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Preface

This report contains the proceedings of the 1st International Workshop on Confluence (IWC 2012). The
workshop was held in Nagoya on May 29, 2012 and collocated with the 23rd International Conference
on Rewriting Techniques and Applications (RTA 2012).

Recently there is a renewed interest in confluence research, resulting in new techniques, tool sup-
port as well as new applications. The workshop promotes and stimulates research and collaboration
on confluence and related properties. It encourages the presentation of new directions, developments,
and results as well as surveys and tutorials on existing knowledge in this area. In addition to original
contributions, the workshop solicited short versions of recently published articles and papers submitted
elsewhere.

IWC 2012 received 6 submissions. Each submission was reviewed by 3 program committee mem-
bers. After careful deliberations the program committee decided to accept all submissions, which are
contained in this report. Also included are (extended) abstracts of the invited presentations by Yoshihito
Toyama on Type Introduction for Confluence Proofs and Vincent van Oostrom on Decreasing Proof Or-
ders — Interpreting Conversions in Involutive Monoids. Furthermore, this report contains short descrip-
tions of the four tools that participated in the 1st Confluence Competition (CoCo 2012). This competition
ran live during the workshop and the results are available at http://coco.nue.riec.tohoku.ac.jp/
2012/.

Several persons helped to make IWC 2012 a success. We are grateful to the members of the program
committee and to Naoki Nishida and Masahiko Sakai of the organisation committee of RTA 2012 for
their work. A special thanks to Harald Zankl who made the live run of CoCo possible.

Innsbruck & Kanazawa, May 2012 Nao Hirokawa & Aart Middeldorp
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Decreasing Proof Orders*

Interpreting Conversions in Involutive Monoids

Vincent van Oostrom
Janskerkhof 13, 3512 BL Utrecht, Netherlands
Utrecht University, Department of Philosophy

Vincent.vanOostrom@phil.uu.nl

Abstract

We introduce the decreasing proof order. It orders a conversion above another conver-
sion if the latter is obtained by filling any peak in the former by a decreasing diagram.
The result is developed in the setting of involutive monoids.

Definition 1. An involutive monoid is a set endowed with an associative binary operation (c)
with identity element (e) and involutive anti-automorphism (i).

Examples 2. For a set of labels L, the strings over grave labels `̀ and acute labels ´̀ with
juxtaposition, mirroring (swapping marks), and empty string ε, give an involutive monoid L̂.
(We use ˆ̀ to denote ´̀ or `̀.) Setting i(a)↦ a turns any commutative monoid into an involutive
one, e.g. the free commutative monoid [L] over L with multiset sum ⊎ and empty multiset
[]. Natural number triples (n,m,k) with c((n1,m1, k1), (n2,m2, k2)) = (n1 + n2,m1 + k1 ⋅ n2 +
m2, k1 + k2), i((n,m,k)) = (k,m,n), and e = (0,0,0), give an involutive monoid A.

L̂ is the free involutive monoid over L and its elements correspond bijectively to the closed
normal forms over L of the term rewrite system (having unique normal forms) obtained by
completing the involutive monoid axioms into rules:

c(c(x, y), z) → c(x, c(y, z))
c(x, e) → x

c(e, x) → x

i(i(x)) → x

i(c(x, y)) → c(i(y), i(x))
i(e) → e

Definition 3. An involutive monoid is well-founded if it comes equipped with a well-founded
partial order, i.e. a transitive and terminating relation.

Examples 4. Let ≻ be a well-founded partial order on L, The multiset extension ≻mul of ≻
makes [L] a well-founded involutive monoid. Comparing triples by means of > on their second
component, turns A into well-founded involutive monoid. Terms over the signature L̂, assigning
arity zero to ε and other strings their length plus one, may be flattened to strings in L̂ by the
obvious inorder traversal map ♭. Conversely, splitting on ≻-maxima stratifies L̂ into terms:

ε♯ = ε

(s0 ˆ̀
1 . . . ˆ̀

nsn)♯ = ˆ̀
1 . . . ˆ̀

n(s♯0, . . . , s♯n)

with `1, . . . , `n all occurrences of labels ≻-maximal within the string. The set L of terms on
which ♯ and ♭ are each other’s inverse,1 gives an involutive monoid by defining its operations

*This is an extended abstract of a paper with the same title accepted for publication in TCS.
1 Their strings have pairwise ≻-incomparable labels and are related by the ≺-Hoare order.
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Decreasing Proof Orders V. van Oostrom

via those on L̂. It is made well-founded [2, Theorem 1]by the iterative lexicographic path order
»ilpo [2, Definition 2] induced by the relation » on the signature. The relation » is defined as the
lexicographic product of ≻mul and >, interpreting a string as the pair consisting of its multiset
of labels and its area, the image of the homomorphic extension of `̀ ↦ (1,0,0), illustrated in
Figure 1 for strings in {̂∗} writing Ó for ∗̀ and Ò for ∗́. Moreover, argument places are ordered

Figure 1: ÓÒÓÒ has area 1, ÒÓÓÒÓ has area 4, and ÓÒÒ has area 0

lexicographically by choosing an arbitrary but fixed total order on them compatible with the
marks: if the i + 1st label has a grave (acute) mark, then the ith argument place comes before
(after) the i + 1st .

Theorem 5. If ≻ is a well-founded partial order on L, then =≻+ makes L̂ a well-founded
involutive monoid, where the decreasing rewrite relation =≻ on L̂, is generated by all rewrite
rules on L̂ of shape (in EBNF):

´̀m̀ =≻ {(`≻)}[m̀]{(`,m≻)}[´̀]{(m≻)}

with (m≻) the set comprising all strings over marked labels κ̂ with m ≻ κ.

Proof. As =≻+ is transitive by definition, it remains to show termination. It suffices to show that
s1 ´̀m̀s2 =≻ s1ss2 entails (s1 ´̀m̀s2)♯ »ilpo (s1ss2)♯, if s is of shape {(`≻)}[m̀]{(`,m≻)}[´̀]{(m≻)}.
The proof is by induction on the length of the string distinguishing cases on whether `,m are
≻-maximal in s1 ´̀m̀s2.

� if both `,m are ≻-maximal then the head of (s1 ´̀m̀s2)♯ is »-related to the head of (s1ss2)♯;
by the shape of the =≻-rules either its multiset of labels ≻mul -decreases, or it stays the
same and its area decreases. By the footnote the head is »-related to all function symbols
in (s1ss2)♯;

� if neither ` nor m is ≻-maximal then the heads of (s1 ´̀m̀s2)♯ and (s1ss2)♯ as well as
all non-≻-maximal substrings other than the ones affected by the =≻-step, are the same.
We conclude by the induction hypothesis for the affected substrings and closure under
contexts of »ilpo ;

� if one of the labels is ≻-maximal, say w.l.o.g. the second m, and the other, `, is not, then
if the multiset of labels ≻mul -decreases we conclude as in the first item. Otherwise, the
multiset stays the same, but the interpretation of the substring before the occurrence of
m̀ in rewritten substrings, »ilpo-decreases as the =≻-rule enforces replacing ´̀ by a string
with labels in (`≻). The =≻-rule moreover enforces that the substring after the occurrence
of m̀ still only comprises labels to which some label in the head ≻-relates.

Example 6. Setting m ≻ `, κ, we have the decreasing =≻-rewrite sequence, where we have
underlined in each step the substring being replaced:

ḿκ̀´̀m̀ =≻¬
´̀ḿ´̀m̀ =≻

´̀ḿm̀`̀ =≻®
´̀̀̀ m̀ḿ`̀ =≻¯

´̀m̀ḿ`̀ =≻°
´̀m̀κ́´̀=≻± m̀κ́´̀

2
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Stratifying this =≻-sequence by means of ♯ yields the »ilpo-sequence:

ḿm̀(ε, κ̀´̀(ε, ε, ε), ε)
¾ilpo ¬ decrease of multiset at position 1

ḿm̀(´̀(ε, ε), ´̀(ε, ε), ε)
¾ilpo  decrease of multiset at position 1

ḿm̀(´̀(ε, ε), ε, `̀(ε, ε))
¾ilpo ® decrease of area at the root

m̀ḿ( ´̀̀̀ (ε, ε, ε), ε, `̀(ε, ε))
¾ilpo ¯ decrease of multiset at position 0

m̀ḿ(´̀(ε, ε), ε, `̀(ε, ε))
¾ilpo ° decrease of multiset at the root

m̀(´̀(ε, ε), κ́´̀(ε, ε, ε))
¾ilpo ± decrease of multiset at position 0

m̀(ε, κ́´̀(ε, ε, ε))

Note that in the »ilpo¬-step the subterm at position 0 increases, but this is not harmful since
it comes lexicographically after the subterm at position 1.

Definition 7. A family (→`)`∈L of rewrite relations is decreasing if its set L of labels comes
equipped with a well-founded partial order ≻. A rewrite relation → is decreasing if → = ⋃`∈L→`
for some family of rewrite relations (→`)`∈L that is decreasing with respect to some ≻, and every
pair of consecutive steps a ←` c →m b can be replaced by a conversion between a and b such
that mapping the conversions to L̂-strings by the maps →κ ↦ κ̀ and ←κ ↦ κ́ induces a =≻-step.

Viewing conversions as proofs in equational logic one may think of =≻ as inducing an order
on proofs which, in view of the above, we dub a decreasing proof order.

Corollary 8 ([3, Theorem 3]). A decreasing rewrite relation is confluent.

Proof. Given a conversion, choose any L-labelling of it. As long as it is not yet a valley, it can
be transformed by the decreasingness assumption. By definition this induces a =≻-sequence.
That ends by the theorem yielding a valley.
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Figure 2: Decreasingness of rewrite relation
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Example 9. The rewrite relation on the left in Figure 2 is decreasing hence confluent, as
verified by the rewrite family on its right, and Example 6.

On [3, p. 315] we wrote:

. . . one could be led to believe the decreasing diagrams technique is just the ‘sum
of Newman’s Lemma and the Lemma of Hindley–Rosen’. The following examples
show it is much more powerful . . .

Extant proofs [3, 1] shed no light on the dependencies between the two results. The present
proof combines their essential ingredients, the multiset of labels respectively the area of a string,
by means of the iterative lexicographic path order, and specialises to either by forgetting the
other ingredient.

References
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Type Introduction for Confluence Proofs
Yoshihito Toyama
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The confluence property is one of the most important properties of term rewriting systems,
and various criteria for proving this property have been widely investigated. A necessary and
sufficient criterion for confluence of terminating term rewriting systems was demonstrated by
Knuth and Bendix (1970). For non-terminating term rewriting systems, various sufficient crite-
ria for confluence of left-linear systems were presented by Rosen (1973), Huet (1980), Toyama
(1988), and van Oostrom (1997). However, few criteria have been proposed for confluence of
term rewriting systems that are non-left-linear and non-terminating. Thus, it is still worthwhile
studying criteria for these systems.

A powerful technique for showing confluence of non-left-linear non-terminating term rewrit-
ing systems is a divide-and-conquer method by type introduction. The confluence property is
persistent, that is, for any term rewriting systemR, R is confluent if and only if its typed system
Rτ is confluent (Aoto and Toyama 1997). Thus, persistency of confluence guarantees that if a
term rewriting system R is decomposed into small subsystems by introducing an appropriate
type and each of them is confluent then R is confluent. This divide-and-conquer method is
successfully used in the automated confluence prover ACP developed by Aoto et al. (2009).
However, if R is not decomposed into small subsystems by introducing types, this method does
not work.

A new technique for confluence proof based on persistency is recently developed by Suzuki,
Aoto and Toyama (2011), which can be applied to term rewriting systems that are not decom-
posed by introducing types. The idea is that the classification of terms by introducing types aids
in analyzing reduction sequences induced by rewrite rules. For instance, if the non-left-linear
variables of a rewrite rule has type σ and every term with type σ is terminating then under
some assumption these non-left-linear variables in the rewrite rule can be replaced with the
normal terms with type σ. This replacement transforms a non-left-linear rule into an infinite
number of left-linear rules, and the non-left-linear system is confluent if the obtained infinite
left-linear system is confluent. In this talk we will illustrate these type introduction techniques
for proving confluence of term rewriting systems.

N. Hirokawa & A. Middeldorp (eds.); 1st International Workshop on Confluence, p. 5 5





A Proof Order for Decreasing Diagrams∗
Bertram Felgenhauer

Institute of Computer Science, University of Innsbruck, Austria
bertram.felgenhauer@uibk.ac.at

Abstract

In this note we describe a well-founded proof order that entails the decreasing diagrams
technique, i.e., it orders peaks of locally decreasing diagrams above their joining sequences.
We also investigate an extension that promises to be useful for proving confluence modulo.

Unrelated to this proof order we also present an example showing that witnesses for
non-confluence can not always be found by starting from critical pairs alone, even for linear
TRSs.

1 Introduction

In this note we revisit the decreasing diagrams technique [8] for proving confluence. Our
confluence proof is based on a proof order, which we use to prove termination of the proof
transformation system defined by the locally decreasing diagrams. A similar approach is used
in the correctness proof for completion by Bachmair and Dershowitz [2]. The distinguishing
property of a proof order is that proof concatenation becomes a monotone operation, so that
admissibility of a proof transformation P ⇒ Q can be established by comparing P to Q. This
simplifies finding new proof transformations.

