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Puzzling tiles. . . (1942–60)
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Puzzling tiling questions

Given a set of tiles:

▸ For any situation, is there at least one fitting tile?

▸ Does a tiling strategy exist that terminates?

▸ Do all tiling strategies terminate?

▸ How many tiles are needed?
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Decreasing tiles (1978–94)

Definition
set of such tiles decreasing if used colours well-founded
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Terminating tiling strategy for decreasing tiles

EINDHOVEN UNIVERSITY OF TECHNOLOGY 

Department of Mathematics 

Menorandurn 78-08. 

Issued August 1978. 

A no te  on weak diamond p r o p e r t i e s .  

by 

N.G. de Brui jn.  

Eindhoven Un ive r s i t y  of Technology 

Department of Mathematics 
P.O.Box 513 

5600 MB Eindhoven 
The Netherlands.  

Theorem
if tiles are decreasing, a tiling strategy exists that terminates
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if rewrite system decreasing, then confluent
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Decreasing converted rewrite systems

Theorem
if tiles decreasing converted, a tiling strategy exists that
terminates
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Theorem
if rewrite system decreasing converted, then confluent
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∃→ ∀

Given set of decreasing tiles:

▸ Previous work: terminating tiling strategy exist

▸ This talk: all tiling strategies terminate
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Transforming conversions

±
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a e

c

f g
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a convertible to e by rewrite proof



Decreasing tiles

Involutive proofs

French strings

Applications

14

Transforming conversions

±

b d

a e

c

f g

h

i

j

why do these transformations terminate?
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Equational logic on nullary symbols (constants)

a → b
(step)

a= b
(e)

a= a

a= b
(-1)

b= a

a= b b= c
(⋅)

a= c

no derivation rules for congruence or substitution

Theorem ((sub)Birkhoff)

abstract rewriting is logical, that is, = coincides with ↔∗

Methodology to show transformation of conversions terminates:

▸ conversion is proof (in equational logic)

▸ represent proof as proof term (term over {step,−1, ⋅, e})

▸ example: proof term m−1
⋅ (` ⋅ (k−1 ⋅m)) represents

conversion a ←m b →` c ←k a →m b

▸ equip proof terms with terminating rewrite relation
compatible with decreasingness
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Conversions → proof terms → involutive monoid

Definition
set with

▸ associative binary operation ⋅

▸ identity element e

▸ involutive anti-automorphism −1

(a ⋅ b) ⋅ c = a ⋅ (b ⋅ c) (associative)
a ⋅ e = a (right identity)
e ⋅ a = a (left identity)

(a−1)−1 = a (involutive)

(a ⋅ b)−1 = b−1 ⋅ a−1 (anti-automorphic)

ε−1 = ε (derived)
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Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸▸▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ (n1,m1, k1) ⋅(n2,m2, k2) = (n1+n2,m1+k1 ⋅n2+m2, k1+k2),
zero (0,0,0), involution (n,m, k)−1 = (k,m,n)

((n1,m1, k1) ⋅ (n2,m2, k2)) ⋅ (n3,m3, k3)

= (n1 + n2,m1 + k1 ⋅ n2 +m2, k1 + k2) ⋅ (n3,m3, k3)

= (n1 + n2 + n3,m1 + k1 ⋅ n2 +m2 + (k1 + k2) ⋅ n3 +m3, k1 + k2 + k3)

= (n1 + n2 + n3,m1 + k1 ⋅ (n2 + n3) +m2 + k2 ⋅ n3 +m3, k1 + k2 + k3)

= (n1,m1, k1) ⋅ (n2 + n3,m2 + k2 ⋅ n3 +m3, k2 + k3)

= (n1,m1, k1) ⋅ ((n2,m2, k2) ⋅ (n3,m3, k3))
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▸ {∗} with binary, nullary, unary constant-∗ map

▸ integers with addition, zero, unary minus
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Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ group

▸▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ (n1,m1, k1) ⋅(n2,m2, k2) = (n1+n2,m1+k1 ⋅n2+m2, k1+k2),
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Involutive monoid examples

▸ {∗} with binary, nullary, unary constant-∗ map

▸ group (examples (Z,+,0,−), (Q+, ⋅,1, −1
))

