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Preface

This report contains the proceedings of the 15th International Workshop on Termination
(WST 2016), which was held in Obergurgl during September 5–7, 2016 as part of CLA
(Computational Logic in the Alps) 2016. Previous termination workshops were organized
in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001),
Valencia (2003), Aachen (2004), Seattke (2006), Paris (2007), Leipzig (2009), Edinburgh
(2010), Obergurgl (2012), Bertinoro (2013), and Vienna (2014). The termination workshops
traditionally bring together, in an informal setting, researchers interested in all aspects
of termination, whether this interest be practical or theoretical, primary or derived. The
workshop also provides a ground for cross-fertilization of ideas from term rewriting and from
the different programming language communities. The friendly atmosphere enables fruitful
exchanges leading to joint research and subsequent publications.

WST 2016 received 14 submissions. After light reviewing and careful deliberations the
program committee decided to accept all submissions. One submission was withdrawn after
acceptance. The remaining 13 papers are contained in these proceedings.

The program included an invited presentation by Reiner Hähnle on Refined Resource
Analysis Based on Cost Relations. The corresponding paper is included in these proceedings.
Furthermore, these proceedings contain short descriptions of several tools that participated
in the 2016 Termination and Complexity Competition. This competition ran live during
the workshop and the results are available at http://www.termination-portal.org/wiki/
Termination_and_Complexity_Competition_2016.

Several persons helped to make WST 2016 a success. We are grateful to the members of
the program committee and to Martina Ingenhaeff and Benjamin Winder of the organization
committee of CLA 2016 for their work. A special thanks to Johannes Waldmann who made
the live run of the competition possible.

Innsbruck, September 2016 Aart Middeldorp and René Thiemann

15th International Workshop on Termination (WST 2016).
Editors: Aart Middeldorp and René Thiemann
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Refined Resource Analysis
Based on Cost Relations
Antonio Flores-Montoya and Reiner Hähnle

TU Darmstadt, Dept. of Computer Science, aeflores|haehnle@cs.tu-darmstadt.de

Abstract
Resource analysis based on cost relations can be used to obtain precise bounds of imperative
programs with loops and complex control flows, including multi-phase loops and amortized cost.
Cost relations are an integer program representation where loops are translated into recursive
definitions with constraints, similar to constraint logic programs. In a first step one computes the
control-flow refinement of a given cost relation that yields a structured representation of the target
program. It consists of sets of possible execution patterns called chains. In addition, one obtains
invariants and summaries for each chain that serve as a basis for further refinement. Once the
refinement process is saturated, computation of bounds is performed incrementally using a cost
representation denoted cost structure. These permit to represent complex polynomial bounds,
but they can be inferred and composed by mere linear arithmetic reasoning.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases Resource analysis, bound analysis, cost relations, amortized cost

1 Introduction

Resource analysis has a long history. The (worst-case) resource consumption of a program is
an undecidable property, so there cannot be a general and precise algorithm that works for
every program. The quest has been to expand the class of programs that can be automatically
analyzed and to increase the precision of the analysis, while at the same time retaining
scalability.

After the early work of Wegbreit [15] there have been multiple proposals for functional [11,
14], logic [8, 12] and imperative programs [4, 7, 10, 13], see [1] for a more detailed overview.
The first focus was on functional [14] and logic programs [8]. There one extracts and solves
recurrence relations that represent the cost of the functions or predicates of a given program.
Both, extraction and solving of recurrence relations, constitute challenging problems: In
functions with multiple paths, one has to generate systems of recurrence relations or one has
to abstract multiple paths into a single recurrence. As a consequence, recurrence relations
are often non-deterministic. And they usually depend on multiple variables.

As an adequate representation to deal with these complications, Albert et al. [2] suggested
the concept of cost relations and applied it to the analysis of Java (bytecode).

1.1 Cost Relations
Cost relations (CR) replace recurrence relations as the result of the extraction (abstraction)
step during cost analysis. They are systems of recurrence relations, each of which has an
associated set of linear constraints. Constrained recurrence relations are from now on called
cost equation (CE).

The constraint set of a CE captures its applicability conditions and also expresses the
(possibly non-deterministic) relations among different variables. Cost relations can also be
seen as a specific form of constraint logic program.
© Antonio Flores-Montoya and Reiner Hähnle;
Proceedings of the 15th International Workshop on Termination;
Editors: Aart Middeldorp and René Thiemann; Article No. 1; pp. 1:1–1:8.



1:2 Refined Resource Analysis Based on Cost Relations

Ex1: Multi-phase loop Ex2: Amortized cost
1 whi le ( i <n ) {
2 i f ( r >0){
3 i=random ( n ) ;
4 r−−;
5 } e l s e
6 i ++;
7 }

1 whi le ( l ! = [ ] ) {
2 s=Cons ( head ( l ) , s ) ;
3 i f (∗ )
4 s=popSome ( s ) ;
5 l=t a i l ( l ) ;
6 }

7 popSome ( L i s t s ) {
8 i f ( s ==[] | | ∗)
9 re tu rn s ;

10 e l s e
11 popSome ( t a i l ( s ) ) ;
12 }

Figure 1 Simple examples with challenging features

Cost relation of Ex1 Lines
1 : wh(i, n, r) = 0 {i ≥ n} 1
2 : wh(i, n, r) = 1 + wh(i′, n, r′) {i < n, r > 0, 0 ≤ i′ ≤ n, r′ = r − 1} 1–4
3 : wh(i, n, r) = 1 + wh(i′, n, r) {i < n, r ≤ 0, i′ = i + 1} 1, 2, 5, 6
Cost relation of Ex2
4 : whA(l, s) = 0 {l = 0} 1
5 : whA(l, s) = 1 + popSome(s′′, s′) + whA(l′, s′) 1–6

{l ≥ 1, s ≥ 0, s′′ = s + 1, l′ = l − 1}
6 : whA(l, s) = 1 + whA(l′, s′) {l ≥ 1, s ≥ 0, s′ = s + 1, l′ = l − 1} 1–3, 5, 6
7 : popSome(s, so) = 0 {s = so} 7–9
8 : popSome(s, so) = 1 + popSome(s′, so) {s ≥ 1, s′ = s− 1} 7, 8, 10–12

Figure 2 Cost relations of the examples and their corresponding program lines

I Example 1. Consider the code examples in Fig. 1. The cost relations in Fig. 2 represent
the number of iterations/recursive calls in these examples.

Ex1 gives rise to a single CR wh with three CEs 1–3. Ex2 yields two CRs, whA and
popSome, with three and two CEs, respectively.

Loops (in Ex1 and Ex2) as well as recursive procedures (popSome in Ex2) are uniformly
represented as recursive definitions. In Ex1, each CE corresponds to a loop path: CE 1 is
the exit path, CE 2 is the path taken when the conditional’s guard is true, and CE 3 is the
path that traverses the else branch. Fig. 2 displays the program lines reached in each CE.

The constraint sets define the applicability conditions of each CE, for example, i < n, r > 0
in CE 2. Additionally, they define the behavior resulting from executing the path which can
be non-deterministic, for example, 0 ≤ i′ ≤ n, r′ = r − 1 in CE 2.

There is a further source of non-determinism. There are aspects of programs that cannot
be modelled precisely with cost relations, such as accesses of arrays or reference types. We
represent these phenomena with an ∗ (lines 3 and 8 of Ex2). This results in CEs whose
application conditions are not mutually exclusive. This is the case, for instance, with CE 7
and CE 8. J

1.2 Limitations of Cost Relations
There are several approaches to solve cost relations [1, 3, 5], however, all of them currently
suffer from limitations:

Multi-phase loops: Ex1 is an example of a loop with two phases. CE 2 (corresponding to
the “then” path) is always executed (if at all) before CE 3 (corresponding to the “else”
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Dependency graph of wh Chains of wh

12 3
Terminating Non-terminating
(2)+(3)+1 (2)+(3)+

(3)+1 (3)+

1 (2)+

Figure 3 Dependency graph and Chains of Ex1

path). As a result, even though i can be reset r times (in line 3), the number of iterations
is at most |n|+ |r| (where |x| represents max(x, 0)).

Loops with resets: Consider a variant of Ex1 where line 2 is replaced with if (r>0 && ∗).
In this case CE 2 and CE 3 could interleave (CE 3 will not contain the constraint r ≤ 0
any longer). Before i can reach n it could be reset to a value between 0 and n. This reset
can happen at most r times. Therefore, an upper bound on the number of iterations
would be |n− i|+ |r|+ |n| ∗ |r|.

Amortized cost: Ex2 exemplifies amortized cost. Variable s represents a list to which we
add elements of l. At some point we consume some elements of the list s with popSome.
The functions head, tail , and Cons have their usual semantics.
To perform cost analysis we abstract lists to their length. Hence, within the CRs l

represents the length of the list l in the program and s represents the length of the list s.
A naive analysis would conclude that popSome can have at most s recursive calls, s can
be at most l and popSome can be called at most l times in Ex2. Hence, the cost of Ex2 is
proportional to at most l2. However, it is easy to see that the cost of Ex2 is in fact linear.
Alonso et al. [6] notice that cost relations cannot infer precise cost for this kind of example,
because they consider only the input values of loops and function calls. Our extended
notion of cost relations includes as well the output variables. For example, the variable
so in the CRs of popSome represents the return value. We also developed an algorithm
to compute precise amortized bounds.

All of the limitations listed above are addressed in our approach to cost analysis. In the
remaining paper we sketch its main ingredients.

2 Cost Relation Control-flow Refinement

The first part of our analysis is control-flow refinement of the cost relations. For each cost
relation we generate a dependency graph (call graph) whose nodes are CEs and there is
an edge e → e′ iff e′ can be called by e. We use the CEs’ constraint sets to compute the
dependencies. Fig. 3 illustrates the dependency graph of Ex1.

Once we have the dependency graph, we enumerate the possible patterns of execution
(chains) within that graph. Consider CEs scc = ce1 · · · cen in a dependency graph that
form a strongly connected component. Execution of scc gives rise to what we call a phase,
where we use the notation (ce1 ∨ · · · ∨ cen)+ to denote one or more executions of CEs in scc

and ce1 ∨ · · · ∨ cen to denote a single execution. The former we call an iterative phase, for
example, (2)+, the latter non-iterative phase, for example 1. A chain is a sequence of phases.
The chains of Ex1 are displayed on the right part of Fig. 3. Observe that we also list the
non-terminating chains (the ones that end in an iterative phase).

Next, we attempt to prove termination of each iterative phase by obtaining a lexicograph-
ical ranking function [4]. If we succeed, we can discard all the non-terminating chains ending

WST 2016



1:4 Refined Resource Analysis Based on Cost Relations

in that phase. In Ex1, r is a ranking function of (2)+ and n− i is a ranking function of (3)+.
Therefore, we can discard all non-terminating chains of wh.

2.1 Invariants and Summaries
A pivotal aspect of our approach is to propagate information forward and backward along
each chain by polyhedral invariant computation. For instance, to compute the backward
invariant of chain (2)+(3)+1, we start with the constraint set of CE 1 and apply to it the
constraint set of CE 3 repeatedly until reaching a fixpoint. Then, we apply the constraint
set of CE 2 to the result, again repeatedly, until reaching a fixpoint. The resulting invariant
for (2)+(3)+1 is simply i < n ∧ r > 0 which gives us a necessary precondition for the whole
chain.

In the case, where a cost relation contains output values, the backward invariant represents
in particular a summary of the cost relation. Consider CR popSome of Ex2. The resulting
chains are 7 and (8)+7 (The non-terminating chain (8)+ is discarded because it can be shown
to be terminating). The backward invariants of 7 and (8)+7 are s = so and s ≥ 1 ∧ s > so,
respectively. These invariants relate the input and output values of popSome and thus
constitute summaries of the chains’ possible behaviors.

2.2 Refinement Propagation
The result of CR refinement is a set of its feasible chains with propagated summaries. We
start the process with the “innermost” CRs of a program that do not make any call except to
themselves (for example, popSome in Ex2). As a consequence, the refinement can be further
propagated to the CRs that call it. Consider the situation in Ex2. We simply substitute
the calls to popSome in CR 5 by calls to the refined chains of popSome (i.e. 7 and (8)+7).
Additionally, we enrich the constraint set of each refined CE with the summary of the called
chain. Hence, CE 5 is specialized into the following two CEs (the underlined constraints are
the added summaries resulting from the called chain):

5.1 : whA(l, s) = 1 + popSome[7](s′′, s′) + whA(l′, s′)
{l ≥ 1, s ≥ 0, s′′ = s + 1, l′ = l − 1, s′′ = s′}

5.2 : whA(l, s) = 1 + popSome[(8)+7](s′′, s′) + whA(l′, s′)
{l ≥ 1, s ≥ 0, s′′ = s + 1, l′ = l − 1, s′′ > s′}

To proceed, we compute the dependency graph, feasible chains, and the summaries of the
resulting CR whA. Its chains are (5.1 ∨ 5.2 ∨ 6)+4 and 4.

3 Computing Bounds with Cost Structures

Once the refinement of all CRs is completed, we have to compute bounds. Similar as the
refinements, we compute bounds incrementally, following a bottom-up approach, from the
innermost to the outmost CR. Inside a single CR, we follow an incremental approach as well:

1. Compute the bound for each cost equation without considering recursive calls.
2. Compute the cost of each phase by composing the cost of their CEs.
3. Compose the cost of the phases to obtain the cost of each chain.

Therefore, the key aspect of the analysis is to represent cost bounds in such a way that
they can be inferred and composed efficiently and precisely at each level (CE, phase and
chain). To this end, we introduce a new data structure called cost structure.
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3.1 Cost Structures
We represent cost with a triple 〈E, IC, FC〉 that we call cost structure. In a cost structure,
E is a linear expression over intermediate variables (iv) that represents the cost. These
intermediate variables are related to the variables of the CRs through two sets of constraints:
Final FC and non-final IC constraints. Both constraint sets admit only constraints of a
restricted form:

Non-final constraints IC are expressions of the form
∑m

k=1 ivk ≤ SE where SE is of the
form

SE := l(iv) | iv1 ∗ iv2 | max(iv) | min(iv)

Here l(iv) is a linear expression over intermediate variables.
The final constraints FC are expressions of the form

∑m
k=1 ivk ≤ |l(x)|, where l(x) is a

linear expression over the CR variables and |l(x)| = max(l(x), 0).

This representation permits to represent complex polynomial bounds with maximum
and minimum operators. At the same time, It makes it possible to define the inference
and composition of cost structures in terms of simple rules and heuristics for each kind of
constraint.

3.2 Computation of Bounds
Recall the three steps of computing bounds mentioned in the introduction to this section.
Steps 1 and 3 involve a finite composition of cost structures. We have a specific number
of cost structures and we have to compute their sum and express it in terms of different
variables. For instance, to obtain the cost of (2)+(3)+(1) we have to compose three cost
structures (those of (2)+, (3)+ and 1) and express the result in terms of the initial variables
(i, n, r) of the chain. This involves the following steps: to sum up the main cost expressions
of each cost structure, to merge their non-final and final constraint sets, and to transform
the final constraints so they are expressed in terms of the initial variables.

This process is based on the constraint sets of the CEs and the inferred summaries from
the refinement. Final constraints are almost linear so the transformation can be implemented
using Fourier-Motzkin quantifier elimination.

I Example 2. Let 〈iv4, ∅, {iv4 ≤ |r|}〉, 〈iv3, ∅, {iv3 ≤ |n − i|}〉, and 〈0, ∅, ∅〉 be the cost
structures of (2)+, (3)+, and 1, respectively. Then the composed cost structure of (2)+(3)+(1)
is 〈iv4 + iv3, ∅, {iv4 ≤ |r|, iv3 ≤ |n|}〉 which represents the bound |r| + |n|. Observe that
during the phase (2)+ variable i is set to an arbitrary value between 0 and n. Therefore, in
the worst case, the expression n− i of phase (3)+ is n in the chain (2)+(3)+(1). J

Step 2, computing the cost of phases, involves the composition of an unknown number of
cost structures. To realize this we generate fresh intermediate variables that represent the
sums of all the instances of the previous intermediate variables. Then, we apply different
heuristics to generate constraints over these new intermediate variables from the constraints
of the original variables.

I Example 3. We compute the cost of (3)+ in Ex1. According to the definition of CE 3, its
cost (ignoring the recursive call) is 1. This can be expressed as 〈iv1, ∅, {iv1 ≤ 1}〉. Assume
the jth evaluation of CE 3 has cost 〈iv1j , ∅, {iv1j ≤ 1}〉. Now assume that CE 3 is evaluated
#c3 times in (3)+. Based on that we create a new intermediate variable iv3 =

∑#c3
j=1(iv1j)

WST 2016



1:6 Refined Resource Analysis Based on Cost Relations

Chain/Phase/CE: Cost Structure
(2∨ 3)+ : 〈iv3 + iv4, {iv3 ≤ iv5 + iv6, iv6 ≤ iv4 ∗ iv7}, {iv5 ≤ |n− i|, iv4 ≤ |r|, iv7 ≤ |n|}〉

2 : 〈iv1, ∅, iv1 ≤ 1〉
3 : 〈iv2, ∅, iv2 ≤ 1〉

New iv definitions: iv3 :=
#c2∑
j=1

(iv1j) iv4 :=
#c3∑
j=1

(iv2j) iv6 :=
#c3∑
j=1

(nj) iv7 := #c3max
j=1

(nj)

Figure 4 Cost structure of phase (2 ∨ 3)+ in the modified Ex1 (loop with reset) and the fresh
intermediate variables defined in the process.

that represents the sum of all instances of iv1. Now the bound of (3)+ can be expressed as
iv3 and we have to generate constraints that bind iv3 using iv1 ≤ 1 and the constraint set of
CE 3.

One of our heuristics (called inductive sum) consists of applying Farkas’ Lemma with a
linear template L(i, n, r) and the constraint set ϕ3 = {i < n, r ≤ 0, i′ = i + 1} of CE 3 to
obtain a symbolic expression that satisfies: ϕ3 ⇒ (L(i, n, r) ≥ 1∧L(i, n, r) ≥ 1 + L(i′, n′, r′)).
Such an expression is (n − i) and it is a valid upper bound of iv3. In this case, n − i

is essentially a linear ranking function of (3)+. The resulting cost structure of (3)+ is
〈iv3, ∅, {iv3 ≤ |n− i|}〉 which is the one that was used in Example 2. J

3.3 Loop with Reset
Recall from Section 1.2 the variant of Ex1 where line 2 is replaced with if (r>0 && ∗) such
that CE 2 and CE 3 can interleave. This example is interesting, because it makes use of
non-final constraints to represent a non-linear bound. The main chain of the example is
(2 ∨ 3)+1. The cost of CE 1 is 0 so let us focus on the phase (2 ∨ 3)+.

Fig. 4 displays the cost structure of phase (2 ∨ 3)+ and the fresh intermediate variables
defined in the process. In these definitions #cN represents the number of times CE N

is applied. The computation proceeds incrementally. It starts with the cost structures
〈iv1, ∅, {iv1 ≤ 1}〉 and 〈iv2, ∅, {iv2 ≤ 1}〉 for CE 2 and 3, respectively. The variables iv3 and
iv4 are defined in Fig. 4. The main cost expression is iv3 + iv4.

Using the inductive sum heuristics (cf. Example 3), we infer the bounds n− i and r for
iv3 and iv4, respectively. However, in contrast to the previous examples, these bounds can
be influenced by other CEs in the same phase.

Expression r is unmodified in CE 3, so we can generate the constraint iv3 ≤ |r|. However,
expression n− i is reset in CE 2 to at most n (i is reset to a value between 0 and n). Hence,
we add the sum of all these resets to n to obtain a bound of iv3. We generate the constraints
iv3 ≤ iv5 + iv6 and iv5 ≤ |n− i| where iv6 represents the sum of all the resets to n in CE 2.

Finally, there is no linear expression that can bind iv6 (the sum of all n in CE 2). We apply
another heuristic (basic product) that binds iv6 to the product of the number of iterations of
CE 2 (iv4) and the maximum value of n along the execution (iv7). The generated constraints
are iv6 ≤ iv4 ∗ iv7 and iv7 ≤ |n| and the cost structure is now complete.

3.4 Amortized cost example
Fig. 5 contains the cost structures needed for computation of the cost of chain (5.1∨5.2∨6)+4
of whA in Ex2 (obtained at the end of Section 2.2). Additionally, it contains the intermediate
variable definitions used for the computation of the cost of phases. As before, #cN represents
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Chain/Phase/CE(Variables): Cost Structure
[(5.1 ∨ 5.2 ∨ 6)+4](l, s) : 〈iv6 + iv7 + iv8 + iv9, ∅, {iv7 + iv8 + iv9 ≤ |l|, iv6 ≤ |l + s|}〉

(5.1∨ 5.2∨ 6)+(l, s, lf , sf ) : 〈iv6 + iv7 + iv8 + iv9, ∅, {iv7 + iv8 + iv9 ≤ |l|, iv6 ≤ |l + s|}〉
5.1(l, s, l′, s′) : 〈iv3, ∅, {iv3 ≤ 1}〉

7(s, so) : 〈0, ∅, ∅〉
5.2(l, s, l′, s′) : 〈iv2 + iv4, ∅, {iv4 ≤ 1, iv2 ≤ |s + 1− s′|〉

[(8)+7](s, so) : 〈iv2, ∅, {iv2 ≤ |s|, iv2 ≤ |s− so|}
(8)+(s, so, sf , sof ) : 〈iv2, ∅, {iv2 ≤ |s|, iv2 ≤ |s− sf |}

8(s, so, s′, so′) : 〈iv1, ∅, {iv1 ≤ 1}〉
7(s, so) : 〈0, ∅, ∅〉

6(l, s, l′, s′) : 〈iv5, ∅, {iv5 ≤ 1}〉
4(l, s) : 〈0, ∅, ∅〉

New iv definitions:
iv2 :=

#c8∑
j=1

(iv1j) iv6 :=
#c5.2∑
j=1

(iv2j) iv7 :=
#c5.1∑
j=1

(iv3j) iv8 :=
#c5.2∑
j=1

(iv4j) iv9 :=
#c6∑
j=1

(iv5j)

Figure 5 Cost structures of Ex2 and intermediate variables defined in the process.

the number of times CE N is applied. The final cost structure of (5.1∨ 5.2∨ 6)+4 represents
the bound |l|+ |l + s| which is precise.

A key aspect in obtaining amortized cost is to consider the final values of variables. In
the computation of CE 8’s cost structure, the variables of the recursive call (s′, so′) are taken
into account. In the computation of phase (8)+’s cost structure, the variables of the last
recursive call of the phase (sf , sof ) are also considered. In fact iv2 is bound by |s − sf |.
Intuitively, the number of recursive calls is bound by the initial value of s minus its final value
sf . In chain (8)+7 the final value of s (sf ) corresponds to the return value sof (consider
s = so in CE 7) and variable so is unchanged throughout phase (8)+ (sof = so). Therefore,
sf = sof = so and we obtain the constraint iv2 ≤ |s− so| for the chain (8)+7.

Similarly, the cost structure of CE 5.2 depends on the value of the recursive call (iv2 ≤
|s + 1 − s′|). Applying the inductive sum heuristic we can infer that |l + s| is an upper
bound of the sum of all the instances of |s + 1 − s′| (and also of all iv2). Let ϕ5.2 = {l ≥
1, s ≥ 0, s′′ = s + 1, l′ = l − 1, s′′ > s′} be the constraint set of CE 5.2, we have that
ϕ5.2 ⇒ (l + s) ≥ (s + 1 − s′) ∧ (l + s) ≥ (s + 1 − s′) + (l′ + s′). The inferred constraint is
iv6 ≤ |l + s|. We could also infer iv6 ≤ |(l + s)− (lf + sf )| but it is not needed here.

In the cost computation of phase (5.1 ∨ 5.2 ∨ 6)+ we have to ensure that the sums we
infer are not reset or incremented in interleaving CEs. The expression l + s stays invariant in
CE 5.1 and 6 (l is decremented, s is incremented by 1). The expression l which bounds iv7
is not incremented or reset in CE 5.2 or 6, but expression l also bounds iv8 and iv9 which
allows to generate the more precise constraint iv7 + iv8 + iv9 ≤ |l|.

4 Conclusion

We showed that the limitations of existing approaches to solve cost relations listed in
Section 1.2 can be overcome. This is possible by modifications to the way in which cost
relations are computed, as well as to the computation of bounds. Concerning the former,
we make use of control-flow refinement, an incremental, inside-out, path-sensitive analysis
that yields stronger invariants and more precise constraints than the global analyses used
hitherto. The key improvement for the computation of bounds consists in a new notion

WST 2016
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of cost structure that permits fine-grained caching of intermediate expressions as well as
the analysis of side effects by taking final values into account. Based on cost structures we
defined several powerful heuristics to derive bounds. A more technical exposition of some of
the ideas in this paper can be found in [9].
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Abstract
We show how monotone interpretations – a termination analysis technique for term rewriting
systems – can be used to assess the inherent parallelism of recursive programs manipulating
inductive data structures. As a side effect, we show how monotone interpretations specify a
parallel execution order, and how our approach extends naturally affine scheduling – a powerful
analysis used in parallelising compilers – to recursive programs. This work opens new perspectives
in automatic parallelisation.

1998 ACM Subject Classification E.1 Data Structures, F.2 Analysis of Algorithms and Problem
Complexity F.4.2 Grammars and Other Rewriting Systems

Keywords and phrases Complexity analysis, parallelism, monotone interpretations, termination,
scheduling.

1 Introduction

The motivation of this work is the automatic transformation of sequential code into parallel
code without changing its (big-step operational) semantics, only changing the computation
order is allowed. We want to find out the limits of these approaches, by characterising the
“maximum level of parallelism” that we can find for a given sequential implementation of an
algorithm.

In this paper, we propose a way to estimate the parallel complexity which can be informally
defined as the complexity of the program if it were executed on an machine with unbounded
parallelism.

