \cup \rhd)^{k+1} t$	step case $(n = k + 1)$
• $s \succ u$	see base case
• $u \succ t$	by induction hypothesis

$U_{CS}(\mathcal{R})$ $\mu\text{-terminating on }\mathcal{T}(\mathcal{F},\mathcal{V})$	(†)
$\succ \stackrel{\text{\tiny def}}{=} (\rightarrow_{U_{CS}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})$) (*)
$(\succ \cup \rhd)^+ \subseteq \succ:$	
• $s (\succ \cup \rhd)^{n+1} t$	assume
• induction on n	
• $s (\succ \cup \rhd) t$	base case $(n=0)$
• $s \rhd t$	
• $s \vartriangleright_{\mu} t$	because $s, t \in \mathcal{T}(\mathcal{F}, \mathcal{V})$
• $s \succ t$	by (*)
• $s \ (\succ \cup \rhd) \ u \ (\succ \cup \rhd)^{k+1} \ t$ st	ep case (n = k + 1)
• $s \succ u$	see base case
• $u \succ t$	by induction hypothesis
• $s \succ t$	by transitivity

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{\tiny def}}{=} (\to_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^+ \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{split}$$

$\exists \rightarrow_{\mathcal{R}} \subseteq \succ$

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^+ \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{split}$$

$\exists \rightarrow_{\mathcal{R}} \subseteq \succ$

• $s \rightarrow_{\mathcal{R}} t$ assume

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^+ \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{split}$$

$\exists \rightarrow_{\mathcal{R}} \subseteq \succ$

• $s \rightarrow_{\mathcal{R}} t$ assume • $s \rightarrow^+_{U_{\mathsf{CS}}(\mathcal{R})} t$ by $\rightarrow_{\mathcal{R}} \subseteq \rightarrow^+_{U_{\mathsf{CS}}(\mathcal{R})}$

14/20

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^+ \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{split}$$

$\exists \rightarrow_{\mathcal{R}} \subseteq \succ$

 $\begin{array}{ll} \bullet \ s \rightarrow_{\mathcal{R}} t & \text{assume} \\ \bullet \ s \rightarrow^+_{U_{\mathsf{CS}}(\mathcal{R})} t & \text{by} \ \rightarrow_{\mathcal{R}} \subseteq \rightarrow^+_{U_{\mathsf{CS}}(\mathcal{R})} \\ \bullet \ s \succ t & \text{by} \ (\star) \end{array}$

$$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$$
$$\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$$

$$\begin{array}{l}
\mathbf{4} \quad \forall \ell \to r \Leftarrow s_1 \approx t_1, \dots, s_n \approx t_n \in \mathcal{R}, \\
\sigma \colon \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V}), \ 0 \leqslant i < n; \\
\forall 1 \leqslant j \leqslant i. \ s_j \sigma \to_{\mathcal{R}}^* t_j \sigma \longrightarrow \ell \sigma \succ s_{i+1} \sigma
\end{array}$$

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\to_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \\ & \blacksquare \quad \forall \ell \to r \Leftarrow s_{1} \approx t_{1}, \dots, s_{n} \approx t_{n} \in \mathcal{R}, \end{split}$$

$$\begin{aligned} \sigma \colon \mathcal{V} &\to \mathcal{T}(\mathcal{F}, \mathcal{V}), \ 0 \leqslant i < n : \\ \forall 1 \leqslant j \leqslant i. \ s_j \sigma \to_{\mathcal{R}}^* t_j \sigma \longrightarrow \ell \sigma \succ s_{i+1} \sigma \end{aligned}$$

(1) $\ell \sigma \to_{U_{\mathsf{CS}}(\mathcal{R})} U_1^{\rho}(s_1, \mathsf{v}(\ell)) \sigma \to_{\mathcal{R}}^* U_1^{\rho}(t_1, \mathsf{v}(\ell)) \sigma \to_{U_{\mathsf{CS}}(\mathcal{R})} \cdots$

