Decreasing proof orders Interpreting conversions in involutive monoids

Vincent van Oostrom

Universiteit Utrecht

IWC, Nagoya, May 29, 2012

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Decreasing tiles nvolutive proofs French strings Applications

Universiteit Utrecht

1

Decreasing tiles

Involutive proofs

French strings

Applications

Decreasing tiles Involutive proofs French strings Applications

Alhambra

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Given a set of tiles:

Decreasing tiles Involutive proofs French strings Applications

Given a set of tiles:

For any situation, is there at least one fitting tile?

Decreasing tiles Involutive proofs French strings Applications

Given a set of tiles:

- For any situation, is there at least one fitting tile?
- Does a tiling strategy exist that terminates?

Given a set of tiles:

- For any situation, is there at least one fitting tile?
- Does a tiling strategy exist that terminates?
- Do all tiling strategies terminate?
- How many tiles are needed?

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Definition set of such tiles decreasing if used colours well-ordered

Decreasing tiles Involutive proofs French strings Applications

Definition set of such tiles decreasing if used colours well-founded

Terminating tiling strategy for decreasing tiles

Memorandum 78-08. Issued August 1978.

A note on weak diamond properties.

bу

N.G. de Bruijn.

Decreasing tiles Involutive proofs French strings Applications

Terminating tiling strategy for decreasing tiles

Memorandum 78-08. Issued August 1978.

A note on weak diamond properties.

by

Decreasing tiles

N.G. de Bruijn.

Theorem if tiles are decreasing, a tiling strategy exists that terminate

Universiteit Utrecht

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ - 2

Decreasing rewrite systems

Decreasing rewrite systems

Decreasing tiles Involutive proofs French strings Applications

Decreasing rewrite systems

Decreasing tiles Involutive proofs French strings Applications

Theorem if rewrite system decreasing, then confluent

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Decreasing converted rewrite systems

Decreasing tiles Involutive proofs French strings Applications

Theorem

if tiles decreasing converted, a tiling strategy exists that terminates

Decreasing converted rewrite systems

Theorem if rewrite system decreasing converted, then confluent

Given set of decreasing tiles:

Previous work: terminating tiling strategy exist

Given set of decreasing tiles:

- Previous work: terminating tiling strategy exist
- This talk: all tiling strategies terminate

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

a convertible to e

Decreasing tiles Involutive proofs French strings Applications

a convertible to e

Decreasing tiles Involutive proofs French strings Applications

a convertible to e

Decreasing tiles Involutive proofs French strings Applications

a convertible to e

Decreasing tiles Involutive proofs French strings Applications

Universiteit Utrecht

a convertible to e

Decreasing tiles Involutive proofs French strings Applications

a convertible to e

Decreasing tiles Involutive proofs French strings Applications

a convertible to e by rewrite proof

Decreasing tiles Involutive proofs French strings Applications

why do these transformations terminate?

$$\frac{a \rightarrow b}{a=b} (step) \quad \frac{a=a}{a=a} (e) \quad \frac{a=b}{b=a} (-1) \quad \frac{a=b}{a=c} (e)$$

Decreasing tiles Involutive proofs French strings Applications

$$\frac{a \rightarrow b}{a=b} (step) \quad \frac{a=a}{a=a} (e) \quad \frac{a=b}{b=a} (-1) \quad \frac{a=b}{a=c} (e)$$

no derivation rules for congruence or substitution

Decreasing tiles Involutive proofs French strings Applications

$$\frac{a \rightarrow b}{a=b} (step) \quad \frac{a=a}{a=a} (e) \quad \frac{a=b}{b=a} (-1) \quad \frac{a=b}{a=c} (e) = \frac{a=b}{a=c} (e)$$

no derivation rules for congruence or substitution

Theorem ((sub)Birkhoff)

abstract rewriting is logical, that is, = coincides with \leftrightarrow^*

$$\frac{a \rightarrow b}{a=b} (step) \quad \frac{a=a}{a=a} (e) \quad \frac{a=b}{b=a} (-1) \quad \frac{a=b}{a=c} (e)$$

no derivation rules for congruence or substitution

Theorem ((sub)Birkhoff)

abstract rewriting is logical, that is, = coincides with \leftrightarrow^*

Methodology to show transformation of conversions terminates:

$$\frac{a \rightarrow b}{a=b} (step) \quad \frac{a=a}{a=a} (e) \quad \frac{a=b}{b=a} (-1) \quad \frac{a=b}{a=c} (e)$$

no derivation rules for congruence or substitution

Theorem ((sub)Birkhoff) abstract rewriting is logical, that is, = coincides with \leftrightarrow^*