▸ natural numbers with addition, zero, identity map

▸ diagrams of Ówith gluing, point, mirroring in vertical axis

▸ (n1,m1, k1) ⋅(n2,m2, k2) = (n1+n2,m1+k1 ⋅n2+m2, k1+k2),
zero (0,0,0), involution (n,m, k)−1 = (k,m,n)
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▸ {∗} with binary, nullary, unary constant-∗ map

▸ group (examples (Z,+,0,−), (Q+, ⋅,1, −1
))
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))

▸ commutative monoid (examples (N,+,0), ([L],⊎, [ ]))

▸ diagrams of Ówith gluing, point, mirroring in vertical axis
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(n1,m1, k1) ⋅(n2,m2, k2) = (n1+n2,m1+k1 ⋅n2+m2, k1+k2),
zero (0,0,0), involution (n,m, k)−1 = (k,m,n)
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Involutive monoid of French strings

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ −1
▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)
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Involutive monoid of French strings

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition èv̀èǹ juxtaposed to ḱń́iḱt́é gives èv̀èǹḱń́iḱt́é

▸ empty string ε

▸ −1
▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)
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Involutive monoid of French strings

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ −1
▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)
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Involutive monoid of French strings

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ mirroring −1 t̀è̀lk̀èǹs̀ mirrors śńéḱ́lét́

▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)
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Involutive monoid of French strings

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ mirroring −1
▸ L̂ set of French Strings on L (â for either à or á)

letter markup (representation preserves length,prefix,suffix)
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Involutive monoid of French strings

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ mirroring −1
▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)



Decreasing tiles

Involutive proofs

French strings

Applications

18

Involutive monoid of French strings

Definition

▸ French letter is an accented (acute or grave) letter

▸ juxtaposition

▸ empty string ε

▸ mirroring −1
▸ L̂ set of French Strings on L

letter markup (representation preserves length,prefix,suffix)
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Boustrophedon

Gortyn code, Crete, 5th century B.C. (wikipedia)
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Boustrophedon

Martinus Nijhoff, Het kind en ik, Nieuwe Gedichten, 1934
(Hortus Botanicus, Universiteitsmuseum Utrecht, next to pond)
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. . . . . .

EN TELKENS ALS IK EVEN
TSI W TEH KI TAD ETKI NK

LIET HIJ HET WATER BEVEN
TSI WEGTI U DRE W TEH NE
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Involutive monoid homomorphisms

Definition
homomorphism is map preserving operations

Examples

▸ involutive monoid to itself (identity)

▸▸ French strings → multisets (letters)
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Involutive monoid homomorphisms

Definition
homomorphism is map preserving operations

Examples

▸▸ involutive monoid to itself (identity)

▸ French strings → number pairs (grave,acute)
ćèńàr̀↦ (3,2)

▸ French strings → multisets (letters)
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Involutive monoid homomorphisms

Definition
homomorphism is map preserving operations

Examples

▸▸ involutive monoid to itself (identity)

▸ number pairs → natural numbers (sum)
(3,2)↦ 5

▸ French strings → multisets (letters)
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Involutive monoid homomorphisms

Definition
homomorphism is map preserving operations

Examples

▸▸ involutive monoid to itself (identity)

▸ French strings → natural numbers (length)
composition of previous two

▸ French strings → multisets (letters)
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Involutive monoid homomorphisms

Definition
homomorphism is map preserving operations

Examples

▸▸ involutive monoid to itself (identity)

▸ French strings → natural numbers (length)

▸ French strings → multisets (letters)
b́áŕb̀àŕó↦ [a, a,b,b,o, r , r]
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Involutive monoid homomorphisms

Definition
homomorphism is map preserving operations

Examples

▸▸ involutive monoid to itself (identity)

▸ French strings → natural numbers (length)

▸ French strings → multisets (letters)

▸ French strings → diagrams

ćèńàr̀↦
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Involutive monoid homomorphisms

Definition
homomorphism is map preserving operations

Examples

▸ involutive monoid to itself (identity)

▸ French strings → natural numbers (length)

▸ French strings → multisets (letters)

▸ diagrams → triples

↦ (3,5,2) cf.
3

5

2
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Involutive monoid homomorphisms

Definition
homomorphism is map preserving operations

Examples

▸ involutive monoid to itself (identity)

▸ French strings → natural numbers (length)

▸ French strings → multisets (letters)

▸ French strings → triples (area)
composition of previous two
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Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L

French string ∶ conversion = string ∶ reduction
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f