Such a result could come as by-product of the polyhedral-based automatic parallelisation
techniques for array-based programs [6]. However, for general programs with complex data
flow and inductive structures, such techniques have not been explored so far.

The contribution of this paper is a novel unifying way to express program dependencies
for general programs with inductive data structures (lists, trees. . . ) as well as a way to use
complexity bounds of term rewriting systems in order to derive an estimation of this parallel
complexity.

∗ This work was partially supported by a “BQR” funding at ENS De Lyon.
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2 Intuitions behind the notion of “parallel complexity”

for(i=0; i<=N; i++)
for (j=0; j<=N; j++)

// Block S
{

m1[i][j] = Integer . MIN_VALUE ;
for(k=1; k<=i; k++)

m1[i][j] = max(m1[i][j],H[i-k][j] + W[k]);

m2[i][j] = Integer . MIN_VALUE ;
for(k=1; k<=j; k++)

m2[i][j] = max(m2[i][j],H[i][j-k] + W[k]);

H[i][j] = max (0,H(i-1,j -1)+s(a[i],b[i]),
m1[i][j],m2[i][j]);

}

j

i

Figure 1 The Smith-Waterman sequence alignment algorithm and its dependencies. Each point
(i, j) represents an execution of the block S, denoted by 〈S, i, j〉.

public class Tree {
private int val;
private Tree left;
private Tree right;

public int treeMax () {
int leftMax = Integer . MIN_VALUE ;
int rightMax = Integer . MIN_VALUE ;
if (this.left != null) {

leftMax = this.left. treeMax (); // S1
}
if (this.right != null) {

rightMax = this.right. treeMax ();// S2
}
return Math.max(this.val , Math.max(

leftMax , rightMax ));
}

}

val
le
ft

right

Figure 2 Maximum element of a tree algorithm and its call tree.

In this paper, we consider the derivation of a lower bound for the intrinsic parallelism
of a sequential imperative program P and thus an upper bound for the complexity of a
fully parallelised version of P . Figures 1 and 2 depict the two motivating examples that
will be studied in the remainder of this paper. Figure 1 is a loop kernel computing the
Smith-Waterman optimal sequence alignment algorithm1. Figure 2 is a simple recursive
function to compute the maximum element of a binary tree.

Usually, the parallelism is found by analysing the data dependencies between the operations
executed by the program. There is a data dependency from operation o1 to operation o2 in
the execution of a program if o1 is executed before o2 and both operations access the same

1 See https://en.wikipedia.org/wiki/Smith-Waterman_algorithm. We consider two sequences of the
same length N .
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memory location. In particular, we have a flow dependency when the result of o1 is required by
o2. Non-flow dependencies (write after write, write after read) can be removed by playing on
the memory allocation [3] and can thus be ignored. Thus, we consider only flow dependencies,
referred to as dependencies in the remainder of this paper. If there is no dependency between
two operations, then they may be executed in parallel. While the dependency relation is
in general undecidable, in practice we can use decidable over-approximations such that a
statement that two operations are independent is always correct.

In Figure 1, each point represents an execution of the block S computing H[i][j] for
a given i and j in J0, NK. Such an operation is written 〈S, i, j〉. The arrows represent the
dependencies towards a given 〈S, i, j〉. For instance the diagonal arrow means that H[i][j]
requires the value of H[i-1][j-1] to be computed.

In Figure 2, we depicted the execution trace of the recursive program on a tree. Here,
the dependencies between computations resemble the recursive calls: the dependency graph
(in the sense used for imperative programs) is the call tree.

All reorderings of computations respecting the dependencies are valid orderings (that we
will name schedule in the following). In both cases, the dependencies we draw show a certain
potential parallelism. Indeed, each pair of computations that do not transitively depend on
each other can be executed in parallel; moreover, even a machine with infinite memory and
infinitely parallel cannot do the computation in an amount of time which is shorter than the
longest path in the dependency graph. The length of this longest path, referred to as parallel
complexity, is thus an estimation of the potential parallelism of the program (its execution
time with suitably reordered instructions on an idealised parallel machine).

Our goal in this paper is, given a sequential program P and an over-approximation
of its dependency relation, to find bounds on the parallel complexity of P and the over-
approximation of its dependency relation. Via the representation of the dependencies via
(possibly constrained) rewrite rules, we can apply existing techniques to find such bounds for
(constrained) rewrite systems (e.g., [8, 4]).

3 Computing the parallel complexity of programs

In this section we explain on the two running examples the relationship between termination
and scheduling (this relationship was already explored a bit in [1]), and polynomial interpreta-
tions (more generally, proofs of complexity bounds for term rewriting) and parallel complexity.
As the long-term goal is to devise compiler optimisations by automatic parallelisation for
imperative programs, we consider programs with data structures such as arrays, structs,
records and even classes. The main idea is that all these constructions can be classically
represented as terms via the notion of position, and the dependencies as term rewriting rules.
Contrarily to other approaches for proving termination of programs by an abstraction to
rewriting (e.g., [11, 5]), we only encode the dependencies (and forget about the control flow).

3.1 First example: Smith-Waterman algorithm
For the Smith-Waterman program of Figure 1, we can derive (with polyhedral array dataflow
analysis, as in [3]), forgetting about the local computations of W scores, the following
dependencies as constrained rewrite rules:

dep(i, j)→ dep(i− 1, j − 1) : 0 ≤ i ≤ n, 0 ≤ j ≤ n

dep(i, j)→ dep(i− k, j) : 0 ≤ i ≤ n, 0 ≤ j ≤ n, 1 ≤ k ≤ i

dep(i, j)→ dep(i, j − `) : 0 ≤ i ≤ n, 0 ≤ j ≤ n, 1 ≤ ` ≤ j

WST 2016
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To get an estimation of the parallel complexity, following the inspiration of previous
work on termination proofs for complexity analysis (e.g., [8, 1, 4]), we first try to generate a
polynomial interpretation [10] to map function symbols and terms to polynomials:

Pol(dep(x1, x2)) = x1 + x2

Essentially, this says that iteration 〈S, x1, x2〉 can be executed at time stamp x1 + x2. As
0 ≤ x1, x2 ≤ N , the maximal timestamp is 2N = O(N). Not only does this mean that the
program may be parallelised, but it provides an actual reordering of the computation, along
the parallel wavefront x1 + x2.

This linear interpretation (or ranking function) provides us with a bound in O(N1) for
the parallel complexity of the program. Thus, the degree of sequentiality is 1. As the overall
runtime of the program is in O(N2), this gives us a degree of parallelism of 2− 1 = 1 [9].

Let us point out that we would have obtained the same results using affine scheduling
techniques from the polyhedral model [6]. The interesting fact here is that our apparatus
is not restricted to regular programs (for loops, arrays) as the polyhedral model. Also,
current complexity analysis tools like KoAT [4] are able to compute similar results within a
reasonable amount of time. The next section show how our technique applies to a recursive
program on inductive data structures.

3.2 Second example: computing the maximum element in a tree

2

3 4

7

Figure 3 The tree t.

An object of class Tree is represented by the term
Tree(val, left, right), for some terms val, left, right that represent
its attributes [11]. For instance, the Java object defined in Figure 3
corresponds to the following term:

t = Tree(2, Tree(3, null, null), Tree(4, Tree(7, null, null), null))

Recall that to address entries of an n-dimensional array, we use
vectors (i1, . . . , in) ∈ Nn as indices or “positions”. Then for an array
A, we say that A[i1]. . .[in] is the “entry” at the array’s position (i1, . . . , in). Similarly to
array entries, we would also like to address particular “entries” of a term, i.e., its subterms.

For more general terms, we can use a similar notion: positions. For our tree t, we have
Pos(t) = {ε, 1, 2, 3, 21, 22, 23, . . .}, giving an absolute way to access each element or subarray.
For instance, 21 denotes the first element of the left child of the tree (i.e., the number 3).

Now let us consider the program in Figure 2. This function computes recursively the
maximum value of an integer binary tree. Clearly, the computation of the maximum of a
tree depends on the computation of each of its children. However, the computation of the
max of each child is independent from the other. There is thus potential parallelism.

Here we observe structural dependencies from the accesses to the children of the current
node. Like in the previous example, from the program we generate the following “dependency-
rewrite rules” (note that similar to the dependency pair setting for termination proving [2],
it suffices to consider “top-rewriting” with rewrite steps only at the root of the term):

dep(Tree(val, left, right))→ dep(left) (S1)
dep(Tree(val, left, right))→ dep(right) (S2)

We can use the following polynomial interpretation (analogous to the notion of a ranking
function) to prove termination and also a complexity bound:

Pol(dep(x1)) = x1 and Pol(Tree(x1, x2, x3)) = x2 + x3 + 1
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Or, using interpretations also involving the maximum function [7]:
Pol(dep(x1)) = x1 and Pol(Tree(x1, x2, x3)) = max(x2, x3) + 1

Thus we interpret a tree as the maximum of its two children plus one to prove termination of
the dependency relation of the original sequential program, essentially mapping a tree to its
height. This means that the parallel complexity (i.e., the length of a chain in the dependency
relation) of the program is bounded by the height of the input data structure.

Indeed, the two recursive calls could be executed in parallel, with a runtime bounded
by the height of the tree on a machine with unbounded parallelism. The interpretation
Pol(Tree(x1, x2, x3)) = max(x2, x3) + 1 induces a wavefront for the parallel execution along
the levels of the tree, i.e., the nodes at the same depth in the tree.

In contrast, the overall runtime of the original sequential program is bounded only by the
size of the input tree, which may be exponentially larger than its depth.

4 Conclusion and Future Work

In this paper we showed some preliminary results on the (automatable) computation of the
parallel complexity of programs with inductive data structures.

In the future, we will investigate a complete formalisation of these preliminary results, and
test for applicability in more challenging programs like heapsort and prefixsum. As we said in
the introduction, expressing the parallel complexity is the first step toward more ambitious
use of rewriting techniques for program optimisation. The work in progress includes the
computation of parallel schedules from the rewriting rules or their interpretation, and then
parallel code generation from the obtained schedules.
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Abstract
In this paper we use conditional termination as a technique to provide witnesses of termination
of imperative programs. These witnesses are provided as a set of states for which termination
is guaranteed. We show how full termination can be proved by repeatedly applying conditional
termination and restricting step by step the states were non-termination may occur. In case of
failure, the resulting restricted set of states can be used as starting point for a non-termination
analysis. Additionally, conditional termination provides a framework for proving termination
of sequences of loops and can also be applied in reachability analysis. Experiments show the
effectiveness of our approach.
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1 Introduction

In its classical sense, conditional termination (e.g. [1]) aims at finding the weakest precondition
for termination: the maximal possible set of states such that, if the execution starts at any of
those states, termination is guaranteed. However, in practice the weakest precondition turns
out to be too hard to compute [3]. In this paper we show that, by dropping the maximality
requirement, conditions for termination can be efficiently computed, and most importantly,
they can still be useful for solving a variety of problems in program analysis, among others
termination and reachability.

In summary, we present the following contributions:
A new method based on Max-SMT for finding preconditions for termination (Sect. 3).
A framework for proving full termination of programs by repeatedly applying conditional
termination and restricting step by step the states were non-termination may occur
(Sect. 4). Futhermore, in case of failure, the resulting restricted set of states can be used
as starting point for a non-termination analysis.
An implementation of these techniques inside the VeryMax tool and a preliminary
experimental evaluation showing the potential of our approach (Sect. 5).

2 Preliminaries

We make heavy use of the program structure and hence represent programs as graphs.
For this, we fix a set of (integer) program variables V = {v1, . . . , vn} and denote by E(V)

∗ This work was partially supported by the project TIN2015-69175-C4-3-R (MINECO/FEDER).
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(respectively, F(V)) the linear expressions (respectively, formulas consisting of conjunctions of
linear inequalities) over the variables V . Let L be the set of program locations, which contains
a canonical initial location `0. Program transitions T are tuples (`, τ, `′), where ` and `′ ∈ L
represent the pre- and post-location respectively, and τ ∈ F(V ∪V ′) describes the transition
relation. Here V ′ = {v′1, . . . , v′n} are the post-variables, i.e., the values of the variables after
the transition. In what follows, ϕ′∈F(V ′) is the version of ϕ using primed variables. More
precisely, in this work we consider transition relations τ of the form guard(τ) ∧ update(τ),
where guard(τ) ∈ F(V) and update(τ) is a conjunction of linear equations of the form v′i = ei,
with ei ∈ E(V).

A program P = (L, T ) is identified with its control-flow graph (CFG), a directed graph in
which edges are the transitions T and nodes are the locations L (since transitions only have
conjunctions of linear inequalities, disjunctions are expressed with several transitions). A
program component C of a program P is the set of transitions of an SCC of the control-flow
graph. Its entry transitions EC are those transitions t = (`, τ, `′) such that t 6∈ C but `′
appears in C (and in this case `′ is called an entry location), while its exit transitions are
such that t 6∈ C but ` appears in C (and then ` is an exit location).

A state s = (`,v) consists of a location ` ∈ L and a valuation v : V → Z. Initial
states are of the form (`0,v). We denote an evaluation step with transition t = (`, τ, `′) by
(`,v)→t (`′,v′), where the valuations v, v′ satisfy the formula τ of t. We use →P if we do
not care about the executed transition, and →∗P to denote the transitive-reflexive closure of
→P . Sequences of evaluation steps are called evaluations. We say that a state s is reachable
if there exists an initial state s0 such that s0 →∗P s.

Brockschmidt et al. [2] use conditional invariants, which like standard invariants are
inductive, but not necessarily initiated in all program runs, are used for proving conditional
safety properties. Therefore, conditional invariants fulfill the consecution condition (which
ensures that the invariant holds after every transition in the loop), but may not fulfill the
initiation condition (which ensures that the invariant holds for the entry transitions).

We say that a map Q : L → F(V) is a conditional (inductive) invariant for a program
(component) P if for all (`,v) →P (`′,v′), we have v |= Q(`) implies v′ |= Q(`′). Given a
component C, it can be shown by induction that a map Q is a conditional inductive invariant
for C if and only if Q(`) ∧ τ ⇒ Q′(`′) for all (`, τ, `′) ∈ C.

A program P is said to be terminating if any evaluation starting at an initial state is
finite. An important tool for proving termination are ranking functions:

I Definition 1 (Ranking Function). Let C be a component, and t = (`, τ, `′) ∈ C. A function
R : V → Z is said to be a ranking function for t if: (i) τ |= R ≥ 0 ([Boundedness]); (ii)
τ |= R > R′ ([Decrease]); (iii) τ̂ |= R ≥ R′ for every (ˆ̀, τ̂ , ˆ̀′) ∈ C ([Non-increase]).

The key property of ranking functions is that if a transition admits a ranking function,
then it cannot be infinitely executed.

3 Conditional Termination

The main concept in this paper is the following:

I Definition 2 (Conditional Termination). The program P is (t, ϕ)-conditionally terminating
if every evaluation that contains an evaluation step (`,v)→t (`′,v′) with v′ |= ϕ only uses
transitions from P a finite number of times. In that case we say that the assertion (t, ϕ) is a
precondition for termination.
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int main() {
int x, y, z;
x = nondet();
y = nondet();
z = nondet();
while (y ≥ 0 && z 6= 0) {

if (z < 0) { y = y + z;
z = z - 1;

} else { x = x - z;
y = y + x;
z = z + 1;

} } }

L0 L2L1

T0

T3

T4

T1

T2

Figure 1 Program and its transition system.

Our method for generating preconditions for termination is a variation of the constraint-
based approach for proving (unconditional) termination by Larraz et al. [4]. Each component
C of the program is handled at a time, and a lexicographic conditional termination argument
for it is constructed iteratively as follows. Essentially, in each iteration we synthesize a
linear ranking function and possibly supporting linear conditional invariants, which show
that a transition of C is finitely executable, i.e., cannot be infinitely executed. If after some
iterations it has been finally proved that no transition of C can be infinitely executed, then the
conjunction of all conditional invariants obtained at an entry location yields a precondition
for termination. Indeed, once the conditional invariants hold at that entry location, then
by inductiveness they hold from then on at all locations of C, and hence the termination
argument applies.

I Example 3. Consider the program in Figure 1 and its transition system, with initial
location `0 and return location `2. Let us produce a precondition of termination for the
component C = {τ1, τ2}, corresponding to the while loop.

For this program, our approach could generate, e.g., the conditional invariant z < 0
at location `1 and the ranking function y for τ1. Note that indeed z < 0 is a conditional
invariant: it is preserved by τ1 as z decreases its value, and is also trivially preserved by τ2
since this transition is in fact disabled if z < 0. Moreover, y is a ranking function for τ1, as y
is bounded and decreases in τ1 (and τ2 is disabled).

Finally, let t0 = (`0, τ0, `1) ∈ EC be the only entry transition of C. Altogether, since
there are no transitions left to be proved finitely executable, we get that (t0, z ≤ 1) is a
precondition for termination: any evaluation that contains an evaluation step →t0 (`1,v)
with v |= z ≤ 1 must leave C, and hence is finite.

Our procedure for generating preconditions for termination proceeds in a similar way as
the one by Brockschmidt et al. [2] for generating precontidions for safety proofs. It takes
as inputs the component C under consideration and its entry transitions EC, and returns
a conditional invariant Q that ensures that no infinite evaluation can remain within C. In
this case we keep a setM ⊆ C of possibly infinitely executable transitions (i.e., those for
which we have not proved conditional termination yet), called the termination transition
system. As in [4], we also need to keep another transition system I, called the conditional
invariant transition system, which is like the original component C, except for the addition
of the conditional invariants found in previous iterations. Initially, both the termination and
the conditional invariant transition systems are identical copies of the component C.
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While there are still potentially infinitely executable transitions, at each iteration we build
a Max-SMT problem F to generate a ranking function and its supporting conditional invariants.
We define templates I` for all locations ` in C, corresponding to fixed-length conjunctions of
linear inequalities on the program variables; i.e., I` is of the form

∧
1≤i≤k(ai +

∑
v∈V ai,vv ≤ 0)

for some k and where the a∗ are template variables that do not appear in V . We also define
a template R for a linear ranking function, i.e., R is of the form a+

∑
v∈V avv. The formula

F is defined as follows:
∧

t∈EC
It ∧

∧
t∈I Ct ∧

∧
t∈M Nt ∧

∨
t∈M(Bt ∧ St)

where It, Ct, Bt, St and Nt represent respectively the initiation, consecution, bounded-
ness, decrease and non-increase conditions for the transition t.

If they were all hard (i.e., must be fulfilled), the constraints
∧

t∈EC
It ∧

∧
t∈I Ct would

force that an invariant was obtained. In our context we need at least a conditional invariant,
and prefer invariants over other conditional invariants as they will likely lead to weaker
preconditions for termination. For this reason, while the constraints

∧
t∈I Ct are hard, in

order to ensure that the solution will yield a conditional invariant, the constraints
∧

t∈EC
It,

unlike in [4], are soft (may not be fulfilled with some cost). Thus, the solutions σ to F yield a
linear function σ(R) (the instantiation of the template ranking function R determined by σ)
together with conditional invariants σ(I`). If no solution can be found, then the procedure
gives up. Otherwise, given a solution σ to F, since the σ(I`) are conditional invariants, they
can be used to strengthen transitions t = (`, τ, `′) by conjoining σ(I`) ∧ (σ(I`′))′ to τ , both
in the conditional invariant transition system and in the termination transition system. Most
importantly, we identify the subset of the transitions t from M for which the constraint
Bt ∧ St holds, and hence, σ(R) is a ranking function, and they can be removed fromM.

In essence, this process corresponds to the step-wise construction of a lexicographic
termination argument. For a location ` at which the component C is entered, the conjunction
of all obtained σ(I`) is then a precondition for termination.

4 Proving Termination

A key advantage of the proposed approach for generating preconditions for termination is
that it allows one to perform case analysis and focus on those parts of the program for which
termination has not been guaranteed yet.

I Example 4. Let us consider again the program from Figure 1. In Example 3 it was shown
that, if an evaluation ever satisfies property z ≤ 1 at location `1, then it must be finite.
Therefore, in order to prove unconditional termination we can assume the complement z ≥ 0
at `1 and narrow the set of potentially infinite evaluations. If the transition system resulting
from propagating z ≥ 0 forward and backward terminates, we can conclude that the original
system terminates too, as we will have covered all possible cases.

Figure 2 shows the transition system obtained after this narrowing step, in which transition
τ1 has been disabled and the other transitions are now stronger. Now, we can prove this
system conditionally terminating again by producing the conditional invariant x < 0 (note
that z > 0) and the ranking function y for τ2. Finally, we can narrow again the transition
system adding x′ ≥ 0 to τ0 and x ≥ 0 to τ2 and prove it terminating with ranking function x
without the need of any conditional invariant and, hence, without precondition.

In general, if a conditional termination proof has been obtained with the conditional
invariant Q 6= None, by the inductiveness of Q, an evaluation that satisfies Q(`) for a certain
` in C cannot remain within C infinitely. Hence we only need to consider evaluations such
that whenever a location ` in C is reached, we have that Q(`) does not hold. Thus, the
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L0 L2L1

T0

T3

T4

T2

Figure 2 Transition system after narrowing.

int main() {
int x = nondet();
int y = nondet();
assume(x > y && y ≥ 0);
while (y > 0) {

x = x - 1;
y = y - 1;

}
while (y < 0)

y = y + x;
}

Figure 3 Program that cannot be proved
terminating with the approach in [4].

relation τ of an entry transition t = (`, τ, `′) ∈ EC can be replaced by τ ∧ ¬Q(`′)′. And
similarly, if t = (`, τ, `′) ∈ C then we can replace τ by τ ∧ ¬Q(`) ∧ ¬Q(`′)′.

I Example 5. Let us consider the program in Figure 3. This example cannot be expected
to be proved terminating with the techniques presented by Larraz et al. [4] because in that
work components are analyzed following a topological ordering, and no backtracking is
allowed: by the time the second loop is analyzed for termination, the first one has already
been proved terminating, most likely without having generated the invariant x ≥ 1, which
is needed for the second loop. On the other hand, the approach proposed here is able to
successfully handle this program. Indeed, the first loop could be proved terminating with y
as a ranking function. As regards the second loop, the conditional invariant x ≥ 1 together
with the ranking function −y could prove it terminating. Finally, a safety checker ensures
that condition x ≥ 1 holds between the two loops.

5 Experimental Results

Termination through conditional termination has been successfully implemented in the
VeryMax tool (www.cs.upc.edu/~albert/VeryMax.html). We have performed a first exper-
imental evaluation on the set of benchmarks in the C Integer programs category of the
Termination Competition which contains 335 programs. In the 2015 competition AProVE
proved termination of 208 programs, HipTNT+ 210 and UltimateBuchiAutomizer 207, while
the first implementation within VeryMax can prove 213. Note that, we cannot handle 5
programs that include non linear expressions which can be proved by the first two other
tools.
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1 Introduction

A number of recently introduced techniques for proving termination of programs in languages
such as Java [7, 8] and C [2, 4, 5] rely on a two-step process, in which the input program
is first transformed into an intermediate formal language, and then a standard termination
analyzer is used on the intermediate program. These intermediate languages are usually
variations of integer transition systems (ITSs), reflecting the pervasive use of built-in integer
data types in programming languages. For example, the C program in Figure 1 is translated
to the ITS in Figure 2.

while (y >= -3)
y = y - 2;

while (x >= 0) {
x = x + y;
y = y - 1;

}

Figure 1 Input C program

`0

`1

τ1 : y ≥ −3
x′ = x
y′ = y − 2

τ2 : y < −3
x′ = x
y′ = y

τ3 : x ≥ 0
x′ = x+ y
y′ = y − 1

Figure 2 ITS P, the input program as an ITS

Thus, to establish trustworthiness of such proofs of termination, two problems need to be
tackled. First, the soundness of the translation from the source programming language needs
to be proven, using elaborate models capturing the semantics of advanced programming
languages. Then, the soundness of termination proofs on ITSs needs to be proven.

In this work, we tackle the second problem by discussing ongoing work to automatically
certify termination proofs generated for a given ITS. While this continues work on certification
of termination proofs of term rewrite systems [9], proving termination of ITSs requires
substantially different techniques and introduces new challenges. Most notably, these include
the handling of integers, the existence of designated start states of the computation, and the
need to support program invariants. To generate program invariants needed for termination
proofs, a number of approaches reduce the termination analysis problem to a sequence of
program safety problems [1, 3, 10], which are passed to an underlying safety prover.

Thus, we first discuss how to certify safety proofs for a generalization of ITSs in Sect. 3,
and then present our ongoing work on certifying termination proofs on top of this in Sect. 4.

∗ This work was partially supported by FWF project Y757. The authors are listed in alphabetical order
regardless of individual contributions or seniority.
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2 Logic Transition Systems

Instead of ITSs, we consider a more general subset of labeled transition systems in which
the actions are defined by formulas whose syntax and semantics are specified as follows:

I Definition 1. A logic Λ specifies a typed signature Σ and its interpretation. We denote
by Λσ(V ) the set of terms of type σ over typed variables from V . An assignment α on V
assigns each variable in V a value from the corresponding domain.

Further, we assume a type bool and ∧ : bool × bool → bool ∈ Σ, interpreted as usual.
We call a term φ ∈ Λbool(V ) a formula, and write α |= φ if φ is interpreted to true under
assignment α, and φ |= ψ to denote semantic entailment.

I Definition 2. A logic transition system (LTS) is a tuple (Λ,V,L, `0,P), where Λ is a logic,
V is the set of program variables, L is the set of locations, `0 ∈ L is the initial location, and
P is the set of transition rules. Here, a transition rule is a triple of `, r ∈ L and a formula
φ ∈ Λbool(V ∪X ∪ V ′), written ` φ−→ r, where X is a set of auxiliary variables, V ′ is the set
{v′ | v ∈ V}, and v′ is a new variable called post variable for v.

