Decreasing proof orders Interpreting conversions in involutive monoids

Vincent van Oostrom

Universiteit Utrecht

IWC, Nagoya, May 29, 2012

Decreasing tiles

Involutive proofs

French strings

Applications

Alhambra

Involutive proofs
French strings

Applications

Tiling puzzles (1964-73)

Tiling puzzles (1964-73)

Decreasing tiles
Involutive proofs
French strings
Applications

Tiling puzzles (1964-73)

Decreasing tiles
Involutive proofs
French strings
Applications

Tiling puzzles (1964-73)

Decreasing tiles
Involutive proofs
French strings
Applications

Tiling puzzles (1964-73)

Decreasing tiles
Involutive proofs
French strings
Applications

Tiling puzzles (1964-73)

Tiling puzzles (1964-73)

Tiling puzzles (1964-73)

Tiling puzzles (1964-73)

Scalable tile puzzling (1964-78)

Decreasing tiles
Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Decreasing tiles
Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Decreasing tiles
Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Decreasing tiles
Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Decreasing tiles
Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Decreasing tiles
Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Decreasing tiles
Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Decreasing tiles
Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Decreasing tiles
Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Decreasing tiles
Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Decreasing tiles

Involutive proofs
French strings

Applications

Scalable tile puzzling (1964-78)

Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Involutive proofs
French strings
Applications

Scalable tile puzzling (1964-78)

Decreasing tiles
Involutive proofs
French strings

Applications

Puzzling tiles. . . (1942-60)

Decreasing tiles
Involutive proofs
French strings
Applications

Puzzling tiles．．．（1942－60）

Decreasing tiles
Involutive proofs
French strings
Applications

Puzzling tiles. . . (1942-60)

Decreasing tiles
Involutive proofs
French strings
Applications

Puzzling tiles. . . (1942-60)

Decreasing tiles
Involutive proofs
French strings
Applications

Puzzling tiles. . . (1942-60)

Decreasing tiles
Involutive proofs
French strings
Applications

Puzzling tiles. . . (1942-60)

Decreasing tiles
Involutive proofs
French strings
Applications

Puzzling tiles. . . (1942-60)

Decreasing tiles
 Involutive proofs
 French strings
 Applications

Puzzling tiles. . . (1942-60)

Decreasing tiles
 Involutive proofs
 French strings
 Applications

Puzzling tiles. . . (1942-60)

Decreasing tiles
Involutive proofs
French strings
Applications

Puzzling tiles. . . (1942-60)

Decreasing tiles
Involutive proofs
French strings
Applications

Puzzling tiles. . . (1942-60)

Decreasing tiles
Involutive proofs
French strings
Applications

Puzzling tiles. . . (1942-60)

Decreasing tiles
Involutive proofs
French strings
Applications

Puzzling tiling questions

Puzzling tiling questions

Given a set of tiles:

Puzzling tiling questions

Given a set of tiles:

- For any situation, is there at least one fitting tile?

Puzzling tiling questions

Given a set of tiles:

- For any situation, is there at least one fitting tile?
- Does a tiling strategy exist that terminates?

Puzzling tiling questions

Given a set of tiles:

- For any situation, is there at least one fitting tile?
- Does a tiling strategy exist that terminates?
- Do all tiling strategies terminate?
- How many tiles are needed?

Decreasing tiles (1978-94)

Decreasing tiles
Involutive proofs
French strings
Applications

Decreasing tiles (1978-94)

Decreasing tiles
Involutive proofs
French strings
Applications

Decreasing tiles (1978-94)

Decreasing tiles
Involutive proofs
French strings
Applications

Decreasing tiles (1978-94)

Decreasing tiles

Decreasing tiles（1978－94）

Decreasing tiles
Involutive proofs
French strings
Applications

Decreasing tiles (1978-94)

Decreasing tiles
Involutive proofs
French strings
Applications

Decreasing tiles (1978-94)

Decreasing tiles
Involutive proofs
French strings
Applications

Decreasing tiles (1978-94)

Decreasing tiles
Involutive proofs
French strings
Applications

Definition
set of such tiles decreasing if used colours well-ordered

Decreasing tiles (1978-94)

Decreasing tiles
Involutive proofs
French strings
Applications

Definition
set of such tiles decreasing if used colours well-founded

Terminating tiling strategy for decreasing tiles

Memorandum 78-08.
Issued August 1978.

Decreasing tiles
Involutive proofs
French strings
Applications

A note on weak diamond properties. by
N.G. de Bruijn.