M,c,e,i
forget

INVOLUTIVE MONOIDSET
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L̂, ,ε, −1

M,c,e,i
forget

enrich

INVOLUTIVE MONOIDSET
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Freeness of involutive monoid of French Strings

L
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f

`↦ `̀
L̂, ,ε, −1

M,c,e,i
forget

enrich

INVOLUTIVE MONOIDSET

L̂
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Freeness of involutive monoid of French Strings

L

M

f

`↦ `̀

∃!f̂

L̂, ,ε, −1

M,c,e,i

f̂

forget

enrich

INVOLUTIVE MONOIDSET

L̂
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Free involutive monoid on generators

Theorem
French strings on L give free involutive monoid on L

Proof.
L̂ in bijection via `̀ ↦ `, with union of {e} and

N ∶∶= ` ∣ i(`) ∣ c(`,N) ∣ c(i(`),N)

N set of normal forms on L for TRS completing axioms

c(c(x , y), z) → c(x , c(y , z))

c(x , e) → x

c(e, x) → x

i(i(x)) → x

i(c(x , y)) → c(i(y), i(x))

i(e) → e
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Involutive monoid on French terms L♯

Definition
certain terms on certain French strings
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Involutive monoid on French terms L♯

Definition
terms on strings

mk`m

k `ε

ε ε ε

ε

inorder

m m
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Involutive monoid on French terms L♯

Definition
terms on strings on ≻-ordered letters

mk`m

k `ε

ε ε ε

ε

inorder
maxsplit m ≻ k , `

m m
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Involutive monoid on French terms L♯

Definition
terms on strings on ≻-ordered letters

mk`m

k `ε

ε ε ε

ε

♭

♯

m m
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Involutive monoid on French terms L♯

Definition
terms on strings on ≻-ordered letters where ♭ ○ ♯ identity

mk`m

k `ε

ε ε ε

ε

♭

♯

m m
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Involutive monoid on French terms L♯

Definition
terms on strings on ≻-ordered letters where ♭ ○ ♯ identity

∀ letters ∃ ≻-relating letter in ancestor

k `ε

ε ε ε

ε

♭

♯

mk`m

≻-incomparable
m m
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Involutive monoid on French terms L♯

Definition
terms on strings on ≻-ordered letters where ♭ ○ ♯ identity

ε ε ε

``mm`

m m

k `ε

ε ε ε

ε

mk`m

ε

ε

m m

` ` `

ε
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Involutive monoid on French terms L♯

Definition
terms on French strings on ≻-ordered letters where ♭ ○ ♯ identity
operations on L♯ defined via L̂, e.g. t ⋅ u = (t♭u♭)♯

ε ε ε

´̀̀̀ m̀ḿ`̀

ḿ m̀

k̀ ´̀ε

ε ε ε

ε

ḿk̀ ´̀m̀

ε

ε

m̀ ḿ

´̀ `̀ `̀

ε
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A well-founded order on French terms
▸ (iterative) lexicographic path order based on ≻

▸ lexicographic order on compatible with marks
▸ signature ordered by via

ε ε ε

´̀̀̀ m̀ḿ`̀

ḿ m̀

k̀ ´̀ε

ε ε ε

ε

ḿk̀ ´̀m̀

ε

ε

m̀ ḿ

´̀ `̀ `̀

ε



Decreasing tiles

Involutive proofs

French strings

Applications

27

A well-founded order on French terms
▸ (iterative) lexicographic path order based on ≻

▸ lexicographic order on argument places compatible with
marks

▸ signature ordered by via

32 1 1 3

12 13 3 2

2

1 2

ε ε ε

´̀̀̀ m̀ḿ`̀

ḿ m̀

k̀ ´̀ε

ε ε ε

ε

ḿk̀ ´̀m̀

ε

ε

m̀ ḿ

´̀ `̀ `̀

ε
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A well-founded order on French terms
▸ (iterative) lexicographic path order based on ≻

▸ lexicographic order on argument places compatible with
marks

▸ signature ordered by » = (
≻mul
> ) via (

multiset
area

)

2 2

22 2

1 1

1 1 13

3

3

3

[k, `]
0 0 0 0

0 0 0 0 0 0 0 0

[ ] [ ] [ ]

[ ] [ ]

ḿk̀ ´̀m̀ ´̀̀̀ m̀ḿ`̀

[ ]