Concerning notation, we write t′ (resp. φ′) for term t (resp. formula φ) where all variables
v are replaced by v′, and we often just write P for the whole LTS. Note that an LTS can be
seen as a labeled transition system, which is usually abbreviated also to LTS.

A state is a pair (`, α) of a location ` ∈ L and an assignment α on V. Every assignment
α gives rise to an initial state (`0, α). There is a transition step from s = (`, α) to t = (r, β),
written s→P t, iff ` φ−→ r ∈ P and α ∪ β′ ∪ γ |= φ, where β′ is the assignment on V ′ defined
by β′(v′) = β(v), and γ is an arbitrary assignment on the auxiliary variables. If there is a
transition sequence (`0, α0)→P · · · →P (`n, αn), then the state (`n, αn) and the location `n
is said to be reachable.

We define ITSs by fixing Λ to the integer arithmetic, i.e., there is a type int whose domain
is Z, and constants, addition, multiplication, (in)equalities etc. are in the signature.

3 Certifying Safety Proofs

The safety of a program means that certain “bad” states cannot be reached, and is usually
modeled by adding a single error location ` ∈ L that is reached from such bad states.
Proving safety then reduces to showing that ` is not reachable.

Safety provers typically work by finding inductive invariants that show the error location
is unreachable, or equivalently, that the invariant ‘false’ holds for the error location. To find
such invariants, safety provers usually transform the transition system. Hence, a certifier
has to check the soundness of such transformations, i.e., that every execution in the original
system can be simulated in the transformed system, besides the validity of invariants.

Our certifier supports safety proofs as produced by the Impact [6] algorithm. Given a
LTS P with error location ` , a safety proof takes the form of a graph G in which nodes
(`, φ) represent all states (`, α) where α |= φ.

I Definition 3. A graph over nodes from L×Λbool(V) is a valid unwinding for a LTS P if

it contains a node (`0, true);
every node is categorized as either a transition node or a covered node;
for every transition node (`, φ) and transition rule ` ψ−→ r ∈ P there is an edge (`, φ) −→
(r, χ), called a transition edge, such that φ ∧ ψ |= χ′;
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`0

`1

` 

τ1 : y ≥ −3
x′ = x
y′ = y − 2

τ2 : y < −3
x′ = x
y′ = y

τ3 : x ≥ 0
x′ = x+ y
y′ = y − 1

τ4 : y ≥ 0

Figure 3 LTS Q, safety ensures y < 0 at `1

`0, true `0, true

`1, y < 0 `1, y < −1

` , false

τ1

τ2

τ3

τ4

Figure 4 Graph G, a valid unwinding of Q

for every covered node (`, φ) there is an edge (`, φ) 99K (`, χ), called a cover edge, such
that (`, χ) is a transition node and φ |= χ;
In every node (` , φ) the formula φ is unsatisfiable, i.e., φ |= false.

I Example 4. Consider again the LTS P of Figure 2. In order to prove the termination of
the second while loop, the invariant y < 0 in location `1 is essential. To verify this invariant,
we create a copy of P as Q, which additionally contains a transition `1

y≥0−−→ ` , cf. Figure 3.
Clearly, if Q is safe, then y < 0 holds at location `1.

To ensure the safety ofQ, graph G in Figure 4 is constructed using the Impact algorithm [6].
Here, the node `1, y < −1 is a “covered node”, whose safety is proven by referring to node
`1, y < 0, which “covers” all described program states. Checking validity demands several
entailment checks. For instance, for the edge for transition τ3 we need to ensure

y < 0︸ ︷︷ ︸
φ

∧x ≥ 0 ∧ x′ = x+ y ∧ y′ = y − 1︸ ︷︷ ︸
ψ

|= y′ < −1︸ ︷︷ ︸
χ′

.

We have formally proven that the existence of a valid unwinding ensures safety in Isa-
belle/HOL.

I Theorem 5 (In Isabelle/HOL). If G is a valid unwinding for P, then P is safe.

We model unwindings basically following the original definition [6], where nodes and
transition edges are specified as a tree, whereas cover edges are given as a separate set.
However, this turned out to be unwieldy in the formalization. Our formalization is not
restricted to trees (since being a tree or not is irrelevant for soundness), each node has either
exactly one cover edge or a list of transition edges, nodes are modeled by some parametric
type α, and the location and the invariant of a node are modeled by a function from α to
L×Λbool(V).

Whereas Theorem 5 is a statement about the soundness of the technique in [6], we also
implemented an executable certifier for safety proofs. It demands that G is provided in the
certificate and validates the various entailments φ |= χ within Definition 3. To this end, the
certificate also has to contain hints on how to prove each of the entailments.

Most of the formalization of the certifier is generic, i.e., it is not restricted to integer
transition systems. However, at the moment we only have a formalized entailment checker
for linear integer arithmetic. Hence, we arrive at the following soundness theorem for CeTA’s
safety certifier.

I Theorem 6 (In Isabelle/HOL). Let P be an LTS over linear integer formulas. If the certifier
accepts a certificate for P, then P is safe.
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Under http://cl-informatik.uibk.ac.at/~thiemann/ceta_safety.tgz we provide
a version of CeTA for validating safety proofs. The archive also contains a small hand-written
safety proof following Figures 1 and 2 of [6], as well as an automatically generated safety
proof by T2 – similar to Figure 4. To this end, we employed the T2 version that is available
at https://github.com/mmjb/T2/tree/cert.

4 Towards Certifying Termination Proofs

I Definition 7. An LTS P is terminating if there exist no infinite transition sequence starting
from the initial location: (`0, α0)→P (`1, α1)→P · · · .

The cooperation graph technique [1] reduces termination proving to safety checking, and
incorporates some insights from termination proving for TRSs, such as deletion of rules in
the dependency pair setting.

For certification purpose, it turns out that the full cooperation graph technique need not
be formalized; instead, the following notion suffices.

I Definition 8 (Cooperation Problem). We define a set of fresh locations L] = {`] | ` ∈ L}. A
cooperation problem Q is an LTS over L∪L] such that every transition rule in Q is either of
form `

φ−→ r, ` φ−→ r], or `] φ−→ r] for `, r ∈ L. We say the cooperation problem is terminating
if there exists no infinite sequence of form

(`0, α0)→Q · · · →Q (`n, αn)→Q (`]n, αn)→Q (`]n+1, αn+1)→Q · · ·

where each transition rule `] φ−→ r] used after the n-th step must be used infinitely often.

I Theorem 9 (In Isabelle/HOL). Let P be an LTS and Q a cooperation problem such that

for each location ` ∈ L, there is a transition rule ` φ−→ `] ∈ Q where φ is a conjunction
of identities x′ = x; and
for each transition rule ` φ−→ r ∈ P, there exist ` φ−→ r ∈ Q and `] φ−→ r] ∈ Q.

Then, if Q is terminating w.r.t. Definition 8, then P is terminating w.r.t. Definition 7.

The crucial advantage of considering cooperation problems is that one can remove a
transition rule `] φ−→ r] without affecting termination if the rule cannot be applied infinitely
often. This is unsound for original LTSs; consider e.g. a nonterminating LTS consisting of
only the two transition rules `0

true−−→ `1 and `1
true−−→ `1. Clearly, the first transition rule can

be applied only once. Nevertheless, if one removes it then `1 becomes unreachable, and the
resulting LTS is terminating.

We are now able to formalize the main termination procedure for cooperation problems,
namely transition rule removal with invariants and rank functions. As a first step we only
formalize it with Z as target domain.

I Theorem 10 (In Isabelle/HOL). Let P be a cooperation problem over L∪L]. Let I : L] →
Λbool(V) map locations to invariants, R : L] → Λint(V) map locations to rank functions
(encoded as (linear) integer expressions), D a set of transition rules and b ∈ Z such that

The invariants specified by I are valid, i.e., β |= I(`]) whenever (`0, α)→∗P (`], β).
For every `] φ−→ r] ∈ P, I(`]) ∧ φ |= R(`]) ≥ R(r])′.
Transition rules in D are of the form `]

φ−→ r] and I(`])∧φ |= R(`]) > R(r])′∧R(`]) ≥ b.
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Then the termination of P \D implies the termination of P (w.r.t. Definition 8), where P \D
denotes the cooperation problem obtained by removing of all transitions rules in D from P.

I Example 11. Consider again the LTS P of Example 4. We first construct the initial
cooperation problem which yields copied versions τ ]1 , τ

]
2 , τ

]
3 of transition rules τ1, τ2, τ3.

One usually would delete transition τ ]2 via an SCC-analysis, but this can also be mimicked
by Theorem 10: choose R(`]0) = 1, R(`]1) = 0, b = 0, and I(`]i) = true.

Transition τ ]1 corresponding to the first while loop can also be deleted without invariants:
choose R(`]0) = y, R(`]1) = 0, b = −3, and I(`]i) = true.

Finally, transition τ ]3 demands the invariant from Example 4. We choose R(`]1) = x, b = 0,
and I(`]1) = y < 0. Hence, besides the invariant one has to validate the entailment

y < 0︸ ︷︷ ︸
I(`]

1)

∧x ≥ 0 ∧ x′ = x+ y ∧ y′ = y − 1︸ ︷︷ ︸
φ

|= x︸︷︷︸
R(`]

1)

> x′︸︷︷︸
R(`]

1)′

∧ x︸︷︷︸
R(`]

1)

≥ 0︸︷︷︸
b

.

5 Conclusion

Certification establishes trustworthiness of termination and safety proofs of integer transition
systems. In our formally verified certifier CeTA, we implemented a mode that certifies safety
proofs for ITSs.

We moreover made a fundamental step towards certifying termination proofs for ITSs.
Future work includes deciding a machine-readable format of ITS termination proofs, building
a parser, and establishing a connection to the safety proof certifier. The last is required in
order to certify termination proofs that use invariants. A valid unwinding G for an LTS P is
used to get the invariants mentioned in Theorem 10, which is the main connection that is
still missing for the termination certifier.
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Abstract
We report on our ongoing work on automated runtime complexity analysis of Java programs. Our
technique transforms Java programs to integer transition systems and analyzes the complexity
of the resulting systems using existing tools. To obtain a precise transformation, we construct a
symbolic execution graph from the analyzed Java program and exploit the information represented
in this graph. We implemented the presented technique in our tool AProVE and evaluated its
power on the Termination Problem Data Base.
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1 Introduction

In this paper, we report on ongoing work to extend our techniques from [3, 4, 7] (for termi-
nation analysis of Java) in order to analyze the complexity of (recursion-free) Java programs.
As in our approach for termination, our goal is to transform Java programs to rewrite sys-
tems and then re-use existing tools to analyze the resulting systems. However, in contrast
to termination analysis, we do not transform Java programs to term rewrite systems (with
built-in integers), but to integer transition systems. One reason for this decision is that
existing techniques for termination analysis of term rewrite systems with built-in integers
[5] were not yet lifted to complexity analysis.

The challenges of this transformation are related to the handling of recursively defined
data structures like lists or trees. To deal with such data structures, we need a measure of
size for Java objects. While the path length abstraction [1, 8] results in unbounded runtime
for many realistic Java programs, the term size abstraction (see, e.g., [6, 9]) is not directly
applicable to Java objects, as these may contain (negative) integers as values. Hence, we use
an adaptation of term size, cf. Sect. 2.

Furthermore, we have to infer bounds on the effects that Java instructions accessing the
heap have on our data measures. These effects are difficult to estimate in the presence of
sharing or cyclic data objects, cf. Sect. 3. To solve this, we exploit the detailed information
about sharing and heap shapes from the symbolic execution graph [4] which is obtained by a
whole-program analysis which over-approximates all possible program runs.

Finally, we explain how to adapt our approach to infer other forms of bounds in Sect. 4
and conclude in Sect. 5.
© Marc Brockschmidt, Florian Frohn, and Jürgen Giesl;
Proceedings of the 15th International Workshop on Termination;
Editors: Aart Middeldorp and René Thiemann; Article No. 5; pp. 5:1–5:5.
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class List {
int value;
List next;

static void g(List l) {
int head = l.value;
while (head > 0) head--;

}
}

Figure 1 A program accessing the value of the first list element

2 Measuring the Size of Java Objects

As an example,1 consider the Java class in Fig. 1. Intuitively, the complexity of the method
g is linear. However, at a second glance the situation is less clear. The reason is that there
are several possible size measures ‖ . ‖ for the method’s argument l. One common definition
for a measure of lists is the following:2

‖l‖ :=
{

0 if l = null

1 + ‖l.next‖ otherwise
(1)

In this way, the size of the list l is measured by its length, corresponding to the well-known
path length abstraction [1, 8]. However, this definition of ‖ . ‖ is not well defined for cyclic
objects (e.g., if l.next = l holds). To overcome this problem, let reach(l) be the set of all
objects reachable from l (including l itself). Then the definition

‖l‖ :=
{

0 if l = null

|reach(l)| otherwise
(2)

is equivalent to (1) for acyclic lists, but also measures the length of cyclic lists correctly.
Both of these measures focus on the structure of the measured object, but do not consider
(primitive) values stored in it. Thus, the value of l.value is not reflected in ‖l‖, and we
cannot express an upper bound on the size of head in terms of ‖l‖. Hence, the runtime
complexity of g would be unbounded. Therefore, we now use the term size of l by defining

‖l‖ :=
{

0 if l = null

|reach(l)|+ ∑
x∈reach(l) ‖x.value‖ otherwise

(3)

Here, one has to fix a suitable size measure for integers. Obviously, the integer’s value itself
is not a good choice: If, e.g., l is the list [10,−100], then we get ‖l‖ < 0 and, again, cannot
express an upper bound on head in terms of the size of l. Hence, as in [2], we measure
integers by their absolute value, i.e., we fix ‖i‖ = |i| for all i ∈ Z.

To define our size measure for arbitrary objects, let prim(o) be the set of all fields of
(primitive) integer types3 of the object o. So in our example, we have prim(l) = {value}.

1 Note that our implementation analyzes Java Bytecode instead of Java source code, i.e., Java programs
have to be compiled in order to analyze their complexity.

2 For the sake of simplicity, we sometimes identify program variables and the objects referenced by them.
3 Integer types are types like int and long, but also boolean, as booleans are internally represented as

integers by the JVM.
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while (l != null) l = l.next;

Figure 2 A list traversal program

Then we define:

‖o‖ =
{

0 if o = null

|reach(o)|+ ∑
x∈reach(o), f∈prim(x) |x.f| otherwise

(4)

Hence, we measure objects as the number of all reachable objects plus the absolute values
of all reachable integers.

3 Inferring Bounds for Heap Accesses

One important motivation for the choice of our size measure (cf. Sect. 2) was the ability to
infer bounds for functions like g from Fig. 1. To this end, we have to be able to relate the
size of head to the size of the list l. Indeed, with our size measure, the following holds for
read accesses to fields f of integer types:

if the field f of x is of an integer type, then we have − ‖x‖ < x.f < ‖x‖ (5)

In this way, the function g from Fig. 1 can be translated into the following integer transition
system, whose linear runtime complexity can easily be shown by existing tools:

g(l) → gwhile(head) J−l < head < lK
gwhile(head) → gwhile(head− 1) Jhead > 0K

Similarly, the following observation for fields f of reference types allows us to prove upper
complexity bounds for list- and tree-traversal algorithms:

if x is acyclic, then we have 0 ≤ ‖x.f‖ < ‖x‖ for all fields f of x (6)

Note that, due to the extensions of [3], the symbolic evaluation graph contains information
about the cyclicity of data structures and hence can be used to check the premise of (6). As
a result, the loop from Fig. 2 can be translated to the following integer transition system if
l is an acyclic list:

gwhile(l) → gwhile(l′) J0 ≤ l′ < lK

Again, existing tools can easily prove a linear upper bound for this integer transition system.
If we fail to prove that an object is acyclic, then we can still use the following observation

to obtain size bounds for its successors:

we always have 0 ≤ ‖x.f‖ ≤ ‖x‖ for all fields f of x (7)

So if l is a cyclic list, then the loop from Fig. 2 does not terminate and it is transformed to
the following non-terminating integer transition system:

gwhile(l) → gwhile(l′) J0 ≤ l′ ≤ lK

As in the case of read accesses to the heap, we can also specify bounds on the size
of objects after write accesses. Here, we have to take sharing effects into account. Let
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pred(y) = {o | y ∈ reach(o)}, i.e., pred(y) is the set of all predecessors of y. In this way,
pred(y) contains all objects whose size is affected by write accesses to fields of y. Then the
following observation allows us to over-approximate the size of each object o ∈ pred(y):

if k = ‖o‖ before evaluating y.f = x, then afterwards we have 0 ≤ ‖o‖ ≤ k + ‖x‖ (8)

Note that the set pred(y) can easily be over-approximated using the information about
sharing and aliasing from the symbolic execution graph.

4 Beyond Time Complexity

By applying the abstraction described in Sect. 2 and handling accesses to the heap as
explained in Sect. 3, we obtain an integer transition system which closely mirrors the analyzed
Java program and which can be used to analyze its time complexity. To analyze the usage
of other resources like, e.g., space complexity or network traffic instead, we proceed as in [2]
and attach weights to the rules of the integer transition system. In particular, this allows to
infer bounds when only certain instructions need to be considered. For example, to measure
space complexity, each transition corresponding to a new instruction has weight 1 and all
other4 transitions have weight 0. Similarly, we can apply our technique to analyze various
other properties of Java programs.

The power of the resulting analysis can be significantly improved using the following
observation: If a loop ` of the analyzed program has weight 0 and no other loop `′ with
positive weight and no other transition t with non-constant weight is reachable from `, then `

can safely be removed from the analyzed program without affecting its asymptotic complexity.
In this way, the resulting integer transition systems can often be simplified substantially.

5 Conclusion

We presented the basic ideas of our ongoing work towards a transformation of Java programs
to integer transition systems which is suitable for complexity analysis. One of its essential
properties is the used size abstraction (cf. Sect. 2), which allows us to prove complexity bounds
for many programs where techniques based on the path-length abstraction fail. Moreover,
due to the information about heap shapes and sharing from the symbolic execution graph we
can handle heap-manipulating programs with user-defined recursive data structures. Apart
from time complexity, we outlined how to adapt our transformation for the analysis of other
forms of complexity.

We implemented the transformation of Java programs to integer transition systems in our
tool AProVE5 and evaluated it on the Termination Problem Data Base.6 To analyze the result-
ing integer transition systems, we use the tool KoAT [2]. Currently, AProVE is able to prove
polynomial upper bounds for 151 of the 300 examples from the category Java_Bytecode (i.e.,
we excluded the examples from the category Java_Bytecode_Recursive, as our technique
for complexity analysis was not yet lifted to recursive programs). Note that at least 83 of
these 300 examples do not terminate, as their non-termination can be proved by AProVE.
Hence, our techniques succeeds for 70% of the remaining 217 examples. For space complexity,
AProVE is even able to prove polynomial bounds for 268 of the 300 examples (89%).

4 Here, we ignore arrays and the instructions to create them for the sake of simplicity.
5 http://aprove.informatik.rwth-aachen.de/
6 http://termination-portal.org/wiki/TPDB
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Abstract
We present a technique to infer lower bounds on the worst-case runtime complexity of integer
programs. To this end, we use under-approximating program simplification techniques and deduce
asymptotic lower bounds from the resulting simplified programs. We implemented our technique
in our tool LoAT and show that it infers non-trivial lower bounds for a large number of examples.
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1 Introduction

Recently, efficient methods were developed to find upper bounds on the worst-case complexity
of integer programs [1,2,5,7,12]. To infer tight complexity bounds, lower bounds for this notion
of complexity are required as well. Such lower bounds also have important applications in
security analysis. For example, large (e.g., exponential) lower bounds can be used to identify
denial-of-service attacks that exploit the algorithmic worst-case complexity of a program.
However, up to now there are only a few approaches to deduce best-case lower bounds [1, 3]
and no work on worst-case lower bounds for integer programs. For term rewrite systems, we
recently introduced the first technique to infer worst-case lower bounds [8].

In this paper, we consider worst-case lower bounds for integer programs (see [9] for the
full version of our paper). Let A(V) be the set of arithmetic terms over the variables V and let
F(V) be the set of conjunctions of (in)equations over A(V). We represent integer programs
as directed graphs where nodes are program locations L and edges are program transitions
T , where L contains a canonical start location `0. W.l.o.g., no transition leads back to `0.

I Definition 1 (Programs). Configurations (`,v) consist of a location ` ∈ L and a valuation
v : V → Z. Valuations are lifted to terms and formulas as usual. A transition t = (`, γ, η, c, `′)
can evaluate (`,v) to (`′,v′) if v |= γ for the guard γ ∈ F(V). The update η : V → A(V) maps
any x ∈ V to a term η(x) where v(η(x)) ∈ Z. It determines1 v′ by setting v′(x) = v(η(x)).
Such an evaluation step has cost k = v(c) for c ∈ A(V) and is written (`,v)→t,k (`′,v′). We
sometimes drop the indices t, k. A program is a set of transitions T .

Fig. 1 shows an example, where the pseudo-code on the left corresponds to the program
on the right. We write the costs of a transition in [ ] next to its name and represent updates by
imperative commands. We use x to refer to the value of the variable x before the update and
x′ to refer to x’s value after the update. Here, we have (`3,v)→t4 (`3,v

′) for all valuations
v where v(u) > 0, v′(u) = v(u)− 1, and v′(v) = v(v) for all v ∈ {x, y, z}.

∗ Supported by the DFG grant GI 274/6-1 and the Air Force Research Laboratory (AFRL).
1 See [9] for a generalization of our program model which also allows non-deterministic assignments.

© Florian Frohn, Matthias Naaf, Jera Hensel, Marc Brockschmidt, and Jürgen Giesl;
Proceedings of the 15th International Workshop on Termination;
Editors: Aart Middeldorp and René Thiemann; Article No. 6; pp. 6:1–6:5.
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`0: y = 0
`1: while x > 0 do

y = y + x

x = x− 1
done
z = y

`2: while z > 0 do
u = z − 1

`3: while u > 0 do
u = u− 1

done
z = z − 1

done

`0

`1

`2

`3

t0[1] : y′ = 0t1[1] : if(x > 0)
y′ = y + x

x′ = x− 1 t2[1] : if(x ≤ 0)
z′ = y

t3[1] : if(z > 0)
u′ = z − 1

t4[1] : if(u > 0)
u′ = u− 1

t5[1] : if(u ≤ 0)
z′ = z − 1

Figure 1 Example integer program

2 Simplifying Programs to Compute Lower Bounds

We now introduce our under-approximating program simplification technique. To this end,
we first show how to under-estimate the number of possible iterations of a simple loop
t = (`, γ, η, c, `), i.e., how to infer a term b such that for all valuations with v |= γ, t can be
applied at least v(b) times.2 To find such under-estimations, we use an adaptation of ranking
functions [2, 11] which we call metering functions. For any term b, let η(b) denote the term
in which all variables are replaced according to η.

I Definition 2 (Metering Function). Let t = (`, γ, η, c, `) be a transition. We call b ∈ A(V) a
metering function for t iff the following conditions hold:

¬γ =⇒ b ≤ 0 (1) γ =⇒ η(b) ≥ b− 1 (2)

Here, (2) ensures that v(b) decreases at most by 1 in each loop iteration, and (1) requires
that v(b) is non-positive if the loop cannot be executed. Thus, the loop is executed at least
v(b) times (i.e., b under-estimates t). So for the transition t1 in the example of Fig. 1, x,
x− 1, x− 2, . . . are valid metering function. Our implementation builds upon a well-known
transformation based on Farkas’ Lemma [11] to find linear metering functions.

Loop Acceleration Given a metering function b, we can accelerate a simple loop. Let
t = (`, γ, η, c, `) and let ηn denote n applications of η. To accelerate t, we compute its iterated
update and costs, i.e., a closed form ηit of ηn and an under-approximation cit of

∑
0≤i<n η

i(c).
Then we replace t by (`, γ, ηit[n/b], cit[n/b], `) to summarize b iterations of t.

For V = {x1, . . . , xm}, the iterated update is computed by solving the recurrence equations
x(1) = η(x) and x(n+1) = η(x)[x1/x

(n)
1 , . . . , xm/x

(n)
m ] for all x ∈ V and n ≥ 1. So for the

transition t1 from Fig. 1 we get the recurrence equations x(1) = x − 1, x(n+1) = x(n) − 1,
y(1) = y + x, and y(n+1) = y(n) + x(n). Usually, they can easily be solved using state-of-
the-art recurrence solvers [4]. (Otherwise, the loop cannot be accelerated and is simply
removed from the program, which is possible since we are only interested in worst-case
lower bounds.) In our example, we obtain the closed forms ηit(x) = x(n) = x − n and
ηit(y) = y(n) = y+n ·x− 1

2n
2 + 1

2n. We proceed similarly for the iterated cost of a transition,
where we may under-approximate the solution of the recurrence equations c(1) = c and

2 For simplicity, we assume v(b) ∈ Z. See [9] for a generalization which also allows, e.g., b = x
2 .
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`0

`1

`2

`3

t0[1] : y′ = 0
t1[x] :
if(x > 0)
y′ = y + 1

2 x2 + 1
2 x

x′ = 0
t2[1] : if(x ≤ 0)

z′ = y

t3[1] : if(z > 0)
u′ = z − 1

t4[u] : if(u > 0)
u′ = 0

t5[1] : if(u ≤ 0)
z′ = z − 1

Figure 2 Accelerating t1 and t4

`0

`1

`2

`3

t0.1[x + 1] :
if(x > 0)
y′ = 1

2 x2 + 1
2 x

x′ = 0

t2[1] : if(x ≤ 0)
z′ = y

t3.4[z] :
if(z > 1)
u′ = 0

t5[1] : if(u ≤ 0)
z′ = z − 1

Figure 3 Eliminating t1 and t4

`0

`2

t0.1.2[x + 2] :
if(x > 0)
y′ = 1

2 x2 + 1
2 x

x′ = 0
z′ = 1

2 x2 + 1
2 x

t3.4.5[z + 1] :
if(z > 1)
u′ = 0
z′ = z − 1

Figure 4 Eliminating `1 and `3

`0

`2

t0.1.2[x + 2] :
if(x > 0)
y′ = 1

2 x2 + 1
2 x

x′ = 0
z′ = 1

2 x2 + 1
2 x

t
3.4.5

[ 1
2 z2 + 3

2 z − 2] :
if(z > 1)
u′ = 0
z′ = 1

Figure 5 Accelerating t3.4.5

`0

`2

t[ 1
8 x4 + 1

4 x3 + 7
8 x2 + 7

4 x] :
if(x > 1)
y′ = 1

2 x2 + 1
2 x

x′ = 0
u′ = 0
z′ = 1

2 x2 + 1
2 x− z + 1

Figure 6 Eliminating t
3.4.5

c(n+1) = c(n) + c[x1/x
(n)
1 , . . . , xm/x

(n)
m ]. For t1 in Fig. 1, we get c(1) = 1 and c(n+1) = c(n) + 1

which leads to the closed form cit = c(n) = n. In this way, in our example we obtain the
program in Fig. 2 with the accelerated transitions t1 and t4.