This work is also inspired by [6], where Jouannaud and van Oostrom define a well-founded
order on proofs in order to establish that local decreasingness implies confluence. However, it is
not monotone for concatenation, and therefore not a proof order. Hence they have to consider
whole proofs when showing that eliminating a local peak by a locally decreasing diagram results
in a decrease in the proof measure. Another influence comes from Aoto and Toyama [1], who
prove an abstract lemma for confluence modulo by proof rewriting arguments.

The remainder of this paper is structured as follows: In Section 2, we introduce our proof
order abstracted to proof strings. We use this order to re-prove validity of the decreasing
diagrams technique in Section 3. In Section 4, we explore admissible proof transformations that
are helpful for proving confluence modulo, leading to a generalization of a result by Ohlebusch [7].

In Section 5 we depart from the topic of proof orders and proving confluence and turn to
establishing non-confluence. An obvious idea for finding counterexamples to confluence is to
start with critical peaks and try to find reducts which are not joinable. It is well-known that
this is not sufficient for non-left-linear TRSs (Huet, [5]). We give an example that shows that
this approach is insufficient even for linear TRSs.

1.1 Preliminaries

For the whole paper, we fix a set of labels L equipped with a well-founded order �.
Given labels α, γ ∈ L, we define gα = {γ ∈ L | α � γ} and gα, γ = gα ∪gγ.

We use −→ ( à) to denote (symmetric) rewrite relations, with the usual convention that ←−,
←→, =−→, ∗−→ denote the inverse, symmetric closure, reflexive closure and reflexive, transitive
closure of −→, respectively. Given a family (−→

α
)α∈L and S ⊆ L, we let −→

S
=
⋃
α∈S −→α .

The lexicographic product of strict partial orders >1 and >2 is denoted by >1×lex >2, while
>mul is the multiset extension of >. We use {| and |} as brackets for multisets, e.g., {|α, α, γ|}.

∗This research was supported by the Austrian Science Fund (FWF) project P22467-N23.

N. Hirokawa & A. Middeldorp (eds.); 1st International Workshop on Confluence, pp. 7–13 7
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2 Ordering Proof Strings

This section is devoted to developing our proof order in an abstract setting, where instead of
rewrite proofs we consider only proof strings, abstracting from the objects of abstract rewrite
systems. The resulting proof string order is defined in two stages. First we map proof strings to
nested multisets of pairs. Then we compare these multisets by an order related to the recursive
path order.

Definition 1. We introduce proof strings, an abstract notation for proofs.

• A (proof) step is either a left step ←−α or a right step −→α , where α ∈ L. We define←→
S = {←−α ,−→α | α ∈ S} for S ⊆ L and use ←→α for variables ranging over steps (←→α ∈ ←→L ),
and α for the corresponding labels. We lift � to steps by letting ←→α � ←→γ iff α � γ.

• A (proof) string is a sequence of steps. The set of all proof strings is denoted by P , and ·
is the concatenation operation on strings. The empty proof is ε.

• The inverse (←→α )−1 of a step←→α is defined by (−→α )−1 =←−α and (←−α )−1 = −→α . This operation
extends to proof strings by ε−1 = ε, (P · ←→α )−1 = (←→α )−1 · P−1.

Remark 1. Together with inverse and concatenation, proof strings form an involutive monoid
(van Oostrom, IWC 2012).

Definition 2. A well-founded order � on strings is a proof string order if string concatenation
and inverse are strictly monotone, i.e., P � Q implies P · R � Q · R, R · P � R · Q and
P−1 � Q−1.

Next we show how proof strings are mapped to nested multisets.

Definition 3. We define operations [·]l, [·]r and [·]m, mapping proof strings to (nested) multisets
of pairs of steps and transformed strings, inductively as follows:

• [ε]l = ∅, [←−α · P ]l = {|(←−α , [P ]m)|} ∪ [P ]l, [−→α · P ]l = [P ]l, collecting left steps and the
transformations of the substring following each left step into a multiset.

• [ε]r = ∅, [P · −→α ]r = {|(−→α , [P ]m)|} ∪ [P ]r, [P · ←−α ]r = [P ]r, collecting right steps and the
transformations of their preceding substrings.

• [P ]m = [P ]l ∪ [P ]r.

Example 2. We have [←−α · −→γ ]m = {|(←−α , [−→γ ]m), (−→γ , [←−α ]m)|} = {|(←−α , {|(−→γ ,∅)|}), {|(−→γ , {|(←−α ,∅)|})|}.
The result of the transformation [·]m grows exponentially in the string length, but it is highly

redundant: each multiset occurring in [P ]m corresponds to a substring of P .

Lemma 4. The definition of [P ]m is symmetric. Formally, we have [P−1]m = ([P ]m)−1 and
[P−1]l = ([P ]r)−1, where the inverse on nested multisets is defined recursively by

s−1 = {|((←→α )−1, t−1) | (←→α , t) ∈ s|}
Proof. By induction on the length of P .

Definition 5. We order these multisets by�⊕, defined inductively: s �⊕ {|(←→γ1 , t1), . . . , (←→γm, tm)|}
if s �⊕ tj for 1 ≤ j ≤ m and s�mul t, where � = �×lex�⊕. Furthermore, we define the proof
string order �• as follows:

P �• Q iff [P ]m �⊕ [Q]m

8
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Lemma 6. The relations �⊕ and �• are well-founded partial orders.

Proof. We only have to establish that �⊕ is a well-founded order. First we show transitivity, i.e.,
that s �⊕ t �⊕ u implies s �⊕ u, by induction on u. Assume that u = {|(←→η1 , u1), . . . , (←→ηn , un)|}.
Now from t �⊕ u follows t �⊕ ui, hence s �⊕ ui by the induction hypothesis. Furthermore
with � = � ×lex �⊕, we have s �mul t �mul u, and therefore s �mul u by the induction
hypothesis, because the transitivity proofs for ×lex and ·mul only rely on the transitivity for
elements actually present in the pairs respectively multisets. Hence s �⊕ u, as claimed.

Now it remains to show that �⊕ is well-founded. In order to do that, we exhibit a relation
between �⊕ and the recursive path order with custom status as introduced by Ferreira [3]. To
this end, we define a signature F , a mapping [·]t of nested multisets to ground terms over F
and a lifting Λ on relations between terms over F as follows:

• F = P, where each proof string in F has its length as arity.

• [{|(←→α1 , s1), . . . , (←→αn, sn)|}]t = ←→α1 . . .
←→αn([s1]t, . . . , [sn]t), using any order of the multiset

elements.

• s >Λ t, if and only if sλ �mul t
λ, where [←→α1 . . .

←→αn(s1, . . . , sn)]λ = {|(←→α1 , s1), . . . , (←→αn, sn)|}
and � = �×lex >.

It is easy to see that Λ is a term lifting [3, Definition 3.16] and also a status [3, Definition
4.7]. Let �• be the rpo defined by this status, namely: s �• t iff s = ←→α1 . . .

←→αn(s1, . . . , sn),
t =←→γ1 . . .

←→γm(t1, . . . , tm) and

1. si = t or si �• t for some 1 ≤ i ≤ n, or

2. s�• tj for 1 ≤ j ≤ m and s�Λ
• t.

By the properties of rpo [3, Theorem 4.19], �• is well-founded. We conclude that �⊕ is
well-founded by noting that [P ]m �⊕ [Q]m implies [[P ]m]t �• [[Q]m]t, which can be shown by
unfolding the definitions of �⊕, [·]t and �•, using only the second case in the definition of �•.
Note in particular that each application [·]λ reverses one level of the transformation [·]t.
Remark 3. It would be nice to avoid the complications of using a general status for rpo. However,
both the lexicographic and the multiset comparisons are essential, and splitting the signature F
into several levels conflicts with the requirement that if s� f(t1, . . . , tn), then s� ti for all i.

Theorem 7. The order �• is a proof string order.

Proof. By Lemma 6, �• is a well-founded order. To see that string inverse is monotone with
respect to �•, apply Lemma 4 and observe that �⊕ is invariant under inversion of steps.

For concatenation we first prove that it is monotone in the second argument, i.e., Q �• Q′
implies P ·Q �• P ·Q′. We proceed by induction on the length of P . If P = ε, then there is
nothing to prove. Otherwise, there are two cases to consider, P = P ′ ·←−α and P = P ′ · −→α . Their
proofs are very similar, so we only handle the first case here.

Assume that P = P ′ · ←−α . We let � = � ×lex �⊕. We prove by induction on Q that
[←−α ·Q]m �mul [←−α ·Q′]m. Unfolding one level of [·]m, we can relate [←−α ·Q]m to [Q]m:

[←−α ·Q]m = {|(←−α , [Q]m)|} ∪ {|(←−γ , [R]m) | (←−γ , [R]m) ∈ [Q]m|}
∪ {|(−→γ , [←−α ·R]m) | (−→γ , [R]m) ∈ [Q]m|}.

We say that (←−γ , [R]m), (−→γ , [←−α ·R]m) are derived from (←−γ , [R]m), (−→γ , [R]m), respectively.

9
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We know by assumption that [Q]m �⊕ [Q′]m. Therefore, (←−α , [Q]m) � (←−α , [Q]m) (which
deals with the elements not derived from [Q]m or [Q′]m) and [Q]m �mul [Q′]m. The latter
multiset comparison can be established by comparing various elements of [Q]m and [Q′]m using
equality and�. These comparisons carry over to the derived elements in [←−α ·Q]m and [←−α ·Q′]m:
Let s = (←→γ , [R]m) ∈ [Q]m and t = (←→γ ′, [R′]m) ∈ [Q′]m. If s = t then the derived elements are
also equal. If s� t, there is only one interesting case: γ = γ′, s = (−→γ , [R]m) and t = (−→γ , [R′]m),
with derived elements s′ = (−→γ , [←−α ·R]m) and t′ = (−→γ , [←−α ·R′]m). Since R is a proper subproof
of Q, if [R]m �⊕ [R′]m, we conclude that [←−α · R]m �⊕ [←−α · R]m by the induction hypothesis.
This concludes the proof of [←−α ·Q]m �mul [←−α ·Q′]m.

Therefore, ←−α ·Q �• ←−α ·Q′ by definition and P ·Q �• P ·Q′ by the induction hypothesis.
Monotonicity of concatenation in its first argument now follows because Q �• Q′ implies

P−1 ·Q−1 �• P−1 · (Q′)−1. Inverting both sides yields Q · P �• Q′ · P .

3 Decreasing Diagrams

In this section, use the proof string order of Section 2 to give an alternative proof for the
conversion version of the decreasing diagram technique [8]. First we establish the corresponding
result for proof strings. We let S∗ be the Kleene star of S and S= = S ∪ {ε}.
Lemma 8. The proof strings corresponding to the peaks and joins of locally decreasing diagrams
are decreasing with respect to �•, that is,

1. if P =←−α and Q ∈ ←→gα∗ then P �• Q, and

2. if P =←−α · −→γ and Q ∈ (←→gα)∗ · (−→γ )= · (←−−→gα, γ)∗ · (←−α )= · (←→gγ)∗ then P �• Q.

Proof. In both cases we show that [P ]m �⊕ [Q]m by induction on the length of Q.

1. We have [Q]m = {|(←→γ1 , t1), . . . , (←→γn , tn)|} for some n,←→γi and ti. By the induction hypothesis,
the multisets ti satisfy [P ]m �⊕ ti, since they correspond to proper subproofs of Q. Because←−α � ←→γi in the precedence for all i, we conclude that {|(←−α ,∅)|} �⊕ {|(←→γi , ti) | 1 ≤ i ≤ n|},
which is equivalent to our claim, [P ]m �⊕ [Q]m.

2. We have
[P ]m = {|(←−α , {|(−→γ ,∅)|}), (−→γ , {|(←−α ,∅)|})|},

and for some G ∈ (←→gγ)∗ and A ∈ (←→gα)∗,

[Q]m = {| . . . , (←−α , [G]m), . . . , (−→γ , [A]m), . . . |}
with the (←−α , [G]m) or (−→γ , [A]m) elements possibly missing. For all elements (←→η , u) ∈ [Q]m,
u = [R]m for a proper subproof R of Q, and therefore [P ]m �⊕ u holds by the induction
hypothesis. All omitted elements are of the shape (←→η , u) with α � η or γ � η, and
compare less to one of (←−α , {|−→γ ,∅|}) or (−→γ , {|←−α ,∅|}) lexicographically. The remaining (up
to two) elements are also dominated by elements of [P ]m: By the first part of the proof,
(←−α , [G]m) is less than (←−α , [−→γ ]m) and (−→γ , [A]m) is less than (−→γ , [←−α ]m).

Theorem 9 ([8, Theorem 3]). We are given a family of abstract rewrite systems (−→
α

)α∈L.
Assume that all local peaks can be joined decreasingly, i.e., for all α, γ ∈ L,

←−
α
· −→
γ
⊆ ∗←→

gα
· =−→
γ
· ∗←−−→

gα,γ
· =←−
α
· ∗←→

gγ

Then −→
L

=
⋃
α∈L−→α is Church-Rosser.

10
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Proof. We map each rewrite proof to the string obtained by considering just the directions and
labels of the proof steps in the proof, mapping s←−

α
t to ←−α and s −→

α
t to −→α . If the rewrite proof

has a local peak, then we can replace it by the corresponding joining sequence from a decreasing
diagram. The strings P , corresponding to the local peak, and Q, for the joining sequence, satisfy
[P ]m �• [Q]m by Lemma 8. By monotonicity (Lemma 7), this comparison extends to the whole
proof string. Because �• is well-founded, this process must terminate in some normal form.
This normal form will be a valley proof that is equivalent to the original rewrite proof.