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\to_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^+ \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{split}$$

$$\begin{array}{l} \textbf{4} \quad \forall \ell \to r \Leftarrow s_1 \approx t_1, \dots, s_n \approx t_n \in \mathcal{R}, \\ \sigma \colon \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V}), \ 0 \leqslant i < n; \\ \forall 1 \leqslant j \leqslant i. \ s_j \sigma \to_{\mathcal{R}}^* t_j \sigma \longrightarrow \ell \sigma \succ s_{i+1} \sigma \end{array}$$

(1) $\ell \sigma \to_{U_{\mathsf{CS}}(\mathcal{R})} U_1^{\rho}(s_1, \mathsf{v}(\ell)) \sigma \to_{\mathcal{R}}^* U_1^{\rho}(t_1, \mathsf{v}(\ell)) \sigma \to_{U_{\mathsf{CS}}(\mathcal{R})} \cdots$ (2) $\ell \sigma \to_{U_{\mathsf{CS}}(\mathcal{R})}^+ U_{i+1}^{\rho}(s_{i+1}, \mathsf{v}(\ell), \mathsf{ev}(t_1, \dots, t_i)) \sigma \quad \text{by } \to_{\mathcal{R}} \subseteq \to_{U_{\mathsf{CS}}(\mathcal{R})}^+$

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\to_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^+ \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{split}$$

$$\begin{array}{l} \blacksquare \quad \forall \ell \to r \Leftarrow s_1 \approx t_1, \dots, s_n \approx t_n \in \mathcal{R}, \\ \sigma \colon \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V}), \ 0 \leqslant i < n; \\ \forall 1 \leqslant j \leqslant i. \ s_j \sigma \to_{\mathcal{R}}^* t_j \sigma \longrightarrow \ell \sigma \succ s_{i+1} \sigma \end{array}$$

(1) $\ell \sigma \to_{U_{\mathsf{CS}}(\mathcal{R})} U_1^{\rho}(s_1, \mathsf{v}(\ell)) \sigma \to_{\mathcal{R}}^* U_1^{\rho}(t_1, \mathsf{v}(\ell)) \sigma \to_{U_{\mathsf{CS}}(\mathcal{R})} \cdots$ (2) $\ell \sigma \to_{U_{\mathsf{CS}}(\mathcal{R})}^+ U_{i+1}^{\rho}(s_{i+1}, \mathsf{v}(\ell), \mathsf{ev}(t_1, \dots, t_i)) \sigma \quad \text{by} \to_{\mathcal{R}} \subseteq \to_{U_{\mathsf{CS}}(\mathcal{R})}^+$ (3) $U_{i+1}^{\rho}(s_{i+1}, \mathsf{v}(\ell), \mathsf{ev}(t_1, \dots, t_i)) \sigma \vartriangleright_{\mu} s_{i+1} \sigma$

$$\begin{split} U_{\mathsf{CS}}(\mathcal{R}) & \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) & (\dagger) \\ \succ \stackrel{\text{def}}{=} (\to_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^+ \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) & (\star) \end{split}$$

$$\begin{array}{l} \blacksquare \quad \forall \ell \to r \Leftarrow s_1 \approx t_1, \dots, s_n \approx t_n \in \mathcal{R}, \\ \sigma \colon \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V}), \ 0 \leqslant i < n; \\ \forall 1 \leqslant j \leqslant i. \ s_j \sigma \to_{\mathcal{R}}^* t_j \sigma \longrightarrow \ell \sigma \succ s_{i+1} \sigma \end{array}$$

(1)
$$\ell \sigma \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} U_1^{\rho}(s_1, \mathsf{v}(\ell)) \sigma \rightarrow^*_{\mathcal{R}} U_1^{\rho}(t_1, \mathsf{v}(\ell)) \sigma \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cdots$$