Chaining After trying to accelerate all simple loops, we can chain subsequent transitions
t1, t2 by adding a new transition t1.2 that simulates their combination. One goal of chaining
is loop elimination of all accelerated simple loops. To this end, we chain all subsequent
transitions t′, t where t is a simple loop and t′ is no simple loop. Afterwards, we delete t
(which is sound, as our technique is under-approximating). Moreover, once t′ has been chained
with all subsequent simple loops, then we also remove t′, since its effect is now covered by
the newly introduced (chained) transitions. So in our example from Fig. 2, we chain t0 with
t1 and t3 with t4. The resulting program is depicted in Fig. 3.

Chaining also allows location elimination by chaining all pairs of incoming and outgoing
transitions for a location ` and removing them afterwards. For Fig. 3, we chain t0.1 and t2
as well as t3.4 and t5 to eliminate the locations `1 and `3, leading to the program in Fig. 4.

Now t3.4.5 is accelerated with b = z − 1, ηit(u) = 0, and ηit(z) = z − n. To compute its
iterated costs, we solve the recurrence equations c(1) = z + 1 and c(n+1) = c(n) + z(n) + 1.
After computing z(n) = z − n, the second equation simplifies to c(n+1) = c(n) + z − n + 1,
which results in cit = c(n) = n · z − 1

2n
2 + 3

2n. In this way, we obtain the program in Fig. 5.
A final chaining step yields the program which is depicted in Fig. 6.

3 Asymptotic Lower Bounds for Simplified Programs

By applying a generalization of the techniques from Sect. 2 with an appropriate strategy, every
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program can be transformed to a simplified program where all program paths have length 1.
While Fig. 6 obviously witnesses the bound Ω(n4) (where n measures the “size” of the input),

`0

`1

t[x2 − y] :
if(0 < x < 10 ∧ y + x < 0)
. . .

Figure 7 Simplified prog.

in general obtaining asymptotic bounds from simplified pro-
grams is non-trivial. E.g., in Fig. 7 the costs are quadratic, but
due to the condition 0 < x < 10, Ω(n2) is not a valid bound.

To infer an asymptotic bound from a transition of a sim-
plified program, we normalize its guard γ such that it has the
form

∧
1≤i≤k(ai > 0). In our example we get x > 0∧10−x > 0

∧ −y − x > 0. Then we infer a valuation vn which is parameterized in n such that vn |= γ

holds for large enough n. Thus, applying vn to the transition’s costs yields an asymptotic
bound. Note that since the valuations vn do not necessarily correspond to the “best” cases
w.r.t. runtime, our approach only infers “worst-case” lower bounds. Obviously, vn |= γ holds
for large enough n if vn(ai) is a positive constant or increases infinitely towards ω for all ai.
Thus, we introduce a technique to find out whether fixing the valuations of some variables and
increasing or decreasing the valuations of others results in positive resp. increasing valuations
of a1, . . . , ak. Our technique operates on limit problems {a•1

1 , . . . , a
•k

k } where ai ∈ A(V) and
•i ∈ {+,−,+!,−!}. Here, a+ (resp. a−) means that a grows towards ω (resp. −ω) and a+!

(resp. a−!) means that a has to be a positive (resp. negative) constant. We represent the guard
by an initial limit problem {a•1

1 , . . . , a
•k

k } where •i ∈ {+,+!}. So {x+! , (10−x)+! , (−y−x)+}
is an initial limit problem for the only transition of the program in Fig. 7.

A limit problem is trivial iff all its terms are unique variables. For trivial limit problems
S we immediately obtain a family of models vSn by fixing

vSn(x) = n, if x+ ∈ S vSn(x) = 1, if x+! ∈ S vSn(x) = 0, otherwise
vSn(x) = −n, if x− ∈ S vSn(x) = −1, if x−! ∈ S.

We now introduce a transformation to simplify limit problems until one reaches a trivial
problem. If S contains f(a1, a2)• for some standard arithmetic operation f like addition,
subtraction, multiplication, division, and exponentiation, we use limit vectors (•1, •2) with
•i ∈ {+,−,+!,−!} to characterize for which kinds of arguments f is increasing (if • = +)
resp. decreasing (if • = −) resp. a positive or negative constant (if • = +! or • = −!). Then
S can be transformed into the new limit problem S \ {f(a1, a2)•} ∪ {a•1

1 , a
•2
2 }.

For example, (+,+!) is an increasing limit vector for subtraction. The reason is that a1−a2
is increasing if a1 is increasing and a2 is a positive constant. Hence, our transformation  
allows us to replace (a1 − a2)+ by a+

1 and a+!
2 .

Moreover, for numbers m ∈ Z, one can simplify the constraints m+! and m−! (e.g., 2+! is
clearly satisfied). Finally, we also allow to instantiate variables with linear arithmetic terms.

I Definition 3 ( ). Let S be a limit problem. We have:

(A) S ∪ {f(a1, a2)•} ∅ S ∪ {a•1
1 , a

•2
2 } if • is + (resp. −,+!,−!) and (•1, •2) is

an increasing (resp. decreasing, positive, negative) limit vector for f
(B) S ∪ {m+!} ∅ S if m ∈ Z with m > 0, S ∪ {m−!} ∅ S if m ∈ Z with m < 0
(C) S σ Sσ if σ : V → A(V) is a substitution such that x does not occur in xσ,

xσ is linear, and v(xσ) ∈ Z for all valuations v and all x ∈ V

In our example, we have {x+! , (10 − x)+! , (−y − x)+} ∅ {x+! , (10 − x)+! , (−y)+} ∅ 
{x+! , (10 − x)+! , y−} {x/9} {9+! , 1+! , y−} ∅ {1+! , y−} ∅ {y−} using the increasing limit
vectors (+,+!) and (−) for subtraction and unary minus.

If we apply the substitutions σ1, . . . , σk that were used during the simplification of the
initial limit problem to the resulting trivial limit problem S, then vSn ◦ σk ◦ · · · ◦ σ1 is a
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family of models for the guard of the transition under consideration. So in our example, we
get vn = v

{y−}
n ◦ {x/9} = {x/9, y/ − n}. Finally, we obtain the asymptotic lower bound

Ω(vn(x2 − y)) = Ω(81 + n) = Ω(n) by applying vn to the transition’s costs.

4 Experiments

rcT (n) Ω(1) Ω(n) Ω(n2) Ω(n3) Ω(n4) EXP Ω(ω)
O(1) (132) – – – – – –
O(n) 45 125 – – – – –
O(n2) 9 18 33 – – – –
O(n3) 2 – – 3 – – –
O(n4) 1 – – – 2 – –
EXP – – – – – 5 –
O(ω) 57 31 3 – – – 173

Our implementation LoAT (“Lower Bounds
Analysis Tool”) of the presented technique is
freely available at [10]. LoAT uses the recur-
rence solver PURRS [4] and the SMT solver
Z3 [6]. We evaluated LoAT on the benchmarks
from the evaluation of [5]. As we know of no
other tool to compute worst-case lower bounds for integer programs, we compared our re-
sults with the asymptotically smallest results of leading tools for upper bounds: KoAT [5],
CoFloCo [7], Loopus [12], and RanK [2]. The results are displayed in the table on the right,
where rows correspond to the best automatically inferred upper bound, and columns cor-
respond to the worst-case lower bound computed by LoAT. A comparison with tools for
best-case lower bounds would be meaningless since the worst-case lower bounds computed
by LoAT are no valid best-case lower bounds. As shown in the table, LoAT infers non-trivial
lower bounds for 78% of the examples. Tight bounds are proved for 67% of the examples.
For a detailed experimental evaluation of our implementation and the full version [9] of our
paper we refer to http://aprove.informatik.rwth-aachen.de/eval/integerLower/.
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Abstract
Since the early 2000s fully automated techniques and tools for termination analysis have flour-
ished in several communities: term rewriting, imperative programs, functional programs, logic
programs, . . .

A common theme behind most of these tools is the use of constraint-based techniques to
advance the proof of (non-)termination. Recently, in particular SAT and SMT solvers are used
as back-ends to automate these techniques. In this survey, we provide an overview over auto-
mated termination analysis techniques in different communities, with an emphasis on the applied
constraint-based techniques.
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1 Introduction

In 1936, Turing [38] proved undecidability of the halting problem, i.e., the question whether
execution of a given program would eventually come to an end. Nonetheless, in 1949 he
proposed that the programmer ought to annotate the program with a proof of its termination
for arbitrary inputs [39]. His suggestion was later also taken up e.g. by Floyd [11]. It involves
providing a function that maps the state of the program during execution into a set with
an associated well-founded order (e.g. (N, >)) so that the function values decrease in >

during execution of the program. By well-foundedness of >, we can then conclude that (the
reachable part of) the transition relation of the program itself must be well founded.

Fundamentally, this approach of using such ranking functions to prove termination has
remained the core technique for proving termination. However, one aspect has changed:
While in the days of Turing or Floyd a termination proof would be found by hand, in recent
years it has become commonplace to search for such termination proofs automatically, via
push-button tools. Nowadays the technique of choice for exploring the search space are SAT
Modulo Theories (SMT) solvers (see, e.g., [33]). These tools can check satisfiability of (often
quantifier-free) Boolean combinations of formulas over one or several first-order theories
(e.g., quantifier-free linear arithmetic). The overarching theme is that a template for the
termination proof step is provided by the user or a heuristic in the push-button tool, and a
satisfying assignment found by the SMT solver then induces a sound termination proof (or a
step in such a termination proof, showing that certain program executions are terminating).

∗ This short paper is inspired by a talk originally presented at the Satisfiability Modulo Theories 2016
workshop in July 2016: http://smt-workshop.cs.uiowa.edu/2016/invited.shtml
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This short survey focuses on the automation of termination proofs in two communities
where the development of automatic termination analysis tools has flourished: Term rewriting
(Section 2) and imperative programs (Section 3).

2 Term Rewriting

Term rewriting (see, e.g., [3] for an introduction) is essentially a way of conducting equational
reasoning on term algebras on syntactic level. From a programming languages perspective,
term rewriting is an untyped first-order functional programming language without predefined
data structures (such as integers and their usual arithmetic operations) and with non-
determinism regarding both the question which subterm should be evaluated (rewritten) –
the evaluation strategy – and the question which rule should be used for the rewrite step.

There exist many variations of term rewriting which drop some of the above properties.
Examples are higher-order rewriting, rewriting using a specific evaluation strategy (e.g.,
innermost or context-sensitive [29] rewriting), or term rewriting with built-in data structures,
e.g., for integer arithmetic (see, e.g., [15, 24]). However, here we consider only the basic case.

I Example 1. The following rewrite system R computes a function append that concatenates
two lists. Here lists are built using constructor symbols nil for the empty list and cons for
inserting an element at the head of a list.

append(nil, ys)→ ys (1) append(cons(x, xs), ys)→ cons(x, append(xs, ys)) (2)

For the term t = append(cons(x1, nil), cons(x2, nil)), we could get the rewrite sequence t→R
cons(x1, append(nil, cons(x2, nil))) →R cons(x1, cons(x2, nil)). We can make a rewrite step
t →R t′ using a rule ` → r ∈ R by replacing an instance `σ of the left-hand side ` in t by
the corresponding instance rσ of the right-hand side r to get t′.

Termination of R means that every rewrite sequence will end in a term for which no
further rewrite step is possible. For term rewriting, the concept of “ranking function” has
been adapted via interpretations to (extended) monotone algebras (see, e.g., [31, 43, 10]). A
prominent example are polynomial interpretations [27], which map function symbols f to poly-
nomials fPol. This mapping is extended homomorphically to terms (corresponding to the state
of the program): [x]Pol = x for variables x, and [f(t1, . . . , tn)]Pol = fPol([t1]Pol, . . . , [tn]Pol)
for terms f(t1, . . . , tn). To compare two terms s and t, we compare polynomials [s]Pol > [t]Pol

over N. A term rewrite system R is terminating if [`]Pol > [r]Pol holds for all rules `→ r ∈ R.
(Interpretations to other monotone algebras are defined analogously.)

I Example 2. The interpretation Pol with appendPol(x1, x2) = 2 ·x1 +x2, consPol(x1, x2) =
x1 + x2 + 1, and nilPol = 1 proves termination of R from Example 1. For rule (1) we get
1 + ys > ys, and for rule (2) we get 2 ·x+ 2 · xs + 2 + ys > x+ 2 · xs + ys + 1, which both hold.

To find such interpretations automatically, commonly a template-based approach is used.
For example, we could use Pol with parameters ai whose values are yet to be determined:
appendPol(x1, x2) = a1 ·x1 +a2 ·x2 +a3, consPol(x1, x2) = a4 ·x1 +a5 ·x2 +a6, and nilPol = a7.
From rule (1) we get [append(nil, ys)]Pol > [ys]Pol and thus a1 · a7 + a2 · ys + a3 > ys. Sound
quantifier elimination techniques like the absolute positiveness criterion [22] (note that ys is
implicitly universally quantified on N), yield a sufficient condition on our parameters ai for
the earlier inequality: a1 · a7 + a3 > 0∧ a2 ≥ 1. This constraint is a quantifier-free formula in
non-linear integer arithmetic (QF_NIA). Although satisfiability for QF_NIA is undecidable
[32], existing SMT solvers can be used to find a solution for the ai and hence a concrete
polynomial interpretation Pol such that [append(nil, ys)]Pol > [ys]Pol.
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Several extensions of these polynomial interpretations to N are also automated via
QF_NIA: polynomial interpretations with negative coefficients [20, 21, 12, 19] and with
general max and min operators [13], matrix interpretations [10], interpretations to elementary
functions and to ordinal functions beyond Peano arithmetic [42], and partly strongly monotone
polynomial interpretations for a combination with inductive theorem proving [14].
I Remark. Termination proving for term rewriting seems to have been a driving force for
the development of SMT solvers for QF_NIA. In many instances of the annual SMT-COMP
(http://www.smt-comp.org) competition of SMT solvers in recent years, an SMT solver
scored highest that was developed as part of or in close connection with a termination prover
for term rewriting. In 2009: Barcelogic-QF_NIA [4, 5], using an incomplete reduction from
QF_NIA to QF_LIA (“L” for “linear”, rendering satisfiability decidable; the termination
prover NaTT [40] also uses a related reduction); in 2010: MiniSmt (based on TTT2) [25, 41];
in 2011, 2014, and 2015: AProVE [17, 12], the latter two tools using bit-blasting to SAT.

Moreover, Lucas [30] proposed polynomial interpretations that map to R≥0 instead of N.
Although the resulting SMT formulas to search for such interpretations are in QF_NRA
(“R” for “real”), where satisfiability is decidable [37], for efficiency such constraints are often
solved not by decision procedures, but by techniques that search on a finite domain [16, 41].

Floyd [11] also mentions lexicographic combinations of ranking functions. For term
rewriting, they can be found in a fully modular way, independently for each component, with
reduction pairs [26], e.g., by interpretations to extended monotone algebras. Reduction pairs
are usually combined with the Dependency Pair framework [2, 18, 21], allowing to lift some
monotonicity restrictions and to use proof steps not based on well-founded orders altogether.

Due to the needs of equational theorem proving as an early application, for term rewriting
usually termination for arbitrary initial terms is considered. There has been little work on
proving termination for a restricted set of initial terms. Notable exceptions include [9, 23].

3 Imperative Programs

Papers on proving termination of imperative programs are often based on a representation
of the program as a transition system on tuples of integer variables, analogous to a rewrite
system with built-in integer arithmetic. For instance, the below program (in Python syntax)

if x >= 0: # l_0
while x != 0: # l_1

x = x - 1 # l_2
# l_3

`0(x)→ `1(x) [x ≥ 0]
`1(x)→ `2(x) [x 6= 0]
`2(x)→ `1(x− 1)
`1(x)→ `3(x) [x = 0]

can be equivalently represented by the transitions (or
constrained rewrite rules) T in the box below it.

Note that with the notion of termination from the pre-
vious section, this transition system T is non-terminating:
`2(−1)→T `1(−2)→T `2(−2)→T · · · However, this se-
quence is not reachable in the original program. The only
allowed initial terms (states) for this program are `0(z) for
some integer z. From these states, the program is indeed
terminating. Thus, termination provers for imperative
programs also need to consider safety (unreachability).

To use information from initial states, current tech-
niques find invariants (here: x ≥ 0) either statically in a pre-analysis [34] or dynamically
during proof search. Here SMT-based techniques can search both for invariants [8, 6, 28]
and for (possibly lexicographic) ranking functions [35, 1]. For instance, Terminator [7] finds
linear ranking functions for simple loops [35] proposed by a safety prover as possible coun-
terexamples to termination. These ranking functions are combined to transition invariants
[36] or, as in [8], to lex. ranking functions. When the combined ranking functions “cover”
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7:4 SMT-Based Techniques in Automated Termination Analysis

all program executions, termination is proved. Thus, whereas in the DP framework or in
the construction of lex. ranking functions, essentially all program executions using a certain
transition presumably infinitely often must be proved terminating in a single proof step,
Terminator tries to prove termination just for a single path through the program at a time.
The approach exploits that a termination argument for some path through the program will
often also prove termination of other paths so that often only finitely many executions need
to be considered explicitly. A cooperating combination of both approaches is proposed in [6].

4 Concluding Remarks

As this (necessarily incomplete) survey shows, SMT solving nowadays is a prominent approach
to automation of termination proving, both for term rewriting and for imperative programs.
Thus, improvements to SMT solvers should also lead to improved termination provers.
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Abstract
The purpose of the enumeration of one-rule string rewriting systems is to benchmark methods for
proving termination automatically, in particular, to extract interesting cases that merit further
attention. We report on a new enumeration approach that represents sets of rewriting systems
as the set of models of a binary decision diagram. We relate this to methods and results from
the literature, and present preliminary results of experiments.

1 Motivation

Rewriting is a model of computation. The termination status of a rewriting system — does
it terminate or not? — is a practically relevant piece of information. Small, hard examples of
a restricted shape play a crucial role. They allow to uncover, demonstrate and communicate
weaknesses of existing approaches and they drive the invention of new methods. One example
of a shape restriction is the restriction to unary symbols which means the switching to string
rewriting.

The restriction of size and shape may or may not weaken the descriptive power. E.g.,
termination is decidable for one-rule string rewriting systems (SRSs) l→ r with l ∈ 0∗1∗ [13]
whence it is, particularly, not Turing-complete. On the other hand, termination of one-rule
term rewriting is undecidable. And there are one-element bases for combinatory logic, which
are Turing-complete. The study of restricted systems per se is justified by finding out the
thresholds between these classes.

Small string rewriting termination problems have indeed triggered new approaches.
The first automated termination proof for Zantema’s problem [16] a2b2 → b3a3 obtained
from (RFC) matchbounds [6] was later generalized to term rewriting [8].
The first termination proof (automated or not) for Zantema’s other problem a2 → bc, b2 →
ac, c2 → ab by matrix interpretations [7] was also generalized later to term rewriting [2]
and to complexity analysis [12].

2 Explicit Enumeration

Small hard examples are found by enumerating all small instances, and filtering out those
that are

easy, in the sense that they belong to a class that is known to have a decidable termination
problem; or
redundant, in the sense that there is a smaller system that is known to have the same
termination status. Here, “smaller” is with respect to a well-founded order that is a
refinement of the order by size.

For instance, if |l| ≥ |r| then l → r is easy: it terminates iff l 6= r. Or, if there is a
bijective renaming φ of letters such that φ(l)→ φ(r) is lexicographically smaller, then l→ r
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is redundant. A system l→ r is also redundant if there is a bijective renaming φ of letters
such that φ(l̃) → φ(r̃) is smaller, where s̃ denotes the reversal of string s. We call l → r

canonical if it is not redundant in either of these two ways.
The overhead of an enumeration can be reduced substantially if one avoids some of the

systems that are easy or redundant. Kurth [9] enumerates all length-increasing, canonical
one-rule SRSs l → r for |r| ≤ 6. Geser [4] extends this enumeration to |r| ≤ 9. Both
enumerations follow this approach:

foreach System s in canonical_systems { if not (easy (s)) then print (s) }

3 Symbolically Representing Sets of Rewriting Systems as BDDs

We present a radically different approach that avoids explicit enumeration: We represent
SRSs as models of binary decision diagrams (BDDs [1]). We represent all rules l → r of
a certain shape (fixed length of l and r) and a fixed alphabet as assignments of Boolean
variables, using some encoding scheme. We formulate criteria P1, P2, . . . of rewriting systems
as Boolean formulas P ′1, P ′2, . . . compatible with the chosen encoding.

Instead of explicitly enumerating all l→ r and then checking criteria P1, P2, . . . one after
another, we compute the BDD representation P ′ of P ′1 ∧ P ′2 ∧ . . . and then enumerate the
models of P ′:

foreach Assignment a in models (P1 and P2 and ...) { print (decode (a)) }

Additional advantages of this approach are:
we can count the number of models without actually enumerating them,
we can use any Boolean combination of criteria to investigate relations between them,
e.g., implications.

4 Criteria related to Termination of Standard Rewriting

The following criteria are used. These are either obvious or well-known, except for (two-letter)
coding.

Redundancy criteria:
l→ r is not canonical. A canonical rule is lexicographically minimal in the equivalence
class of rules w.r.t. renaming or reversal.

reversal: ab→ baa is transformed to ba→ aab

renaming: ab→ baa is transformed by {a 7→ b, b 7→ a} to ba→ abb

The equivalence class of ab → baa, restricted to alphabet {a, b} is {ab → baa, ba →
abb, ba→ aab, ab→ bba}. The minimal element w.r.t. the order rl <lex r

′l′ is ba→ aab.
l → r is bordered, i.e. both l and r begin and end with the same non-empty string [4].
Example: abba→ abaaba is bordered by a, and the termination problem is reduced to
[bb]→ [b][][b], over alphabet {[], [b], [bb]}.
two-letter-coding. For example, bca → aabc is reduced to [bc]a → aa[bc] via the code
{a, bc}, where [bc] is treated as a single letter.

Ease criteria:
l→ r deletes a letter: Σ(l) 6⊆ Σ(r).
Kurth’s Criterion A: a letter occurs more often in l than in r. This class includes the
deleting rules.
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Kurth’s Criterion D: l is not a factor of r, and either there are no overlaps between the
end of l and the begin of r or there are no overlaps between the end of r and the begin of
l. Example: aba→ aaabb. The end of aaabb has no overlaps with the begin of aba.
Loops of length one: l is a factor of r.
Loops of length two (by analysis of overlaps).
McNaughton’s criterion [11]: there exists an inhibitor i ∈ Σ(r) \ Σ(l).
Sénizergues’ criterion [13]: l has the shape a∗b∗.
l→ r is grid [5]: there is a letter c with |l|c > 0 and |l|c ≥ |r|c Example: bbab→ abbaaabaa.
This class includes the Criterion A rules.

5 Implementation

Our implementation (https://gitlab.imn.htwk-leipzig.de/waldmann/srs-count) uses
Haskell and the well-known BDD C-library CUDD [14].

We use the “one-hot” encoding for letters where the i-th variable being true means this
letter is the i-th letter of Σ while all other variables for that letter are false. A word is a list
of letters and a rule is a pair of words. In total, the encoding of l → r uses (|l|+ |r|) · |Σ|
propositional variables.

Criteria from Section 4 are expressed with the help of predicates for equality and order
on letters, for the prefix relation on words, and so on. A consistency predicate expresses
the one-hot property. It is always part of the main conjunction. Other predicates, or their
negation, can be included via command line arguments. The most expensive criterion is
canonicity w.r.t. reversal and renaming, where the number of BDD operations depends
exponentially on the size of the alphabet.

The implementation computes the BDD and enumerates its models and decodes them to
SRSs. Termination provers matchbox [15] and TTT2 [10] can be called for further filtering.

srs-count -n True -R True -a True -i False, -g False -o False
--results 20 --matchbox no 3 6 9

This example call computes the first 20 systems with a left-hand side of size 6, a right-hand
side of size 9 and a size-3 alphabet that are canonical by re(n)aming and (R)eversal-and-
(R)enaming, use (a)ll 3 letters of the alphabet, do not have an (i)nhibitor, are not a (g)rid-rule
and do not have a loop of length (o)ne, while matchbox still has a non-termination proof.

Additionally, we allow the enumeration to be split or restricted using patterns (globs) like
–globleft="ab*", which would restrict the left-hand side to words of the language a · b · Σ∗.
This replaces Boolean variables by constants, and makes for smaller BDDs. For a complete
enumeration, we apply several such patterns to distribute the computation across multiple
computers.