Methodology to show transformation of conversions terminates:

conversion is proof (in equational logic)

$$\frac{a \rightarrow b}{a=b} (step) \quad \frac{a=a}{a=a} (e) \quad \frac{a=b}{b=a} (-1) \quad \frac{a=b}{a=c} (e)$$

no derivation rules for congruence or substitution Theorem ((sub)Birkhoff) *abstract rewriting is logical, that is, = coincides with* ↔* Methodology to show transformation of conversions terminates:

- conversion is proof (in equational logic)
- represent proof as proof term (term over $\{\text{step}, -1, \cdot, e\}$)

$$\frac{a \rightarrow b}{a=b} (step) \quad \frac{a=a}{a=a} (e) \quad \frac{a=b}{b=a} (-1) \quad \frac{a=b}{a=c} (e) = \frac{b}{a=c} (e)$$

no derivation rules for congruence or substitution Theorem ((sub)Birkhoff) abstract rewriting is logical, that is, = coincides with ↔* Methodology to show transformation of conversions terminates:

- conversion is proof (in equational logic)
- represent proof as proof term (term over $\{\text{step}, -1, \cdot, e\}$)
- ▶ example: proof term $m^{-1} \cdot (\ell \cdot (k^{-1} \cdot m))$ represents conversion $a \leftarrow_m b \rightarrow_\ell c \leftarrow_k a \rightarrow_m b$

$$\frac{a \rightarrow b}{a=b} (step) \quad \frac{a=a}{a=a} (e) \quad \frac{a=b}{b=a} (-1) \quad \frac{a=b}{a=c} (e) (e)$$

no derivation rules for congruence or substitution Theorem ((sub)Birkhoff) *abstract rewriting is logical, that is, = coincides with* ↔* Methodology to show transformation of conversions terminates:

- conversion is proof (in equational logic)
- represent proof as proof term (term over $\{\text{step}, -1, \cdot, e\}$)
- ▶ example: proof term $m^{-1} \cdot (\ell \cdot (k^{-1} \cdot m))$ represents conversion $a \leftarrow_m b \rightarrow_\ell c \leftarrow_k a \rightarrow_m b$
- equip proof terms with terminating rewrite relation compatible with decreasingness

Conversions \rightarrow proof terms \rightarrow involutive monoid

Definition

set with

- associative binary operation ·
- identity element e
- $^{-1}$ involutive anti-automorphism

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
(assoc

$$a \cdot e = a$$
(right id

$$e \cdot a = a$$
(left id

$$(a^{-1})^{-1} = a$$
(invec

$$(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$$
(anti-autometric

ciative) entity) lentity) olutive) orphic)

(derived)

Universiteit Utrecht

Involutive proofs

 $\varepsilon^{-1} = \varepsilon$

+ {*} with binary, nullary, unary constant-* map

Involutive proofs

- $\{*\}$ with binary, nullary, unary constant-* map
- integers with addition, zero, unary minus

- + {*} with binary, nullary, unary constant-* map
- positive rationals with multiplication, one, inverse

- + $\{\star\}$ with binary, nullary, unary constant-* map
- ▶ group

- $\{*\}$ with binary, nullary, unary constant-* map
- group (examples $(\mathbb{Z}, +, 0, -)$, $(\mathbb{Q}^+, \cdot, 1, -1)$)
- natural numbers with addition, zero, identity map

- + {*} with binary, nullary, unary constant-* map
- group (examples $(\mathbb{Z}, +, 0, -)$, $(\mathbb{Q}^+, \cdot, 1, -1)$)
- multisets with multiset sum, empty multiset, identity map

Decreasing tiles Involutive proofs French strings Applications

- + {*} with binary, nullary, unary constant-* map
- group (examples $(\mathbb{Z}, +, 0, -)$, $(\mathbb{Q}^+, \cdot, 1, -1)$)
- commutative monoid with identity map