Terminating tiling strategy for decreasing tiles

```
Memorandum 78-08.
Issued August 1978.
```

Decreasing tiles
Involutive proofs
French strings
Applications

A note on weak diamond properties. by

N.G. de Bruijn.

Theorem
if tiles are decreasing, a tiling strategy exists that termin 歓触

Decreasing rewrite systems

Decreasing tiles
Involutive proofs
French strings
Applications

Decreasing rewrite systems

Decreasing rewrite systems

Theorem
if rewrite system decreasing, then confluent

Tiles with bite (2008-)

Decreasing tiles
Involutive proofs
French strings
Applications

Tiles with bite (2008-)

Decreasing tiles
Involutive proofs
French strings
Applications

Tiles with bite (2008-)

Decreasing tiles
Involutive proofs
French strings
Applications

Tiles with bite (2008-)

Decreasing tiles
Involutive proofs
French strings
Applications

Tiles with bite（2008－）

Decreasing tiles
Involutive proofs
French strings
Applications

Tiles with bite (2008-)

Decreasing tiles
Involutive proofs
French strings
Applications

Tiles with bite（2008－）

Decreasing tiles
Involutive proofs
French strings
Applications

Tiles with bite (2008-)

Tiles with bite (2008-)

Tiles with bite (2008-)

Tiles with bite (2008-)

Decreasing tiles
Involutive proofs
French strings
Applications

Decreasing converted rewrite systems

Decreasing tiles
Involutive proofs
French strings
Applications

Theorem
if tiles decreasing converted, a tiling strategy exists that terminates

Decreasing converted rewrite systems

Theorem
if rewrite system decreasing converted, then confluent

Given set of decreasing tiles:

- Previous work: terminating tiling strategy exist

Given set of decreasing tiles:

- Previous work: terminating tiling strategy exist
- This talk: all tiling strategies terminate

Transforming conversions

Decreasing tiles
Involutive proofs
French strings
Applications

Transforming conversions

Decreasing tiles
Involutive proofs
French strings
Applications
a convertible to e

Universiteit Utrecht

Transforming conversions

Decreasing tiles
Involutive proofs
French strings
Applications
a convertible to e

Universiteit Utrecht

Transforming conversions

Decreasing tiles
Involutive proofs French strings
Applications
a convertible to e

Transforming conversions

Decreasing tiles
Involutive proofs French strings
Applications
a convertible to e

Universiteit Utrecht 1019%
2019

Unt

Transforming conversions

Decreasing tiles
Involutive proofs French strings
Applications
a convertible to e

Universiteit Utrecht

Transforming conversions

Decreasing tiles
Involutive proofs French strings
Applications
a convertible to e

Universiteit Utrecht

Transforming conversions

Decreasing tiles
Involutive proofs
French strings
Applications
a convertible to e by rewrite proof

Universiteit Utrecht

Transforming conversions

Decreasing tiles
Involutive proofs
French strings
Applications
why do these transformations terminate?

Universiteit Utrecht

Equational logic on nullary symbols (constants)

$$
\frac{a \rightarrow b}{a=b}(\operatorname{step}) \quad \frac{a}{a=a}(e) \quad \frac{a=b}{b=a}(-1) \quad \frac{a=b \quad b=c}{a=c}(\cdot)
$$

Decreasing tiles
Involutive proofs
French strings
Applications

Equational logic on nullary symbols (constants)

$$
\frac{a \rightarrow b}{a=b}(\text { step }) \quad \frac{a}{a=a}(e) \quad \frac{a=b}{b=a}(-1) \quad \frac{a=b \quad b=c}{a=c}(\cdot)
$$

no derivation rules for congruence or substitution

Decreasing tiles
Involutive proofs
French strings
Applications

Equational logic on nullary symbols (constants)

$$
\frac{a \rightarrow b}{a=b}(\operatorname{step}) \quad \frac{a}{a=a}(e) \quad \frac{a=b}{b=a}(-1) \quad \frac{a=b \quad b=c}{a=c}(\cdot)
$$

no derivation rules for congruence or substitution
Theorem ((sub)Birkhoff)
abstract rewriting is logical, that is, = coincides with \leftrightarrow^{*}

Equational logic on nullary symbols (constants)

$$
\frac{a \rightarrow b}{a=b}(\text { step }) \quad \frac{}{a=a}(e) \quad \frac{a=b}{b=a}(-1) \quad \frac{a=b \quad b=c}{a=c}(\cdot)
$$

no derivation rules for congruence or substitution
Theorem ((sub)Birkhoff)
abstract rewriting is logical, that is, = coincides with \leftrightarrow^{*}
Methodology to show transformation of conversions terminates:

Equational logic on nullary symbols (constants)

$$
\frac{a \rightarrow b}{a=b}(\text { step }) \quad \frac{}{a=a}(e) \quad \frac{a=b}{b=a}(-1) \quad \frac{a=b \quad b=c}{a=c}(\cdot)
$$

no derivation rules for congruence or substitution
Theorem ((sub)Birkhoff)
abstract rewriting is logical, that is, = coincides with \leftrightarrow^{*}
Methodology to show transformation of conversions terminates:

- conversion is proof (in equational logic)

Equational logic on nullary symbols (constants)

$$
\frac{a \rightarrow b}{a=b}(\text { step }) \quad \frac{}{a=a}(e) \quad \frac{a=b}{b=a}(-1) \quad \frac{a=b \quad b=c}{a=c}(\cdot)
$$

no derivation rules for congruence or substitution
Theorem ((sub)Birkhoff)
abstract rewriting is logical, that is, = coincides with \leftrightarrow^{*}
Methodology to show transformation of conversions terminates:

- conversion is proof (in equational logic)
- represent proof as proof term (term over $\{$ step, $,-1, \cdot, e\}$)

Equational logic on nullary symbols (constants)

$$
\frac{a \rightarrow b}{a=b}(\text { step }) \quad \frac{}{a=a}(e) \quad \frac{a=b}{b=a}(-1) \quad \frac{a=b \quad b=c}{a=c}(\cdot)
$$

no derivation rules for congruence or substitution

Theorem ((sub)Birkhoff)

abstract rewriting is logical, that is, = coincides with \leftrightarrow^{*}
Methodology to show transformation of conversions terminates:

- conversion is proof (in equational logic)
- represent proof as proof term (term over $\{$ step, $,-1, \cdot, e\}$)
- example: proof term $m^{-1} \cdot\left(\ell \cdot\left(k^{-1} \cdot m\right)\right)$ represents conversion $a \leftarrow_{m} b \rightarrow_{\ell} c \leftarrow_{k} a \rightarrow_{m} b$

Equational logic on nullary symbols (constants)

$$
\frac{a \rightarrow b}{a=b}(\text { step }) \quad \frac{}{a=a}(e) \quad \frac{a=b}{b=a}(-1) \quad \frac{a=b \quad b=c}{a=c}(\cdot)
$$

no derivation rules for congruence or substitution

Theorem ((sub)Birkhoff)

abstract rewriting is logical, that is, = coincides with \leftrightarrow^{*}
Methodology to show transformation of conversions terminates:

- conversion is proof (in equational logic)
- represent proof as proof term (term over $\{$ step, $,-1, \cdot, e\}$)
- example: proof term $m^{-1} \cdot\left(\ell \cdot\left(k^{-1} \cdot m\right)\right)$ represents conversion $a \leftarrow_{m} b \rightarrow_{\ell} c \leftarrow_{k} a \rightarrow_{m} b$
- equip proof terms with terminating rewrite relation compatible with decreasingness

Conversions \rightarrow proof terms \rightarrow involutive monoid

Definition
set with

- associative binary operation.
- identity element e

Decreasing tiles
Involutive proofs
French strings
Applications

- involutive anti-automorphism ${ }^{-1}$

$$
\begin{aligned}
(a \cdot b) \cdot c & =a \cdot(b \cdot c) \\
a \cdot e & =a \\
e \cdot a & =a \\
\left(a^{-1}\right)^{-1} & =a \\
(a \cdot b)^{-1} & =b^{-1} \cdot a^{-1} \\
\varepsilon^{-1} & =\varepsilon
\end{aligned}
$$

(associative)
(right identity)
(left identity) (involutive)
(anti-automorphic)
(derived)

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map

Decreasing tiles
Involutive proofs
French strings
Applications

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- integers with addition, zero, unary minus

Decreasing tiles
Involutive proofs
French strings
Applications

Involutive monoid examples

－$\{*\}$ with binary，nullary，unary constant－$*$ map
－positive rationals with multiplication，one，inverse

Decreasing tiles
Involutive proofs
French strings
Applications

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group

Decreasing tiles
Involutive proofs
French strings
Applications

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)$)
- natural numbers with addition, zero, identity map

Decreasing tiles
Involutive proofs
French strings
Applications

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)$)
- multisets with multiset sum, empty multiset, identity map

Decreasing tiles
Involutive proofs
French strings

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)$)
- commutative monoid with identity map

Decreasing tiles
Involutive proofs
French strings
Applications

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)$)
- commutative monoid (examples ($\mathbb{N},+, 0),([L], \uplus,[]))$
- diagrams of \backslash with gluing, point, mirroring in vertical axis