6 Results

We confirmed that symbolic and explicit enumeration agree for |r| ≤ 9. Table 1 shows
the numbers obtained by an explicit enumeration, using Geser’s original implementation,
of all length-increasing, canonical one-rule SRSs (“all”), and of those SRSs that satisfy
both |l| ≥ |Σ| and |r| ≥ |l| + |Σ| (“restricted”). The number of non-grid, non-inhibitor
systems, obtained through filtering, is the same in both cases. Further filtering out 1-loop
and Criterion D yields the next column. The final column shows the number after further
filtering out 2-loop and bordered (“fast check criteria”). The table illustrates that the explicit
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generate-and-filter approach quickly becomes prohibitively expensive and less useful since
the share of interesting systems becomes smaller as the system size grows.

Using symbolic enumeration, we were able to reproduce the results from the second-to-last
column up to |r| ≤ 8 in less than 10 seconds (|r| ≤ 9 in 3½ minutes) on a 3.2 GHz processor.

|r| all restricted non-grid, ..., non-1-loop, non-fast-
non-inhibitor non-crit-D criteria

2 2 1 0 0 0
3 21 2 2 0 0
4 226 20 8 1 0
5 3 929 103 30 7 4
6 96 029 1 699 207 68 45
7 3 151 054 18 345 1 618 540 440
8 130 792 338 396 184 16 594 4 994 4 265
9 6 641 134 837 6 642 933 196 476 49 814 43 535

10 ? 173 514 078 2 710 745 562 258 493 855
11 ? 4 039 563 892 42 735 641 7 213 316 6 346 721

Table 1 Numbers of length-increasing, canonical one-rule SRSs

In order to obtain fresh hard termination problems, we have enumerated and filtered all
one-rule SRS with |r| ≤ 14 and |Σ| no larger than 3, using all stated criteria except criterion
D (which was a recent addition to our implementation).

This left about 7.66·109 systems, which we have filtered using matchbox [15], applying only
RFC match bounds for termination, and forward closure enumeration for non-termination,
and spending no more than 1 second per problem (on our machines). Enumeration and
filtering took 30.000 CPU hours, approximately.

This left 671 systems, on which we ran TTT2 [10] and AProVE [3] on starexec, using
300 seconds as a timeout. We obtained 226 systems where termination currently cannot be
shown automatically, and which we will submit for TPBD. Four random examples are:

aabaaaa→ aaaaaabaab, babbaabba→ abbaabbabba,

bababababaa→ aababababababa, cabababa→ ababababccccca.

7 Extension to Termination of Cycle Rewriting

Recently, there has been an interest in cycle rewriting [17]. A string rewriting system R

over Σ defines a cycle rewriting relation ◦→R on Σ∗ that is the composition of the standard
conjugacy relation uv ≡ vu with the standard rewrite relation →R.

Our approach for symbolically enumerating interesting one-rule rewriting systems is easily
applicable for cycle rewriting, and in fact we simply use our existing implementation, and
switch off a few criteria. From the list of properties in Section 4, we omit the following
because their applicability needs further research: Kurth’s criterion D, the grid criterion and
Sénizergues’ criterion. Note that we can use the inhibitor criterion for reduction: If R has an
inhibitor, then cycle termination of R is equivalent to standard termination of R, which is
(in that case) decidable.
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For cycle termination, there was no previous enumeration. We generated 3.1 · 106 length-
increasing systems without the applicable properties with |r| ≤ 9 and |Σ| no larger than 3.
The initial generation took 5½ minutes on a 2.1 GHz i3 processor.

These are the 6 smallest one-rule SRSs for which matchbox could not determine the
status of cycle termination:

baba→ abaaabab, ababba→ aabbabab, abaaba→ aababaab,

baba→ abaaaabab, baabba→ aabbaaabb, ababbab→ abbababba.
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Abstract
We recently developed an approach for automated termination analysis of C programs with ex-
plicit pointer arithmetic, which is based on symbolic execution [11]. However, similar to many
other termination techniques, this approach assumed the program variables to range over math-
ematical integers instead of bitvectors. This eases mathematical reasoning but is unsound in
general. In this paper, we extend our approach in order to handle fixed-width bitvector integers.
Thus, we present the first technique for termination analysis of C programs that covers both byte-
accurate pointer arithmetic and bit-precise modeling of integers. We implemented our approach
in the automated termination prover AProVE [6] and evaluate its power by extensive experiments.
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Keywords and phrases Termination, Bitvectors, C Programs, LLVM, Symbolic Execution

1 Introduction

In general, it is unsound to assume mathematical integers in programming languages: The
function f below does not terminate if x has the maximum value of its type. But we can
falsely prove termination if we treat x and j as mathematical integers. For g, we could falsely
conclude non-termination, although g terminates due to the wrap-around for overflows.

void f(unsigned int x) { void g(unsigned int j) {
unsigned int j = 0; while (j > 0) j++; }
while (j <= x) j++; }

In this paper, we adapt our approach for termination of C [11] to the bitvector semantics.
To avoid dealing with the intricacies of C, we analyze programs in the intermediate repre-
sentation of the LLVM compilation framework [9]. Our approach first constructs a symbolic
execution graph that over-approximates all possible program runs (Sect. 2 and 3). This graph
is also used to prove that the program does not result in undefined behavior. In a second
step (Sect. 4), this graph is transformed into an integer transition system (ITS), whose ter-
mination can be proved by existing techniques. The full version of this paper appeared in [8].

2 LLVM States for Symbolic Execution

In the LLVM code for g obtained with the Clang compiler (see Page 2), j has type i32, as it
is a bitvector of length 32. The program has the basic blocks entry, cmp, body, and done.

In our abstract domain, an LLVM state has the form (p,LV ,KB,AL,PT ). The program
position p is a pair (b, k). Here, b is the name of the current basic block and k is the index
of the next instruction. LV : VP → Vsym is an assignment to the local program variables VP
(e.g., VP = {j, ad, . . .}), where Vsym is an infinite set of symbolic variables.
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define i32 @g(i32 j) {
entry: 0: ad = alloca i32

1: store i32 j, i32* ad
2: br label cmp

cmp: 0: j1 = load i32* ad
1: j1pos = icmp ugt i32 j1, 0
2: br i1 j1pos, label body, label done

body: 0: j2 = load i32* ad
1: inc = add i32 j2, 1
2: store i32 inc, i32* ad
3: br label cmp

done: 0: ret void }

The knowledge base KB consists of
first-order integer formulas. For con-
crete states, KB uniquely determines
the values of symbolic variables. For ab-
stract states several values are possible.

The allocation list AL contains ex-
pressions Jv1, v2K for v1, v2 ∈ Vsym,
which indicate that v1 ≤ v2 and that
all addresses between v1 and v2 were
allocated by an alloca instruction.

The fifth component PT is a set of “points-to” atoms v1 ↪→ty,i v2 where v1, v2 ∈ Vsym,
ty is an LLVM type, and i ∈ {u, s}. This means that the value v2 of type ty is stored at
the address v1, where i ∈ {u, s} indicates whether v2 represents this value as an unsigned or
signed integer. As each memory cell stores one byte, v1 ↪→i32,i v2 states that v2 is stored in
the four cells v1, . . . , v1 + 3. Finally, we use a state ERR to be reached if we cannot prove
absence of undefined behavior (e.g., for non-allowed overflow or a violation of memory safety).

We often identify the mapping LV with the equations {x = LV (x) | x ∈ VP}. Consider
the following abstract state for g. It represents states in the entry block immediately before
executing the instruction in Line 2. Here, LV (j) = vj, the memory cells between LV (ad) = vad
and vend = vad + 3 have been allocated, and vj is stored in the 4 cells vad, . . . , vend .

( (entry, 2), {j = vj, ad = vad}, {vend = vad + 3}, {Jvad, vendK}, {vad ↪→i32,u vj} ) (1)
To construct symbolic execution graphs, for any state a we use a first-order formula 〈a〉,

which contains KB and obvious consequences of AL and PT . If c is a concrete state, then
for all v ∈ Vsym(c) there is an n ∈ Z with |= 〈c〉 ⇒ v = n.

In [11], we used separation logic to define formally which concrete states are represented
by an abstract state a. For example, the abstract state (1) represents all concrete states
c = ((entry, 2),LV ,KB,AL,PT ) where the 32-bit integer j is stored at the address ad.

3 From LLVM to Symbolic Execution Graphs
We now show how to automatically generate a symbolic execution graph that over-approximates
all runs of a program. We developed symbolic execution rules for all LLVM instructions that
are affected by the adaption to bitvectors. Our approach starts with the initial states that
one wants to analyze for termination, e.g., with the abstract state A where j has an unknown
value. In the symbolic execution graph for g in Fig. 1, we wrote ↪→i32 and umax instead of
↪→i32,u and umax32 (where umaxn = 2n − 1 is the largest unsigned integer with n bits).

The function g allocates Jvad, vendK and stores the value vj of j at address ad. Next, we
jump to the block cmp. After loading vj (stored at the address ad) to the program variable
j1, in E we check whether j1’s value in unsigned interpretation is greater than 0 (icmp ugt).

We partition the program variables VP into two disjoint sets UP and SP . If x ∈ UP (resp.
x ∈ SP), then LV (x) is x’s value as an unsigned (resp. signed) integer. This is advantageous
for instructions like icmp ugt and sgt, since the LLVM types do not distinguish between
unsigned and signed integers. Instead, some LLVM instructions consider their arguments as
“unsigned” resp. “signed”. We use a heuristic to determine UP and SP . It ensures that in
each instruction in P , all occurring program variables of type in with n > 1 are either from
UP or from SP . In our example, we obtain UP = VP = {j, ad, . . . , inc} and SP = ∅. For
any t ∈ VP ] Z, let LVu,n(t) represent t as an unsigned integer with n bits: LVu,n(t) = LV (t)
if t ∈ UP , LVu,n(t) = LV (t) mod 2n if t ∈ SP , and LVu,n(t) = t mod 2n if t ∈ Z. LVs,n(t) is
defined analogously. Then the following rule evaluates icmp ugt symbolically.

In our rules, “p : ins” states that ins is the instruction at position p. Let a always denote
the abstract state before the execution step (i.e., above the horizontal line of the rule).
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(entry, 0), {j = vj, ...}, {vj ∈ [0, umax], ...}, ∅, ∅A

(entry, 1), {j = vj, ad = vad, ...}, {vend = vad + 3, ...}, {Jvad, vendK}, ∅B

(entry, 2), {j = vj, ad = vad, ...}, {...}, {Jvad, vendK}, {vad ↪→i32 vj}C

(cmp, 0), {j = vj, ad = vad, ...}, {...}, {Jvad, vendK}, {vad ↪→i32 vj}D

(cmp, 1), {j = vj, ad = vad, j1 = vj, ...}, {...}, {...}, {vad ↪→i32 vj}E

(cmp, 1), {ad = vad, j1 = vj, ...},
{¬vj > 0, ...}, {...}, {vad ↪→i32 vj}

F (cmp, 1), {ad = vad, j1 = vj, ...},
{vj > 0, ...}, {...}, {vad ↪→i32 vj}

G

. . .

(cmp, 2), {ad = vad, j1 = vj, j1pos = 1, ...}, {vj > 0, ...}, {...}, {vad ↪→i32 vj}H

(body, 0), {ad = vad, ...}, {vj > 0, ...}, {...}, {vad ↪→i32 vj}I

(body, 1), {ad = vad, j2 = vj, ...}, {vj > 0, ...}, {...}, {vad ↪→i32 vj}J

(body, 1), {ad = vad, j2 = umax, ...},
{...}, {...}, {vad ↪→i32 umax}

K (body, 1), {ad = vad, j2 = vj, ...},
{vj ∈ [1, umax− 1], ...}, {...}, {vad ↪→i32 vj}

L

(body, 2), {j2 = umax, inc = 0, ...},
{...}, {...}, {vad ↪→i32 umax}

M (body, 2), {inc = vinc, ...}, {vinc ∈ [2, umax],
vinc = vj + 1, ...}, {...}, {...}

N

. . .

(body, 3), {inc = vinc, ...}, {vinc ∈ [2, umax], vinc = vj + 1, ...}, {Jvad, vendK}, {vad ↪→i32 vinc}O

(cmp, 0), {inc = vinc, ...}, {vinc ∈ [2, umax], vinc = vj +1, ...}, {Jvad, vendK}, {vad ↪→i32 vinc}P

(body, 1), {j2 = vinc, ...}, {vinc ∈ [2, umax], vinc = vj +1, ...}, {Jvad, vendK}, {vad ↪→i32 vinc}Q

(cmp, 0), {inc=vinc2, ...}, {vinc2∈ [3, umax], vinc2 =vinc+1, ...}, {Jvad,vendK}, {vad ↪→i32 vinc2}R

. . .

Figure 1 Symbolic execution graph for the function g

Moreover, LV [x := v] is the function where (LV [x := v])(x) = v and (LV [x := v])(y) = LV (y)
for y 6= x. If p = (b, k), then p+ = (b, k + 1) is the position of the next instruction in the
same block. Finally, size(ty) is the number of bits required for values of type ty.
icmp ugt (p : “x = icmp ugt ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB, AL, PT)

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT)
if v ∈ Vsym is fresh and if

either |= 〈a〉⇒ (LVu,size(ty)(t1) > LVu,size(ty)(t2)) and ϕ is “v = 1”
or |= 〈a〉⇒ (LVu,size(ty)(t1) ≤ LVu,size(ty)(t2)) and ϕ is “v = 0”

However, in our example the value of LV u,32(j1) = LV (j1) = vj is unknown. Therefore,
we first have to refine State E to States F and G such that the comparison can be decided. For
this case analysis, we use the following rule. The rules for other comparisons are analogous.
icmp ugt refinement (p : “x = icmp ugt ty t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB, AL, PT)
(p,LV ,KB ∪ {ϕ},AL,PT) | (p,LV ,KB ∪ {¬ϕ},AL,PT)

if

ϕ is “LVu,size(ty)(t1) > LVu,size(ty)(t2)” and we have both 6|= 〈a〉⇒ ϕ and 6|= 〈a〉⇒ ¬ϕ
If ¬vj > 0 (State F ), we return. If vj > 0 (State G), the branch instruction leads us

to the body block. In the step from State I to J , again the value vj stored at vad is loaded
to j2. The next instruction is an overflow-sensitive addition. If vj < umax32, then vj + 1
is assigned to inc. But if vj = umax32, then there is an overflow. If KB does not contain
enough information to decide whether an overflow occurs, we perform a case analysis.
unsigned add refinement (p : “x = add in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB, AL, PT)
(p,LV ,KB ∪ {ϕ},AL,PT) | (p,LV ,KB ∪ {¬ϕ},AL,PT)

if x ∈ UP and

ϕ is “LVu,n(t1) + LVu,n(t2) ≤ umaxn”, where 6|= 〈a〉⇒ ϕ and 6|= 〈a〉⇒ ¬ϕ
Therefore, State J is refined to K and L. If no overflow can occur, then the result is the
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addition of the operators. Thus, State L evaluates to N , where vinc = vj + 1.
unsigned add without overflow (p : “x = add in t1, t2” with x ∈ VP , t1, t2 ∈ VP ∪ Z)

(p, LV , KB, AL, PT)

(p+, LV [x := v], KB ∪ {ϕ}, AL, PT)
if v ∈ Vsym is fresh, x ∈ UP ,

|= 〈a〉⇒ (LVu,n(t1) + LVu,n(t2) ∈ [0, umaxn]), and ϕ is “v = LVu,n(t1) + LVu,n(t2)”

For an overflow, due to the wrap-around, the unsigned result is the sum of the operands
minus the type size 2n. So in the evaluation of K to M , we have vinc = umax32 + 1− 232 = 0.
add with overflow (p : “x = add in t1, t2” with x ∈ VP , t1, t2 ∈ VP∪Z)

(p, LV , KB, AL, PT)

(p+, LV [x := v], KB ∪ {v = LVu,n(t1) + LVu,n(t2)− 2n}, AL, PT)
if

x ∈ UP , v ∈ Vsym is fresh, and |= 〈a〉⇒ (LVu,n(t1) + LVu,n(t2) > umaxn)
For M , the execution ends after some steps. For N , after storing vinc to vad, we branch

to block cmp again. State P is similar to D. So we continue the execution in P , where the
steps from P to Q are similar to the steps from D to J . Q is again refined and in the case
where no overflow occurs, we finally reach State R at the same program position as D and P .

To obtain finite symbolic execution graphs, we can generalize states whenever an evaluation
visits a program position (b, k) multiple times. We say that a′ is a generalization of a with
the instantiation µ whenever the conditions (b) – (e) of the following rule from [11] are
satisfied. Again, a is the state before the generalization step and a′ is the state resulting from
the generalization. See [11] for a heuristic to compute suitable generalizations automatically.
generalization with µ (p, LV , KB, AL, PT)

(p′, LV ′, KB′, AL′, PT ′)
if

(a) a has an incoming “evaluation edge” (not just refinement or generalization edges)
(b) LV (x) = µ(LV ′(x)) for all x ∈ VP
(c) |= 〈a〉 ⇒ µ(KB′)
(d) if Jv1, v2K ∈ AL′, then Jµ(v1), µ(v2)K ∈ AL
(e) for i ∈ {u, s}, if (v1 ↪→ty,i v2) ∈ PT ′, then (µ(v1) ↪→ty,i µ(v2)) ∈ PT

In our graph, P is a generalization of State R using an instantiation µ with µ(vj) = vinc
and µ(vinc) = vinc2. So we can conclude the graph construction with a (dashed) generalization
edge from R to P . A symbolic execution graph is complete if all its leaves correspond to
ret instructions (so in particular, the graph does not contain ERR). So a program with a
complete symbolic execution graph as in Fig. 1 does not exhibit undefined behavior.

When representing bitvectors by relations on Z, the wrap-around for overflows can either
be handled by case analysis or by “modulo” relations. We use a hybrid approach with case
analysis for instructions like addition and with “modulo” for operations like multiplication.
We refer to [8] for details on the handling of further LLVM instructions whose symbolic
execution rules have to be adapted to bitvector arithmetic.

4 From Symbolic Execution Graphs to Integer Systems

After the graph construction, we extract an integer transition system (ITS) from the cycles of
the symbolic execution graph and use existing techniques (e.g., [10]) to prove its termination.

ITSs can be represented as graphs whose nodes correspond to program locations and
whose edges correspond to transitions. A transition is labeled with conditions required for its
application. These conditions are formulas over a set of variables V and a set V ′ = {x′ | x ∈ V}
which refers to the values of the variables after applying the transition.
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`P

`R

vinc≤umax32
v′

inc = vinc
v′

inc2 = vinc2
. . .

vinc≤umax32
vinc2 =vinc +1
v′

inc =vinc2
. . .

Figure 2 ITS for function g

The only cycle of the symbolic execution graph in Fig. 1 is
the one from P to R and back. The resulting ITS is shown in
Fig. 2. The values of the variables do not change in transitions
that correspond to evaluation edges of the symbolic execution
graph. For the generalization edge from R to P with the
instantiation µ, the corresponding transition in the ITS gets the condition v′ = µ(v) for
all v ∈ Vsym(P ). So we obtain the condition v′inc = µ(vinc), i.e., v′inc = vinc2 = vinc + 1.
In contrast, vinc2’s value can change arbitrarily here, since vinc2 /∈ Vsym(P ). Moreover, the
transitions of the ITS contain conditions like vinc ≤ umax32, which are also present in the
states P – R. Termination of this ITS can easily be proved by standard techniques. In [8, 11]
we show that termination of the ITS implies termination of the analyzed LLVM program.

5 Conclusion

We adapted our approach for proving termination of C (resp. LLVM) programs to bitvectors.
Our approach was implemented in AProVE [6], which won the SV-COMP 2015 and 2016
competitions at TACAS for termination of C programs.1 Since we represent bitvectors by
relations on Z, we can use standard SMT solving on Z and standard termination analysis on
Z for the symbolic execution and the termination proofs in our approach.

There are few other methods and tools for termination of bitvector programs (e.g.,
KITTeL [5], TAN [3], 2LS [2], Juggernaut [4], Ultimate [7]). The full version of our paper
[8] (which contains a theoretical and experimental comparison with related work), our
implementation, and further symbolic execution rules are available online [1].
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Abstract
In this paper, we extend Jones’ result—that cons-free programming with kth-order data and a call-
by-value strategy characterises EXPkTIME—to a more general setting, including pattern-matching
and non-deterministic choice. We show that the addition of non-determinism is unexpectedly
powerful in the higher-order setting. Nevertheless, we can obtain a non-deterministic parallel to
Jones’ hierarchy result by appropriate restricting rule formation.

1 Introduction

In [4], Jones introduces cons-free programming. Working with a small functional programming
language, cons-free programs are defined to be read-only: recursive data cannot be created
or altered (beyond taking sub-expressions), only read from the input. By imposing further
restrictions on data order and recursion style, classes of cons-free programs turn out to
characterise various deterministic classes in the time and space hierarchies of computational
complexity. Most relevantly to this work, cons-free programs with data order k characterise
the class EXPkTIME of decision problems decidable in O(expk

2(a · nb)) on a Turing Machine.
The classes thus characterised are all deterministic: they concern the time and space to

solve decision problems on a deterministic Turing Machine. As the language considered by
Jones is deterministic, a natural question is whether adding non-deterministic choice to the
language would increase expressivity accordingly. The answer, at least in the base case, is
no: following an early result by Cook [2], Bonfante shows [1] that adding a non-deterministic
choice operator to cons-free programs with data order 0 makes no difference in expressivity:
whether with or without non-deterministic choice, such programs characterise P.

In this paper, we consider the generalisation of this question: does adding non-deterministic
choice give more expressivity when data of order greater than 0 is admitted? Surprisingly,
the answer is yes! However, we do not obtain the non-deterministic classes; rather, non-
deterministic cons-free programs of any data order ≥ 1 characterise ELEMENTARY, the class
EXP0TIME ∪ EXP1TIME ∪ EXP2TIME ∪ . . . . As this is less useful for complexity arguments,
we amend cons-freeness with a further restriction—unary variables—which allows us to
obtain the expected generalisation: that (thus restricted) cons-free programs of data order k
characterise EXPkTIME, whether or not non-deterministic choice is allowed.

We also generalise Jones’ language with pattern matching and user-defined constructors.

2 Cons-free programming

For greater generality—and greater ease of expressing examples—we extend Jones’ language
to a limited functional programming language with pattern matching. We will use terminology
from the term rewriting world, but very little of the possibilities of this world.

∗ Supported by the Marie Skłodowska-Curie action “HORIP”, program H2020-MSCA-IF-2014, 658162.
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2.1 Higher-order Programs
We consider programs using simple types, including product types. The type order o(σ) of a
type σ is defined as follows: o(κ) = 0 for κ a sort (base type), o(σ × τ) = max(o(σ), o(τ))
and o(σ ⇒ τ) = max(o(σ) + 1, o(τ)).

Assume given three disjoint set of identifiers: C of constructors, D of defined symbols and
V of variables; each symbol is equipped with a type. Following Jones, we limit interest to
constructors with a type ι1 ⇒ . . .⇒ ιm ⇒ κ where all ιi are types of order 0 and κ is a sort.
Terms are expressions s such that s : σ can be derived for some type σ using the clauses:

c s1 · · · sm : κ if c : ι1 ⇒ . . .⇒ ιm ⇒ κ ∈ C and each si : ιi
a s1 · · · sn : τ if a : σ1 ⇒ . . .⇒ σn ⇒ τ ∈ V ∪ D and each si : σi

(s, t) : σ × τ if s : σ and t : τ

Thus, constructors cannot be partially applied, while variables and defined symbols can be.
If s : σ, we say σ is the type of s, and let Var(s) be the set of variables occurring in s. A
term s is ground if Var(s) = ∅. We say t is a subterm of s, notation s� t, if either s = t or
s = a s1 · · · sn with a ∈ C ∪ F ∪ V and si � t for some i, or s = (s1, sn) and si � t for some i.
Note that the head of an application is not a subterm of the application.

A rule is a pair of terms f `1 · · · `k → r such that (a) f ∈ D, (b) no defined symbols occur
in any `i, (c) no variable occurs more than once in f `1 · · · `k, (d) Var(r) ⊆ Var(f `1 · · · `k),
and (e) r has the same type as f `1 · · · `k. A substitution γ is a mapping from variables to
ground terms of the same type, and sγ is obtained by replacing variables x in s by γ(x).

We fix a set R of rules, which are consistent: if f `1 · · · `k → r and f q1 · · · qn → s are
both in R, then k = n; we call k the arity of f . The set DA of data terms consists of all
ground constructor terms. The set VA of values is given by: (a) all data terms are values, (b)
if v, w are values, then (v, w) is a value, (c) if f ∈ D has arity k, n < k and s1, . . . , sn are
values, then f s1 · · · sn is a value if it is well-typed. Note that values whose type is a sort are
data terms. The call-by-value reduction relation on ground terms is defined by:

(s, t)→∗ (v, w) if s→∗ v and t→∗ w
a s1 · · · sn →∗ a v1 · · · vn if each si →∗ vi and either a ∈ C, or a ∈ D and n < arity(a)
f s1 · · · sm →∗ w if there are values v1, . . . , vm and a rule f `1 · · · `n → r with n ≤ m and
substitution γ such that each si →∗ vi = `iγ and (rγ) vn+1 · · · vm →∗ w

Note that rule selection is non-deterministic; a choice operator might for instance be imple-
mented by having rules choose x y → x and choose x y → y.

2.2 Cons-free Programs
Since the purpose of this research is to find groups of programs which can handle restricted
classes of Turing-computable problems, we must impose certain limitations. In particular,
we will limit interest to cons-free programs:

I Definition 1. A rule `→ r is cons-free if for all subterms r � s of the form s = c s1 · · · sn

with c ∈ C, we have: s ∈ DA or `� s. A program is cons-free if all its rules are.

This definition follows those for cons-free term rewriting in [3, 5] in generalising Jones’
definition in [4]; the latter fixes the constructors in the program and therefore simply requires
that the only non-constant constructor, cons, does not occur in any right-hand side.