- + {*} with binary, nullary, unary constant-* map
- group (examples $(\mathbb{Z}, +, 0, -)$, $(\mathbb{Q}^+, \cdot, 1, {}^{-1}))$
- commutative monoid (examples $(\mathbb{N}, +, 0)$, $([L], \uplus, [])$)
- diagrams of \smallsetminus with gluing, point, mirroring in vertical axis

- + {*} with binary, nullary, unary constant-* map
- ▶ group (examples $(\mathbb{Z}, +, 0, -)$, $(\mathbb{Q}^+, \cdot, 1, \ ^{-1}))$
- ▶ commutative monoid (examples $(\mathbb{N}, +, 0)$, ([L], ⊎, []))
- diagrams of \smallsetminus with gluing, point, mirroring in vertical axis
- number pairs with pointwise addition, (0,0), swapping

- + {*} with binary, nullary, unary constant-* map
- group (examples $(\mathbb{Z}, +, 0, -)$, $(\mathbb{Q}^+, \cdot, 1, -1)$)
- ▶ commutative monoid (examples $(\mathbb{N}, +, 0)$, ([L], ⊎, []))
- diagrams of \setminus with gluing, point, mirroring in vertical axis
- number triples with composition given by $(n_1, m_1, k_1) \cdot (n_2, m_2, k_2) = (n_1 + n_2, m_1 + k_1 \cdot n_2 + m_2, k_1 + k_2),$ zero (0,0,0), involution $(n, m, k)^{-1} = (k, m, n)$

- + $\{*\}$ with binary, nullary, unary constant-* map
- group (examples $(\mathbb{Z}, +, 0, -)$, $(\mathbb{Q}^+, \cdot, 1, \ ^{-1}))$
- ▶ commutative monoid (examples $(\mathbb{N}, +, 0)$, ([L], ⊎, []))
- diagrams of \smallsetminus with gluing, point, mirroring in vertical axis
- number triples with composition given by $(n_1, m_1, k_1) \cdot (n_2, m_2, k_2) = (n_1 + n_2, m_1 + k_1 \cdot n_2 + m_2, k_1 + k_2),$ zero (0,0,0), involution $(n, m, k)^{-1} = (k, m, n)$

$$(n_1, m_1, k_1) \cdot (n_2, m_2, k_2)) \cdot (n_3, m_3, k_3)$$

$$= (n_1 + n_2, m_1 + k_1 \cdot n_2 + m_2, k_1 + k_2) \cdot (n_3, m_3, k_3)$$

$$= (n_1 + n_2 + n_3, m_1 + k_1 \cdot n_2 + m_2 + (k_1 + k_2) \cdot n_3 + m_3, k_1 + k_2 + k_3)$$

$$= (n_1 + n_2 + n_3, m_1 + k_1 \cdot (n_2 + n_3) + m_2 + k_2 \cdot n_3 + m_3, k_1 + k_2 + k_3)$$

$$= (n_1, m_1, k_1) \cdot (n_2 + n_3, m_2 + k_2 \cdot n_3 + m_3, k_2 + k_3)$$

$$= (n_1, m_1, k_1) \cdot ((n_2, m_2, k_2) \cdot (n_3, m_3, k_3))$$

Universiteit Utrecht

Definition

• French letter is an accented (acute or grave) letter

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition _ èvèn juxtaposed to knikté gives èvènknikté
- Decreasing tiles Involutive proofs French strings Applications

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition _
- empty string ε

Decreasing tiles Involutive proofs French strings Applications

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition _
- empty string ε
- mirroring ⁻¹ tèlkèns mirrors śnékléť

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition _
- empty string ε
- ▶ mirroring ⁻¹
- \widehat{L} set of French Strings on L (\hat{a} for either \hat{a} or \hat{a})

Involutive monoid of French strings

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition _
- empty string ε
- ▶ mirroring ⁻¹
- \widehat{L} set of French Strings on L

Involutive monoid of French strings

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition _
- empty string ε
- ▶ mirroring ⁻¹
- \widehat{L} set of French Strings on L

letter markup (representation preserves length, prefix, suffix)

Decreasing tiles Involutive proofs French strings Applications

Universiteit Utrecht

Gortyn code, Crete, 5th century B.C. (wikipedia)