Decreasing tiles
Involutive proofs
French strings
Applications

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $\left.(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)\right)$
- commutative monoid (examples $(\mathbb{N},+, 0),([L], \uplus,[]))$
- diagrams of \backslash with gluing, point, mirroring in vertical axis
- number pairs with pointwise addition, $(0,0)$, swapping

Decreasing tiles
Involutive proofs
French strings
Applications

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)$)
- commutative monoid (examples ($\mathbb{N},+, 0),([L], \uplus,[]))$
- diagrams of \backslash with gluing, point, mirroring in vertical axis
- number triples with composition given by $\left(n_{1}, m_{1}, k_{1}\right) \cdot\left(n_{2}, m_{2}, k_{2}\right)=\left(n_{1}+n_{2}, m_{1}+k_{1} \cdot n_{2}+m_{2}, k_{1}+k_{2}\right)$, zero $(0,0,0)$, involution $(n, m, k)^{-1}=(k, m, n)$

Involutive monoid examples

- $\{*\}$ with binary, nullary, unary constant- $*$ map
- group (examples $\left.(\mathbb{Z},+, 0,-),\left(\mathbb{Q}^{+}, \cdot, 1,{ }^{-1}\right)\right)$
- commutative monoid (examples $(\mathbb{N},+, 0),([L], \uplus,[]))$
- diagrams of \backslash with gluing, point, mirroring in vertical axis
- number triples with composition given by $\left(n_{1}, m_{1}, k_{1}\right) \cdot\left(n_{2}, m_{2}, k_{2}\right)=\left(n_{1}+n_{2}, m_{1}+k_{1} \cdot n_{2}+m_{2}, k_{1}+k_{2}\right)$, zero $(0,0,0)$, involution $(n, m, k)^{-1}=(k, m, n)$

$$
\begin{aligned}
& \left(\left(n_{1}, m_{1}, k_{1}\right) \cdot\left(n_{2}, m_{2}, k_{2}\right)\right) \cdot\left(n_{3}, m_{3}, k_{3}\right) \\
& \quad=\left(n_{1}+n_{2}, m_{1}+k_{1} \cdot n_{2}+m_{2}, k_{1}+k_{2}\right) \cdot\left(n_{3}, m_{3}, k_{3}\right) \\
& \quad=\left(n_{1}+n_{2}+n_{3}, m_{1}+k_{1} \cdot n_{2}+m_{2}+\left(k_{1}+k_{2}\right) \cdot n_{3}+m_{3}, k_{1}+k_{2}+k_{3}\right) \\
& \quad=\left(n_{1}+n_{2}+n_{3}, m_{1}+k_{1} \cdot\left(n_{2}+n_{3}\right)+m_{2}+k_{2} \cdot n_{3}+m_{3}, k_{1}+k_{2}+k_{3}\right) \\
& \quad=\left(n_{1}, m_{1}, k_{1}\right) \cdot\left(n_{2}+n_{3}, m_{2}+k_{2} \cdot n_{3}+m_{3}, k_{2}+k_{3}\right) \\
& \quad=\left(n_{1}, m_{1}, k_{1}\right) \cdot\left(\left(n_{2}, m_{2}, k_{2}\right) \cdot\left(n_{3}, m_{3}, k_{3}\right)\right)
\end{aligned}
$$

Involutive monoid of French strings

Definition

－French letter is an accented（acute or grave）letter

Decreasing tiles
Involutive proofs
French strings
Applications

Involutive monoid of French strings

Definition

- French letter is an accented (acute or grave) letter

Decreasing tiles
Involutive proofs
French strings
Applications

- juxtaposition u èv̀èǹ juxtaposed to ḱńiḱḱ gives èv̀ǹnḱńiḱté

Involutive monoid of French strings

Definition

－French letter is an accented（acute or grave）letter

Decreasing tiles
Involutive proofs
French strings
Applications
－juxtaposition -
－empty string ε

Involutive monoid of French strings

Definition

- French letter is an accented (acute or grave) letter

Decreasing tiles
Involutive proofs
French strings
Applications

- juxtaposition -
- empty string ε
- mirroring -1 tèìkèǹs mirrors śńéḱlét

Involutive monoid of French strings

Definition

- French letter is an accented (acute or grave) letter

Decreasing tiles
Involutive proofs
French strings
Applications

- juxtaposition \quad
- empty string ε
- mirroring -1
- \widehat{L} set of French Strings on L (â for either à or á)