(2) $\ell \sigma \rightarrow^+_{U_{\mathsf{CS}}(\mathcal{R})} U_{i+1}^{\rho}(s_{i+1}, \mathsf{v}(\ell), \mathsf{ev}(t_1, \dots, t_i)) \sigma$ by $\rightarrow_{\mathcal{R}} \subseteq \rightarrow^+_{U_{\mathsf{CS}}(\mathcal{R})}$
(3) $U_{i+1}^{\rho}(s_{i+1}, \mathsf{v}(\ell), \mathsf{ev}(t_1, \dots, t_i)) \sigma \vartriangleright_{\mu} s_{i+1} \sigma$
(4) $\ell \sigma \rightarrow^+_{U_{\mathsf{CS}}(\mathcal{R})} \cdot \vartriangleright_{\mu} s_{i+1} \sigma$ from (2) and (3)

$$U_{\mathsf{CS}}(\mathcal{R}) \ \mu\text{-terminating on } \mathcal{T}(\mathcal{F}, \mathcal{V}) \tag{(\dagger)}$$
$$\succ \stackrel{\text{def}}{=} (\rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cup \rhd_{\mu})^{+} \cap (\mathcal{T}(\mathcal{F}, \mathcal{V}) \times \mathcal{T}(\mathcal{F}, \mathcal{V})) \tag{(\star)}$$

(1)
$$\ell \sigma \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} U_1^{\rho}(s_1, \mathsf{v}(\ell)) \sigma \rightarrow^*_{\mathcal{R}} U_1^{\rho}(t_1, \mathsf{v}(\ell)) \sigma \rightarrow_{U_{\mathsf{CS}}(\mathcal{R})} \cdots$$

(2) $\ell \sigma \rightarrow^+_{U_{\mathsf{CS}}(\mathcal{R})} U_{i+1}^{\rho}(s_{i+1}, \mathsf{v}(\ell), \mathsf{ev}(t_1, \dots, t_i)) \sigma$ by $\rightarrow_{\mathcal{R}} \subseteq \rightarrow^+_{U_{\mathsf{CS}}(\mathcal{R})}$
(3) $U_{i+1}^{\rho}(s_{i+1}, \mathsf{v}(\ell), \mathsf{ev}(t_1, \dots, t_i)) \sigma \rhd_{\mu} s_{i+1} \sigma$
(4) $\ell \sigma \rightarrow^+_{U_{\mathsf{CS}}(\mathcal{R})} \cdot \rhd_{\mu} s_{i+1} \sigma$ from (2) and (3)
(5) $\ell \sigma \succ s_{i+1} \sigma$ by (\star) because $\ell \sigma, s_{i+1} \sigma \in \mathcal{T}(\mathcal{F}, \mathcal{V})$

• Simulation completeness

- Simulation completeness
- Commutation of $arsigma_{\mu}$ over $ightarrow_{\mu}$

- Simulation completeness
- Commutation of $arsigma_{\mu}$ over $ightarrow_{\mu}$
- No internals of $U_{CS}(\mathcal{R})$

- Simulation completeness
- Commutation of $arphi_{\mu}$ over $ightarrow_{\mu}$
- No internals of $U_{CS}(\mathcal{R})$
- Should work for other (context-sensitive) transformations

- Simulation completeness
- Commutation of $arsigma_{\mu}$ over $ightarrow_{\mu}$
- No internals of $U_{CS}(\mathcal{R})$
- Should work for other (context-sensitive) transformations
 - Various optimizations of U transformation [Ohlebusch, ...]