4 Towards Church-Rosser Modulo

In this section we sketch two approaches to deal with confluence modulo by mapping proofs to
proof strings. The first approach is to use the previously developed order directly. The second
approach is to extend the proof strings by introducing symmetric proof steps, α, and incorporate
them into the definitions of �•. Due to space constraints, we can only sketch it below. There
are many notions of confluence modulo (see [7]). We use the following one.

Definition 10. Let → and à be abstract rewrite relations, where à is symmetric. We say
that → is Church-Rosser modulo

∗
à if

(↔∪ à)∗ ⊆ ∗−→ · ∗à · ∗←−.
In the proof transformation setting, this means that whenever we have a subproof ← · →,

à · → or ← · à, we must be able to replace it by a different subproof.
First we sketch how one can use the order from Section 2 directly. Then all proof steps in à

must be directed and labeled. In that case, in addition to removing local peaks (except those
between à steps, i.e., from à · à) one also has to eliminate subproofs of the shape −→

α
· −→
γ

whenever −→
α

is a à step and −→
γ

is a → step. The following lemma shows that any proof in
∗←→

gα
· =−→
γ
· ∗←−−→

gα,γ
is a suitable replacement in this case.

Lemma 11. If P = −→α · −→γ and Q ∈ (←→gα)∗ · (−→γ )= · (←−−→gα, γ)∗, then P �• Q.

Proof. Similar to Lemma 8.
We have not yet investigated this approach in detail. In this note, Lemma 11 only serves as

a point of reference to show that introducing undirected proof steps is useful.
So let us turn to the second approach. We extend the order �• by introducing undirected

proof steps: Let α denote an undirected proof step that is symmetric: (α)−1 = α. For [·]m, in
addition to [·]l and [·]r, we need an operation [·]u that collects these undirected proof steps. So
we define

• [ε]l = ∅, [←−α · P ]l = {|(←−α , [P ]m)|} ∪ [P ]l, [−→α · P ]l = [P ]l, [α · P ]l = [P ]l,

• [ε]r = ∅, [P · −→α ]r = {|(−→α , [P ]m)|} ∪ [P ]r, [P · ←−α ]r = [P ]r, [P · α]r = [P ]r,

• εu = ∅, [α · P ]u = {|(α,∅)|} ∪ [P ]u, [←−α · P ]u = [P ]u, [−→α · P ]u = [P ]u, and

• [P ]m = [P ]l ∪ [P ]r ∪ [P ]u.

Variables ←→α can now equal α. Correspondingly we define
←→
S = {←−α ,−→α , α | α ∈ S}. Even with

these changed notions (which result in extended definitions for �⊕ and �•), Theorem 7 and
Lemmata 4, 8 and 11 remain valid. The following lemma shows how one can eliminate subproofs
of the shape α · −→γ .

11
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Lemma 12. Let P = α · −→γ . The following statements are true.

1. If Q ∈ (←−−−−→gα ∩gγ)∗ · (−→γ )= · (←→gγ)∗ · α · (←→gγ)∗ then P �• Q.

2. If Q ∈ (←→gα)∗ · (−→γ )= · (←−−→gα, γ)∗ then P �• Q.

Proof. Similar to Lemma 8.
Lemma 12 adds some flexibility over Lemma 11 (where we use a directed α step instead of

the undirected one), at the cost of reduced flexibility for eliminating peaks ←−α · −→γ (where again
we use a directed α step, but this time pointing left, cf. Lemma 8).

Theorem 13. Let L be a set of labels equipped with a well-founded order �. Furthermore, let
(−→
α

)α∈L and ( à
α

)α∈L be families of abstract rewrite relations, where each à
α

is symmetric. If

←−
α
· −→
γ
⊆ ∗⇐⇒

gα
· =−→
γ
· ∗⇐=⇒

gα,γ
· =←−
α
· ∗⇐⇒

gγ

and à
α
· −→
γ
⊆
(

∗⇐===⇒
gα∩gγ

· =−→
γ
· ∗⇐⇒

gγ
· à
α
· ∗⇐⇒

gγ

)
∪
(
∗⇐⇒

gα
· =−→
γ
· ∗⇐=⇒

gα,γ

)
,

for all α, γ ∈ L, where ⇐⇒
α

=←−
α
∪ à

α
∪ −→

α
, then −→

L
is Church-Rosser modulo

∗
à
L

.

Proof. The proof proceeds in the same way as that of Theorem 9: Whenever a given rewrite
proof contains a peak of the shapes ←−

α
· −→
γ

, à
α
· −→
γ

, or ←−
γ
· à
α

, we can find a replacement proof

by assumption. Considering the corresponding proof strings, the replacement is smaller than the
peak with respect to �•. This extends to the whole strings by monotonicity. By well-foundedness
of �•, this process will terminate. It is easy to see that the resulting normal forms are of the
shape ∗−→

L
· ∗à
L
· ∗←−
L

, which establishes Church-Rosser modulo.

Corollary 14 (Main Theorem of [7]). Let L be a set of labels equipped with a well-founded order
�. Furthermore, let (−→

α
)α∈L be a family of abstract rewrite relations and à be a symmetric

relation. Then −→
L

is Church-Rosser modulo
∗
à, if for all α, γ ∈ L

←−
α
· −→
γ
⊆ ∗−−→

gα
· =−→
γ
· ∗−−−→

gα,γ
· ∗à · ∗←−−−

gα,γ
· =←−
α
· ∗←−−

gγ

and à · −→
γ
⊆ ∗−−→

gα
· ∗à · ∗←−−

gα
· =←−
α
.

Proof. Apply Theorem 13 using L′ = L ∪ {⊥} with α � ⊥ for all α ∈ L as labels, and label all
à steps by ⊥.

As another instance of Theorem 13 we can obtain a key lemma for abstract Church-Rosser
modulo from [1]:

Corollary 15 ([1, Lemma 2.1]). Let (−→
α

)α∈L and ( à
α

)α∈L be families of abstract rewrite

relations, where each à
α

is symmetric. Then −→
L

is Church-Rosser modulo
∗
à
L

, if for all α, γ ∈ L,

←−
α
· −→
γ
⊆ ⇐=⇒

gα,γ
and à

α
· −→
γ
⊆ ⇐=⇒

gα,γ
.

12
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5 A Note on Witnesses for Non-Confluence

In this section we present an example of a linear, non-confluent TRS whose critical pairs are
nevertheless deeply joinable. Two terms s, t are deeply joinable if any reducts s→∗ s′, t→∗ t′
are joinable. The example shows that when looking for witnesses for non-confluence, it does not
suffice to look at reducts of critical pairs alone; some smarter technique is required in general.
Example 4. The TRS R consists of the rules

f(u(O), u(y))→ A O→ u(O) u(x)→ x f(x, y)→ f(x, u(y))
f(v(x), v(O))→ B O→ v(O) v(x)→ x f(x, y)→ f(v(x), y)

This TRS is not confluent since A ∗
R← f(O,O) →∗R B. There are 12 critical pairs, but they

originate from only 4 different sources. We consider each possible source in turn.

1. f(u(O), u(y)) (5 critical pairs). By induction we can show that any term reachable from
f(u(O), u(y)) is either equal to A or has shape f({u, v}∗(O), u∗(y)}), which in turn can be
reduced to A. Therefore, all the corresponding critical pairs are deeply joinable.

2. f(v(x), v(O)) (5 critical pairs). This is analogous to the previous case, swapping the
arguments of f and the roles of u and v.

3. f(x, y) (1 critical pair). From this source, we can reach only terms of shape f(v∗(x), u∗(y)),
which can all be rewritten to f(x, y).

4. O (1 critical pair). We can rewrite O to {u, v}∗(O), all of which reduce back to O.

Therefore, all critical pairs of R are deeply joinable as desired.
It has been pointed to the author that R is E-overlapping [4]. It is an interesting question

whether this can be avoided. Note, however, that existence of E-overlaps is undecidable.

Acknowledgments. The author is grateful to the anonymous reviewers for constructive
feedback on this paper, to Vincent van Oostrom for sharing and discussing related work on
involutive monoids, and to Aart Middeldorp and Harald Zankl for fruitful discussions.
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Abstract

We present a confluence criterion for term rewrite systems by relaxing termination
requirements of Knuth and Bendix’ confluence criterion, using joinability of extended crit-
ical pairs. Because computation of extended critical pairs requires equational unification,
which is undecidable, we give a sufficient condition for testing joinability automatically.

1 Introduction

Knuth and Bendix [8] showed that confluence of terminating TRSs is decidable by testing
joinability of critical pairs, which are induced by overlaps. In the case of non-termination,
several powerful techniques have been developed for proving confluence of left-linear systems
(cf. [1]). Still, proving confluence of TRSs that are both non-left-linear and non-terminating
remains challenging.

Results that tackle this setting can be roughly classified into three categories: First, by gen-
eralizing the notion of overlaps, one can formulate direct criteria that guarantee confluence [4].
The second approach is to decompose a TRS into smaller ones, show confluence of each of them
by existing criteria, and formulate modularity conditions to ensure that the union remains con-
fluent (cf. [1]). The third approach is to generalize Knuth and Bendix’ confluence criterion by
relaxing termination requirements to relative termination. A famous result here is Jouannaud
and Kirchner’s criterion for the Church-Rosser modulo property [6] based on extended critical
pairs. Geser [3] analyzed their proof to derive confluence criteria based only on syntactical
critical pairs.

We present a new confluence criterion that also relies on relative termination, and can be
applied to non-left-linear TRSs. The criterion requires to check joinability of extended critical
pairs, but we show that under certain conditions, joinability can be concluded from joinability
of syntactical critical pairs. With it, we are able to fully automatically prove confluence of
several non-terminating, non-left-linear TRSs, for which no known criteria exist.

2 Preliminaries

We assume familiarity with the basics of term rewriting ([2]).

Term Rewriting. Terms are inductively defined over a set F of fixed-arity function symbols,
and a set V of variables. A rewrite rule `→ r is a pair (`, r) of terms with Var(r) ⊆ Var(`) and
` 6∈ V. A TRS is a set of rewrite rules. An extended rewrite rule is a pair (`, r) of terms with
` 6∈ V, and an extended TRS (eTRS ) is a set of extended rewrite rules. We write ↓R for the
join relation→∗R · ∗R←. We write→R/S for→∗S · →R · →∗S . A TRS R is relatively terminating
over a TRS S or R/S is terminating, if →R/S is so.

∗This work is supported by the Grant-in-Aids for Young Scientists (B) 22700009 and Scientific Research (B)
23300005 of the Japan Society for the Promotion of Science. The full version of this abstract appeared as [7].
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Unification. Let S be a set of equalities (or a TRS) and s, t terms over variables X. An
S-unifier of s and t is a substitution σ such that sσ ↔∗S tσ. A substitution σ is S-more general
than a substitution σ′ on X (σ .X

S σ′), if there exists a substitution τ such that xσ′ ↔∗S xστ
for all x ∈ X. Let σ be an S-unifier of s and t. The substitution σ is an S-most general unifier
(S-mgu) of s and t, if σ is S-more general than any S-unifier of s and t on X. In the special
case of S = ∅, we simply speak of (syntactic) unification, unifiers and mgu’s. Note that in
general S-unifiability does not ensure the existence of an S-mgu.

Critical Pairs. Let R1,R2,S be eTRSs. An S-overlap (`1 → r1, p, `2 → r2)σ of R1 on R2

consists of a variant `1 → r1 of a rule in R1 and a variant `2 → r2 of a rule in R2, a non-
variable position p in `2 and a substitution σ, such that `1σ ↔∗S `2|pσ. If p is the root position
ε, then `1 → r1 and `2 → r2 may not be variants of each other. The pair (`2σ[r1σ]p, r2σ)
induced from the overlap is an S-extended critical pair (or simply S-critical pair) of `1 → r1
and `2 → r2 at p, written `2σ[r1σ]p R1←S ∝→R2 r2σ. We call ∅-overlaps syntactic overlaps
(or just overlaps). Remark that our definition of S-critical pairs includes pairs originating from
non-minimal unifiers, which are usually excluded from the definition to guarantee finiteness of
critical pairs. Knuth and Bendix’ criterion [8] states that a terminating TRS R is confluent if
R←∅ ∝→R ⊆ ↓R.

Let REN(t) denote a linear term resulting from replacing in t each variable occurrence by a
fresh variable. We write R̂ for the eTRS {REN(`) → r | ` → r ∈ R}. Two TRSs R and S are
strongly non-overlapping, denoted SNO(R,S), if Ŝ has no syntactic overlaps on R̂ and R̂ has no
syntactic overlaps on Ŝ. Consider, for instance, R = {f(x, x)→ a} and S = {f(g(x), x)→ g(x)}.
We have R̂ = {f(y, z) → a} and Ŝ = {f(s(y), z) → g(x)}. Because there is an overlap of R̂ on
Ŝ at the root position, SNO(R,S) does not hold. Note that there are no overlaps of R on S.

Decreasing Diagrams. We recall the decreasing diagram technique [10] which is a powerful
confluence criterion for abstract rewrite systems (ARSs). Let A = (A, 〈→α〉α∈I) be an ARS
and > a proper order on I. For every α ∈ I we write ∨−→α for {→β | β ∈ I and β < α}, and ∨−→∗α
for ( ∨−→α)∗. The union of ∨−→α and α

∨←− is denoted by ←−∨−→α. For α, β ∈ I, the union of ∨−→α and
∨−→β is written as ∨−→αβ . Two labels α and β are decreasing with respect to > if

α← · →β ⊆ ∨←→∗α· →=
β · ←−∨−→∗αβ · =

α← · ∗β←−∨−→

An ARS A = (A, 〈→α〉α∈I) is decreasing if there exists a well founded order > such that every
two labels in I are decreasing with respect to >.