Universiteit Utrecht

Decreasing tiles Involutive proofs French strings Applications

Decreasing tiles Involutive proofs French strings Applications

Universiteit Utrecht

how the cow ploughs

Universiteit Utrecht

how the cow ploughs

Universiteit Utrecht

Universiteit Utrecht

Decreasing tiles
Involutive proofs
French strings
Applications

how the cow ploughs

Universiteit Utrecht

Universiteit Utrecht

	Involutive proofs
	French strings
	Applications
how the cow ploughs	J
1 5	

	lutive proofs
Fren	nch strings
Арр	lications
how the cow ploughs	
	iteit Utrecht

	Involutive proofs
	French strings
	Applications
how the cow ploughs	
1 0	

		Involutive proofs
		French strings
		Applications
how the cow ploughs		
	Uni	iversiteit Utrecht

	Involutive proofs
	French strings
	Applications
how the cow ploughs]
astronom and the second s	

Universiteit Utrecht

Universiteit Utrecht

	Involutive proofs
	French strings
	Applications
how the cow ploughs	

Universiteit Utrecht

		Involutive proofs
		French strings
		Applications
how the cow ploughs		
<u> </u>		
	Uni	iversiteit Utrecht

		Involutive proofs
		French strings
		Applications
how the cow ploughs		
-00×		
	Uni	iversiteit Utrecht

	Involutive proofs
	French strings
	Applications
how the cow ploughs]
	Universiteit Utrecht

olutive proofs
ench strings
plications
siteit Utrecht
• F

	Involutive proofs
	French strings
	Applications
•	
ha dha an dha	 J
how the cow ploughs	
	uversiteit Utrecht

		Involutive proofs
		French strings
		Applications
how the cow ploughs		
	Un	iversiteit Utrecht

		Involutive proofs
		French strings
		Applications
how the cow ploughs		
	A CONTRACTOR OF THE OWNER	
		Universiteit Utrecht

		Involutive proofs
		French strings
		Applications
	'	
how the cow ploughs		
	2	
	🗧 Un	iversiteit Utrecht

		Involutive proofs
		French strings
		Applications
how the cow ploughs		
now the cow ploughs		
	Un	iversiteit Utrecht

		Involutive proofs
		French strings
		Applications
how the cow ploughs		
	AND	
	🖹 🛛 🍣 Un	iversiteit Utrecht

	Involutive proofs French strings Applications
how the cow ploughs	
	Universiteit Utrecht

	Involutive proofs French strings Applications
how the cow ploughs	
	iversiteit Utrecht

	Involutive proofs
	French strings
	Applications
how the cow ploughs	
	Universiteit Utrecht

	Involutive proofs
	French strings
	Applications
how the cow ploughs	
	niversiteit Utrecht

- AMAAAAA

	Involutive proofs
	French strings
	Applications
how the cow players	
how the cow ploughs	
	Jniversiteit Utrecht

- AMAAAAA

	Decreasing tiles
	Involutive proofs
	French strings
	Applications
how the cow ploughs	
	niversiteit Utrecht

Decreasing tiles Involutive proofs French strings Applications

Martinus Nijhoff, Het kind en ik, Nieuwe Gedichten, 1934 (Hortus Botanicus, Universiteitsmuseum Utrecht, next to pond)

Universiteit Utrecht

NATE DAT IK BURYANATIK UNIKTE DAT IK HET WIST NATER BATAW TAH LIH TAIL EN HET WERD UITGEWIST

Decreasing tiles Involutive proofs French strings Applications

Universiteit Utrecht

Definition homomorphism is map preserving operations

Examples

involutive monoid to itself (identity)

Definition homomorphism is map preserving operations

Examples

- involutive monoid to itself (identity)
- French strings → number pairs (grave,acute)
 ćė́nàṙ ↦ (3,2)

Definition homomorphism is map preserving operations

Examples

- involutive monoid to itself (identity)
- number pairs \rightarrow natural numbers (sum) (3,2) \mapsto 5

Definition homomorphism is map preserving operations

Examples

- involutive monoid to itself (identity)
- French strings → natural numbers (length) composition of previous two