[m,m] [m,m]
0

[ ] [ ] [ ] [ ] [ ]

[`][k, `]
1

1

0
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A well-founded order on French strings/terms
▸ (iterative) lexicographic path order based on ≻

▸ lexicographic order on argument places compatible with
marks

▸ signature ordered by » = (
≻mul
> ) via (

multiset
area

)

»lpo

2 2

22 2

1 1

1 1 13

3

3

3

»lpo

[k, `]
0 0 0 0

0 0 0 0 0 0 0 0

[ ] [ ] [ ]

[ ] [ ]

ḿk̀ ´̀m̀ ´̀̀̀ m̀ḿ`̀

[ ]

[m,m] [m,m]
0

[ ] [ ] [ ] [ ] [ ]

[`][k, `]
1

1

0
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Properties of »lpo

▸ head of term »-related to heads of all subterms

▸ »lpo an ordered monoid

▸ s ˆ̀r »lpo s{`≻}r

Proof.
induction on length sr , cases whether ` is ≻-maximal in s ˆ̀r

yes decrease in multiset of head
no induction on substring/term ˆ̀ is in

▸ s ´̀m̀r »lpo s{`≻}[m̀]{`,m≻}[´̀]{m≻}r

Proof.
induction on length sr , cases whether `,m are ≻-maximal in
s ´̀m̀r

both decrease in area of head
´̀ decrease in the substring/term to the right of ´̀

m̀ decrease in the substring/term to the left of m̀
neither induction on substring/term ´̀m̀ is in
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▸ head of term »-related to heads of all subterms

▸ »lpo not an ordered monoid

▸ s ˆ̀r »lpo s{`≻}r (in EBNF {} is arbitrary repetition)

Proof.
induction on length sr , cases whether ` is ≻-maximal in s ˆ̀r

yes decrease in multiset of head
no induction on substring/term ˆ̀ is in

▸ s ´̀m̀r »lpo s{`≻}[m̀]{`,m≻}[´̀]{m≻}r

Proof.
induction on length sr , cases whether `,m are ≻-maximal in
s ´̀m̀r

both decrease in area of head
´̀ decrease in the substring/term to the right of ´̀

m̀ decrease in the substring/term to the left of m̀
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▸ head of term »-related to heads of all subterms

▸ »lpo not an ordered monoid

▸ s ˆ̀r »lpo s{`≻}r

Proof.
induction on length sr , cases whether ` is ≻-maximal in s ˆ̀r

yes decrease in multiset of head
no induction on substring/term ˆ̀ is in

▸ s ´̀m̀r »lpo s{`≻}[m̀]{`,m≻}[´̀]{m≻}r ([ ] is option)

Proof.
induction on length sr , cases whether `,m are ≻-maximal in
s ´̀m̀r

both decrease in area of head
´̀ decrease in the substring/term to the right of ´̀

m̀ decrease in the substring/term to the left of m̀
neither induction on substring/term ´̀m̀ is in
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no induction on substring/term ˆ̀ is in
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Proof.
induction on length sr , cases whether `,m are ≻-maximal in
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both decrease in area of head
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Filling in locally decreasing diagram decreases

Theorem

= `

m`

∗ ∗

∗

`≻ m≻

`,m≻

S R

=m

Proof.
s ´̀m̀r »lpo s{`≻}[m̀]{`,m≻}[´̀]{m≻}r
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m`

∗ ∗

∗
»
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o

`≻

`,m≻

m≻

S R

=m

Proof.
s ´̀m̀r »lpo s{`≻}[m̀]{`,m≻}[´̀]{m≻}r
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Filling in locally decreasing diagram decreases

Theorem

= `

m`

∗ ∗

∗
»
lp
o

`≻

`,m≻

m≻

S R

=m

Proof.
s ´̀m̀r »lpo s{`≻}[m̀]{`,m≻}[´̀]{m≻}r
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Idea: ≻-maximal steps modulo non-≻-maximal steps

m

S R

S R

. . . ´̀ m̀ . . .

ε

`

case 1: local confluence peak of ≻-maximal steps
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Idea: ≻-maximal steps modulo non-≻-maximal steps

`

Q ′Q ′

»

εS R

. . . m̀ ´̀ . . .

S ′ Q ′

S R

R ′

S ′ R ′

. . . ´̀ m̀ . . .