Theorem 2.1 ([10]). Every decreasing ARS is confluent.

3 Confluence Criterion

We present a generalisation of Knuth and Bendix’ confluence criterion. Below, R and S stand
for TRSs.

Theorem 3.1. Suppose that S is confluent, R/S is terminating, and SNO(R,S). The union
R∪ S of the TRSs is confluent if and only if R←S ∝→R ⊆ ↓R∪S .

Note that Theorem 3.1 is equivalent to Knuth and Bendix’ criterion when taking S = ∅.
In order to prove the theorem we introduce an intermediate relation _, such that →R∪S ⊆
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s

t uv
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s2 s1
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t uv

s1 s2
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s1

∗ =
s1

s
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s1 s2

∨
s1

∗

(a) ∗S← · →∗S (b) RS← · →∗S (c) RS← · →RS
Figure 1: Decreasingness of _.

_ ⊆ →∗R∪S . Confluence of this intermediate relation readily implies confluence of R∪ S. The
relation _ is defined as the union of →RS and →∗S , where RS is the TRS

{`′σ → rτ | `′ρ→ r ∈ R and σ →∗S ρτ for some substitution ρ on V }
Here σ →∗S τ means that xσ →∗S xτ for all variables x. It is important to note that in the
definition linearity of `′ can be assumed without loss of generality, and that the inclusions
→R ⊆ →RS ⊆ →∗S · →R hold.

Proof of Theorem 3.1. Since the “only if”-direction is trivial, we only show the “if”-direction.
Assume R←S ∝→R ⊆ ↓R∪S . Because confluence of _ implies confluence of R ∪ S, according
to Theorem 2.1 it is enough to show decreasingness of _. Here we adopt the predecessor
labeling [10]: We write b _a c if a _∗ b _ c. Labels are compared with respect to →+

R/S ,
denoted by >. Since termination of R/S is presupposed in the theorem, the relation > forms
a well-founded order. Let t s1^ s _s2 u. We distinguish three cases. (a) If t ∗S← s →∗S u
then t →∗S v ∗S← u for some v. (b) If t RS← s →∗S u then t

∨̂_∗s v =
RS← u for some v. (c) If

t RS← s→RS u then t
∨̂_∗s u for some v. In all cases decreasingness is established, as seen in

Figure 1.
The next examples illustrate Theorem 3.1. Note that no existing confluence tool can prove

confluence of the involved TRSs automatically.

Example 3.2. Consider the TRS

1: f(x, x)→ (x+ x) + x 2: x+ y → y + x

Take R = {1} and S = {2}. One can easily verify SNO(R,S). Termination of R/S can be
established using a termination tool such as TTT2 v1.06 [9],1 and confluence of S follows from
orthogonality. Because of R←S ∝→R = ∅ ⊆ ↓R∪S , we conclude confluence by Theorem 3.1.

Example 3.3. Consider the TRS

1: f(x, x)→ s(s(x)) 2 : ∞→ s(∞)

Take R = {1} and S = {2}. As in Example 3.2, one can easily verify the conditions of
Theorem 3.1, including R←S ∝→R = ∅ ⊆ ↓R∪S . Hence the TRS is confluent.

Example 3.4. Consider the TRS

1: eq(s(n), x : xs, x : ys)→ eq(n, xs, ys) 3 : nats→ 0 : inc(nats)
2 : eq(n, xs, xs)→ T 4: inc(x : xs)→ s(x) : inc(xs)

1http://colo6-c703.uibk.ac.at/ttt2/
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Take R = {1, 2} and S = {3, 4}. Again, SNO(R,S), termination of R/S and confluence of S
are established. Moreover, one can show

R←S ∝→R = {(eq(s, t, u),T) | s, t, u are terms and t↔∗S u}
and thus the set is included in ↓R∪S . Hence by using Theorem 3.1 we conclude that R ∪ S is
confluent.

4 Joinability of S-Critical Pairs

The biggest challenge in applying Theorem 3.1 is to check R←S ∝→R ⊆ ↓R∪S automatically.
The standard approach is to compute a minimal complete set (see [2]) of S-unifiers for `1 and
`2|p for each combination of rules `1 → r1, `2 → r2 and a non-variable position p in `2. Then,
joinability of its induced critical pairs ensures joinability for all S-unifiers. However, depending
on S, the computation of minimal complete sets varies, and worse, minimal complete sets may
not even exist for S-unifiable terms.

We present a sufficient condition for the joinability of S-critical pairs without performing
specific equational unification algorithms. We call a term t strongly S-stable if for every non-
variable position p in t there are no term u and substitution σ such that t|pσ →∗S · ε−→S u.

Theorem 4.1. Let S be a confluent TRS. An mgu of strongly S-stable terms s and t is an
S-mgu of s and t.

When automating Theorem 3.1, confluence of S and SNO(R,S) can be assumed. The latter
condition implies strong S-stability of ` for all `→ r ∈ R. Therefore, according to Theorem 4.1,
a syntactical overlap by an mgu µ is also an S-overlap by S-mgu µ. Thus joinability of its
syntactical critical pairs implies joinability of S-critical pairs induced by any S-unifier.

Example 4.2 (continued from Example 3.4). We consider again the example with R = {1, 2}
and S = {3, 4}. Take the first and second rules renamed:

1 : eq(s(n), x : xs, x : ys)→ eq(n, xs, ys) 2 : eq(m, zs, zs)→ T

We know that there is an overlap between 1 and 2 at root position with the mgu µ = {m 7→
s(n), zs 7→ x : xs, ys 7→ xs}. Elsewhere, even S-overlaps cannot occur. The induced critical
pair (eq(n, xs, xs),T) is trivially joinable by the second rule. Hence R←S ∝→R ⊆ ↓R∪S holds.

5 Experiments

We implemented Theorem 3.1 together with Theorem 4.1. We employed TTT2 v1.06 [9] for
checking relative termination R/S. To check confluence of S, we used the existing three state-
of-the-art confluence provers: ACP v0.20 [1],2 CSI v0.1 [12],3 and Saigawa v1.2 [5].4 Since
termination of R∪S cannot be assumed, we only test joinability of S-critical pairs by at most
four rewrite steps from each side. By enumeration we searched for a suitable combination of R
and S. Our testbed consists of 32 non-left-linear non-terminating TRSs, which are taken from
the Confluence Problem Database (Cops Nos. 1–116)5 and Examples 3.2, 3.3 and 3.4. The tests
were single-threaded run on a system equipped with an Intel Core Duo L7500 with 1.6 GHz
and 2 GB of RAM using a timeout of 60 seconds.

2http://www.nue.riec.tohoku.ac.jp/tools/acp/
3http://cl-informatik.uibk.ac.at/software/csi/
4http://www.jaist.ac.jp/project/saigawa/
5http://coco.nue.riec.tohoku.ac.jp/

18



Confluence of Non-Left-Linear TRSs via Relative Termination D. Klein and N. Hirokawa

Table 1: Summary of experimental results (32 TRSs)
ACP ACP∗ CSI CSI∗ Saigawa Saigawa∗

confluence proved 12 19 7 15 0 10
timeout (60 sec) 0 0 5 5 0 0

The results are depicted in Table 1.6 Here columns ACP, CSI and Saigawa show results for
running the respective tools, and ACP∗, CSI∗ and Saigawa∗ show results when using the respec-
tive tool to show confluence of the S-part in Theorem 3.1. It should be noted, that the criteria
implemented by Saigawa apply only to left-linear systems, whereas CSI is able to show conflu-
ence of non-left-linear systems by order-sorted decomposition [12], and the implementation of
ACP includes criteria based on layer preserving and persistency decompositions, and the direct
criterion by Gomi et al. [1, 4].

We conclude by stating future work. We used relative termination to handle non-terminating
TRSs. However, relative termination still poses a strict restriction. We anticipate that the use
of critical pair steps [5] relaxes this restriction. Weakening the strong non-overlappingness
condition is another future work. Non-root-E-overlappingness [4] and persistence [11] would be
candidates for this.

Acknowledgements. We thank the anonymous referees for their valuable comments.

References

[1] T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems automatically.
In Proc. 21st RTA, volume 5595 of LNCS, pages 93–102, 2009.

[2] F. Baader and T. Nipkow. Term rewriting and all that. Cambridge University Press, 1998.

[3] A. Geser. Relative Termination. PhD thesis, Universität Passau, 1990. Also available as technical
report 91-03 of Ulmer Informatik-Berichte. Universität Ulm.

[4] H. Gomi, M. Oyamaguchi, and Y. Ohta. On the Church-Rosser property of root-E-overlapping
and strongly depth-preserving term rewriting systems. Trans. IPSJ, 39(4):992–1005, 1998.

[5] N. Hirokawa and A. Middeldorp. Decreasing diagrams and relative termination. Journal of Auto-
mated Reasoning, 47:481–501, 2011.

[6] J.-P. Jouannaud and H. Kirchner. Completion of a set of rules modulo a set of equations. SIAM
Journal on Computing, 15(4):1155–1194, 1986.

[7] D. Klein and N. Hirokawa. Confluence of non-left-linear TRSs via relative termination. In Proc.
18th LPAR, volume 7180 of LNCS, pages 258–273, 2012.

[8] D.E. Knuth and P. Bendix. Simple word problems in universal algebras. In Computational Prob-
lems in Abstract Algebra, pages 263–297. 1970.

[9] M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In Proc. 20th
RTA, volume 5595 of LNCS, pages 295–304, 2009.

[10] V. van Oostrom. Confluence by decreasing diagrams — converted. In Proc. 19th RTA, volume
5117 of LNCS, pages 306–320, 2008.

[11] R.M. Verma. Unique normal forms and confluence of rewrite systems: Persistence. In Proc. 14th
IJCAI, volume 1, pages 362–370, 1995.

[12] H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI – a confluence tool. In Proc. 23th CADE,
volume 6803 of LNAI, pages 499–505, 2011.

6Detailed results are available at http://www.jaist.ac.jp/project/saigawa/

19





IaCOP

Interface for the Administration of Cops∗
Christian Nemeth

University of Innsbruck, Austria
Harald Zankl

University of Innsbruck, Austria
Nao Hirokawa
JAIST, Japan

Abstract

IaCOP maintains the problems considered for the competition of confluence tools. It
allows the submission of new problems and supports automatic tagging of problems with
certain properties. Problems can be filtered by boolean combinations of tags and the web
interface comes with a mechanism to select problems for competitions.

1 Introduction

Beginning in the late 1980’s the increasing power of computer hardware gave a tremendous
boost to the area of automated deduction. Since then many tools have been developed to auto-
matically reason about properties of programs. Nowadays many of these tools are successfully
applied in software and hardware verification and are inevitable for the development of complex
systems.

To spur the development of these tools and to give fair comparisons between them dedi-
cated competitions take place regularly where tools compete against each other on a fixed (but
previously typically unknown) selection of problems. Dating back to 1996 CASC1 [4] has the
longest tradition among such competitions. In CASC several provers try to prove or disprove
validity of first-order logic formulas. Albeit undecidable in general, modern tools can establish a
result in surprisingly many cases automatically. The first edition of the SAT competition2 took
place in 2002 where various SAT solvers investigate satisfiability of propositional logic formulas.
Starting with a demo in 2003 the termination competition3 emerged where tools try to prove
(refute) termination of programs automatically. While in the early years programs have been
solely given as term rewrite systems nowadays termination of Prolog and Haskell programs as
well as Java Bytecode is considered [2]. Satisfiability modulo Theories (SMT) extends propo-
sitional logic with various theories (arrays, bit-vectors, linear arithmetic, . . . ) and in 2005 the
first SMT-COMP was conducted [1].

Obviously there are too many competitions to mention all of them but they have some prop-
erties in common. To make a competition thrilling a (large) database of interesting problems
is essential and to run a competition within e.g. one day a suitable selection of problems must
be performed. On the other hand tool authors want to test their tools on a subset of problems
satisfying some given properties.

In 2012 the first edition of CoCo4 (Confluence Competition) will be run during the 1st

International Workshop on Confluence, collocated with the 23rd International Conference on
Rewriting Techniques and Applications (RTA 2012). The input problems considered for this
competition—Cops,5 (Confluence Problems)—will be maintained by IaCOP, a web Interface

∗Supported by the Austrian Science Fund (FWF) P22467 and the Grant-in-Aid for Young Scientists (B)
22700009 of the Japan Society for the Promotion of Science.

1http://www.cs.miami.edu/~tptp/CASC/
2http://www.satcompetition.org/
3http://termcomp.uibk.ac.at
4http://coco.nue.riec.tohoku.ac.jp/
5http://coco.nue.riec.tohoku.ac.jp/cops/
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Figure 1: A confluence problem displayed in IaCOP.

for the Administration of Cops [3]. This paper describes the main features of IaCOP, a test
version of which is available from

http://termcomp-devel.uibk.ac.at/csam1779/12iwc

Cops is merely an archive of confluence problems (*.trs) in the old TRS syntax,6 and
even lacks directory structures. However, IaCOP allows the submission of new problems and
supports automatic tagging of problems with certain properties (see Figure 1). Problems can
be filtered by boolean combinations of tags and the web interface comes with a mechanism to
select problems for competitions. Hence IaCOP allows to maintain the database used for CoCo
but is independent from the actual software running the competition. We anticipate that this
design is more flexible and user friendly than combining both functionalities.