Definition homomorphism is map preserving operations

Examples

- involutive monoid to itself (identity)
- French strings → natural numbers (length)
- ► French strings → multisets (letters) báŕbàŕó \mapsto [*a*, *a*, *b*, *b*, *o*, *r*, *r*]

Definition homomorphism is map preserving operations

Examples

- involutive monoid to itself (identity)
- French strings → natural numbers (length)
- French strings → multisets (letters)
- French strings \rightarrow diagrams

Involutive proofs French strings Applications

ćèńàr̀ ↦

Definition homomorphism is map preserving operations

Examples

- involutive monoid to itself (identity)
- French strings → natural numbers (length)
- French strings → multisets (letters)
- diagrams → triples

Definition homomorphism is map preserving operations

Examples

- involutive monoid to itself (identity)
- French strings → natural numbers (length)
- French strings → multisets (letters)
- French strings → triples (area) composition of previous two

Free involutive monoid on generators

Theorem French strings on L give free involutive monoid on L

Free involutive monoid on generators

Theorem French strings on L give free involutive monoid on L

French string : conversion = string : reduction

Universiteit Utrecht

Involutive proofs

Universiteit Utrecht

Decreasing tiles Involutive proofs French strings Applications

Universiteit Utrecht

Free involutive monoid on generators

Theorem

French strings on L give free involutive monoid on L

Decreasing tiles Involutive proofs French strings Applications

Free involutive monoid on generators

Theorem

French strings on L give free involutive monoid on L

Proof. \hat{l} in bijection via $\check{\ell} \mapsto \ell$, with union of $\{e\}$ and

 $N \coloneqq \ell \mid i(\ell) \mid c(\ell, N) \mid c(i(\ell), N)$

Free involutive monoid on generators

Theorem

French strings on L give free involutive monoid on L

Proof.

 \widehat{L} in bijection via $\check{\ell} \mapsto \ell$, with union of $\{e\}$ and

$$N ::= \ell \mid i(\ell) \mid c(\ell, N) \mid c(i(\ell), N)$$

N set of normal forms on L for TRS completing axioms

$$c(c(x,y),z) \rightarrow c(x,c(y,z))$$

$$c(x,e) \rightarrow x$$

$$c(e,x) \rightarrow x$$

$$i(i(x)) \rightarrow x$$

$$i(c(x,y)) \rightarrow c(i(y),i(x))$$

$$i(e) \rightarrow e$$

Definition

certain terms on certain French strings

Decreasing tiles Involutive proofs French strings

Definition

terms on strings

Decreasing tiles Involutive proofs French strings Applications

Definition

terms on strings

Decreasing tiles Involutive proofs French strings Applications

Definition

terms on strings on >-ordered letters

Decreasing tiles Involutive proofs French strings Applications

Definition

terms on strings on >-ordered letters

Decreasing tiles Involutive proofs French strings Applications

Definition

terms on strings on >-ordered letters where <code>bo# identity</code>

Decreasing tiles Involutive proofs French strings Applications

Definition

terms on strings on >-ordered letters where $\flat \circ \sharp$ identity

Involutive monoid on French terms L[#]

Definition

・ロト ・部ト ・ヨト ・ヨト

terms on strings on >-ordered letters where $\flat \circ \sharp$ identity

French strings

Involutive monoid on French terms /#

Definition

terms on French strings on >-ordered letters where $\flat \circ \sharp$ identity operations on L^{\sharp} defined via \widehat{L} , e.g. $t \cdot u = (t^{\flat} u^{\flat})^{\sharp}$

A well-founded order on French terms

(iterative) lexicographic path order based on >

A well-founded order on French terms

- (iterative) lexicographic path order based on >
- Iexicographic order on argument places compatible with marks

A well-founded order on French terms

- (iterative) lexicographic path order based on >
- Iexicographic order on argument places compatible with marks
- ▶ signature ordered by $\succ = \binom{\succ_{mul}}{\varsigma}$ via $\binom{\text{multiset}}{\varsigma}$

A well-founded order on French strings/terms

- (iterative) lexicographic path order based on >
- lexicographic order on argument places compatible with marks
- ▶ signature ordered by $\succ = \binom{\succ_{mul}}{\succ}$ via $\binom{\text{multiset}}{\text{area}}$