Involutive monoid of French strings

Definition

- French letter is an accented (acute or grave) letter

Decreasing tiles
Involutive proofs
French strings
Applications

- juxtaposition -
- empty string ε
- mirroring -1
- \widehat{L} set of French Strings on L

Involutive monoid of French strings

Definition

- French letter is an accented (acute or grave) letter
- juxtaposition -
- empty string ε
- mirroring -1
- \widehat{L} set of French Strings on L
letter markup (representation preserves length,prefix,suffix)

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications

Gortyn code, Crete, 5th century B.C. (wikipedia)
Universiteit Utrecht

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
anguolq wos ont wor

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications

2nguolq wos 9nt wor

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
anguolq wos onlf worl

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
anguolq wos onlf worl

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
anguolq wos onlf worl

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
anguolq wos onlf worl

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
anguolq wos onlf worl

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
anguolq wos onlf worl

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
anguolq wos ont wor

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
anguolq wos odf wor

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
anguolq wos ont wor

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
adguolq wos odf wor

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
anguolq wos odf wor

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
anguolq wos ont wor

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles

how the plow coughs

Boustrophedon

Decreasing tiles

how the cow ploughs

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
how the cow ploughs

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
anguolq wos ont wor

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
anguolq wos ont wor

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
anguolq wos ont wor

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
anguolq wos ont wor

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
anguolq wos ont wor

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
anguolq wos ont wor

Boustrophedon

Decreasing tiles

Involutive proofs
French strings
Applications
anguolq wos onlf worl

Boustrophedon

Decreasing tiles

2nguolq wos 9df wor

Boustrophedon

Decreasing tiles

adguolq wos odf wor

Boustrophedon

Decreasing tiles

adguolq wos odf wor

Boustrophedon

Decreasing tiles

anguolq wos odf wor

Boustrophedon

Decreasing tiles
Involutive proofs
French strings
Applications

Martinus Nijhoff, Het kind en ik, Nieuwe Gedichten, 1934 (Hortus Botanicus, Universiteitsmuseum Utrecht, next to piend) Universiteit Utrecht

Boustrophedon

EN TELKENS ALS IK EVEN TそIV TНН ХI TAФ ЭТЖIVХ LIET HIJ HET WATER BEVEN

Involutive monoid homomorphisms

Definition

homomorphism is map preserving operations

Decreasing tiles
Involutive proofs
French strings
Applications

Examples

- involutive monoid to itself (identity)

Involutive monoid homomorphisms

Definition

homomorphism is map preserving operations

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow number pairs (grave,acute) ćèńàr̀ $\mapsto(3,2)$

Involutive monoid homomorphisms

Definition

homomorphism is map preserving operations

Decreasing tiles
Involutive proofs
French strings
Applications

Examples

- involutive monoid to itself (identity)
- number pairs \rightarrow natural numbers (sum) $(3,2) \mapsto 5$

Involutive monoid homomorphisms

Definition

homomorphism is map preserving operations

Decreasing tiles
Involutive proofs
French strings
Applications

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow natural numbers (length) composition of previous two

Involutive monoid homomorphisms

Definition

homomorphism is map preserving operations

Decreasing tiles
Involutive proofs
French strings

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow natural numbers (length)
- French strings \rightarrow multisets (letters) bá́rì̀àró $\mapsto[a, a, b, b, o, r, r]$

Involutive monoid homomorphisms

Definition
homomorphism is map preserving operations

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow natural numbers (length)
- French strings \rightarrow multisets (letters)
- French strings \rightarrow diagrams ćèńàr̀r \mapsto

Involutive monoid homomorphisms

Definition

homomorphism is map preserving operations

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow natural numbers (length)
- French strings \rightarrow multisets (letters)
- diagrams \rightarrow triples

Involutive monoid homomorphisms

Definition

homomorphism is map preserving operations

Decreasing tiles
Involutive proofs
French strings
Applications

Examples

- involutive monoid to itself (identity)
- French strings \rightarrow natural numbers (length)
- French strings \rightarrow multisets (letters)
- French strings \rightarrow triples (area) composition of previous two

Free involutive monoid on generators

Decreasing tiles
Involutive proofs
French strings
Theorem
French strings on L give free involutive monoid on L

Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L

French string : conversion = string : reduction

Freeness of involutive monoid of French Strings

Decreasing tiles
 Involutive proofs

French strings
Applications

Freeness of involutive monoid of French Strings

SET
INVOLUTIVE MONOID

Decreasing tiles
Involutive proofs
French strings
Applications

Freeness of involutive monoid of French Strings

Decreasing tiles
Involutive proofs
French strings
Applications

Freeness of involutive monoid of French Strings

Decreasing tiles
Involutive proofs
French strings
Applications

Freeness of involutive monoid of French Strings

Decreasing tiles
Involutive proofs
French strings
Applications

Freeness of involutive monoid of French Strings

Decreasing tiles
Involutive proofs
French strings
Applications

Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L

Decreasing tiles
Involutive proofs
French strings
Applications

Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L
Proof.
\widehat{L} in bijection via $\grave{\ell} \mapsto \ell$, with union of $\{e\}$ and

$$
N::=\ell|i(\ell)| c(\ell, N) \mid c(i(\ell), N)
$$

Decreasing tiles
Involutive proofs
French strings
Applications

Free involutive monoid on generators

Theorem

French strings on L give free involutive monoid on L
Proof.
\widehat{L} in bijection via $\grave{\ell} \mapsto \ell$, with union of $\{e\}$ and

$$
N::=\ell|i(\ell)| c(\ell, N) \mid c(i(\ell), N)
$$

N set of normal forms on L for TRS completing axioms

$$
\begin{aligned}
c(c(x, y), z) & \rightarrow c(x, c(y, z)) \\
c(x, e) & \rightarrow x \\
c(e, x) & \rightarrow x \\
i(i(x)) & \rightarrow x \\
i(c(x, y)) & \rightarrow c(i(y), i(x)) \\
i(e) & \rightarrow e
\end{aligned}
$$

Involutive monoid on French terms $L \sharp$
 Definition
 certain terms on certain French strings

Decreasing tiles
Involutive proofs
French strings
Applications

Involutive monoid on French terms $L \sharp$

Definition

terms on strings

Decreasing tiles
Involutive proofs
French strings

Applications

Involutive monoid on French terms $L \sharp$

Definition

terms on strings

Decreasing tiles
Involutive proofs
French strings

Applications

Involutive monoid on French terms $L \sharp$

Definition

terms on strings on >-ordered letters

Decreasing tiles
Involutive proofs
French strings

Involutive monoid on French terms $L \sharp$

Definition

terms on strings on >-ordered letters

Decreasing tiles
Involutive proofs
French strings

Applications

Involutive monoid on French terms $L \sharp$

Definition

 terms on strings on >-ordered letters where $b \circ \sharp$ identityDecreasing tiles
Involutive proofs
French strings

Applications

Involutive monoid on French terms L^{\sharp}

Definition

 terms on strings on $>$-ordered letters where $b \circ \sharp$ identity

Involutive monoid on French terms L^{\sharp}

Definition

 terms on strings on $>$-ordered letters where $b \circ \sharp$ identityDecreasing tiles
Involutive proofs

French strings
French strings
Applications

Involutive monoid on French terms L^{\sharp}

Definition

terms on French strings on >-ordered letters where $b \circ \sharp$ identity
operations on L^{\sharp} defined via \widehat{L}, e.g. $t \cdot u=\left(t^{b} u^{b}\right)^{\sharp}$

Decreasing tiles
Involutive proofs
French strings

A well-founded order on French terms

- (iterative) lexicographic path order based on $>$

Decreasing tiles
Involutive proofs
French strings

A well-founded order on French terms

- (iterative) lexicographic path order based on $>$
- lexicographic order on argument places compatible with marks

Decreasing tiles
Involutive proofs
French strings
Applications

Universiteit Utrecht
ḿḱ̂́m
ề m̀ḿ̀

A well-founded order on French terms

- (iterative) lexicographic path order based on $>$
- lexicographic order on argument places compatible with marks

Decreasing tiles
Involutive proofs
French strings
Applications

Universiteit Utrecht
ḿkíc̀m
ề m̀ḿ̀̀

A well-founded order on French strings/terms

- (iterative) lexicographic path order based on $>$
- lexicographic order on argument places compatible with marks
- signature ordered by $\triangleright=\binom{>_{\text {mul }}}{>}$ via $\binom{$ multiset }{ area }

Decreasing tiles
Involutive proofs
French strings
Applications

Properties of $\searrow_{l p o}$

- head of term $>$-related to heads of all subterms

Properties of $\searrow_{\text {Ipo }}$

- head of term \triangleright-related to heads of all subterms
- $>_{\text {Ipo }}$ not an ordered monoid: $\grave{k} \ell>_{\text {Ipo }}$ 白 but $\grave{k} \ell ̀ \ell ̀$ 中lpo $\overparen{\ell}$