2 Features

IaCOP distinguishes between a plain user mode and an administrator mode. The functionality
for users comprises the submission of new problems, searching of problems and downloading
them. The administrator can (in addition) accept newly submitted problems, control the tag
setting, and can initiate a selection of problems for competitions (depending on random seeds).
Each item of the functionality is described in more detail below.

2.1 User Functionality

Submission: Users can upload single TRSs or zip archives in the old TRS syntax. The
correct syntax is evaluated upon upload and only well-formed TRSs are uploaded. Useful
auxiliary information (such as pointers to the literature or the origin of a problem) can be
submitted in the COMMENTS field.

Search: IaCOP allows to search the content of problems as well as their tags by a full text
search, i.e., words must be matched exactly. Search terms can be combined by boolean combi-
nations, i.e., conjunctions, disjunctions, and complement. Hierarchic grouping of expressions is
possible by braces.

6http://www.lri.fr/~marche/tpdb/format.html
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Example 1. The search string “terminating locally confluent” yields all problems with
tags terminating and locally confluent. To search problems that are neither left-linear nor
(known to be) terminating the search string “!left linear !terminating” is used. This
can also be expressed by “!{left linear OR terminating}” where braces are used to group
expressions.

Since some tags are undecidable (e.g. terminating, confluent), the lack of such a tag may
indicate that the problem does not have the property or that it is unknown if the problem
has this property. Hence problems are also tagged with the inverse (e.g. non terminating,
non confluent) if they are known not to satisfy the property. Consequently the search string
“!confluent !non confluent” yields all problems whose confluence status is unknown.

Download: The result set of any search can be downloaded either including the tag infor-
mation in the problem or without it. The former allows to process problems also outside of
IaCOP and the latter option is useful to provide test sets for competitions, where tools should
not make use of additional tag information.

2.2 Administrator Functionality

Tagging: To assist the administrator, IaCOP can employ external tools to compute the tags
of problems automatically. Those tools are started upon upload of a problem. Tags can also be
maintained manually by the administrator. Tags can be renamed and new tags can be added
to problems at any time.

Problem Management: Once new problems are submitted, the administrator gets notified
by email and can then decide to accept these problems into Cops. Afterwards they get attached a
unique id and become visible to standard users. While (for backwards compatibility) the actual
content of a problem cannot be changed—once it is accepted—this restriction does not apply
to tags. However, tags used for competitions (see below) cannot be changed.

Problem Selection: To select a subset of the Cops for competitions the administrator can
add a new manual tag in IaCOP. After providing a lower and an upper bound on the number
of selected problems and a list of random seeds (which influence the selection) IaCOP tags
problems for a competition. For fairness of the whole process the random seeds should be
contributed by the participants of the competition. For transparency the seeds and the result
of the selection are made public immediately and tags used for competitions cannot be changed
once attached to a problem.

3 Implementation

To couple the problems as loosely as possible to IaCOP no database is employed. Problem files
are stored in the file system of the server running IaCOP as plain text files. Tag information is
stored in the comment field of TRS problems. This allows the extraction of problems with all
existing tag information from IaCOP, maybe add new tags outside of IaCOP and import the
updated problems again.

Since problems are stored in plain text the search functionality is implemented by the
command line tool grep.
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4 Related Work

In this section we report on how other communities handle issues concerning the problem
database used for competitions. Our insight varies tremendously depending on the specific
competition and is reflected in the discussion below. Hence we only report on TermComp and
SMT-COMP for which we have submitted problems in recent years.

TermComp: Problems are submitted via Email and the steering committee decides which
problems are added to the database. We are not aware that any submission has ever been
rejected. However, submitted problems are not immediately available to the outside world.
Every now and then the current problems can be downloaded from the competition website.

SMT-COMP: Problems are submitted via Email and easy problems (which every tool could
solve) are ignored. Again, problems are not immediately available to others. However, typically
the benchmarks can be downloaded before the competition takes place.

For both competitions we are not aware of sophisticated search functionalities which allow
the user to extract a set of problems with specific properties.

Finally we mention the ongoing efforts of Stump, Sutcliff, and Tinelli to build StarExec,7 a
uniform platform for running and managing different competitions. The first edition of CoCo
will not be run on StarExec but we hope to use this great service already for its next edition.

5 Conclusion

This note presented IaCOP, an Interface for the Administration of Cops. IaCOP makes the
submission of new problems attractive to researchers via an online form and supports the
administrator in maintaining the database by automatic support for determining the values of
tags. Tags (as well as problem content) can be searched by a full text search, which allows to
filter problems with certain properties. Finally, IaCOP can select problems for a competition
based on a list of random seeds as input.

Concerning future work, one extension could be to run all current confluence provers on
newly submitted problems and show the result immediately to the one uploading these problems.
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suggestions. We thank the anonymous reviewers for their detailed and helpful comments.
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Abstract

We present simple use cases from compiler writing for the use of completion modulo an
equational theory, corresponding to the semantics of the target language.

1 Introduction

When working with rewrite systems that specify (and implement) compilers from a program
S in a source language through programs I in an intermediate language to programs T in a
target language, we are interested in divergent reductions like the following:

S I
Parse

// T
CodeGen

//

I ′

Optimize

��

T ′
CodeGen

//

Equivalence? Better?

��

(1)

Essentially, in compilers we often permit optimizations that optimize the intermediate language
programs I to I ′ in such a way that when we code generate then we get programs in the target
language T and T ′, which we hope to be semantically equivalent but also that the optimized
version is �better,� as shown by the two dotted relations at the right of (1), by some metric
such as time or space complexity or even code size.

The crsx system [5] is an implementation of higher order rewriting designed and used
speci�cally to implement compilers [4].1 One speci�c extension of crsx is to use completion

to implement optimizations, however, the optimizations that are injected into an unoptimizing
compiler typically do not preserve the rewrite relation, rather the optimized target programs
are expected to be both equivalent and better in the sense of (1) above.

In this extended abstract we give some simple examples of the kind of completion that we
have in mind, and hope to open a discussion of what the right framework for proceeding should
be!

2 Optimization by Completion

We consider some examples of translation systems with optimizations that introduce critical
pairs that are in principle not solvable yet where a completion procedure can be used to incor-
porate the optimization into a deterministic compiler.

1Formally, crsx is a generalization of the algebraic data types from term rewrite systems and the binding and
substitution mechanism of λ calculus, based on the contraction schemes of Aczel [1], developed as combinatory

reduction systems by Klop [2], solidi�ed with van Oostrom and van Raamsdonk [3].
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2.1 Notation. All rewriting examples are given in crsx [5] notation, where terms are built from
disjoint sets of variables v, x, . . . ∈ V, meta-variables m, . . . ∈M, and constructors F,C, . . . ∈ C
including literals ` ∈ L, using the syntax

t ::= p s (term)

p ::= | { k : t; . . . ; k : t } (properties)

k ::= x | ` (key)

s ::= v | m[t, . . . , t] | ` | c[b, . . . , b] (simple)

b ::= t | v · · · v . t (binder)

(using just the meta-symbols ::= and |). Terms always allow an optional properties pre�x p,
which contains key-value pairs where the key can be a variable or a literal. A term can be
a variable, a meta-application m[t1, . . . , tn] or a construction c[b1, . . . , bn], where constructions
di�er from most other higher-order formalisms in that the only place where binders are allowed
is in the b constructor arguments; these can take the form v1 · · · vn . t to bind v1, . . . , vn in the
t subterm.2 The only di�erence with actual crsx syntax is that fonts are signi�cant: we use
metan and Primitive, where actual crsx syntax has #meta_n and $Primitive, respectively.
In addition, like crsx, we permit sort declarations as shown below and write lists of values in
�;-terminated� form, i.e., () is the empty list and (1; 2; 3; ) the list of the three integer literals
1, 2, and 3, which is right recursive, so (1; 2; ) = (1; (2; ())) .

2.2 Example. Consider the following simple crsx sorts.

n ::= Z | S[n] ; //usual Peano natural number sort
op ::= + | − | × ; //arithmetic operation sort

e ::= Op[op,e,e] | Nat[n] ; //expression sort
c ::= List[ins] ; //code sort is list of stack instructions (INS; ...INS; )
ins ::= OP[op] | NAT[n] ; //stack instruction sort

With these we can de�ne a translation scheme T with two arguments: an expression e and the
�trailing� code fragment c.

T[e,c] :: c ; //compilation scheme from expression (and tail code) to code.
T[Nat[n], c] → (NAT[n];c) ;
T[Op[op,e1,e2], c] →T[e1,T[e2, (OP[op];c)]] ;

The compiler translates simple Peano arithmetic expressions to equivalent stack code: rewriting
the term T[e, ()] will rewrite to the stack code for the expression e. For example,

T[Op[× ,Nat[S[Z]],Op[+,Nat[Z],Nat[S[S[Z]]]]], ()]
→T[Nat[S[Z]], T[Op[+,Nat[Z],Nat[S[S[Z]]]], (OP[× ]; )]]
→ (NAT[S[Z]]; T[Nat[], T[Nat[S[S[Z]]], (OP[+]; OP[× ]; )]])
→ (NAT[S[Z]]; NAT[Z]; NAT[S[S[Z]]]; OP[+]; OP[× ]; )

as expected. At this point, the evaluator of the stack computation takes over, and computation
of the stack can be speci�ed. The rules for the T scheme is a constructor system, with T
the only function symbol and all other (including the hidden �nil� and �cons� of lists) as data
constructors. Thus the system is trivially orthogonal and thus con�uent.

2As usual when dealing with higher order terms with binders, the syntax really just de�nes �pre-terms� and
we have to specify the renaming (α-)equivalence classes of terms, however, this introduces no surprises.
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2.3 Example. Add the following optimization rules to Example 2.2:

Op[+,Nat[Z],n] →n ;
Op[× ,Nat[S[Z]],n] →n ;

Then the system is no longer con�uent as we also have

T[Op[× ,Nat[S[Z]],Op[+,Nat[Z],Nat[S[S[Z]]]]], ()]
→T[Op[+,Nat[S[S[Z]]],Nat[Z]], ()]
→T[Nat[S[S[Z]]], ()]
→NAT[S[S[Z]]]

Clearly (from a compiler standpoint) a better result for run-time, and an equivalent result
modulo the (runtime) evaluation rules for the stack code.

To proceed with completion, we need to know how to orient the critical pairs. Here is one
critical pair:

T[Op[+,Nat[Z] , e ] ,c ]

(OP[+];T[Nat[Z] ,T[e, ()]])
}}||

||
|

T[e,c ]
$$IIIIIIIIIIII

It turns out that optimizations of this kind are between data terms and thus this allows us
to pick the direction for the critical pair: essentially all optimizations �win� by giving priority
to the data symbols; this works simply because using function rules proceed towards the end
result whereas the data rules rewrite the source code, providing opportunities for improvement.
Since all overlaps will be between an (original) function rule and one of the added rules that
are temporarily demoting the system to a non-constructor system. If completion proceeds, we
get the following replacement rules for T[Op[ . . . ]. . . ]:

T[Op[+,Nat[Z],e2], c] →T[e2,c] ;
T[Op[+,Nat[S[n1]],e2], c] →T[Nat[S[n1]],T[e2, (OP[+];c)]] ;

T[Op[−,e1,e2], c] →T[e1,T[e2, (OP[−];c)]] ;

T[Op[× ,Nat[Z],e2], c] →T[e2,c] ;
T[Op[× ,Nat[S[n1]],e2], c] →T[Nat[S[n1]],T[e2, (OP[× ];c)]] ;
T[Op[× ,Nat[S[S[n1]]],e2], c] →T[Nat[S[S[n1]]],T[e2, (OP[× ];c)]] ;

The next example uses property sets, including the extensions for patterns.

2.4 Example. We'll consider a crsx system for translation of list functions to a minimal
assembly language. First the data sorts declaration for input expressions and output assembly
code:

// Expressions.
e ::= v | Int[integer] | Str[String] | Nil | Seq[e,e] | IfNil[e,e,e] | Let[e,e.e] ;

// Assembly code.
{e:ar}a ::= List[ai] ;
ai ::= L[al] | J[al] | PU | POJN[al] | POR[ar] | SR[ar] | SI[integer] | SS[String] ;
al ::= label ;
ar ::= register ;
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The assembly language instructions are meant to be Label, Jump, PUsh, POpJumpNil, POpReg-
ister, SendRegister, SendInteger, and SendString; the idea with the assembly language is that
the Push instruction pushes a new empty sequence context and that Send instructions send
a value to the sequence at the top of the stack, which is tested or stored when pop'd. The
declarations also establish that we use the built-in lists to compose assembly code, and that
both labels and registers are represented using free variables.

2.5 Example. We will compile expressions to assembly with rules for a T translation scheme,
as before, where the initial expression is meant to be something like (PU; {in : ri; out : ro}
T[e, (POR[ro ] ; )]) .

{s ? v: r}T[v,a] → (SR[r]; a) ;
{s ?¬ v}T[v,a] → (SS["Error"]; a) ;

The two rules express the translation rules for a variable v. In the �rst rule the environment s
is constrained to contain a mapping from v to a register r, and in that case the assembly code
is merely to send the register value to the stack top sequence. If the variable is not mapped
as a key in the environment, as captured by the rule with a ¬ v, then the result is the string
"Error".