Jac >Ipo

3

Involutive proofs French strings Applications

Properties of ≻_{Ipo}

▶ head of term ≻-related to heads of all subterms

Decreasing tiles Involutive proofs French strings Applications

- ▶ head of term ≻-related to heads of all subterms
- \succ_{Ipo} not an ordered monoid: $k \ell \succ_{Ipo} \ell$ but $k \ell \ell \neq_{Ipo} \ell \ell$

- ▶ head of term ≻-related to heads of all subterms
- ▶ >_{Ipo} not an ordered monoid
- $s\hat{\ell}r \succ_{lpo} s\{\ell \succ\}r$ (in EBNF { } is arbitrary repetition)

- ▶ head of term ≻-related to heads of all subterms
- ▶ >_{lpo} not an ordered monoid
- $s\hat{\ell}r \succ_{Ipo} s\{\ell > \}r$

Proof.

induction on length sr, cases whether ℓ is >-maximal in $s\hat{\ell}r$

yes decrease in multiset of head

no induction on substring/term $\hat{\ell}$ is in

- head of term ≻-related to heads of all subterms
- ▶ ▷_{Ipo} not an ordered monoid
- $s\hat{\ell}r \succ_{lpo} s\{\ell >\}r$

Proof.

induction on length *sr*, cases whether ℓ is >-maximal in $s\hat{\ell}r$

yes decrease in multiset of head no induction on substring/term $\hat{\ell}$ is in

▶ $s\ell mr \succ_{lpo} s\{\ell \succ\}[m]\{\ell, m \succ\}[\ell]\{m \succ\}r$ ([] is option)

- ▶ head of term ≻-related to heads of all subterms
- ▶ >_{Ipo} not an ordered monoid
- $s\hat{\ell}r \succ_{lpo} s\{\ell >\}r$

Proof.

induction on length *sr*, cases whether ℓ is >-maximal in $s\hat{\ell}r$

yes decrease in multiset of head no induction on substring/term $\hat{\ell}$ is in

• $s\ell mr \succ_{lpo} s\{\ell \succ\}[m]\{\ell, m \succ\}[\ell]\{m \succ\}r$

Proof.

induction on length sr, cases whether ℓ, m are >-maximal in $s\ell mr$

both decrease in area of head

 $\acute{\ell}$ decrease in the substring/term to the right of $\acute{\ell}$

 \grave{m} decrease in the substring/term to the left of \grave{m} neither induction on substring/term $\acute{\ell}\grave{m}$ is in

Filling in locally decreasing diagram decreases Theorem

Filling in locally decreasing diagram decreases Theorem

Filling in locally decreasing diagram decreases Theorem

Proof. $s\hat{\ell}mr \succ_{Ipo} s\{\ell > \}[m]\{\ell, m > \}[\ell]\{m > \}r$

case 1: local confluence peak of >-maximal steps

Decreasing tiles Involutive proofs French strings Applications

area decrease

case 2: local coherence peak of >-maximal and non->-maximal step

Decreasing tiles Involutive proofs French strings Applications

decrease in *j*th argument, lexicographically before *i*th

case 3: local modulo peak of non->-maximal steps

Decreasing tiles Involutive proofs French strings Applications

decrease in argument both steps are in

 $\succ_{\textit{lpo}}$ at work

Decreasing tiles Involutive proofs French strings Applications

Filling in local diagrams ①

Decreasing tiles Involutive proofs French strings Applications

Filling in local diagrams ①

Filling in local diagrams ⁽²⁾

Filling in local diagrams ⁽²⁾

Filling in local diagrams ③

Applications

Filling in local diagrams ③

Decreasing tiles Involutive proofs French strings Applications

Filling in local diagrams ④

Decreasing tiles Involutive proofs French strings Applications

Filling in local diagrams ④

Decreasing tiles Involutive proofs French strings Applications

Filling in local diagrams (5)

Decreasing tiles Involutive proofs French strings Applications

Filling in local diagrams (5)

Decreasing tiles Involutive proofs French strings Applications

Filling in local diagrams 6

Decreasing tiles Involutive proofs French strings Applications

Filling in local diagrams 6

Filling in local diagrams 6

Decreasing tiles Involutive proofs French strings Applications

Adaptations:

▶ monotonic: by universal quantification over contexts (s bigger than r if ∀q₁, q₂, q₁sq₂ ≻_{lpo} q₁rq₂) Decreasing tiles Involutive proofs French strings Applications

Adaptations:

- monotonic: by universal quantification over contexts
 (s bigger than r if ∀q₁, q₂, q₁sq₂ ≻_{lpo} q₁rq₂)
- decidable: by universal quantification over orders extending (s bigger than r if ∀ well-orders extending >, they are related)

Adaptations:

- monotonic: by universal quantification over contexts
 (s bigger than r if ∀q₁, q₂, q₁sq₂ ≻_{lpo} q₁rq₂)
- decidable: by universal quantification over orders extending
 (s bigger than r if ∀ well-orders extending >, they are
 related)
- decreasing diagrams modulo: involutive letters $\dot{\ell}$, i.e. $\dot{\ell}^{-1} = \dot{\ell}$

Adaptations:

- monotonic: by universal quantification over contexts
 (s bigger than r if ∀q₁, q₂, q₁sq₂ ≻_{lpo} q₁rq₂)
- decidable: by universal quantification over orders extending (s bigger than r if ∀ well-orders extending >, they are related)
- involutive rewriting $(\varrho: s \to r \text{ converse of } \varrho^{-1}: s^{-1} \to r^{-1})$

Adaptations:

- monotonic: by universal quantification over contexts
 (s bigger than r if ∀q₁, q₂, q₁sq₂ ≻_{lpo} q₁rq₂)
- decidable: by universal quantification over orders extending (s bigger than r if ∀ well-orders extending >, they are related)
- involutive rewriting $(\varrho: s \to r \text{ converse of } \varrho^{-1}: s^{-1} \to r^{-1})$
- covers all confluence modulo results in Ohlebusch (either by the previous item, or ordering modulo steps below other steps)

Adaptations:

- monotonic: by universal quantification over contexts
 (s bigger than r if ∀q₁, q₂, q₁sq₂ ≻_{lpo} q₁rq₂)
- decidable: by universal quantification over orders extending (s bigger than r if ∀ well-orders extending >, they are related)
- involutive rewriting $(\varrho: s \to r \text{ converse of } \varrho^{-1}: s^{-1} \to r^{-1})$
- covers all confluence modulo results in Ohlebusch (either by the previous item, or ordering modulo steps below other steps)
- application to factorisation theorems (factorisation is commutation with the inverse, RTA 2012, Beniamino Accattoli)

Decreasing tiles Involutive proofs French strings Applications

 alternative correctness proof of decreasing diagrams (De Bruijn,vO,Klop,de Vrijer,Bezem,Jouannaud) Decreasing tiles Involutive proofs French strings Applications

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles Involutive proofs French strings Applications

 Newman's Lemma (multiset)+Lemma of Hindley-Rosen (area)

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Newman's Lemma+Lemma of Hindley–Rosen

Decreasing tiles Involutive proofs French strings Applications

flexible

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Newman's Lemma+Lemma of Hindley–Rosen

Universiteit Utrecht

Het kind en ik

Ik zou een dag uit vissen, ik voelde mij moedeloos. Ik maakte tussen de lissen met de hand een wak in het kroos.

Er steeg licht op van beneden uit de zwarte spiegelgrond. Ik zag een tuin onbetreden en een kind dat daar stond.

Het stond aan zijn schrijftafel te schrijven op een lei. Het woord onder de griffel herkende ik, was van mij.

Maar toen heeft het geschreven, zonder haast en zonder schroom, al wat ik van mijn leven nog ooit te schrijven droom.

En telkens als ik even knikte dat ik het wist, liet hij het water beven en het werd uitgewist.

Het kind en ik

Ik zou een dag uit vissen, ik voelde mij moedeloos. Ik maakte tussen de lissen met de hand een wak in het kroos.

> Er steeg licht op van beneden uit de zwarte spiegelgrond. Ik zag een tuin onbetreden en een kind dat daar stond.

Het stond aan zijn schrijftafel te schrijven op een lei. Het woord onder de griffel herkende ik, was van mij.

Maar toen heeft het geschreven, zonder haast en zonder schroom, al wat ik van mijn leven nog ooit te schrijven droom.

> En telkens als ik even knikte dat ik het wist, lise telken water beven er telken werd uitgewist.