Nao Hirokawa, <u>Dominik Klein</u> JAIST

May 29, 2012

Saigawa: A Confluence Tool

Saigawa: A River in Kanazawa

Theorem (Hirokawa & Middeldorp '11)

A left-linear TRS \mathcal{R} is confluent if $CP(\mathcal{R}) \subseteq \downarrow_{\mathcal{R}}$ and $CPS'(\mathcal{R})/\mathcal{R}$ is terminating.

Theorem (Hirokawa & Middeldorp '11)

A left-linear TRS \mathcal{R} is confluent if $CP(\mathcal{R}) \subseteq \downarrow_{\mathcal{R}}$ and $CPS'(\mathcal{R})/\mathcal{R}$ is terminating.

Theorem (van Oostrom '08)

A TRS \mathcal{R} is confluent if every critical peak is decreasing with respect to the rule labeling heuristic.

Theorem (Hirokawa & Middeldorp '11)

A left-linear TRS \mathcal{R} is confluent if $CP(\mathcal{R}) \subseteq \downarrow_{\mathcal{R}}$ and $CPS'(\mathcal{R})/\mathcal{R}$ is terminating.

Theorem (van Oostrom '08)

A TRS \mathcal{R} is confluent if every critical peak is decreasing with respect to the rule labeling heuristic.

Theorem (Jouannaud & Kirchner '86)

Suppose \mathcal{R}/AC is terminating. The TRS $\mathcal{R} \cup AC$ is confluent if and only if $CP_{AC}(\mathcal{R} \cup AC, \mathcal{R}) \subseteq \downarrow_{\mathcal{R}_{AC}}$.

Theorem (Hirokawa & Middeldorp '11)

A left-linear TRS \mathcal{R} is confluent if $CP(\mathcal{R}) \subseteq \downarrow_{\mathcal{R}}$ and $CPS'(\mathcal{R})/\mathcal{R}$ is terminating.

Theorem (van Oostrom '08)

A TRS \mathcal{R} is confluent if every critical peak is decreasing with respect to the rule labeling heuristic.

Theorem (Jouannaud & Kirchner '86)

Suppose \mathcal{R}/AC is terminating. The TRS $\mathcal{R} \cup AC$ is confluent if and only if $CP_{AC}(\mathcal{R} \cup AC, \mathcal{R}) \subseteq \downarrow_{\mathcal{R}_{AC}}$.

Theorem (Klein & Hirokawa '12)

Suppose \mathcal{R} and \mathcal{S} strongly non-overlap each other and \mathcal{S} is confluent. $\mathcal{R} \cup \mathcal{S}$ is confluent if and only if $CP_{\mathcal{S}}(\mathcal{R}) \subseteq \downarrow_{\mathcal{R} \cup \mathcal{S}}$.

demo

- ► KISS, 80:20, ...
- ▶ about 3500 lines of OCaml

- ► KISS, 80:20, ...
- ▶ about 3500 lines of OCaml
- Linux x32/x64, debian packages available

- ► KISS, 80:20, ...
- ▶ about 3500 lines of OCaml
- Linux x32/x64, debian packages available
- all difficult parts are externalized:

- ► KISS, 80:20, ...
- ▶ about 3500 lines of OCaml
- Linux x32/x64, debian packages available
- all difficult parts are externalized:
 - **1** termination and relative termination: TTT2 v1.07
 - 2 termination modulo AC: muterm v5.07
 - **3** rule labeling heuristic: Minismt v0.4

- ► KISS, 80:20, ...
- ▶ about 3500 lines of OCaml
- Linux x32/x64, debian packages available
- all difficult parts are externalized:
 - **1** termination and relative termination: TTT2 v1.07
 - 2 termination modulo AC: muterm v5.07
 - 3 rule labeling heuristic: Minismt v0.4
- \Rightarrow capture large classes of TRSs with least effort