To translate sequences we echo the computed values to the stack top sequence:

{s}T[Nil,a] →a ;
{s}T[Seq[e1,e2],a] → {s}T[e1, {s}T[e2,a]] ;

The rule for conditionals introduce �fresh� free variables into the term for the needed labels f
and � , which must be declared. A fresh variable is a usual variable introduced without a binding
as a globally unique variable; since there is no binder it can never be substituted. Otherwise
the test is merely whether the generated stack top sequence is empty with the usual jumps and
labels to select the appropriate code and continue with the trailing code afterwards.

−[Fresh[f,� ]] :
{s}T[If[e,e1,e2],a]
→ (PU; {s}T[e, (POJN[f ]; {s}T[e1, (J[� ]; L[f ]; {s}T[e2, (L[� ]; a)])])]) ;

Finally, the rule for local binding:

−[Fresh[x, r]] :
{s}T[Let[e1, v1.e2[v1]],a] → (PU; {s}T[e1, (POR[r]; {s ! x: r}T[e2[x],a])]) ;

Here a fresh variable x is introduced as an e place holder for the computed values as well as a
fresh register r for the actually computed value, and the environment that associates them is
extended to map (the fresh copy of) the variable to the fresh register and then passed to the
compilation of e2 [x ] .

2.6 Example. Completion examples grow more interesting when higher-order constructs are
involved. Consider these two optimizations of the Let construct:

If[Nil,e1,e2] →e2 ;
Let[e, x.x] →e ;
Let[e1, x1.e2[]] →e2 ;

The �rst merely states that trivial Lets should be eliminated. The second, however, uses the
occurs check feature (from CRS) that when a bound variable is not mentioned in the pattern
meta-application, then it is not permitted, which corresponds to eliminating �dead� Let binders.
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Adding these two rules completes to the following, which, in addition to 6≡ uses a special ! v1
pattern substitute, which denotes that the variable v1 must occur inside the term that matches
e2 [ ! v1 ] (as the complement to the pattern e2 [] ).

{s}T[If[Nil,e1,e2],a] → {s}T[e2,a]
−[Fresh[f,� ]] :
{s}T[If[e 6≡Nil,e1,e2],a]
→ (PU; {s}T[e, (POJN[f ]; {s}T[e1, (J[� ]; L[f ]; {s}T[e2, (L[� ]; a)])])]) ;

{s}T[Let[e, x.x],a] → {s}T[e,a] ;
{s}T[Let[e1, x1.e2[]],a] →e2,a] ;
−[Fresh[x, r]] :
{s}T[Let[e1, v1.e2[ ! v1] 6≡ v1],a] → (PU; {s}T[e1, (POR[r]; {s ! x: r}T[e2[x],a])]) ;

2.7 Example. The previous rules can, for example, be used for the following rewrite:

(PU; {in: ri; out : ro}T[Let[If[Nil, Nil, in], x.x], (POR[ro]; )])
→ (PU; {in: ri; out : ro}T[If[Nil, Nil, in], (POR[ro]; )])
→ (PU; {in: ri; out : ro}T[in, (POR[ro]; )])
→ (PU; SR[rin]; POR[ro]; )

(The program merely copies the input register to the output register.)

3 Conclusion

The examples show how completion is used to integrate optimizations into a compiler. Rather
than conclude, I would like to open a discussion: can completion be suitably generalized to
capture this case? Can the semantics of the target language, which we have not shown here, be
used to direct the completion such that general equivalences can be exploited as optimizations?

Acknowledgements. The author is grateful to Cynthia Kop for implementing the bulk of
the completion procedure in crsx while visiting Watson in 2011, enabling experiments like I
describe here also for real compilers with thousands of rules. Finally thanks to the referees for
several helpful suggestions.
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1 Introduction

Solving the word problem requires to decide whether an equation s ≈ t follows from an equa-
tional system (ES) E . By Birkhoff’s theorem this is equivalent to the existence of a conversion
s ↔∗E t. Knuth-Bendix completion [5] (if successful) gives a decision procedure: If an ES E is
transformed into an equivalent convergent term rewrite system (TRS) R, then s ↔∗E t iff the
R-normal forms of s and t coincide. (Note that completion does not construct such conversions
explicitly.)

Example 1. For E = {ff ≈ f, ggf ≈ g} (where f and g are unary function symbols, for
which we find it convenient to abbreviate f(g(f(x))) to fgf etc.) a possible choice of R is
{ff → f, gf → g, gg→ g}. Since fgf →∗R fg ∗

R← fgg, we have that fgf ≈ fgg follows from E .

When we want to answer/certify whether s ↔∗E t, we face the following situation: (1) It
is hard to find a conversion but easy to certify a given one. (2) Under the assumption that
Knuth-Bendix completion is successful, it is easy to decide the existence of a conversion (just
rewrite s and t to R-normal forms) but hard to certify this decision (e.g., by certifying that E
and R are equivalent).

In this paper we introduce recording completion, which overcomes both problems. Recording
completion keeps a history that allows us to reconstruct how the rules in R have been derived
from the equations in E . Then, from a join s →∗R · ∗R← t a conversion s ↔∗E t can be
reconstructed. Furthermore, recording completion enables the certification of completion proofs,
i.e., to check that R and E are equivalent. Using equivalence together with confluence and
termination certificates, it is also possible to certify that a conversion s↔∗E t does not exist.

In addition to formalizing all required theorems like the critical pair theorem and soundness
of completion, we have proven two new results: For finite completion proofs, i.e., where the
completion procedure stops successfully after a finite number of steps, the strict encompassment
condition (in the collapse-rule of Figure 1) is not required. Moreover, an infinite set of variables
is essential for the critical pair theorem as well as modularity of confluence [8].

2 Proof Construction via Recording Completion

We extend the inference rules of completion [1] by a history component which allows us to
infer how rules in R have been derived from equations in E . The construction of a conversion
s↔∗E t (if possible at all) is then executed in three phases: (record) The inference rules of
recording completion (see Figure 1) are applied to the ES E . Upon success, a convergent
TRS R (equivalent to E) and a history H (recording how the rules in R have been derived)
are computed. (compare) If the previous phase is successful, the test for s→∗R · ∗R← t is
performed. (recall) If the previous phase is successful, we construct s↔∗E t from s→∗R · ∗R← t.

∗Supported by Austrian Science Fund (FWF): P22467, P22767, J3202, and a grant by Hypo Tirol Bank.
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(E ,R,H)

(E ∪ {m : s ≈ t},R,H ∪ {m : s
j← u

k→ t})
(deduce) if s R

j← u
k→R t

(E ∪ {i : s ≈ t},R,H)
(E ,R∪ {i : s→ t},H)

(orientl) if s > t

(E ∪ {i : s ≈ t},R,H ∪ {i : s j◦1 u k◦2 t})
(E ,R∪ {i : t→ s},H ∪ {i : t (

k◦2)−1 u (
j◦1)−1 s})

(orientr) if t > s

(E ∪ {i : s ≈ t},R,H)

(E ∪ {m : u ≈ t},R,H ∪ {m : u l← s
i→ t})

(simplifyl) if s l→R u

(E ∪ {i : s ≈ t},R,H)

(E ∪ {m : s ≈ u},R,H ∪ {m : s i→ t
l→ u})

(simplifyr) if t l→R u

(E ∪ {i : s ≈ s},R,H ∪ {i : s ◦1 v ◦2 s})
(E ,R,H)

(delete)

(E ,R∪ {i : s→ t},H)

(E ,R∪ {m : s→ u},H ∪ {m : s i→ t
j→ u})

(compose) if t
j→R u

(E ,R∪ {i : s→ t},H)

(E ∪ {m : u ≈ t},R,H ∪ {m : u
j← s

i→ t})
(collapse) if s

j→R u

Figure 1: The inference rules of recording completion.

In the sequel we give more details for each of the phases.

Record. The record phase uses the inference rules from Figure 1 where every rule/equation is
annotated by a unique index i. Here, i→R denotes an R-reduction using the rule with index i.
The inference rules are similar to the standard rules except for the following two differences: In
the collapse-rule we dropped the condition of strict encompassment. Since we only consider finite
runs, this condition is no longer required for soundness (cf. Theorem 1). Furthermore, there is
a new history component H whose entries are of the form i : s

j◦1 u k◦2 t where i is the index of
the entry, j and k are indices of equations/rules, s, u, and t are terms, and ◦1, ◦2 ∈ {←,→,≈}.

Let us take a closer look at the extended inference rules. For deduce the peak s
j←R u

k→R t
that triggers the new equation s ≈ t is stored in a history entry (where m is assumed to be a
fresh index that is larger than every earlier index). By orientl we orient an equation from left
to right and the corresponding history entry remains unchanged, whereas by orientr we orient
an equation from right to left and thus have to “mirror” the corresponding history entry. Here
> is a reduction order, which is part of the input. The rules simplifyl and simplifyr are used to
R-rewrite a left- or right-hand side of an equation. With delete we remove trivial equations
from E and the corresponding history entry from H. Finally, compose rewrites a right-hand side
of a rule in R while collapse does the same for left-hand sides.

We write (Ei,Ri,Hi) ; (Ei+1,Ri+1,Hi+1) for the application of an arbitrary inference rule
to the triple (Ei,Ri,Hi) resulting in (Ei+1,Ri+1,Hi+1).

Definition 1. A run of recording completion for E is a finite sequence (E0,R0,H0) ;n

(En,Rn,Hn) of rule applications, where E0 = {i : s ≈ t | s ≈ t ∈ E} with fresh index i
for each equation, R0 = ∅, and the initial history is H0 = {i : s i→ t

0≈ t | i : s ≈ t ∈ E0}. A
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E0 R0 H0

1: ff ≈ f ∅ 1: ff
1→ f ≈ f

2: ggf ≈ g 2: ggf
2→ g ≈ g

(a) Initial state.

En Rn Hn

∅ 1: ff → f 1: ff
1→ f

0≈ f

4: gf → g 2: ggf
2→ g

0≈ g

5: gg→ g 3: ggf
1← ggff

2→ gf

4: gf
3← ggf

2→ g

5: gg
4← ggf

2→ g

(b) Final state.

Table 2: Example of recording completion.

run is successful if En = ∅ and all critical pairs of Rn that are not contained in
⋃

i≤n Ei are
joinable by Rn. A run is sound if Rn is convergent and equivalent to E0.

The requirement on critical pairs for a successful run can be replaced by local confluence of
Rn.

Example 2. Recall E from Example 1. We start with the triple depicted in Table 2(a) and
perform recording completion. Note that LPO with empty precedence orients all emerging
rules in the desired direction. After orienting rules 1 and 2 from left to right we deduce a
critical pair between rules 2 and 1, resulting in the equation 3 : ggf ≈ gf and the history entry
3 : ggf

1←ggff
2→gf. Next we simplify the left-hand side of equation 3 by an application of rule 2

and obtain the equation 4 : g ≈ gf with corresponding history entry 4 : g
2←ggf

3→gf. Orienting
rule 4 from right to left causes the history entry to be mirrored, i.e., 4 : gf

3←ggf
2→g. Rules 2

and 4 allow to deduce equation 5 : gg ≈ g with history 5 : gg
4←ggf

2→g, which we orient from left
to right. Collapsing the left-hand side of rule 2 with rule 5 yields 6 : gf ≈ g with 6 : gf

5←ggf
2→g.

Now rule 4 simplifies equation 6 into 7 : g ≈ g with 7 : g
4←gf

6→g, which is immediately deleted
afterwards. Finally, En is empty and as all remaining critical pairs of Rn are joinable, the
procedure can be stopped. Since there is no rule with index 6, the history entry 6 can be
dropped. Hence, we obtain the result depicted in Table 2(b) where Rn is convergent and
equivalent to E0.

We have formalized soundness of recording completion in IsaFoR [7] (see Completion.thy).

Theorem 1. Every successful run of recording completion is sound.

Compare. Let (E ,∅,H0) ;n (∅,R,Hn) be a successful run of recording completion and
s ≈ t an equation. In the compare phase we test joinability of the terms s and t with respect
to R. If the two terms are joinable, then s ≈ t follows from E and the next phase constructs an
E-conversion s↔∗E t. Otherwise, s 6≈ t w.r.t. E . The compare phase is sound (cf. Theorem 1).

Recall. Let (E ,∅,H0) ;n (∅,R,Hn) be a run of recording completion. Then the recall
phase transforms a join s→∗R · ∗R← t into a conversion s↔∗E t as follows. For each step t1

i→t2
where the index i is not in E the corresponding history entry is inserted. Let i : ` → r be
the rule with index i. Then there must be a history entry i : `

j◦1 u k◦2 r, a position p, and a
substitution σ such that t1|p = `σ and t2|p = rσ. The step t1

i→t2 is replaced by the conversion
t1

j◦1 t1[uσ]p
k◦2 t2. This process terminates since i > j, k, i.e., any history entry (not in H0)

refers to smaller indices and finally we arrive at a conversion using indices from E .
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The next lemma states the desired property of the recall phase. Note that we do not need
a successful run of recording completion but any join s→∗R · ∗R← t is transformed into s↔∗E t.
Lemma 1. Let (E ,∅,H0) ;n (En,R,Hn) be a run of recording completion. Then the recall
phase transforms any join using rules from R into a conversion using rules from E.