In a cons-free program, if v1, . . . , vn, w are all data terms, then any data term occurring
in the derivation of f v1 · · · vn →∗ w is a subterm of some vi. This includes the result w.
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3 Turing Machines and decision problems

In this paper, we particularly consider complexity classes of decision problems. A decision
problem is a set A ⊆ {0, 1}+. A deterministic Turing Machine decides A in time P (n) if every
evaluation starting with a tape ␣x1 . . . xn␣␣ . . . completes in at most P (n) steps, ending in
the Accept state if x1 . . . xn ∈ A and in the Reject state otherwise.

Let exp0
2(m) = m and expk+1

2 (m) = expk
2(2m) = 2expk

2 (m). The class EXPkTIME consists
of those decision problems which can be decided in P (n) ≤ expk

2(a · nb) steps for some a, b.

IDefinition 2. A program (C,D,R) with constructors true, false : bool, [] : list and :: (de-
noted infix) of type bool⇒ list⇒ list, and a defined symbol start : list⇒ bool accepts
a decision problem A if for all ~x = x1 . . . xn ∈ {0, 1}+: ~x ∈ A iff start (x1:: . . . ::xn::[])→∗
true, where xi = true if xi = 1 and false if xi = 0. (Note that it is not required that all
evaluations end in true, just that there is at least one—and none if x /∈ A).

4 A lower bound for expressivity

To give a lower bound on expressivity, we consider the following result paraphrased from [4]:

I Lemma 3. Suppose that, given an input list cs ::= x1:: . . . ::xn::[] of length n, we have a
representation of 0, . . . , P (n), symbols seed, pred, zero ∈ D, and cons-free rules R with:

seed cs→∗ v for v a value representing P (n)
if v represents i > 0, then pred cs v →∗ w for w a value representing i− 1
if v represents i, then zero cs i→∗ true iff i = 0 and zero cs i→∗ false iff i 6= 0

Then any problem which can be decided in time P (n) is accepted by a cons-free program
whose data order is the same as that of R, and which is deterministic iff R is.

Proof Idea. By simulating an evaluation of a Turing Machine. This simulation encodes all
transitions of the machine as rules; a transition from state i to state j, reading symbol r,
writing w and moving to the right is encoded by a rule transition i r → (j, (w, R)). In
addition, there are rules for state cs n—which returns the state the machine is in at time
n—, position cs n—which returns the position of the tape reader—and tape cs n p—for
the symbol on the tape at position p and time n. Rules are for instance:

state cs n→ ifthenelse (zero cs n) Start (fst (transitionat cs (pred cs n)))
This returns Start at time 0, and otherwise the state reduced to in the last transition. J

I Example 4. For P (n) = (n+ 1)2−1, we can represent i ∈ {0, . . . , P (n)} as any pair (l1, l2)
of lists, where i = |l1| · (n+ 1) + |l2|. For the counting functions, we define:

seed cs → ([], []) zero cs ([], []) → true
pred cs (xs, y::ys) → (xs, ys) zero cs (xs, y::ys) → false
pred cs (x::xs, []) → (xs, cs) zero cs (x::xs, []) → false

I Lemma 5. For any a, b > 0, k ≥ 0,there are cons-free, deterministic rules Rk
a,b defining

counting functions as in Lemma 3 such that, for P (n) = expk
2(a · nb) − 1, the numbers

{0, . . . , P (n)} can be represented. All function variables in Rk
a,b have a type σ ⇒ bool.

Proof Idea. For k = 0, we can count to a · nb − 1 using an approach much like Example 4.
Given Rk

a,b, which represents numbers as a type σ, we can define Rk+1
a,b by representing a

number i with bit vector b0 . . . bM (with M = expk
2(a · nb)) as the function in σ ⇒ bool

which maps a “number” j to true if bi = 1 and to false otherwise. J
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The observation that the functional variables take only one input argument will be used
in Lemma 8 below. The counting techniques from Example 4 and Lemma 5 originate from
Jones’ work. However, in a non-deterministic system, we can do significantly more:

I Lemma 6. Let P0(n) := n, and for k ≥ 0, Pk+1(n) := 2Pk(n)− 1. Then for each k, we can
represent all i ∈ {0, . . . , Pk(n)} as a term of type boolk ⇒ list, and accompanying counting
functions seedk, predk and zerok can be defined.

Proof. The base case (k = 0) is Example 4. For larger k, let i ∈ {0, . . . , 2Pk(n) − 1} have bit
vector b1 . . . bPk(n); we say s : boolk ⇒ list represents i at level k if for all 1 ≤ j ≤ Pk(n):
bj = 1 iff s true→∗ v for some v which represents j at level k−1, and bj = 0 iff s false→∗ v
for such v. This relies on non-determinism: s true reduces to a representation of every j
with bj = 1. A representation O of 0 at level k − 1 is used as a default, e.g. s false→∗ O
even if each bj = 0. The zero and pred rules rely on testing bit values, using:

bitsetk cs F j → bshelpk cs F j (equalk−1 cs (F true) j) (equalk−1 cs (F false) j)
bshelpk cs F j true b→ true bshelpk cs F j b true→ false
bshelpk cs F j false false→ bitsetk cs F j.

These rules are non-terminating, but if F represents a number at level k, and j at level k− 1,
then bitsetk cs F j reduces to exactly one value: true if bj = 1, and false if bj = 0. J

Thus, we can count up to arbitrarily high numbers; by Lemma 3, every decision problem
in ELEMENTARY is accepted by a non-deterministic cons-free program of data order 1.

To obtain a more fine-grained characterisation which still admits non-deterministic choice,
we will therefore consider a restriction of cons-free programming which avoids Lemma 6.

I Definition 7. A cons-free program has unary variable if all variables occurring in any rule
in R have a type ι or σ ⇒ ι, with o(ι) = 0.

Intuitively, in a program with unary variables, functional variables cannot be partially
applied; thus, such variables represent a function mapping to data, and not to some complex
structure. Note that the input type σ of a unary variable x : σ ⇒ ι is allowed to be a product
σ1 × · · · × σn. Lemma 6 relies on non-unary variables, but Lemma 5 does not. We obtain:

I Lemma 8. Any problem in EXPkTIME is accepted by a (non-deterministic) extended cons-
free program of data order k.

5 An upper bound for expressivity

To see that extended cons-free programs characterise the EXPTIME hierarchy, it merely
remains to be seen that every decision problem that is accepted by a call-by-value cons-free
program with unary variables and of data order k, can be solved by a deterministic Turing
Machine—or, equivalently, an algorithm in pseudo code—running in polynomial time.

I Algorithm 9 (Finding the values for given input in a fixed extended cons-free program R).
Input: a term start v1 · · · vn : ι with each vi a data term and o(ι) = 0.
Output: all data terms w such that start v1 · · · vn →∗ w.

Let B :=
⋃

1≤i≤m{w ∈ DA | vi � w} ∪⋃
`→r∈R{w ∈ DA | r � w}.

For all types σ occurring as data in R, generate JσK and a relation w, as follows:

JκK = {s ∈ B | s : κ} if κ is a sort; for A,B ∈ JκK, let A w B if A = B

Jσ × τK = {(A,B) | A ∈ JσK ∧B ∈ JτK}; (A1, A2) w (B1, B2) if A1 w B1 and A2 w B2
Jσ ⇒ τK = P({(A,B) | A ∈ JσK ∧B ∈ JτK}); for A,B ∈ Jσ ⇒ τK let A w B if A ⊇ B
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For all f : σ1 ⇒ . . . ⇒ σm ⇒ ι ∈ D, note that we can safely assume that arity(f) ≥
m − 1. For all such f , and all A1 ∈ Jσ1K, . . . , Am ∈ JσmK, v ∈ JιK, note down a statement:
f A1 · · ·Am ≈ v. If arity(f) = m−1, also note down f A1 · · ·Am−1 ≈ O for all O ∈ Jσm ⇒ ιK.

For all rules ` → r, all s : τ with r � s or s = r x, all O ∈ JτK and all substitutions γ
mapping the variables x : σ ∈ Var(s) to elements of JσK, note down a statement sγ ≈ O.
Mark all statements xγ ≈ O such that xγ w O as confirmed, and all other statements
unconfirmed. Repeat the following steps until no new statements are confirmed anymore.

For every unconfirmed statement f A1 · · ·An ≈ O, determine all rules f `1 · · · `k → r

(with k = n or k = n − 1) and substitutions γ mapping x : σ ∈ Var(f `1 · · · `k) to
an element of JσK, such that each Ai = `iγ, and mark the statement as confirmed if
(r xk+1 · · ·xn)γ[xk+1 := Ak+1, . . . , xn := An] ≈ O is confirmed.
For every unconfirmed statement (F s)γ ≈ O, mark the statement as confirmed if there
exists A with (A,O) ∈ γ(F ) and sγ ≈ A is confirmed.
For every unconfirmed statement (f s1 · · · sn)γ ≈ O, mark it as confirmed if there are
A1, . . . , An such that both f A1 · · ·An ≈ O and each siγ ≈ Ai are confirmed.

Then return all w such that start v1 · · · vn ≈ w is marked confirmed.
I Lemma 10. Algorithm 9 is in EXPkTIME—where k is the data order of R—and returns
the claimed output.
Proof Idea. The complexity of Algorithm 9 is determined by the size of each JσK. The proof
of soundness and completeness of the algorithm is more intricate; this fundamentally relies
on replacing the values f v1 · · · vn with n < arity(f) by subsets of the set of all tuples (A,w)
with the property that, intuitively, f v1 · · · vn A→∗ w. J

6 Conclusion

Thus, we obtain the following variation of Jones’ result:
I Theorem 11. A decision problem A is in EXPkTIME if and only if there is a cons-free
program R of data order k and with unary variables, which accepts A. This statement holds
whether or not the program is allowed to use non-deterministic choice.

In addition, we have adapted Jones’ language to be more permissive, admitting additional
constructors and pattern matching. This makes it easier to specify suitable programs.

Using non-deterministic programs is a step towards further characterisations; in particular,
we intend to characterise NEXPkTIME ⊆ EXPk+1TIME using restricted non-deterministic cons-
free programs of data order k + 1.
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1 Preliminaries

We assume basic familiarity with term rewriting [1] in general and the dependency pair
framework [3] for proving termination in particular. We start with a recap of terminology
and notation that we use in the remainder.

ByM(A), we denote the set of finite multisets ranging over elements from the set A. We
write M(x) for the multiplicity (i.e., number of occurrences) of x in the multiset M , use +
for multiset sum, but otherwise use standard set-notation.

Given a relation �, its restriction to the set A, written �↓A, is the relation defined by
the set {(x, y) | x � y, x ∈ A, y ∈ A}. Moreover, for any function f , we use x �f y as a
shorthand for f(x) � f(x).

The multiset extension �mul of a given relation � is defined by:

M �mul N iff ∃X Y Z. X 6= ∅,M = X + Z,N = Y + Z,∀y ∈ Y. ∃x ∈ X. x � y

A useful fact about the multiset extension is that we may always “maximize” the common
part Z in the above definition.

I Lemma 1. Consider an irreflexive and transitive relation � and multisets M , N such
that M �mul N . Moreover, let X = M −M ∩N and Y = N −M ∩N . Then X 6= ∅ and
∀y ∈ Y. ∃x ∈ X. x � y.

While intuitively obvious, a rigorous proof of this fact does not seem to be widely known.1
In preparation for the proof, we recall the following easy fact about finite relations.

I Lemma 2. Every finite, irreflexive, and transitive relation is well-founded.

Proof. Let � be a finite, irreflexive, and transitive relation. For the sake of a contradiction,
assume that � is not well-founded. Then there is an infinite sequence a1 � a2 � a3 � · · ·
whose elements are in the finite (since � is finite) field of �. But then, by the (infinite)
pigeonhole principle, there is some recurring element ai, i.e., · · · � ai � · · · � ai � · · · . By
transitivity we obtain ai � ai contradicting the irreflexivity of �. J

∗ This work was supported by FWF (Austrian Science Fund) project P27502.
1 An alternative proof of this fact is indicated in Vincent van Oostrom’s PhD thesis [7].
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Noting that the converse of any finite, irreflexive, and transitive relation is again finite,
irreflexive, and transitive, Lemma 2 allows us to employ well-founded induction where the
induction hypothesis holds for “bigger” elements, as exemplified in the following proof.

Proof of Lemma 1. Since M �mul N we obtain I 6= ∅, J , and K such that M = I + K,
N = J +K, and ∀j ∈ J. ∃i ∈ I. i � j. Let A = I − I ∩ J , B = J − I ∩ J , and consider the
finite set D of elements occurring in either of I and J . Now, appealing to Lemma 2, we
employ well-founded induction with respect to ≺↓D in order to prove:

∀j ∈ J. ∃a ∈ A. a � j (†)

Thus we assume j ∈ J for some arbitrary but fixed j and obtain the induction hypothesis (IH)
∀c �↓D j. c ∈ J −→ ∃a ∈ A. a � c. From j ∈ J we obtain an i ∈ I with i � j. Now if i ∈ A,
then we are done. Otherwise, i ∈ J and by IH we obtain an a ∈ A with a � i. Since � is
transitive, this implies a � j, concluding the proof of (†). But then also ∀b ∈ B.∃a ∈ A.x � b
and A 6= ∅. We conclude by noting the following two equalities:

X = M −M ∩N = (I +K)− (I +K) ∩ (J +K) = I − I ∩ J = A,

Y = N −M ∩N = (J +K)− (I +K) ∩ (J +K) = J − I ∩ J = B. J

2 A Generalized Subterm Criterion

Recall the subterm criterion – originally by Hirokawa and Middeldorp [4] and later refor-
mulated as a processor for the dependency pair framework – which is a particularly elegant
technique (due to its simplicity and the fact that the R-component of a dependency pair
problem (P,R) may be ignored).

I Definition 3 (Simple projections). A simple projection is a function π : F → N that maps
every n-ary function symbol f to some natural number π(f) ∈ {1, . . . , n}. Applying a simple
projection to a term is defined by π(f(t1, . . . , tn)) = tπ(f).

I Theorem 4. If P ⊆ Dπ for simple projection π, then (P,R) is finite iff (P \Bπ,R) is. J

Recall that the appropriate notion of finiteness for the subterm criterion is “the absence of
minimal infinite chains.”

For an AC-variant of the subterm criterion (i.e., a variant for rewriting modulo associative
and/or commutative function symbols), Yamada et al. [8] generalized simple projections to
so-called multiprojections.

I Definition 5 (Multiprojections). A multiprojection is a function π : F → M(N) that
maps every n-ary function symbol f to a multiset π(f) ⊆ M({1, . . . , n}). Applying a
multiprojection to a term yields a multiset of terms as follows:

π(t) =
{
π(ti1) + · · ·+ π(tik ) if t = f(t1, . . . , tn) and π(f) = {i1, . . . , ik} 6= ∅,
{t} otherwise.

We write sDπmul t if either sBπmul t or π(s) = π(t).

A compromise between simple projections and full multiprojections is to allow recursive
projections (possibly through defined symbols). While theoretically subsumed by multipro-
jections, we included such recursive projections in our experiments in order to assess their
performance in practice.

The following is a specialization of the AC subterm criterion by Yamada et al. [8,
Theorem 33] to the non-AC case.
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I Theorem 6. Let π be a multiprojection such that P ⊆ Dπmul and f(. . .) Dπmul r for all
f(. . .)→ r ∈ R with π(f) 6= ∅. Then (P,R) is finite iff (P \Bπmul,R) is. J

This result (which is also formalized in IsaFoR [6]) states the soundness of a generalized
version of the subterm criterion and thus gives the theoretical backing for implementing such
a technique in a termination tool. In the following we are concerned with the more practical
problem of an efficient implementation.

That is, given a DP problem (P,R) we want to find a multiprojection π that satisfies the
conditions of Theorem 6 and orients at least one rule of P strictly by Bπmul.

Since the problem of finding such a multiprojection seems similar to the problem of finding
an appropriate argument filter for a reduction pair [2], and the latter has been successfully
tackled by various kinds of SAT and SMT encodings, we take a similar approach.

3 Implementation and Experiments

There are basically two issues that have to be considered: (1) how to encode a multiprojection
π and thereby the multiset π(s), and (2) how to encode the comparison between two encodings
of multisets with respect to the multiset extension of B.

In the following we use lowercase sans serif for propositional and arithmetical variables,
and UPPERCASE SANS SERIF for functions that result in formulas.

Encoding Multiprojections. We encode the multiplicity of a term t in the multiset π(s),
which is 0 if t does not occur in π(s) at all, by Ms(t) = MUL(1, s, t). The latter is defined as
follows

MUL(w, s, t) =






 ∧

1≤i≤n
¬pif


 ? w : 0 if s = t = f(t1, . . . , tn)

w if s = t and t is a variable∑

1≤i≤n
(pif ? MUL(w · wif , si, t) : 0) if tC s = f(s1, . . . , sn)

0 otherwise

where b ? t : e denotes if b then t else e and the intended meaning of variables is that pif = >
precisely when π projects to the i-th argument of f , in which case wif gives the weight of i in
π(f), i.e., its number of occurrences in π(f).2

Encoding Multiset Comparison. Now consider the problem of finding π such that sBπmul t

for given terms s and t. Noting that, independent of the exact π, π(s) and π(t) are multisets
over the finite set of subterms of s and t, it suffices to find an encoding for comparing
multisets over finite domains. This allows us to make use of the following observation.

I Lemma 7 (Comparing multisets over finite domains). Let D be a finite set, and M,N ⊆
M(D). Then, for irreflexive and transitive �, M �mul N is equivalent to

∀d ∈ D. upper(d) −→M(d) ≥ N(d) and M 6= N (?)

where upper(x) iff ∀d ∈ D. d � x −→M(d) = N(d).

2 In experiments, replacing pi
f = > by wi

f > 0 resulted in a slightly increased number of timeouts.
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Proof. We start with the direction from (?) to M �mul N . Assume (?) for M and N , and
define the multisets Z = {x ∈ M ∩ N | upper(x)}, X = M − Z, and Y = N − Z (i.e.,
M = X + Z and N = Y + Z). Then, appealing to Lemma 2, we use well-founded induction
with respect to ≺↓D in order to prove

∀y ∈ Y. ∃x ∈ X. x � y (‡)

Thus we assume y ∈ Y for some arbitrary but fixed y and obtain the induction hypothesis
(IH) ∀z �↓D y. z ∈ Y −→ ∃x ∈ X. x � z. Also note that ¬upper(y), since otherwise
M(y) ≥ N(y) by (?) and thus Z(y) = N(y), contradicting y ∈ Y . Therefore, we obtain
z � y with M(z) 6= N(z) by definition of upper. Now, either M(z) > N(z) or N(z) > M(z).
In the former case z ∈ X and we are done. In the latter case z ∈ Y and thus we obtain
an x ∈ X such that x � z by IH and conclude (‡) by transitivity of �. It remains to show
X 6= ∅. Since M 6= N there is some x with M(x) 6= N(x). If M(x) > N(x), then x ∈ X
and we are done. Otherwise, N(x) > M(x) and thus x ∈ Y and we conclude by invoking (‡).

For the other direction, assume M �mul N . Then for Z = M ∩ N , X = M − Z, and
Y = M−Z, we have X 6= ∅, X∩Y = ∅, M = X+Z, N = Y +Z and ∀y ∈ Y.∃x ∈ X.x � y,
using Lemma 1. This further implies M 6= N . Now assume d ∈ D and upper(d). Then either
d ∈ Y or d /∈ Y . In the latter case, clearly M(d) ≥ N(d), and we are done. In the former
case, we obtain an x ∈ X with x � d. Moreover, since X ∩ Y = ∅, we have x /∈ Y . But then
M(x) 6= N(x), contradicting upper(d). J

Encoding the Generalized Subterm Criterion. Putting everything together we obtain the
encoding

(∀s→ t ∈ P. GEQ(s, t)) ∧ (∃s→ t ∈ P. NEQ(s, t)) ∧
(∀s→ t ∈ R. RT(s) −→ GEQ(s, t)) ∧ (∀f ∈ F(P,R). SAN(f))

where

GEQ(s, t) iff ∀u ∈ Sub(s, t). UPPER(u) −→ Ms(u) ≥ Mt(u)
UPPER(u) iff ∀v ∈ Sub(s, t). v B u −→ Ms(v) = Mt(v)
NEQ(s, t) iff ¬(∀u ∈ Sub(s, t).Ms(u) = Mt(u))

RT(f(s1, . . . , sn)) iff ∃1 ≤ i ≤ n. pif .
SAN(f) iff

∧

1≤i≤arity(f)

(
pif −→ wif > 0

)

Here Sub(s, t) denotes the set of all (i.e., including s and t themselves) subterms of s and t,
and SAN is a “sanity check” that makes sure that propositional and arithmetical variables
play well together. Every satisfying assignment gives rise to a multiprojection π satisfying
the conditions of Theorem 6.

Experiments. We conducted experiments in order to assess our implementation. To this
end we took all the 1498 TRSs in the standard (as in “standard term rewriting”) category of
the termination problem database (TPDB) version 10.3 and tried to prove their termination
with the following strategy: first compute dependency pairs, then compute the estimated
dependency graph G, and finally try repeatedly to either decompose G into strongly connected
components or apply the subterm criterion. For the subterm criterion we tried either simple
projections (simple), recursive projections (recursive), multiprojection (multi), or a parallel
combination of those (all).



C. Sternagel 11:5

Table 1 Experiments on 1498 standard TRSs of TPDB 10.3

Yes Maybe Timeout

Projections # (sec) # (sec) # (sec) Total (sec)

simple 265 31.1 1184 226.8 49 254.0 502.9
recursive 292 35.4 1155 240.4 51 255.0 530.9
multi 351 61.2 1081 419.0 66 330.0 810.2

all 352 30.4 1099 230.3 47 235.0 495.7

In summary, the parallel combination of different kinds of projections results in a significant
increase of power (i.e., number of yeses) and does not have a negative impact on the speed,
compared to the original implementation of the subterm criterion (simple) of TTT2 [5].

Encouraged by this results, we incorporated our new implementation also into the
competition strategy of TTT2 and compared it to its 2015 competition version. In this way,
we were able to obtain 12 additional yeses. However, each of those 12 systems could already
be handled by some other termination tool in the 2015 termination competition.

Acknowledgments. We thank Vincent van Oostrom for pointing us to Lemma 7 and
Bertram Felgenhauer for helpful discussion concerning MUL. We further thank the Austrian
Science Fund (FWF project P27502) for supporting this work.
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1 Introduction

In 2010 Schernhammer and Gramlich [10] showed that quasi-decreasingness of a DCTRS R
is equivalent to µ-termination of its context-sensitive unraveling UCS(R) on original terms.
While the direction that quasi-decreasingness ofR implies µ-termination of UCS(R) on original
terms is shown directly; the converse – facilitating the use of context-sensitive termination
tools like MU-TERM [1] and VMTL [9] – employs the additional notion of context-sensitive
quasi-reductivity of R. In the following, we give a direct proof of the fact that µ-termination
of UCS(R) on original terms implies quasi-decreasingness of R. Moreover, we report our
experimental findings on DCTRSs from the confluence problems database (Cops),1 extending
the experiments of Schernhammer and Gramlich.

Contribution. A direct proof that µ-termination of a CSRS UCS(R) on original terms implies
quasi-decreasingness of the DCTRS R. New experiments on a recent DCTRS collection.

2 Preliminaries

We assume familiarity with the basic notions of (conditional and context-sensitive) term
rewriting [3, 6, 8], but shortly recapitulate terminology and notation that we use in the
remainder. Given two arbitrary binary relations →α and →β , we write α←, →+

α , →∗α for
the inverse, the transitive closure, and the reflexive transitive closure of →α, respectively.
The relation obtained by considering →α relative to →β , written →α/β , is defined by
→∗β · →α · →∗β . We use V(·) to denote the set of variables occurring in a given syntactic
object, like a term, a pair of terms, a list of terms, etc. The set of terms T (F ,V) over a given
signature of function symbols F and set of variables V is defined inductively: x ∈ T (F ,V) for
all variables x ∈ V , and for every n-ary function symbol f ∈ F and terms t1, . . . , tn ∈ T (F ,V)
also f(t1, . . . , tn) ∈ T (F ,V). A deterministic oriented 3-CTRS (DCTRS) R is a set of
conditional rewrite rules of the shape ` → r ⇐ c where ` and r are terms and c is a possibly
empty sequence of pairs of terms s1 ≈ t1, . . . , sn ≈ tn. For all rules in R we have that ` 6∈ V ,
V(r) ⊆ V(`, c), and V(si) ⊆ V(`, t1, . . . , ti−1) for all 1 6 i 6 n. The rewrite relation induced
by a DCTRS R is structured into levels. For each level i, a TRS Ri is defined recursively
by R0 = ∅ and Ri+1 = {`σ ≈ rσ | ` → r ⇐ c ∈ R ∧ ∀s ≈ t ∈ c. sσ →∗Ri tσ} where for a
given TRS S, →S denotes the induced rewrite relation (i.e., its closure under contexts and
substitutions). Then the rewrite relation of R is →R=

⋃
i>0 →Ri . We have R = Rc ]Ru

where Rc denotes the subset of rules with non-empty conditional part (n > 0) and Ru the
subset of unconditional rules (n = 0). A DCTRS R over signature F is quasi-decreasing if
there is a well-founded order � on T (F ,V) such that � = (� ∪B)+, →R ⊆ �, and for all
rules `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R, all substitutions σ : V → T (F ,V), and 0 6 i < n, if
sjσ →∗R tjσ for all 1 6 j 6 i then `σ � si+1σ .

∗ The research described in this paper is supported by FWF (Austrian Science Fund) project P27502.
1 http://cops.uibk.ac.at

© Thomas Sternagel and Christian Sternagel;
Proceedings of the 15th International Workshop on Termination;
Editors: Aart Middeldorp and René Thiemann; Article No. 12; pp. 12:1–12:5.