Properties of $\searrow_{\text {Ipo }}$

- head of term $>$-related to heads of all subterms
- $\downarrow_{\text {Ipo }}$ not an ordered monoid
- $s \hat{\ell} r>_{\text {Ipo }} s\{\ell>\} r$ (in EBNF $\}$ is arbitrary repetition)

Decreasing tiles
Involutive proofs
French strings
Applications

Properties of $\nabla_{\text {lpo }}$

- head of term $>$-related to heads of all subterms
- $>_{\text {Ipo }}$ not an ordered monoid
- $s \hat{\ell} r>_{\text {Ipo }} s\{\ell>\} r$

Proof.
induction on length $s r$, cases whether ℓ is $>$-maximal in $s \hat{\ell} r$ yes decrease in multiset of head no induction on substring/term $\hat{\ell}$ is in

Decreasing tiles
Involutive proofs
French strings
Applications

Properties of $\nabla_{\text {lpo }}$

- head of term $>$-related to heads of all subterms
- $>_{\text {Ipo }}$ not an ordered monoid
- $s \hat{\ell} r>_{\text {Ipo }} s\{\ell>\} r$

Proof.
induction on length $s r$, cases whether ℓ is >-maximal in $s \hat{\ell} r$ yes decrease in multiset of head no induction on substring/term $\hat{\ell}$ is in

- s仑́m̀r $>_{\text {lpo }} s\{\ell>\}[\grave{m}]\{\ell, m>\}[$ 白 $\{m>\} r$ ([] is option)

Properties of $\nabla_{\text {lpo }}$

- head of term $>$-related to heads of all subterms
- $\nabla_{\text {Ipo }}$ not an ordered monoid
- $s \hat{\ell} r>_{\text {Ipo }} s\{\ell>\} r$

Proof.
induction on length $s r$, cases whether ℓ is >-maximal in $s \hat{\ell} r$ yes decrease in multiset of head no induction on substring/term $\hat{\ell}$ is in

Decreasing tiles
Involutive proofs

Proof.
induction on length $s r$, cases whether ℓ, m are $>$-maximal in ś́m̀r
both decrease in area of head
ℓ decrease in the substring/term to the right of ℓ
\grave{m} decrease in the substring/term to the left of \grave{m}
neither induction on substring/term $\ell \dot{m}$ is in

Filling in locally decreasing diagram decreases

Theorem

Decreasing tiles

Involutive proofs
French strings
Applications

Filling in locally decreasing diagram decreases
Theorem

Decreasing tiles
Involutive proofs
French strings
Applications

Filling in locally decreasing diagram decreases

Theorem

Decreasing tiles
Involutive proofs
French strings
Applications

Proof.
$s \ell ́ m r \gg_{\text {Ipo }} s\{\ell>\}[\grave{m}]\{\ell, m>\}[\ell ́]\{m>\} r$

Idea: >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications
case 1: local confluence peak of >-maximal steps

Idea: >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

Idea: >-maximal steps modulo non->-maximal steps

Decreasing tiles

case 2: local coherence peak of >-maximal and non->-maximal step

Idea: >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
decrease in j th argument, lexicographically before i th

Idea: >-maximal steps modulo non->-maximal steps

Decreasing tiles Involutive proofs French strings

Applications
case 3: local modulo peak of non->-maximal steps

Idea: >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications
decrease in argument both steps are in

$\triangleright_{\text {lpo }}$ at work

Decreasing tiles
Involutive proofs
French strings
Applications

Filling in local diagrams (1)

Filling in local diagrams (1)

Decreasing tiles

Filling in local diagrams (2)

Decreasing tiles
Involutive proofs
French strings
Applications

Filling in local diagrams (2)

Filling in local diagrams (3)

Decreasing tiles
Involutive proofs
French strings
Applications

Filling in local diagrams (3)

Filling in local diagrams (4)

Decreasing tiles
Involutive proofs
French strings
Applications

Filling in local diagrams (4)

Filling in local diagrams (5)

Decreasing tiles
Involutive proofs
French strings
Applications

Filling in local diagrams (5)

Filling in local diagrams (6)

Decreasing tiles
Involutive proofs
French strings

Applications

Filling in local diagrams (6)

Filling in local diagrams (6)

Decreasing tiles
Involutive proofs
French strings
Applications

Flexibility

Adaptations:

- monotonic: by universal quantification over contexts (s bigger than r if $\forall q_{1}, q_{2}, q_{1} s q_{2}>_{l p o} q_{1} r q_{2}$)

Decreasing tiles
Involutive proofs
French strings
Applications

Flexibility

Adaptations:

- monotonic: by universal quantification over contexts (s bigger than r if $\forall q_{1}, q_{2}, q_{1} s q_{2}>_{\text {lpo }} q_{1} r q_{2}$)
- decidable: by universal quantification over orders extending

Decreasing tiles

Applications (s bigger than r if \forall well-orders extending $>$, they are related)

Flexibility

Adaptations:

- monotonic: by universal quantification over contexts (s bigger than r if $\forall q_{1}, q_{2}, q_{1} s q_{2}>_{l p o} q_{1} r q_{2}$)
- decidable: by universal quantification over orders extending (s bigger than r if \forall well-orders extending $>$, they are related)
- decreasing diagrams modulo: involutive letters $\dot{\ell}$, i.e. $\dot{\ell}^{-1}=\dot{\ell}$

Flexibility

Adaptations:

- monotonic: by universal quantification over contexts (s bigger than r if $\forall q_{1}, q_{2}, q_{1} s q_{2} \triangleright_{l p o} q_{1} r q_{2}$)
- decidable: by universal quantification over orders extending

Decreasing tiles

Applications (s bigger than r if \forall well-orders extending $>$, they are related)

- involutive rewriting ($\varrho: s \rightarrow r$ converse of $\varrho^{-1}: s^{-1} \rightarrow r^{-1}$)

Flexibility

Adaptations:

- monotonic: by universal quantification over contexts (s bigger than r if $\forall q_{1}, q_{2}, q_{1} s q_{2} \triangleright_{l p o} q_{1} r q_{2}$)
- decidable: by universal quantification over orders extending

Decreasing tiles
Involutive proofs
French strings
Applications (s bigger than r if \forall well-orders extending $>$, they are related)

- involutive rewriting ($\varrho: s \rightarrow r$ converse of $\varrho^{-1}: s^{-1} \rightarrow r^{-1}$)
- covers all confluence modulo results in Ohlebusch (either by the previous item, or ordering modulo steps below other steps)

Flexibility

Adaptations:

- monotonic: by universal quantification over contexts (s bigger than r if $\forall q_{1}, q_{2}, q_{1} s q_{2} \triangleright_{l p o} q_{1} r q_{2}$)
- decidable: by universal quantification over orders extending

Decreasing tiles
Involutive proofs
French strings
Applications (s bigger than r if \forall well-orders extending $>$, they are related)

- involutive rewriting ($\varrho: s \rightarrow r$ converse of $\varrho^{-1}: s^{-1} \rightarrow r^{-1}$)
- covers all confluence modulo results in Ohlebusch (either by the previous item, or ordering modulo steps below other steps)
- application to factorisation theorems (factorisation is commutation with the inverse, RTA 2012, Beniamino Accattoli)

Conclusion

Decreasing tiles

- alternative correctness proof of decreasing diagrams (De Bruijn,vO,Klop,de Vrijer,Bezem,Jouannaud)

Involutive proofs
French strings
Applications

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

- Newman's Lemma (multiset)+Lemma of Hindley-Rosen (area)

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

- Newman's Lemma+Lemma of Hindley-Rosen

Conclusion

- alternative correctness proof of decreasing diagrams
- confluence of >-maximal steps modulo non->-maximal steps

Decreasing tiles
Involutive proofs
French strings
Applications

- Newman's Lemma+Lemma of Hindley-Rosen

- flexible

Het kind en ik

Ik zou een dag uit vissen, ik voelde mij moedeloos.
Ik maakte tussen de lissen met de hand een wak in het kroos.

Er steeg licht op van beneden uit de zwarte spiegelgrond. Ik zag een tuin onbetreden en een kind dat daar stond.

Het stond aan zijn schrijftafel te schrijven op een lei.
Het woord onder de griffel herkende ik, was van mij.

Maar toen heeft het geschreven, zonder haast en zonder schroom, al wat ik van mijn leven nog ooit te schrijven droom.

En telkens als ik even knikte dat ik het wist, liet hij het water beven en het werd uitgewist.
 .zooJgbsome ciss gbJgou dis งตรzis sb rezenst 9thlomers all

srabersed shou qu trosis pgete rith .bsrorplopgiqqe 9trouss ob tesis sigbertgdro sisist sug pus dI .bsrote roob tob bsisit n99 sง

Jatattisentor sicis srom broote faH
 Jottise ab rabsio broour taH - cise suou zow ais absiodtost
 ,smootsor tabsos se tepont rabsros neugl seisise roou des Jous Jo .smootb rivcijestor of tioo post
neve fis ajo antentet nit , Jesius tosi dis tob otidisiol srougd ratous tors .tesurgetises brou

Decreasing tiles
Involutive proofs
French strings

Applications