Alternatively, one can ensure ↔∗R ⊆ ↔∗E to derive s ↔∗E t from s →∗R · ∗R← t. The former
can be established by showing that all history entries i : s′

j◦1u k◦2t′ are consequences of E (i.e.,
s′ ↔∗E t′) and can thus be used as auxiliary equations. To avoid cyclic references, history
entries are processed in order of their indices. This approach requires the certifier to support
such auxiliary equations. In return, proofs become much shorter as the history itself is the
proof of↔∗R ⊆ ↔∗E which obviously has linear size. In contrast, the recall phase might produce
certificates where the conversion s↔∗E t is exponentially larger than the join s→∗R · ∗R← t.

3 Formalization and Certification

To maximize the reliability of the computed results, we have developed a verified certifier
using the proof assistant Isabelle/HOL. Based on IsaFoR [7] the code generation facilities of
Isabelle/HOL allow to generate the verified certifier CeTA, which is able to certify or falsify
conversions, completion proofs, and equational proofs and disproofs which are performed via
completion.1 For the latter, although Theorem 1 has been formalized, it is not checked whether
the completion rules are applied correctly. Instead it is just verified if the result of the completion
procedure is a convergent TRS equivalent to the initial set of equations.

To decide whether s↔∗E t holds it suffices to find a convergent TRS R that is equivalent to
E and decide whether the R-normal forms of s and t coincide.

For equivalence of R and E we have to consider two directions. To decide ↔∗E ⊆ ↔∗R, by
convergence of R we just have to check that for all s ≈ t ∈ E , the R-normal forms of s and t
coincide. For the other direction, ↔∗R ⊆ ↔∗E , we have to guarantee ` ↔∗E r for all ` → r ∈ R.
Here, we use the information from recording completion to get the required derivations.

Hence, to certify that such a proof is correct we have to guarantee that R is convergent by
showing termination and local confluence. Concerning termination, already several techniques
have been formalized in IsaFoR. Hence, the new part is on the certification of local confluence.
Here, the key technique is the critical pair theorem of Huet [3]—making a result by Knuth and
Bendix [5] explicit. It states that R is locally confluent iff all critical pairs of R are joinable.

During the formalization we detected that in general (no assumption on the set of vari-
ables V) there is a problem of renaming variables in rules for building critical pairs. To solve
this problem without demanding an infinite set of variables, we see two alternatives: Either
keep the set of variables and when building critical pairs try to rename variables apart as good
as possible; or use an enlarged set of variables in the definition of critical pairs (so that there
are enough variables to perform renamings). It turns out that for both alternatives the critical
pair theorem does not hold.

For the first alternative it is easy to see that joinability of critical pairs does not imply local
confluence. To this end, consider V = {x} and R = {f(a, x)→ a, f(x, b)→ b}. This TRS is not
locally confluent due to the peak a← f(a, b)→ b. But without changing V it is not possible to
rename the variables of the two rules in R apart, such that their left-hand sides are unifiable.
Hence, for the first alternative all critical pairs are joinable.

1Both IsaFoR and CeTA are freely available from http://cl-informatik.uibk.ac.at/software/ceta/.
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R1

f(g(x1, x2), g(x3, x4)) → h(x1, h(x2, g(x3, x4)))
f(g(g(x1, x2), g(x3, x4)), x5) → h(x5, h(g(x1, x2), g(x3, x4)))

R2

h(g(t, x1), h(x2, x3)) → c
h(g(x1, t), h(x2, x3)) → c
h(x1, h(g(t, x2), x3)) → c
h(x1, h(g(x2, t), x3)) → c
h(x1, h(x2, g(t, x3))) → c
h(x1, h(x2, g(x3, t))) → c

R3

h(g(y, x1), h(g(x2, x3), g(x4, x5))) → c
h(g(x1, y), h(g(x2, x3), g(x4, x5))) → c
h(g(x1, x2), h(g(y, x3), g(x4, x5))) → c
h(g(x1, x2), h(g(x3, y), g(x4, x5))) → c
h(g(x1, x2), h(g(x3, x4), g(y, x5))) → c
h(g(x1, x2), h(g(x3, x4), g(x5, y))) → c

R4

h(x1, c) → c

Table 3: Rule schema for Rc with y ∈ V and t ∈ {c, f(x4, x5), g(x4, x5), h(x4, x5)}.

For the second alternative, R may be locally confluent although not every critical pair is
joinable: the next example shows that if V is finite and R is locally confluent, then it need not
be the case that all critical pairs of R are joinable.

Example 3. Let Rc =
⋃4

i=1Ri be the TRS over F = {f, g, h, c} and V = {x1, . . . , x5} depicted
in Table 3. It is constructed in such a way that each term h(g(t1, t2), h(g(t3, t4), g(t5, t6))) can
be reduced to c (via R2 if some ti is not a variable and via R3 if ti = tj for i < j). Since there
are only five different variables in V, indeed every term h(g(t1, t2), h(g(t3, t4), g(t5, t6))) can be
reduced to c. Moreover, all critical pairs, for which one of the rules is taken from Rc \ R1, are
joinable. Hence, the only critical pair that remains to be considered arises between the two
rules of R1 where u = f(g(g(x1, x2), g(x3, x4)), g(x5, x6)):

h(g(x1, x2), h(g(x3, x4), g(x5, x6)))← u→ h(g(x5, x6), h(g(x1, x2), g(x3, x4)))

This critical pair is not joinable, as both terms are Rc-normal forms. However, Rc is confluent
since every instance of the critical pair (w.r.t. T (F ,V)) is joinable to c.

The example shows that confluence depends on the set of variables which most often is
assumed to be infinite. Without this assumption, the requirement that all critical pairs have to
be joinable can be too strict.2 Another important consequence is that in the case of finite V,
Toyama’s modularity result for confluence [8] does no longer hold.

Corollary 1. Confluence is not a modular property of TRSs for an arbitrary set of variables.

To summarize, it is not possible to formalize the critical pair theorem for arbitrary sets V.
Hence, we formalized it for strings, where it is conveniently possible to rename variables of rules
apart without changing the type of variables (by using different prefixes). Of course, if V is
infinite we can always obtain a renaming function (take some fresh variables) by the Axiom of
Choice. However, then the definition of critical pairs is not executable.

Theorem 2. A TRS over T (F ,String) is locally confluent iff all critical pairs are joinable.

Note that the theorem does not require any variable-condition for R. Hence, R may, e.g.,
contain left-hand sides which are variables or free variables in right-hand sides.

2We have only shown this result for |V| = 5. However, Rc can be adapted to any finite V with 5 ≤ |V|.
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4 Implementation and Conclusion

We performed experiments3 for completion proofs using KBCV [6] and MKBTT [9] (on 115 ESs).4

Within a time limit of 300 seconds, KBCV could complete 86 ESs and MKBTT 80 ESs while both
tools together succeeded on 94. The corresponding 94 completion proofs could be certified by
CeTA (version 2.4). For an evaluation of other completion tools we refer to [4].

In our experiments we considered both possibilities (mentioned at the end of Section 2) to
ensure ↔∗R ⊆ ↔∗E . While KBCV 1.6 performs the recall phase to explicitly construct `↔∗E r for
each `→ r ∈ R, KBCV 1.7 just exports the relevant history entries, which are used as auxiliary
equations. Hence it is not surprising that from the 86 ESs which KBCV 1.6 could complete only
80 have been certified. For two ESs (TPTP_GRP487-1_theory and TPTP_GRP_490-1_theory)
the recall phase did not terminate within the time limit and for the remaining ESs (LS94_P1,
TPTP_GRP_481-1_theory, TPTP_GRP_486-1_theory, TPTP_GRP_490-1_theory) the certificate
was too large (365 MB, 230 MB, 406 MB, 581 MB) for CeTA. However, when using auxiliary
equations all proofs could be computed and certified (typically within a second). Hence further
optimization of the proof format seems dispensable.

While MKBTT follows recording completion, CiME3 implements an annotated version of or-
dered completion [2]. Here—in contrast to our approach—the history is not saved as a stand-
alone component but directly integrated into terms, equations, and rules. Hence a term t comes
with an original version t0, a current version t∗, and a reduction sequence from t0 to t∗. Simi-
larly an equation s ≈ t also contains all intermediate (rewrite) steps that show that both terms
are equal. It requires further investigations to evaluate the pros and cons of the two approaches.

Acknowledgments: We thank Sarah Winkler for integrating certifiable output into MKBTT

and helpful discussion.
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Abstract

We present a technique based on SAT solving to find counter examples in abstract
rewriting fully automatically, in particular satisfying non-confluence.

1 Introduction

Rewriting notions like termination, normal forms, and confluence can be described in an ab-
stract way referring to rewriting only by a binary relation. Several theorems on rewriting, like
Newman’s lemma and Van Oostrom’s decreasing diagrams [4, 5] can be proved in this abstract
setting. For investigating possible modifications of such theorems, it is fruitful to be able to
find examples combining a given list of properties.

As an example, consider the following question. Can we find three rewriting systems for
which the union of every two is complete, but for which the union of all three is not confluent?
Here a rewriting system is called complete if it is both confluent and terminating.

In this note we describe a technique by which such an example is found fully automatically.
In this question we look for a set A of objects to be rewritten, and a couple of binary relations
on A that describe rewrite steps and satisfy the given properties. We focus on the situation
where the set A is finite. In applications of rewriting, most time the sets of objects are infinite.
But in case some property does not hold, often this can be shown by a finite counter example,
and often the smallest possible counter example gives the best insight why the property does
not hold. So we will not only focus on counter examples in which A is finite, we will also focus
on counter examples in which n = #A is as small as possible.

As a binary relation on a set of n elements can be expressed by n2 Boolean variables, our
problem area can be seen as a class of constraint problems on Boolean variables. Our goal is
to express rewriting properties like termination and confluence in propositional logic in such a
way that we may express our problems as propositional SAT(isfiability) problems, by which we
may exploit current powerful SAT solvers.

We succeeded in expressing all abstract rewriting properties of our interest. For a full
overview we refer to the paper [6]; in this note we focus on completeness and confluence.

Based on these characterizations we developed our tool Carpa (Counter examples for Ab-
stract Rewriting Produced Automatically). In this tool a list of desired properties for a number
of binary relations can be entered, and then for a given number n = #A it either gives an
example in which the desired properties hold, or concludes that such an example does not ex-
ist. Internally this tool first builds a formula expressing the desired properties based on the
characterizations presented in this note, then it calls an external SAT solver. In case the SAT
solver concludes that the formula is unsatisfiable, the tool concludes that there is no solution,
and in case the SAT solver concludes that the formula is satisfiable, the tool investigates the
corresponding satisfying assignment and extracts an example out of it that satisfies the given
properties. Although internally this SAT solving is crucial, the user of Carpa does not see this
and only sees the automatic creation of an example of a set of binary relations that satisfies
the given list of desired properties.
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2 Encoding of Properties

In this section we summarize the characterizations of the main properties used to encode them
in SAT formulas. For more explanation, examples and proofs we refer to [6].

Theorem 1. A binary relation R on a finite set is terminating if and only if a binary relation
S on the same set exists that is transitive and irreflexive, and for which R ⊆ S.

Using this theorem the requirement of termination of a relation R can be expressed in a SAT
formula: introduce an auxiliary relation S and express R ⊆ S and transitivity and irreflexivity
of S.

Theorem 2. Let R be a relation on a finite set A and let k ≥ 1. Let Ri be relations on A for
i = 1, 2, . . . , k, satisfying

R1 = I ∪R ∪R2, and Ri+1 = Ri ∪R2
i for i = 1, . . . , k − 1.

Assume that either 2k ≥ #A or Rk is transitive. Then Rk = R∗.

So for expressing the relation R∗ for a given binary relation R choose a small k satisfying
2k ≥ #A and introduce auxiliary relations R1, R2, . . . , Rk and create formulas expressing R1 =
I ∪R∪R2 for I being the identity, and Ri+1 = Ri ∪R2

i for i = 1, . . . , k− 1. Then Rk describes
the desired relation R∗.

The bound 2k in Theorem 2 is optimal: for A = {1, 2, . . . , 2k + 1} and
R = {(1, 2), (2, 3), . . . , (2k, 2k + 1), (2k + 1, 1)} we have (1, 1) ∈ R+, but (1, 1) 6∈ Rk since 1
can not be reached from 1 in less than 2k + 1 steps.

Using Theorem 2 we can express confluence and local confluence as follows.
For two binary relations R and S on a set A we write peak(R,S) for R−1 · S, so

(x, y) ∈ peak(R,S) ⇐⇒
∨
z∈A

(zRx ∧ zSy).

Similarly, we write valley(R,S) for R · S−1, so

(x, y) ∈ valley(R,S) ⇐⇒
∨
z∈A

(xRz ∧ ySz).

Now by definition a relation R is confluent if and only if

peak(R∗, R∗) ⊆ valley(R∗, R∗),

and a relation R is locally confluent if and only if

peak(R,R) ⊆ valley(R∗, R∗).

These properties are expressed in propositional logic in a straightforward way.
Also weak normalization (every element has at least one normal form) and the unique

normal form property (every element has at most one normal form) for a binary relation R can
be expressed when R∗ is available. First we specify a normal form to be an element x such
that (x, y) 6∈ R for all y. Now R is weakly normalizing if for every x a normal form y exists
such that (x, y) ∈ R∗, and R has the unique normal form property if for every x and every two
distinct normal forms y, z the property (x, y) ∈ R∗ ∧ (x, z) ∈ R∗ does not hold. Again these
properties are easily expressed in propositional logic.