- Simulation completeness
- Commutation of $arphi_{\mu}$ over $ightarrow_{\mu}$
- No internals of $U_{CS}(\mathcal{R})$
- Should work for other (context-sensitive) transformations
 - Various optimizations of U transformation [Ohlebusch, ...]
 - Ξ transformation [Kop, Middeldorp, Sternagel]

- Simulation completeness
- Commutation of $arsigma_{\mu}$ over $ightarrow_{\mu}$
- No internals of $U_{CS}(\mathcal{R})$
- Should work for other (context-sensitive) transformations
 - Various optimizations of U transformation [Ohlebusch, ...]
 - Ξ transformation [Kop, Middeldorp, Sternagel]
 - \mathcal{J} transformation [Antoy, Braßel, Hanus]

- Simulation completeness
- Commutation of $arsigma_{\mu}$ over $ightarrow_{\mu}$
- No internals of $U_{CS}(\mathcal{R})$
- Should work for other (context-sensitive) transformations
 - Various optimizations of U transformation [Ohlebusch, ...]
 - Ξ transformation [Kop, Middeldorp, Sternagel]
 - \mathcal{J} transformation [Antoy, Braßel, Hanus]
 - . . .

Automation & Experiments

Automation

Tool Support

presently only VMTL supports $\mu\text{-termination}$ on original terms

Automation

Tool Support presently only VMTL supports μ -termination *on original terms*

Proposition DCTRS \mathcal{R} : termination $U(\mathcal{R}) \implies$ μ -termination of $U_{CS}(\mathcal{R}) \implies$ μ -termination of $U_{CS}(\mathcal{R})$ on original terms \iff quasi-decreasing \mathcal{R}

Automation

Tool Support presently only VMTL supports μ -termination *on original terms*

Proposition DCTRS \mathcal{R} : termination $U(\mathcal{R}) \implies$ μ -termination of $U_{CS}(\mathcal{R}) \implies$ μ -termination of $U_{CS}(\mathcal{R})$ on original terms \iff quasi-decreasing \mathcal{R}

- VMTL cannot show μ -non-termination on original terms
- MU-TERM currently only tool that can show non-quasi-decreasingness of DCTRS $\ensuremath{\mathcal{R}}$

		\mathcal{R}			$U_{CS}(\mathcal{R})$			
	AProVE	MU-TEF	M VMTL	APro\	/E MI	J-TERM	VMTL	
YES	80	78	80	78		78	79	
NO	-	12	_	-		-	-	
		$U(\mathcal{R})$						
			U(1)	$\mathcal{R})$				
		AProVE	U(2	R) NaTT	T _T T ₂	VMTL	total	
YES		AProVE	U(1 MU-TERM 78	R) NaTT 77	τ _τ τ ₂ 78	VMTL 78	total 84	

Table: (Non-)quasi-decreasingness of 103 DCTRSs from Cops.
Conclusion

Summary

- New and direct proof of characterization of quasi-decreasingness by context-sensitive unraveling
- How to use this result in practice

Conclusion

Summary

- New and direct proof of characterization of quasi-decreasingness by context-sensitive unraveling
- How to use this result in practice

Further talks

- Thursday @ AJSW: Other characterization of quasi-decreasingness
- Friday @ IWC: Application of quasi-decreasingness for confluence of CTRSs

Appendix

Context-Sensitive Quasi-Reductivity

CSRS \mathcal{R} (\mathcal{F}) is context-sensitively quasi-reductive if there is

- $\mathcal{F}' \supseteq \mathcal{F}$
- μ (with $\mu(f) = \{1, \dots, n\}$ for every n-ary $f \in \mathcal{F}$)
- partial order \succ_{μ} on $\mathcal{T}(\mathcal{F}', \mathcal{V})$

such that:

- well-founded \succ_{μ}
- μ -monotonic \succ_{μ}
- $\forall \ell \to r \Leftarrow s_1 \approx t_1, \dots, s_k \approx t_k, \ \sigma : \mathcal{V} \to \mathcal{T}(\mathcal{F}, \mathcal{V}), \ 0 \leqslant i \leqslant k-1$:
 - $\forall 1 \leq j \leq i. \ s_j \sigma \succeq_{\mu} t_j \sigma \longrightarrow \ell \sigma \ (\succ_{\mu} \cup \rhd_{\mu})^+ \ s_{i+1} \sigma$
 - $\forall 1 \leq j \leq k. \ s_j \sigma \succeq_\mu t_j \sigma \longrightarrow \ell \sigma \succ_\mu r \sigma$