12:2 A Characterization of Quasi-Decreasingness

Given a DCTRS R its unraveling U(R) (cf. [8, p. 212]) is defined as follows. For each
conditional rule ρ : `→ r ⇐ s1 ≈ t1, . . . , sn ≈ tn (where n > 0) we introduce n fresh function
symbols Uρ1 , . . . , Uρn and generate the set of n+ 1 unconditional rules U(ρ) as follows

`→ Uρ1 (s1, v(`))
Uρ1 (t1, v(`))→ Uρ2 (s2, v(`), ev(t1))

...
Uρn(tn, v(`), ev(t1, . . . , tn−1))→ r

where v and ev denote functions that yield the respective sequences of elements of V and EV
in some arbitrary but fixed order, and EV(ti) = V(ti) \ V(`, t1, . . . , ti−1) denotes the extra
variables of the right-hand side of the ith condition. Finally the unraveling of the DCTRS is
U(R) = Ru ∪

⋃
ρ∈Rc

U(ρ) .
A context-sensitive rewrite system (CSRS) is a TRS (over signature F) together with a

replacement map µ : F → 2N that restricts the argument positions of each function symbol
in F at which we are allowed to rewrite. A position p is active in a term t if either p = ε,
or p = iq, t = f(t1, . . . , tn), i ∈ µ(f), and q is active in ti. The set of active positions in a
term t is denoted by Posµ(t). Given a CSRS R a term s µ-rewrites to a term t, written
s→µ t, if s→R t at some position p and p ∈ Posµ(s). A CSRS is called µ-terminating if its
context-sensitive rewrite relation is terminating. The (proper) subterm relation with respect
to replacement map µ, written Bµ, restricts the ordinary subterm relation to active positions.

We conclude this section by recalling the notion of context-sensitive quasi-reductivity in
an attempt to further appreciation for a proof without this notion.

I Definition 1. A CSRS R over signature F is context-sensitively quasi-reductive if there
is an extended signature F ′ ⊇ F , a replacement map µ (with µ(f) = {1, . . . , n} for every
n-ary f ∈ F), and a µ-monotonic, well-founded partial order �µ on T (F ′,V) such that for
every rule ` → r ⇐ s1 ≈ t1, . . . , sk ≈ tk, every substitution σ : V → T (F ,V), and every
0 6 i 6 k − 1:

`σ (�µ ∪Bµ)+
si+1σ whenever sjσ �µ tjσ for every 1 6 j 6 i, and

`σ �µ rσ whenever sjσ �µ tjσ for every 1 6 j 6 k.

3 Characterization

In order to present our main result (the proof of Theorem 5 below) we first restate some
definitions and theorems which we will use in the proof.

The usual unraveling is extended by a replacement map in order to restrict reductions in
U -symbols to the first argument position [10, Definition 4].

I Definition 2 (Unraveling UCS(R)). The context-sensitive unraveling UCS(R) is the unravel-
ing U(R) together with the replacement map µ such that µ(f) = {1, . . . , k} if f ∈ F with
arity k and µ(f) = {1} otherwise. We say that the resulting CSRS is µ-terminating on
original terms [10, Definition 7], if there is no infinite UCS(R)-reduction starting from a term
t ∈ T (F ,V).

Simulation completeness of UCS(R) (i.e., that every R-step can be simulated by a
UCS(R)-reduction) can be shown by induction on the level of a conditional rewrite step [10,
Theorem 1].

I Theorem 3 (Simulation completeness). For a DCTRS R we have →R ⊆ →+
UCS(R). J
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Furthermore, we need the following auxiliary result.

I Lemma 4. For any context-sensitive rewrite relation →µ induced by the replacement map
µ, Bµ commutes over →µ, i.e., Bµ · →µ ⊆ →µ ·Bµ.

Proof. Assume s Bµ t→µ u for some terms s, t, and u. Then s = C[t] Bµ t→µ u for some
nonempty context C. Thus we conclude by C[t]→µ C[u] Bµ u. J

With this we are finally able to prove our main result.

I Theorem 5. If the CSRS UCS(R) is µ-terminating on original terms then the DCTRS R
is quasi-decreasing.

Proof. Assume that UCS(R) is µ-terminating on original terms. We define an order � on
T (F ,V)

� def= (→UCS(R) ∪Bµ)+ ∩ (T (F ,V)× T (F ,V)) (?)

and show that it satisfies the four properties from the definition of quasi-decreasingness:
1. We start by showing that � is well-founded on T (F ,V). Assume, to the contrary, that �

is not well-founded. Then we have an infinite sequence

t1 � t2 � t3 � . . . (†)

where all ti ∈ T (F ,V). By definition Bµ is well-founded. Moreover, since UCS(R) is
µ-terminating on original terms, →UCS(R) is well-founded on T (F ,V). Further note
that every →UCS(R)-terminating element (hence every term in T (F ,V)) is →UCS(R)/Bµ-
terminating, since by a repeated application of Lemma 4 every infinite reduction
t1 →UCS(R)/Bµ t2 →UCS(R)/Bµ · · · starting from a term t1 ∈ T (F ,V) can be trans-
formed into an infinite →UCS(R)-reduction, contradicting well-foundedness of →UCS(R) on
T (F ,V). We conclude by analyzing the following two cases:

Either (†) contains →UCS(R) only finitely often, contradicting well-foundedness of Bµ,
or there are infinitely many→UCS(R)-steps in (†). But then we can construct a sequence
s1→UCS(R)/Bµs2→UCS(R)/Bµs3→UCS(R)/Bµ . . . with s1 = t1, contradicting the fact that
all elements of T (F ,V) are →UCS(R)/Bµ-terminating.

2. Next we show � = (� ∪B)+. The direction � ⊆ (� ∪B)+ is obvious. For the other
direction, (� ∪B)+ ⊆ �, assume we have s (� ∪B)n+1 t. Then we proceed by induction
on n. In the base case s (� ∪B) t. If s � t we are done. Otherwise, s B t and thus also
s Bµ t since s, t ∈ T (F ,V) and therefore s � t. In the step case n = k + 1 for some k,
and s (� ∪B) u (� ∪B)k t. Then we obtain s � u by a similar case-analysis as in the
base case. Moreover u � t by induction hypothesis, and thus s � t.

3. Now we show that →R ⊆ �. Assume s→R t. Together with simulation completeness of
UCS(R), Theorem 3, we get s→+

UCS(R) t which in turn implies s � t.
4. Finally, we show that if for all ` → r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R, substitutions

σ : V → T (F ,V), and 0 6 i < n, if sjσ →∗R tjσ for all 1 6 j 6 i then `σ � si+1σ. We
have the sequence

`σ →+
UCS(R) U

ρ
i+1(si+1, v(`), ev(t1, . . . , ti))σ Bµ si+1σ

using the definition of UCS(R) together with simulation completeness (Theorem 3). But
then also `σ � si+1σ as wanted because `σ, si+1σ ∈ T (F ,V).

Hence R is quasi-decreasing with the order �. J
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Table 1 (Non-)quasi-decreasing DCTRSs out of 103 in Cops by transformation and tool.

conditional R UCS(R) U(R)

AProVE MU-TERM VMTL AProVE MU-TERM VMTL AProVE MU-TERM NaTT TTT2 VMTL total

YES 80 78 80 78 78 79 81 78 77 78 78 84
NO – 12 – – – – – – – – – 12

The converse of Theorem 5 has already been shown by Schernhammer and Gramlich [10,
Theorem 4]:

I Theorem 6. If a DCTRS R is quasi-decreasing then the CSRS UCS(R) is µ-terminating
on original terms. J
Thus the desired equivalence follows as an easy corollary.

I Corollary 7. Quasi-decreasingness of a DCTRS R is equivalent to µ-termination of the
CSRS UCS(R) on original terms.

4 Experiments

In order to present up-to-date numbers for (non-)quasi-decreasingness we conducted exper-
iments on the 103 DCTRSs contained in the confluence problems database using various
automated termination tools. Of these, AProVE [4], MU-TERM 5.13 [1], and VMTL 1.3 [9]
are able to directly show quasi-decreasingness and MU-TERM is the only tool that can
show non-quasi-decreasingness [7]. AProVE, MU-TERM, and VMTL can also handle context-
sensitive systems and we used them in combination with UCS(R). Finally, we also ran
the previous tools together with NaTT [11] and TTT2 1.16 [5] on U(R). The results for a
timeout of one minute are shown in Table 1. There are several points of notice. The most
yes-instances (81) we get if we use AProVE together with U(R). Interestingly, AProVE cannot
show quasi-decreasingness of system 362 directly, although it succeeds (like all other tools
besides NaTT) if provided with its unraveling. Moreover, systems 266, 278, and 279 can be
shown to be quasi-decreasing by AProVE if we use U(R) but not if we use UCS(R) (even if we
increase the timeout to 5 minutes). On system 363 only MU-TERM succeeds (in the direct
approach). If we compare MU-TERM on conditional systems to MU-TERM with UCS(R), the
direct method succeeds on system 360 but not on system 329. Conversely, when using UCS(R)
it succeeds on system 329 but not on system 360. Moreover, MU-TERM seems to have some
problems with systems 278 and 342, generating errors in the direct approach. With UCS(R)
VMTL succeeds on 79 systems, subsuming the results from AProVE and MU-TERM (78 each).
On system 357 only VMTL together with UCS(R) succeeds. With U(R), NaTT succeeds on
77 systems, this is subsumed by TTT2, succeeding on 78 systems, which in turn is subsumed
by AProVE, succeeding, as mentioned above, on 81 systems. In total 84 systems are shown
to be quasi-decreasing, 12 systems to be non-quasi-decreasing, and only 7 remain open. One
of these, for example, is system 337 from Cops, for computing Bubble-sort [12]

x < 0→ false 0 < s(y)→ true
s(x) < s(y)→ x < y x : y : ys → y : x : ys ⇐ x < y ≈ true

whose unraveling replaces the last (and only conditional) rule by the two rules:

x : y : ys → U(x < y, x, y, ys) U(true, x, y, ys)→ y : x : ys
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5 Conclusion

We provide a direct proof for one direction of a previous characterization of quasi-decreasingness,
i.e., that µ-termination of a CSRS UCS(R) on original terms implies quasi-decreasingness of
the DCTRS R without the need of a detour by using the notion of context-sensitive quasi-
reductivity. We believe that our proof could easily be adapted to any other context-sensitive
transformation as long as it is simulation complete. Moreover, we provide experimental
results on a recent collection of DCTRSs. Knowing that a DCTRS is quasi-decreasing is,
among other things, useful to show confluence with the Knuth-Bendix criterion for CTRSs [2].

Acknowledgments. We thank the Austrian Science Fund (FWF project P27502) for sup-
porting our work. Moreover we would like to thank the anonymous reviewers for useful hints
and remarks and particularly for pointing out a flaw in an earlier version of Section 4.
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Abstract
At RTA 2015, Endrullis and Zantema [4] presented a technique to automatically prove non-
termination of string rewriting and term rewriting, by finding an automaton for which the accep-
ted language has properties from which non-termination can be concluded. Here we recapitulate
this technique, and present some recent extensions to non-termination of cycle rewriting.

The basic idea is to find a non-empty regular language of terms that is closed under rewrit-
ing and does not contain normal forms. It is automated by representing the language by an
automaton with a fixed number of states, and expressing the mentioned requirements in a SAT
formula. Satisfiability of this formula implies non-termination. For cycle rewriting encoding the
requirements shows up to be essentially harder than for sting rewriting; we deal with this by
approximating them exploiting the notion of simulation.

Some preliminaries of this note are copied from [4].

1 Introduction

A basic approach for proving that a term rewriting system (TRS) is non-terminating is to
prove that it admits a loop, that is, a reduction of the shape t →+ C[tσ], see [6]. Indeed,
such a loop gives rise to an infinite reduction t→+ C[tσ]→+ C[(C[tσ])σ]→ · · · in which in
every step t is replaced by C[tσ]. In trying to prove non-termination, several tools ([1, 2])
search for a loop. An extension from [3], implemented in [1] searches for other explicit infinite
reductions. Here we follow a completely different approach: non-termination immediately
follows from the existence of a non-empty set of terms / strings that is closed under rewriting
and does not contain normal forms. Our approach is to find such a set being the language
accepted by a finite automaton, obtained from the satisfying assignment of a SAT formula
describing the above requirements. Here we focus on string rewriting; [4] shows how this
extends to term rewriting by using tree automata, and non-termination of systems like the
S-rule from combinatory logic can be proved to be non-terminating fully automatically.

Hence the goal is to describe the requirements, namely non-emptiness, closedness under
rewriting, and not containing normal forms, in a SAT formula.

As an example consider

bL→ bR, Ra→ aR, Rb→ Lab, aL→ La.

Here we may choose the language described by the regular expression

b a∗ (L+R) a∗ b

also described by the automaton
© Hans Zantema and Alexander Fedotov;
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2 Abstract rewriting

An abstract reduction system (ARS) is a binary relation → on a set T . We write →+ for the
transitive closure, and →∗ for the reflexive, transitive closure of →.

Let → be an ARS on T . The ARS → is called terminating or strongly normalizing (SN)
if no infinite sequence t0, t1, t2, . . . ∈ T exists such that ti → ti+1 for all i ≥ 0. A normal
form with respect to → is an element t ∈ T such that no u ∈ T exists satisfying t→ u. The
set of all normal forms with respect to → is denoted by NF(→). The ARS → is called weakly
normalizing (WN) if for every t ∈ T a normal form u ∈ T exists such that t→∗ u.
I Definition 1. A set L ⊆ T is called

closed under → if for all t ∈ L and all u ∈ T satisfying t→ u, it holds that v ∈ L, and
weakly closed under → if for all t ∈ L \ NF(→) there exists u ∈ L such that t→+ u.

It is straightforward from these definitions that closed under → implies weakly closed
under →. The following theorems relate these notions to SN and WN, for the simple proofs
we refer to [4].

I Theorem 2. An ARS → on T is not SN if and only if a non-empty L ⊆ T exists such
that L ∩ NF(→) = ∅ and L is weakly closed under →+.

I Theorem 3. An ARS → on T is not WN if and only if a non-empty L ⊆ T exists such
that L ∩ NF(→) = ∅ and L is closed under →.

3 Encoding in SAT for string rewriting

First we focus on string rewriting: a string rewrite system (SRS) over Σ is defined to
be a subset R of Σ∗ × Σ∗. Elements (`, r) of an SRS are called (string rewrite) rules
and are usually written as ` → r, where ` is called the left hand side (lhs) and r the
right hand side (rhs) of the rule. The string rewrite relation →R on Σ∗ is defined by
u→R v ⇐⇒ ∃x, y ∈ Σ∗, `→ r ∈ R : u = x`y ∧ v = xry.

For encoding the requirements in Theorem 2 and Theorem 3 in a SAT formula, we fix a
number n to be the number of states of the automaton M we are looking for. We introduce
mn2 boolean variables vija describing whether there is an a-transition from state i to state
j, for i, j running over all n states, and a running over all m symbols.

The first requirement is L(M) 6= ∅. This is expressed by stating that there is a path in
M from the initial state to a final state of length ≤ 2k for k = dlog2 ne. In its turn this is
expressed by additional variables pijq expressing that there is a path of length ≤ 2q from i

to j, for q = 0, . . . , k.
The second requirement is closed under rewriting. One way to deal with this is to use the

following over-approximation: for every rule `→ r and every two states i, j in A for which
there is a path labeled by ` from i to j, there is also a path labeled by r from i to j.

The last requirement is that L(M) contains no normal forms. One way to deal with this
is the following. In a preprocessing build an automaton M ′ exactly accepting the normal
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forms, then in the product automaton M ×M ′ there should be no path from the initial state
to a state (f, f ′) for which f is final in M and f ′ is final in M ′.

For string rewriting this approach works well: for several examples non-termination can
be proved automatically in this way where earlier techniques fail, see [4].

4 Cycle rewriting

For a string rewriting system R over Σ, apart from considering its string rewrite relation
→R, we can also consider its cycle rewrite relation ◦→R on cycles. Here a cycle is a string in
which the start and end are connected, more precisely, a string modulo ∼ for ∼ defined by

u ∼ v ⇐⇒ ∃u1, u2 ∈ Σ∗ : u = u1u2 ∧ v = u2u1.

For an SRS R over Σ the corresponding cycle rewrite relation ◦→R on equivalence classes
of ∼ is defined as follows:

[u] ◦→R [v] ⇐⇒ ∃x ∈ Σ∗, `→ r ∈ R : `x ∼ u ∧ rx ∼ v.

Equivalently, one can state [u] ◦→R [v] ⇐⇒ ∃u′ ∈ [u], v′ ∈ [v] : u′ →R v′.
Termination of ◦→R is a strictly stronger property than termination of →R, for instance

for R consisting of the single rule ab→ ba the string rewrite relation→R is clearly terminating,
but since ab ∼ ba the cycle rewrite relation ◦→R is not terminating. Termination of cycle
rewriting has been studied in [8, 7]. Here we wonder whether Theorem 2 and Theorem 3
can be applied to automatically prove non-termination of cycle rewriting. Unavoidably, the
expression in SAT will be more complicated. For instance, for closedness under rewriting
we do not need to conclude urv ∈ L(M) from u`v ∈ L(M) for ` → r ∈ R, but also allow
r2vur1 ∈ L(M) if r = r1r2.

Focusing on Theorem 3 there are two ways to deal with this. We can look for an automaton
M such that L(M) is closed under cyclic shift, that is, if u ∼ v then u ∈ L(M) ⇐⇒ v ∈
L(M), and require that the conditions of Theorem 3 hold for L(M), or we look for an
automaton M such that L = {u | ∃v ∈ L(M) ∧ v ∼ u} satisfies the conditions of Theorem 3.
Experiments show that the latter is the more powerful. More precisely, the following theorem
is exploited.

I Theorem 4. Let R be an SRS over Σ and LNF = {u | [u] ∈ NF( ◦→R )}. Then ◦→R is
not WN if there exists L ⊆ Σ∗, such that:

(1) L 6= ∅,
(2) for all ` → r ∈ R and for all u, v ∈ Σ∗ it holds that if u`v ∈ L then either urv ∈ L or

there exist r1 6= ε 6= r2 such that r = r1r2 and r2vur1 ∈ L,
(3) for all `1`2 → r ∈ R and for all u ∈ Σ∗ it holds that if `2u`1 ∈ L, then there exist r1, r2

(possibly empty) such that r = r1r2 and r2ur1 ∈ L,
(4) L ∩ LNF = ∅ .

The (straightforward) proof is in [5]. The approach is to find an automaton M such that
L = L(M) satisfies the requirements of Theorem 4. The main issue is how to express these
requirements in SAT, or properties from which these requirements follow. The key idea is to
exploit the notion of a simulation.

A relation S on the states of an automaton is called a (forward) simulation if for every
p, q, r, a such that pSq and p

a→ r, there exists a state s such that q a→ s and rSs. A
consequence of this definition is that for any string u if there is a u-path from p to r and

WST 2016
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pSq holds, then there exists a state s such that rSs holds and there is a u-path from q to s.
A backward simulation is the same but then for the reversed relation a→.

For the SAT encoding for every state t we introduce a forward simulation St and a
backward simulation Bt, that is, we express each of these 2n new relations by n2 fresh
boolean variables, and add requirements expressing the above definitions. Moreover, we
require for every t that if (q0, q) ∈ Bt then q = t, and if (qf , q) ∈ St then q = t, for all states
q, t and the initial state q0 and the single final state qf . Write p u→ q if there is a u path from
p to q, for any states p, q, u ∈ Σ∗. Using these properties one derives:

if (p, q) ∈ Bt and q0
u→ p, then t u→ q.

if (p, q) ∈ St and p u→ qf , then q
u→ t.

Exploiting this, the part u`v ∈ L⇒ r2vur1 ∈ L from Theorem 4 (2), can be expressed by

∀p, q : p `→ q ⇒ ∃p′, q′, t : q0
r2−→ p′ ∧ q′ r1−→ qf ∧ (p, q′) ∈ Bt ∧ (q, p′) ∈ St.

Combined with the other part of Theorem 4 (2) and the right quantification over r1, r2, this
can be expressed in a SAT formula in a standard way.

Theorem 4 (3) is expressed in a similar way; Theorem 4 (1) is encoded similarly as for
string rewriting.

For the remaining part Theorem 4 (4) in a preprocessing phase we compute an automaton
M ′ which accepts the complement of LNF. This is slightly harder than the similar condition
for string rewriting. Let q′0 be the initial state and q′f be the single final state of M ′. Then
for Theorem 4 (4) we require that there is a forward simulation relation S = Sq′

f
on M ∪M ′

satisfying (q0, q
′
0) ∈ S and for which q = q′f is the only state satisfying (qf , q) ∈ S. From

these properties follows L(M) ⊆ L(M ′), being part Theorem 4 (4). For more details and
proofs we refer to [5]. Note that this encoding of L ∩ LNF = ∅ gives rise to much smaller
formulas than the encoding based on product automata as presented in [4].

We conclude by an example. Consider the SRS R = {00a→ a0, 1a→ a01}. Applying a
SAT solver to the encoding as sketched above for this example yields a satisfying assignment
from which the following automaton can be obtained, being a certificate for non-weak-
normalization by Theorem 4.

RULES: 00a -> a0; 1a -> a01; 

0 20
141

3 a50

6

a

0

0

Indeed, the requirements of Theorem 4 can be checked by hand, exploiting the properties
of the simulations:

1. We verify that L 6= ∅ by checking that the final state 1 is reachable from the initial state
0 and we observe that this is the case.

2. We verify, that each occurrence of u00av in L implies that either ua0v ∈ L, or 0vua ∈ L,
for any u, v ∈ Σ∗. Similarly, each u1av in L implies that either ua01v ∈ L, or 01vua ∈ L,
or 1vua0 ∈ L. 0100a ∈ L. Here, u = 01, v = ε. This is covered by 01a0 ∈ L, where
u = 01 and v = ε. Next, we have a 01a0 ∈ L, where u = 0 and v = 0. This is covered
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by 0100a ∈ L, where u = 0 and v = 0. (6, 4) ∈ S5: a 0-transition from 6 to 1 can be
mimicked by an 0-transition from 4 to 5, 1 has no outgoing transitions and (1, 5) ∈ S5.
(2, 3) ∈ B5: an incoming 0-transition from 0 to 2 can be mimicked by an incoming
0-transition from 5 to 3, 0 has no incoming transitions and (0, 5) ∈ B5.

3. We verify, that for each occurrence of either 0au0, or au00 in L, either ua0 ∈ L, or
a0u ∈ L, or 0ua ∈ L, for any u ∈ Σ∗. For each au1 ∈ L, there must be either ua01 ∈ L,
or a01u ∈ L, or 01ua ∈ L, or 1ua0 ∈ L, for any u ∈ Σ∗. This holds, since none of 0au0,
or au00, or au1 is present in L.

4. We verify that L∩LNF = ∅. This is the case, since every accepting path contains either
0100a, or 01a0.
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1 Introduction

In implementing term rewriting, an obvious optimization is to share common subterms. In
this way the objects to rewrite are not terms represented by trees, but by directed graphs.
For finite terms the directed graphs will be acyclic, but in many applications, in particular in
functional programming ([7]), it makes sense to also allow cycles, by which after unfolding the
represented term is infinite. In the graph every node is labeled by an operation symbol, and
the outgoing edges of such a node are numbered from 1 to the arity of the operation symbol.
These graphs are called term graphs, and rewriting on term graphs has been extensively
studied, see e.g. [8, 4], sometimes under the name of jungle rewriting [6, 5]. In this note we
focus on term graphs that are not required to have a root. The key issues of this note are
the following.

How to interpret a (left-linear non-collapsing) term rewrite rule when applied to term
graphs? We argue that there are two natural ways to do so. One is the extended version,
coinciding with the version as studied before, e.g., in [4], covering implicit unraveling. In
contrast, in the basic version, implicit unraveling is not allowed. One motivation of this
note was to generalize cycle rewriting as studied in [11, 9], being string rewriting applied
on cycles, to term rewriting applied on graphs, and then this basic version is the natural
notion where the single rule f(g(x))→ f(x) is terminating, but f(g(x))→ g(f(x)) is not.
How to prove termination of term graph rewriting automatically? We observed that
conceptually there is a strong relationship between term graph rewriting and graph
transformation systems (GTSs), and in [3, 2] sophisticated techniques have been developed
to prove termination of GTSs automatically, often based on SMT solving, and implemented
in the tool Grez. So our approach is to transform term graph rewriting to graph
transformation, in such a way that termination of the term graph rewrite system (TGRS)
can be concluded from termination of the resulting GTS, to be proved by Grez.

For termination issues an extensive database of benchmarks has been developed: TPDB
[1], including a great number of term rewriting systems (TRSs). So for testing our approach, it
is natural to filter a suitable selection from this database. For applying them on term graphs,
the TRSs should be left-linear and non-collapsing, since otherwise their semantics remains
unclear. For a selection of 201 TRSs obtained by a filtering guided by these observations, we
applied Grez.

In this note most details are omitted; for the full version we refer to [12].

2 Term graph rewriting

I Definition 1. A term graph over a signature Σ is a triple (V, lab, succ) in which

V is a finite set of nodes (vertices),
lab : V → Σ is a partial function, called labeling, and
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succ : V → V ∗ is a partial function, called successor, having the same domain as lab, such
that for every v ∈ V for which succ(v) is defined, the length of succ(v) is equal to the
arity of lab(v): |succ(v)| = ar(lab(v)).

This definition coincides with the one given in [4]. If succ(v) = (v1, . . . , vn) then we see
(v, v1), . . . , (v, vn) as the n outgoing edges of v. Note that in contrast to many other variants
of graphs, here outgoing edges are ordered: swapping two outgoing edges changes the term
graph. Term graphs are a direct extension of finite terms.

Just as in term rewriting, a term graph transformation rule consists of a left-hand side
and a right-hand side, and the basic idea is that an occurrence of a left-hand side may be
replaced by the corresponding right-hand side. Now left-hand sides and right-hand sides are
term graphs themselves, and an occurrence of a left-hand side may be defined as an injective
morphism from the left-hand side to the term graph to be rewritten. However, for a precise
description some extra information is required: which nodes of the left-hand side correspond
to nodes in the right-hand side, and what to do with the remainder of the left-hand side.