A simple way to express completeness is specify both termination and confluence in the way
just described. However, the following characterization is often more efficient, for instance for
Example 5, both in the size of the formulas and in the time required by the SAT solver.
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Theorem 3. A binary relation R on a set A is complete if and only if two binary relations S
and T on A exist such that the following properties hold:

1. R ⊆ S,

2. S is transitive and irreflexive,

3.
∧

x∈A(xTx ∨ ∨
y∈A xRy),

4.
∧

x,y∈A((xSy ∧ yTy) → xTy),

5.
∧

x,y,z∈A,y 6=z ¬(xTy ∧ xTz).

For a complete relation R it is easy to check that S = R+ and T defined by

T = {(x, y) | x ∈ A and y is the normal form of x}

satisfy all these requirements.
Using Theorem 3 the following approach specifies a relation R to be complete in a SAT

formula: introduce two fresh relations S and T and add the requirements of Theorem 3 to the
SAT formula.

We give a few examples exploiting this approach. The first one solves the question posed in
the introduction.

Example 4. If we have a set of binary relations of which the union of any two is complete,
then it is easily seen that the union of all of them is locally confluent, as the union of any two is
locally confluent. But can we conclude confluence of this union? This turns out to be not the
case: we will give an example of three binary relations for which the union of any two of them is
complete, but for which the union of all three is not confluent. The requirements are expressed
in a formula: for the union of any two we specify completeness according to the requirements in
Theorem 3; for non-confluence we specify that for the transitive reflexive closure of the union
of all three the peak is not a subset of the valley. It turns out that this formula is unsatisfiable
for n = #A ≤ 5, but for n = 6 it is satisfiable, and the corresponding satisfying assignment
yields

in which the three relations are indicated by solid, dashed and dotted arrows, respectively.

Example 5. Let R and S be two complete binary relations satisfying R−1 · S ⊆ (S ∪ R∗) ·
(R−1)∗. Can we conclude that the union is confluent? This question arose in investigations of
simply typed lambda calculus, see [2, 3]. The answer is negative as is shown by the following
example in which R steps are denoted by solid arrows and S steps are denoted by dashed
arrows.
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Using the representation of completeness based on Theorem 3 it turned out that a solution
could be found within seconds, for several variants of the specification of the problem. All
solutions that we found on 10 elements turned out to coincide with the example given above,
sometimes after removing redundant arrows.

This number of 10 elements is minimal when requiring two distinct normal forms as in the
picture. After a few hours of computation the corresponding formula for n = 9 could be proved
to be unsatisfiable.

3 Implementation

We made an implementation called Carpa (Counter examples for Abstract Rewriting Produced
Automatically) for entering a list of properties of binary relations. Carpathen either builds a
set of binary relations on the specified number of elements that satisfies these properties, or
shows that this is impossible. The tool Carpa can be downloaded from

http://www.win.tue.nl/~hzantema/carpa.html

Internally Carpa does the job via SAT solving and the techniques described in this note.
As the SAT solver it uses Yices [1], which is not only a SAT solver, but also an SMT solver
(satisfiability modulo theories). We also developed a version of our tool generating the formulas
in dimacs format and then calling the SAT solver Minisat instead. As the version generating
formulas in SMT format and calling Yices turned out to be the most efficient for the examples
requiring one second or more, we decided only to distribute this one.

We defined an input format in which all properties discussed in this note can be specified
directly, abstracting from the auxiliary relations that have to be introduced internally. In
particular:

• subs, where subs(R,S) means that R ⊆ S,

• sn, where sn(R) means that R is terminating,

• wn, where wn(R) means that R is weakly normalizing,

• cr, where cr(R) means that R is confluent,

• wcr, where wcr(R) means that R is locally confluent,

• un, where un(R) means that R has the unique normal form property.
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For all of these properties the negation can be specified by preceding the name by n, for instance,
ncr(R) means that R is not confluent. Internally, the negation of a property may be treated in
a different way than the property itself. Further the format includes

• trans, where trans(R) means that R is transitive,

• irr, where irr(R) means that R is irreflexive,

• compl, where compl(R) means that R is complete,

• nf, where nf(x,R) means that x is a normal form with respect to R,

• red, where red(x, y,R) means that (x, y) ∈ R.

Finally, variables in the format can be assigned to newly created relations, like

• union, where union(R,S) represents the relation R ∪ S,

• comp, where comp(R,S) represents the relation R · S,

• peak, where peak(R,S) represents the relation R−1 · S,

• val, where val(R,S) represents the relation R · S−1,

• tc, where tc(R) represents the transitive closure R+ of R,

• trc, where trc(R) represents the transitive reflexive closure R∗ of R.

Our tool Carpa reads a list of requirements in this format, and builds a formula for it rep-
resenting these requirements in the way as described in this note. For every call of sn one
new binary relation is created to represent S in Theorem 1, and to generate the corresponding
requirements. For every call of compl two new binary relations are created to represent S and
T in Theorem 3, and to generate the corresponding requirements. For every call of trc k new
binary relations are created to generate the requirements as described in Theorem 2. Calls of
cr, wcr, un and wn internally call trc and hence all cause the creation of at least k new binary
relations.

In this format we described the requirements for the examples as they occur in this note,
in fact these examples were found by applying our tool on the specifications written in this
format.

The input always starts by three numbers: first the number n = #A, next the number k
as it is used for Theorem 2, and finally the number m of basic relations one is looking for,
numbered from 1 to m. For instance, to obtain Example 4 we choose as input

6
3
3
x1=union(1,2)
compl(x1)
x1=union(1,3)
compl(x1)
x1=union(2,3)
compl(x1)
x1=union(1,x1)
ncr(x1)
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Here the numbers state that we search for three relations on 6 elements. The next two lines
state that the union of relations 1 and 2 should be complete. The next four lines do the same
for the union of 1 and 3 and the union of 2 and 3. Finally, it is required that the union of all
three relations is not confluent. The output of Carpa on this input reads

Relation 1:
(2,3)
(4,1)
(5,3)
Relation 2:
(1,5)
(2,4)
Relation 3:
(1,6)
(4,6)
(5,2)

indeed coinciding with Example 4.
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ACP is an automated confluence prover for term rewriting systems (TRSs) that has been
developed in Toyama–Aoto group in RIEC, Tohoku University. Beside the most well-known
criteria for proving confluence such as Knuth–Bendix criterion (1970) and Huet–Toyama–van
Oostrom criterion (1997), ACP integrates many direct criteria for guaranteeing confluence of
TRSs—see the website of ACP [1] for the list of implemented criteria. It incorporates divide–
and–conquer criteria such as those for commutative (Toyama, 1988), layer-preserving (Ohle-
busch, 1994) and persistent (Aoto & Toyama, 1997) combinations. For a TRS to which direct
confluence criteria do not apply, the prover decomposes it into components using divide–and–
conquer criteria, and tries to apply direct confluence criteria to each component. Then the
prover combines these results to infer the (non-)confluence of the whole system.

ACP is written in Standard ML of New Jersey (SML/NJ) [7] and is provided as a heap image
that can be loaded into SML/NJ runtime systems. It uses a SAT prover such as MiniSAT [5] and
an SMT prover YICES [4] as external provers. It internally contains an automated (relative)
termination prover for TRSs but external (relative) termination provers can be substituted
optionally. The input TRS is specified in the (old) TPDB format [6]. Although the TPDB
format allows to specify various rewriting strategies and rewriting modulo equations, proving
confluence of TRSs under such varieties of rewriting is beyond the scope of the current version
of ACP. Although a variety of criteria for proving confluence has been implemented, users can
specify criteria to be used so that each criterion or any combination of them can be tested.

ACP participating in CoCo 2012 is based on version 0.30, which has been released in May,
2012. From this version, the source code became available (in a BSD License). The internal
structure of the prover is kept simple and is mostly inherited from the version 0.11a, which has
been described in [3]. Compared to the previous version, confluence criterion using reduction
completion [2] has been newly incorporated. A relative termination prover has been also newly
incorporated to support checking this criterion. Several levels of verbosity of the output have
been introduced so that users can investigate details of the employed approximations for each
criterion or can get only the final result of prover’s attempt to use ACP as an external confluence
prover.
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Certification of Confluence Proofs using CeTA∗
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Automatic provers have become popular in several areas like first-order theorem proving,
SMT, . . . . Since these provers are complex pieces of software, they might contain errors which
might lead to wrong answers, i.e., incorrect proofs. Therefore, certification of the generated
proofs is of major importance, where soundness of the certifier itself might be proven in some
trusted proof assistance like Coq [1] or Isabelle/HOL [5]. The tool CeTA is such a certifier [6]. Its
soundness is proven in the corresponding IsaFoR-library (Isabelle Formalization of Rewriting)
and CeTA can be used to check termination and non-termination proofs of term rewrite systems
(TRSs). Starting from version 2.0, it is also possible to certify confluence and non-confluence
proofs where the following techniques are currently supported in CeTA (version 2.5).

• Since CeTA’s main domain are termination proofs, as a first method to decide confluence
we integrated Newman’s lemma in combination with the critical pair theorem [4]. Here,
CeTA just rewrites both sides of a critical pair to arbitrary normal forms and then compares
whether these normal forms coincide.

• For possibly non-terminating TRSs, we integrated the criterion of weak orthogonality to
ensure confluence. The reason for not (yet) considering left-linear parallel-closed TRSs is
the complexity of the soundness proof. For parallel-closed TRSs a complex measure on
parallel forks is utilized [3], whereas for weak orthogonality structural induction suffices.

• To disprove confluence one can provide two forking derivations s →∗ t1 and s →∗ t2 in
combination with a reason why t1 and t2 cannot be joined. Here, CeTA accepts the reason
that t1 and t2 are distinct normal forms or alternatively, a test is performed using tcap
[2, 7]: if tcap(t1σ) and tcap(t2σ) are not unifiable then a join is impossible (where σ is a
substitution which replaces each variable x by some fresh constant cx.)

For further details we refer to the certification problem format (CPF) and to the sources of
IsaFoR and CeTA (http://cl-informatik.uibk.ac.at/software/ceta/). It remains as future
and ongoing work to integrate existing and future confluence and non-confluence criteria.
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CSI is an automatic tool for (dis)proving confluence of first-order term rewrite systems
(TRSs). Its name is derived from the Confluence of the rivers Sill and Inn in Innsbruck. The
tool is open source and available from

http://cl-informatik.uibk.ac.at/software/csi.

CSI is based on the termination prover TTT2. The main features and at the same time the major
attractions of CSI are listed below. Several of these are described in more detail in [6].

• CSI is equipped with a strategy language, which allows to configure it flexibly. A web
interface is also available.

• CSI implements the decreasing diagrams technique in a modular way, where different
labelings can be combined lexicographically to obtain decreasingness.

• CSI supports decomposing TRSs into smaller TRSs based on ordered sorts (subtypes).
This criterion is strictly stronger than a decomposition based on plain sorts. Apart
from Knuth and Bendix’ criterion this is currently the only method inside CSI which is
applicable to non-left-linear systems.

• CSI features an efficient decision procedure for confluence of ground TRSs [2] that runs
in cubic time in terms of the TRS size.

• Our non-confluence techniques employ methods from termination analysis, namely tcap,
and tree automata techniques. For counterexamples to confluence we currently start with
critical peaks. However, as shown in [3] this is not always sufficient, even for linear TRSs.

• CSI can produce proofs in cpf format that can be verified by certifiers like CeTA [5].

We conclude by mentioning a topic concerning future work. Currently, CSI is not very powerful
for TRSs which are neither terminating nor left-linear. This is not due to the basic design but
due to lack of techniques dedicated to this class of problems. Here ACP [1] and Saigawa [4] are
clearly superior to our prover.
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1 System Description

Saigawa is a tool for automatically proving or disproving confluence of (ordinary) term rewrite
systems (TRSs). The tool, written in OCaml, is freely available from

http://www.jaist.ac.jp/project/saigawa/

This system description is based on Saigawa version 1.3. The typical usage of the tool is:
saigawa <file>. Here the input file is written in the standard WST format. The tool outputs
YES if confluence of the input TRS is proved, NO if non-confluence is shown, and MAYBE if the
tool does not reach any conclusion. The tool is based on the next three confluence criteria.

Theorem 1 ([1, Theorem 3]). A left-linear TRS R is confluent if CP(R) ⊆ ↓R and CPS′(R)/R
is terminating.

Theorem 2 ([3, Theorem 2]). Suppose R and S are strongly non-overlapping on each other
and S is confluent. The TRS R∪ S is confluent if and only if CPS(R) ⊆ ↓R∪S .

Theorem 3 ([4]). A TRS R is confluent if every critical peak is decreasing with respect to the
rule labeling heuristic.

Our tool uses TTT2 v1.071 to check (relative) termination. When termination of R is proved,
the joinability s ↓R t is tested by comparing normal forms of s and t. In the other cases we only
test s→m

R · n
R← t for each 1 6 m, n 6 5. Unjoinability is detected by testing whether TCAPR(s)

and TCAPR(t) do not unify [5]. In order to apply Theorem 2 we need to appropriately split
a TRS into R and S. In our tool this is done by simple enumeration, and confluence of S is
checked in a recursive manner. A suitable rule labeling is searched by using the SMT solver
MiniSmt,2 see [1, Section 4] for details of automation. We are planning to support Jouannaud
and Kirchner’s confluence criterion [2] in the next version.
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