` m

m

area decrease
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Idea: ≻-maximal steps modulo non-≻-maximal steps

> ji

m

S R

. . . ´̀ . . .

m̀RS

`

case 2: local coherence peak of ≻-maximal and non-≻-maximal
step
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Idea: ≻-maximal steps modulo non-≻-maximal steps

>> j ji i

`

Q ′Q ′

»lpo j

S m̀R S ′m̀Q ′ {m≻}R ′

S R

. . . ´̀ . . . . . . ´̀ . . .

S ′ {m≻}R ′

` m

m

decrease in jth argument, lexicographically before ith
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Idea: ≻-maximal steps modulo non-≻-maximal steps

m

S R

. . . . . .

S ´̀m̀R

`

case 3: local modulo peak of non-≻-maximal steps
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Idea: ≻-maximal steps modulo non-≻-maximal steps

m

. . . . . . . . . . . .

QQ

»lpo
S ´̀m̀R Q

S R

`

decrease in argument both steps are in
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»lpo at work

¯

b d

a e

c

f g

h

i

j

¬ 

® °

±

k

`

m

`

m`

m

`

m

`

m m

k

`

m
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Filling in local diagrams ¬

a

c

12

231

3

b d

e

0

[ ] [ ]
0 0

[k, `]
0

1
[m,m]

k

mm

[ ] [ ] [ ]
0 0

`
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Filling in local diagrams ¬

f

¬

1

2 1 3

12

b d

a e

c

12 3

31 2 2

»lpo

0

[ ] [ ] [ ]
0 0

[m,m]

[`]
0

[ ]
0

[ ]
0

[`]
0

[ ]
0

[ ]
0

[ ]
0

[ ] [ ]
0 0

1
[m,m]

1

0

m

[k, `]

`

m m

k `
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Filling in local diagrams 

1

12

1

c

a e

d

2

f

2

3

m

[ ]
0

[ ]
0
[ ]

0
[`]

0

1

[ ]
0
[ ]

0
[`]

[m,m]

`

m

`

0
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Filling in local diagrams 

c

1

2 1 3

12

1 32

2 1 212

»lpo

g



f

d

a e

0
[ ]

1

0

[`] [`]
0

[ ]
0

[ ]
0

[m,m]

[`]
0

[ ]
0

[ ]
0

[ ]
0

[ ]
0

[ ]
00

[ ]
0

[ ]

[`]
0

1

m

[m,m]

`

m

`

m

`
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Filling in local diagrams ®

e

2 1 3

21 12

gf

a

c m

[m,m]

`

[`]
0

[ ]
0

[ ]
0

m

[ ]
0

[ ]

[`]
0

0
[ ]
0

`

1
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Filling in local diagrams ®

h

i

®

gf

a e

c

1 32

2 1 21

31

2 1 3

2

1 2

»lpo
[m,m]

0

[ ] [ ]
0 0

[`, `]
1

1
[m,m]

[ ]
0

[ ]
0

[ ]
0

[ ]

[`]
0

[ ]
0

[ ]
0 0

[ ]
0

[ ]

[`]
0

0
[ ]
0

[`]

m

0

m

`

m

`

m
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Filling in local diagrams ¯

2

h

i

gf

a e

31

2 1 3

2

1

[ ]
0

[ ]
0

[ ]
0
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0

[`]

[m,m]
0

[ ] [ ]
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[`, `]
1

m

0

m

`
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Filling in local diagrams ¯

h

i

gf

a e

31

2 1 3

2

1 22 1 12

1 3 2

»lpo

¯

[`]
0

[ ]
0

[ ]
0

[ ]
0

[ ]

[`]
0

[m,m]
0

[ ] [ ]
0 0 0

[ ]
0

1
[ ]
0

[ ]
0
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[`]
0

[`, `]
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0
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`
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Filling in local diagrams °

a

12 2

21 3

1

h
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e
m
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Filling in local diagrams °

h

i

g

a e

j

°

1

2 1

2

23 122 1 1

1 3 2

»lpo

[`]
0

[ ]
0

[ ]
0

[ ]
0

[ ]

[`]
0

0
[ ]
0

[ ]
0

[ ]
0

[`]
0

0
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0

0

[ ]
0
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[k, `]
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0
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m

0

m

`

`

k
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Filling in local diagrams ±

e

1

12 13 2

2

h

i

a

jm

00
[ ]

[`]
0

0

`

0

[ ]
0

k

[ ]
0

[ ]
0

[k, `]

[m]

`
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Filling in local diagrams ±

h

i

a e

j±

1

2 1

2

23 1

21

23 1

»lpo

[k, `]

[m]
0

[m]

[k, `][ ]
00

[ ]
0

[ ]
0

[ ]
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0
[`]

0

[ ]

0
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[ ]
0
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Filling in local diagrams ±

e

1 2

3 12

i

a

j

0

0

0

m

[ ]
0

`

k

[ ]
0

[ ]
0

[k, `][ ]
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Flexibility

Adaptations:

▸ monotonic: by universal quantification over contexts
(s bigger than r if ∀q1,q2, q1sq2 »lpo q1rq2)

▸ decidable: by universal quantification over orders extending
(s bigger than r if ∀ well-orders extending ≻, they are
related)

▸▸ covers all confluence modulo results in Ohlebusch
(either by the previous item, or ordering modulo steps
below other steps)

▸ application to factorisation theorems
(factorisation is commutation with the inverse,
RTA 2012, Beniamino Accattoli)
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Flexibility

Adaptations:

▸ monotonic: by universal quantification over contexts
(s bigger than r if ∀q1,q2, q1sq2 »lpo q1rq2)

▸ decidable: by universal quantification over orders extending
(s bigger than r if ∀ well-orders extending ≻, they are
related)

▸ decreasing diagrams modulo: involutive letters ˙̀, i.e.
˙̀−1 = ˙̀

▸ covers all confluence modulo results in Ohlebusch
(either by the previous item, or ordering modulo steps
below other steps)

▸ application to factorisation theorems
(factorisation is commutation with the inverse,
RTA 2012, Beniamino Accattoli)
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Adaptations:

▸ monotonic: by universal quantification over contexts
(s bigger than r if ∀q1,q2, q1sq2 »lpo q1rq2)

▸ decidable: by universal quantification over orders extending
(s bigger than r if ∀ well-orders extending ≻, they are
related)

▸ involutive rewriting (% ∶ s → r converse of %−1 ∶ s−1→ r−1)

▸ covers all confluence modulo results in Ohlebusch
(either by the previous item, or ordering modulo steps
below other steps)

▸ application to factorisation theorems
(factorisation is commutation with the inverse,
RTA 2012, Beniamino Accattoli)
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Conclusion

▸ alternative correctness proof of decreasing diagrams
(De Bruijn,vO,Klop,de Vrijer,Bezem,Jouannaud)

▸ confluence of ≻-maximal steps modulo non-≻-maximal
steps

▸ Newman’s Lemma+Lemma of Hindley–Rosen

▸ flexible
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Conclusion

▸ alternative correctness proof of decreasing diagrams

▸ confluence of ≻-maximal steps modulo non-≻-maximal
steps

bous

▸ Newman’s Lemma+Lemma of Hindley–Rosen

▸ flexible
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Het kind en ik

Ik zou een dag uit vissen,
ik voelde mij moedeloos.
Ik maakte tussen de lissen
met de hand een wak in het kroos.

Er steeg licht op van beneden
uit de zwarte spiegelgrond.
Ik zag een tuin onbetreden
en een kind dat daar stond.

Het stond aan zijn schrijftafel
te schrijven op een lei.
Het woord onder de griffel
herkende ik, was van mij.

Maar toen heeft het geschreven,
zonder haast en zonder schroom,
al wat ik van mijn leven
nog ooit te schrijven droom.

En telkens als ik even
knikte dat ik het wist,
liet hij het water beven
en het werd uitgewist.

Hetkindenik

Ikzoueendaguitvissen,
ikvoeldemijmoedeloos.
Ikmaaktetussendelissen
metdehandeenwakinhetkroos.

Ersteeglichtopvanbeneden
uitdezwartespiegelgrond.
Ikzageentuinonbetreden
eneenkinddatdaarstond.

Hetstondaanzijnschrijftafel
teschrijvenopeenlei.
Hetwoordonderdegriffel
herkendeik,wasvanmij.

Maartoenheefthetgeschreven,
zonderhaastenzonderschroom,
alwatikvanmijnleven
nogooitteschrijvendroom.

Entelkensalsikeven
kniktedatikhetwist,
liethijhetwaterbeven
enhetwerduitgewist.
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