A production is defined to consist of two injective morphisms ` : I → L and r : I → R,
where L is the left-hand side, R is the right-hand side and the term graph I is the interface.
For nodes in L and R representing variables, lab and succ are undefined, and for nodes in I
they may be undefined as well. The operational effect of a corresponding transformation
of a term graph G is that an injective morphism from L to G is found, the part `(I) of L
is maintained while the rest of L (including labels not present in I) is removed, and nodes
and edges from R that are not in r(I) are added. This means that a production can only
be applied if the graph nodes corresponding to nodes in L \ `(I) have no other incoming
edges than those that occur in L (so-called dangling edge condition). As the outgoing edges
correspond to succ and the labels coincide, a similar requirement for outgoing edges always
holds implicitly. A standard way to describe this effect of productions in a more abstract
way is by the double-pushout approach.

We define a term graph rewrite system (TGRS) to be a set of (term graph) productions.

3 Interpret Term Rewriting in Term Graph Rewriting

We will focus on left-linear (left-hand sides of all rules are linear) and non-collapsing (right-
hand sides of rules are no variables) TRSs and investigate natural ways to interpret them as
TGRSs. They have to be non-collapsing, since we restrict to injective morphisms in the rule.

In order to apply a term rewriting rule, that is, a rule t → u in which t and u are
finite terms, to a term graph, there are two natural ways to proceed. In both ways in the
corresponding production L ←` I →r R, the term graph L is the term graph of t. The
right-hand side corresponds to the term graph of u, where nodes for every variable that
occurs in t, but not in u, are added. The main difference is in the interface I: roughly
speaking in the basic version it is as small as possible, while in the extended version it is
nearly a full copy of L.

To motivate and define the two versions, let us first investigate what is really needed.
The basic idea is that a part of the graph to be rewritten coincides with t, and that this
is replaced by u. For doing so, the interface should at least contain the root of t and the
variables of t. So in the basic version we define I to consist of the nodes of the term graph L
of t that correspond to the root of t and to the variables in t, and no edges. The mappings
`, r map each of these nodes to the corresponding copy in L respectively R. The root is
mapped to the root, and every node in I corresponding to a variable in t (u) is mapped to
the corresponding node in L (R).
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For string rewriting, that is, term rewriting in which all symbols are unary, termination
of cycle rewriting as studied in [11, 9] coincides with termination of TGRSs in the basic
version; the argument that symbols of other arity, not occurring in the rewrite system, do
not influence the termination property, is similar to the argument given in [3].

The other version, the extended version, exactly corresponds to the version as presented
in [4], where it is shown that for orthogonal TRSs, there is a correspondence between term
graph rewriting and term rewriting on the corresponding unraveled (possibly infinite) terms
(adequacy). Here the interface I is a copy of L, in which only the outgoing edges from the
root are removed, that is, lab and succ are undefined for the node corresponding to the root
of t. For the rest, I is a copy of L in which for all nodes succ and lab is defined, and by
` : I → L every node and edge is mapped to itself. The right-hand side R is the union of
TG(u) with the interface I. Finally, the morphism r : I → R maps every node or edge of the
interface to the corresponding item in R.

For a TRS R we denote by Rb (Re) the corresponding TGRS in the basic (extended)
version.

I Example 2. We interpret the TRS R = {ρ} with ρ = f(a(x), c)→ h(x). Then Rb = {ρb}
and Re = {ρe} are the corresponding sets of productions where the interface morphisms are
denoted by the node positions:

Rb Re

f

a c

1 2

h f

a c

1 2
a c

h

a c

Termination (also called strong normalization) is abbreviated to SN. For a TRS R we write:

SN(R) if R is terminating on finite terms,
SNb(R) if Rb is terminating on finite term graphs,
SNe(R) if Re is terminating on finite term graphs.

It is not hard to prove SNe(R) =⇒ SNb(R) =⇒ SN(R) for all right-linear TRSs R.
The following example inspired by [10] shows that right-linearity is essential for the last
implication. The TRS f(0, 1, x) → f(x, x, x), a → 0, a → 1 is non-terminating in term
rewriting as f(0, 1, a) rewrites in three steps to itself, but this cannot be mimicked in term
graph rewriting without doing unraveling: our techniques easily prove SNb.

For both implications the converse does not hold, as we will show now by examples. The
single rule f(g(x)) → g(f(x)) is the standard example of a string rewrite system that is
terminating on strings but not on cycles, see [11], so this satisfies SN but not SNb.

f

g

g

1

2

3

f

g

g

1

2

3

(extended step)
⇒

For the other implication, consider the single term
rewrite rule f(g(x))→ f(x) and the term graph depicted
in the left part of the picture to the right. We have three
nodes 1, 2, 3 with lab(1) = f , lab(2) = lab(3) = g, and
succ(1) = 2, succ(2) = 3 and succ(3) = 2. In the extended
version, an injective morphism from L to this graph is
obtained by mapping the root of L to 1, and the two
nodes below it to 2 and 3 respectively. By applying the
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rule, the outgoing f -edge from 1 is removed, the rest of the left-hand side remains, and due
to the right-hand side an edge from 1 to 3 is added, resulting in the graph depicted in the
right part of the picture. As this graph is isomorphic to the original one, we see that this
can be repeated forever, and the single rule f(g(x))→ f(x) does not satisfy SNe.

In contrast, in the basic version the rule does not apply, since the middle node 2 has an
incoming edge that is not in the left-hand side, and is not part of the interface. Hence, due
to the dangling edge condition, the rule cannot be applied.

An elementary argument for proving SN and SNb of the TRS f(g(x)) → f(x) is by
counting the number of g’s: in every step the number of g’s strictly decreases. Hence our
single rule f(g(x))→ f(x) does not satisfy SNe but satisfies SNb.

The remainder of this note is devoted to automatically proving termination of TRSs,
interpreted as TGRSs in both versions: apply transformations to GTSs for which the tool
Grez can be applied.

4 Transforming TGRSs to GTSs and experiments

The graphs in the GTSs on which Grez can be applied (shortly called graphs now) differ in
three ways from term graphs: nodes may have any number of outgoing edges, these outgoing
edges are not numbered, and the labels are not in the nodes but on the edges.

We propose two transformations from term graphs to graphs now, both having the
property that an infinite reduction in term graph rewriting transforms to an infinite graph
transformation reduction. For the number encoding, also the reverse is the case under mild
conditions. For details we refer to [12].

The first transformation is called function encoding. The structure of the graph remains
the same. The idea is that for a node labeled by a function symbol f of arity n ≥ 1, the label
of this node is removed, and the n ordered outgoing edges in the term graph are labeled by
f1, . . . , fn, respectively. In order to preserve constants, we introduce a fresh node c(v), for
every node v ∈ V for which lab(v) is a constant.

The second transformation is called number encoding: then for a node v labeled by a
symbol of arity n > 1, a fresh node is created, and an edge labeled by this symbol from v to
this fresh node is added, while this fresh node has n outgoing edges labeled by 1, 2, . . . , n to
the nodes in succ(v).

Experiments

In the TPDB there is a folder TRS Standard consisting of 1498 TRSs. In our framework we
are interested in non-collapsing left-linear TRSs. Only 621 of the TRSs are both left-linear
and non-collapsing. We discarded 386 of these TRSs that exceeded tractability for the
resulting GTSs. Another 34 TRSs were left out since they were obviously non-terminating.
Of the 201 remaining TRSs 95 are right-linear.

We ran Grez on all remaining 201 examples using a Windows workstation with a 2, 67
Ghz, 4-core CPU and 8 GB RAM. We used the weighted type graph technique over ordered
semirings [2] and tried to find weighted type graphs which consist of 2 nodes. For all GTSs,
where Grez could find a termination proof, the weighted type graphs were generated within
a few seconds. Some TRSs satisfy SN but not SNb due to cycles. Therefore, using the type
graph technique, it is impossible to prove termination for these examples. To summarize the
results, we present the following table:
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Termination Analysis using Grez on TPDB (Standard)
Left-linear + Non-Collapsing 621

Too Many Rules (> 9) -235
Generated Graphs Too Large -151

Non-Terminating -34
Tested Total 201

No Result Found 84
Terminating GTS Total 117 24

Terminating + Right-linear 50 21

Terminating using
117 115 24 24

Number Function Number Function
Encoding Encoding Encoding Encoding

Version Basic Extended
As a side effect, by applying our transformations to a selection of TRSs from the TPDB,
we provided a substantial set of test cases for automatically proving termination of GTSs,
which was lacking until now.
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TcT: Tyrolean Complexity Tool
Martin Avanzini1, Georg Moser1, and Michael Schaper1
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TCT is a fully automated complexity analyser supporting various formal systems and
programming languages. Our tool is implemented in Haskell, open source, released under
the BSD3 license, and available at

http://cl-informatik.uibk.ac.at/software/tct .

TCT does not make use of a unique problem representation, but employs a variety of
different representations. The tct-core library implements an abstract complexity framework
and complements it with a simple but powerful problem-independent strategy language that
facilitates proof search. Problem specific techniques and search strategies are implemented
in various tct-modules. For details, we refer to [2].

tct-trs provides analysis of (innermost) runtime and (innermost) derivational complexity
of term rewrite systems (TRSs). This module implements most of the known techniques,
see [5] for an overview, and supports proof certification via CeTA [3].

tct-its provides complexity analysis of integer transition systems (ITSs) following the
approach in [4].

To analyse a computer program TCT incorporates complexity reflecting abstractions, that
is, the resource bound on the obtained abstract program reflects upon the resource usage of
the input program.

tct-hoca incorporates an abstraction of higher-order functional programs to TRSs [1] and
makes use of the tct-trs module to analyse the resulting problem.

tct-jbc provides a term-based abstraction of object-oriented bytecode programs to TRSs
and ITSs [6].

Similarly we support C integer programs using existing (external) tools that abstract C
programs to ITSs.
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VeryMax: Tool Description for termCOMP 2016
Cristina Borralleras1, Daniel Larraz2, Albert Oliveras2, José
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VeryMax is a verification framework for checking automatically safety properties, and
proving termination and non-termination of sequential programs with unbounded non-
determinism. It heavily depends on Max-SMT constraint solving for doing program analysis
efficiently [5].

The tool can handle, through LLVM, programs written in a small fragment of the C
and C++ languages, which includes linear operations with integer variables1, and loop and
conditional statements. It also has partial support for boolean variables, and integer division
and modulo operations. Besides, VeryMax can handle integer transition systems given in the
T2 and the Pushdown SMTLIB2 specification formats.

In order to prove termination, VeryMax implements a new method [1] consisting in
applying conditional termination and restricting step by step the states where non-termination
may occur. The procedure for generating conditions for termination is a variation of the
constraint-based approach for proving (unconditional) termination in [3], in combination
with the ideas for generating preconditions for proving safety properties described in [2].
For each strongly connected subgraph (SCSG) of the control flow graph, a lexicographic
conditional termination argument is iteratively constructed. This provides a precondition
for ensuring termination, which is checked to be safe. In case of success termination is
guaranteed. Otherwise, if the calculated precondition is not satisfied in some reachable states,
the SCSG is narrowed filtering out the evaluations that are already known to be terminating,
and a new termination argument is sought for the resulting SCSG. This method provides
both a way of obtaining termination proofs by cases and a compositional approach to prove
termination of larger code including sequences of loops.

In case of failing to prove termination, the resulting restricted set of states can be used as
a starting point for a non-termination analysis. VeryMax disproves termination by generating
conditional invariants that forbid executing any of the outgoing transitions that leave an
SCSG, and then checking that the found conditional invariants are reachable [4].

The VeryMax tool is available at www.cs.upc.edu/~albert/VeryMax.html.
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AProVE at the Termination Competition 2016
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AProVE is a tool for termination and complexity proofs of Java, C, Haskell, Prolog, and
rewrite systems (possibly with built-in integers). To analyze programs, AProVE automatically
converts them to (int-)TRSs. Then, numerous techniques are employed to prove termination
and to infer complexity bounds for the resulting rewrite systems. The generated proofs can
be exported to check their correctness using automatic certifiers. See [4] for an overview and
the techniques implemented in AProVE. The following features were recently added:

Decreasing Loops for Lower Runtime Complexity Bounds of Term Rewriting In [2], we
presented an induction technique to deduce lower bounds for (worst-case) runtime com-
plexity of TRSs. In the full version of [2], we now developed an alternative new technique,
which searches for “decreasing loops”. Decreasing loops generalize the notion of loops for
TRSs and allow us to detect families of rewrite sequences with linear, exponential, or
infinite length. While the power of our two techniques is orthogonal, loop detection is
much more efficient and applicable to most examples.

Upper and Lower Runtime Complexity Bounds of Integer Transition Systems In [1], we
improved our previous modular approach for complexity analysis of integer programs
which alternates between finding symbolic time bounds for program parts and using these
to infer bounds on the absolute values of program variables. Now our technique can also
synthesize exponential bounds and we extended the modularity of our analysis such that
program parts (e.g., library procedures) can be handled completely independently.
Moreover in [3], we developed a technique to infer lower bounds for the worst-case comple-
xity of integer programs. It uses a framework for iterative, under-approximating program
simplification and deduces asymptotic lower bounds from the resulting simplified programs.
Our techniques to infer upper and lower bounds for integer transition systems are
implemented in the tools KoAT and LoAT, which are integrated in AProVE.

Improvements in Termination Analysis of C Programs We recently extended our approach
for automated termination analysis of C programs with explicit pointer arithmetic by a
bit-precise modeling of bitvector integers [5]. Moreover, we improved AProVE’s capabilities
for proving non-termination of C programs.
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CoFloCo: System Description
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TU Darmstadt, Dept. of Computer Science,
aeflores@cs.tu-darmstadt.de

CoFloCo is a cost analyis tool that infers upper and lower bounds on the resource
consumption of programs expressed as cost relations. The tool is written in Prolog (compatible
with SWI and YAP) and it uses the parma polyhedra library (PPL) [3]. CoFloCo is open
source and it is available from https://github.com/aeflores/CoFloCo.

The input format of CoFloCo (Cost relations) can be generated from multiple languages:
It has been integrated to be used as a backend in SACO [1] to analyze ABS programs; the
COSTA tool [2] can generate cost relations from Java bytecode; and CoFloCo includes scripts
to generate cost relations from KoAt’s integer transition system format [4].

CoFloCo can be tried online through a web interface: http://cofloco.se.informatik.
tu-darmstadt.de. In the web interface, it can be used alone to solve cost relation systems or
combined with l lvm2kittel (https://github.com/s-falke/llvm2kittel) to analyze single
functions written in C.

The cost analysis has two phases. First a control-flow refinement of the cost relations
is performed. This refinement breaks the (possibly complex) control-flow of the program
into a set of simpler execution patterns. The second phase of the analysis computes the cost
of such execution patterns incrementally using a special cost representation denoted cost
structure. The technical details of this analysis can be found in [6, 5].

A unique feature of CoFloCo is the capability to compute piece-wise upper and lower
bounds using the options conditional_ubs and conditional_lbs. This comes from the
fact that CoFloCo computes a bound for each execution pattern detected in the control-flow
refinement phase. Then, CoFloCo computes a precondition for each execution pattern and
uses them to partition the input domain and provide a specialized bound for each partition.
A detailed description of these and other options of CoFloCo can be found in its repository.
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MultumNonMulta: System Description
Dieter Hofbauer
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MultumNonMulta aims at proving termination or non-termination of string rewriting systems
automatically.

Its termination proofs are based on matrix interpretations as described in [6]. Various
approaches for synthesizing matrix interpretations have been proposed, for instance complete
enumeration of restricted matrix shapes, random guesses for small matrix dimensions,
evolutionary programming, and, most prominently, constraint solving. MultumNonMulta
uses a backward completion procedure as another approach for the same purpose, exploiting
the view of matrix interpretations as weighted automata [5]. This is related to forward
completion procedures for match-bound termination proofs as in [2]. Backward completion is
easily adapted to the setting of relative termination proofs, thereby considerably strengthening
its applicability. Building on results from [7], a specialized strategy supports automatically
proving polynomial upper bounds on derivation lengths.

The current version of MultumNonMulta also comprises a loop-checker for proving non-
termination. Formerly, this tool KnockedForLoops was described separately in [4, 8]. It
implements a brute-force breadth-first enumeration of forward closures, based on the fact
that the existence of a loop is equivalent to the existence of a looping forward closure [3].
As a simple combinatorial optimization, reductions are disregarded if there is a rewrite step
to the left of the previous step and these steps do not overlap. Experimental comparisons
between this approach and others can be found in [8] and [1].
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CeTA – Certifying Termination and Complexity
Proofs in 2016∗

Sebastiaan J.C. Joosten, René Thiemann, and Akihisa Yamada

University of Innsbruck, Austria

CeTA is a certifier for automatically generated proofs. Its soundness – if CeTA accepts a
proof of a certain property, then the property holds – is proven in the Isabelle/HOL [4]
formalization IsaFoR [5]. A complete list of supported proof techniques as well as IsaFoR
and CeTA itself are available at http://cl-informatik.uibk.ac.at/software/ceta/. We
highlight some recent extensions of CeTA for validating complexity and termination proofs.

AC termination Previous versions of CeTA would model term rewrite systems modulo AC
as relative rewrite systems and then apply techniques for relative rewriting. The new version
now has support for AC dependency pairs [1], including refinements such as AC usable rules
and AC dependency graphs [8].

Complexity of matrix interpretation CeTA can now precisely determine the asymptotic
growth rate of An where A is the maximum-matrix determined by some matrix-interpretation
[3]. To this end, algebraic numbers and Jordan-normal forms have been formalized [6, 7].

Integer transition systems Tools that prove termination or safety of imperative programs
often abstract the program into an Integer Transition System (ITS).

Current CeTA can certify proofs of safety properties for ITSs. To show safety, a proof
contains inductive invariants such that the error states have the inductive invariant False [2].
Together with Marc Brockschmidt, we work towards certifying termination proofs. These
show that no transition can be taken infinitely often, using previously certified invariants.

References
1 K. Kusakari and Y. Toyama. On proving AC-termination by AC-dependency pairs. IEICE

T. Inf. Syst., E84-D(5):439–447, 2001.
2 K. McMillan. Lazy abstraction with interpolants. In CAV’06, volume 4144 of LNCS, pages

123–136, 2006.
3 G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting based on

matrix and context dependent interpretations. In FSTTCS’08, LIPIcs 2:304–315, 2008.
4 T. Nipkow, L. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for Higher-Order

Logic, volume 2283 of LNCS. Springer, 2002.
5 R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In

TPHOLs’09, volume 5674 of LNCS, pages 452–468, 2009.
6 R. Thiemann and A. Yamada. Algebraic numbers in Isabelle/HOL. In ITP’16, volume

9807 of LNCS, pages 391–408, 2016.
7 R. Thiemann and A. Yamada. Formalizing Jordan normal forms in Isabelle/HOL. In

CPP’16, pages 88–99. ACM, 2016.
8 A. Yamada, C. Sternagel, R. Thiemann, and K. Kusakari. AC dependency pairs revisited.

In CSL’16, LIPIcs, 2016. To appear.

∗ This work was partially supported by FWF project Y757. The authors are listed in alphabetical order
regardless of individual contributions or seniority.

© Sebastiaan Joosten, René Thiemann and Akihisa Yamada;
Proceedings of the 15th International Workshop on Termination;
Editors: Aart Middeldorp and René Thiemann; Article No. 20; pp. 20:1–20:1.



TermComp 2016 Partipicant: cycsrs 0.2∗
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Our tool cycsrs aims to automatically prove cycle termination [5] of string rewrite systems.
On the one hand it is a wrapper which allows to combine the use of termination tools, and
on the other hand it performs sound and complete transformations on string termination
problems, s.t. cycle termination coincides with string termination of the transformed system
(see [4]). As an administrative task, cycsrs handles the calls to the different tools in
succession on a given termination problem and the distribution of the time limit among the
tools. Besides the termination provers AProVE [2] and TTT2 [3] and the Yices SMT-solver [1]
which are used in the back-end, cycsrs uses three tools which prove cycle non-/termination
without transformation:

Torpacyc is a stand-alone tool for proving termination of cycle rewriting. It applies
the techniques described in [5], in particular, weight interpretations, tropical and arctic
matrix interpretations and match bounds. Moreover, also natural matrix interpretations
as described in [4] are used.
While Torpacyc targets the logic of unquantified linear integer arithmetic with uninter-
preted sort and function symbols, the tool TDMI uses Yices to find matrix interpretations
by targeting the logic of quantifier-free formulas over the theory of fixed-size bit vectors.
The tool Cycnt performs a brute-force search to prove cycle non-termination.

Compared to version 0.1 which participated in TermComp 2015, version 0.2 of cycsrs
includes the tool TDMI and it is now able to prove relative cycle termination using the tools
TDMI and Cycnt and using new transformations to show relative cycle termination by proving
relative string termination (using state-of-the-art termination provers).

Torpacyc can be downloaded from http://www.win.tue.nl/~hzantema/torpa.html,
and the tools cycsrs, TDMI, and Cycnt are available as a single Haskell Cabal-package from
http://www.ki.informatik.uni-frankfurt.de/research/cycsrs/.
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Loopus – An Automatic Complexity Analyzer
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Our tool loopus reads in the LLVM [3] intermediate representation and performs an
intra-procedural analysis. It is capable of computing bounds for loops as well as analyzing
the complexity of non-recursive functions. In both cases we use the back-edge metric as cost
model, i.e., loopus infers a bound on the number of times that any back-jump instruction
can be executed during program run.

loopus models integers as mathematical integers (not bit-vectors). We use the Z3 SMT
solver [2] for performing control-flow refinement and program abstraction.

By default loopus soundly abstracts from all instructions which cannot directly be modeled
in terms of integer valued expressions. Real code, however, often contains pointers and
(recursive) data structures. A typical loop iteration pattern is the iteration over a list or a
tree. As a means to test the potential of our tool and its performance and in order to find
interesting examples, we implemented heuristic methods for handling non-integer code. These
heuristics can be activated by command line parameters. If the corresponding command
line parameter is set, loopus infers bounds on loops iterating over arrays or recursive data
structures by introducing shadow variables that represent norms such as the length of a list
or the size of an array. Further, loopus makes the following optimistic assumptions if the
corresponding command line parameters are set: 1) pointers do not alias; 2) a recursive data
structure is acyclic if a loop iterates over it; 3) a loop iterating over an array of characters is
assumed to be terminating if an inequality check on the string termination character ’\0’
is found1; 4) given a loop condition of form ‘a 6= 0’ loopus heuristically decides to either
assume ‘a > 0’ or ‘a < 0’ as loop-invariant; 5) similarly, loopus assumes ‘x > 0’ when an
update of a loop counter of the form ‘x = x ∗ 2’ or ‘x = x/2’ is detected. These assumptions
are reported to the user if they were applied while computing the bound.

The bound algorithm implemented in loopus is described in [4] and [5]. Loopus is available
for download at [1].
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TTT2 @ TermComp’2016∗
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The 2nd incarnation of the Tyrolean Termination Tool [1] is an automated tool for proving
(and disproving) termination of term rewrite systems (TRSs) that has been developed in the
Computational Logic group at the University of Innsbruck in Austria.

http://cl-informatik.uibk.ac.at/software/ttt2

Besides various minor changes and improvements, the most notable additions to ver-
sion v1.16 of TTT2 for this years termination competition are as follows.

Generalized Subterm Criterion. The previous SAT-based implementation of the subterm
criterion is replaced by an SMT-based implementation [2] of the generalized subterm criterion
due to Yamada et al. [3, Theorem 33].

I Theorem. Let π be a multiprojection such that P ⊆ Dπmul and f(. . .) Dπmul r for all
f(. . .)→ r ∈ R with π(f) 6= ∅. Then (P,R) is finite iff (P \Bπmul,R) is. J

Generalized TCAP. Computing the estimated dependency graph now employs a general-
ization of tcap. First, given a TRS R over signature F , let � be the transitive closure
of the relation {(f, g) | f(. . .) → g(. . .) ∈ R} ∪ ⋃

f(...)→x∈R{(f, g) | g ∈ F} and note that
f � g whenever f(. . .) →∗R g(. . .). Since the root symbols of non-variable terms are not
changed by substitution f 6� g implies that there is no edge in the dependency graph from
terms of the form f(. . .) to terms of the form g(. . .).1 The generalized version of tcap in
TTT2 incorporates the information represented by � and further makes use of non-linearity
whenever possible. Consider Toyama’s example f(x, a, b) → f(x, x, x) whose dependency
graph depends on whether F(x, x, x)σ →∗ F(x, a, b)τ for arbitrary substitutions σ and τ .
However, this is only possible if xσ →∗ a and xσ →∗ b, and thus requires that there is some
h ∈ {f, a, b} such that h � a and h � b. Since this is not the case, we obtain the empty
dependency graph and thus may immediately conclude termination.
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tion Tool 2. In Proceedings of the 20th International Conference on Rewriting Techniques
and Applications (RTA), volume 5595 of Lecture Notes in Computer Science, pages 295–304.
Springer, 2009. doi:10.1007/978-3-642-02348-4_21.

2 Christian Sternagel. The generalized subterm criterion in TTT2. In Proceedings of the 15th
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2016. to appear.

∗ The research described in this paper is supported by FWF (Austrian Science Fund) project P27502.
1 This criterion for edge estimation came first up during private discussion with Akihisa Yamada and was
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Matchbox at the 2016 Termination Competition
Johannes Waldmann1
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matchbox [4] proves termination and non-termination of string rewriting and cycle
rewriting. The design goal for 2016 is to have stand-alone implementation (pure Haskell
code, without external constraint solvers) that is powerful for one-rule string rewriting, and
for cycle-nontermination.

Termination is proved by matchbounds (for cycle rewriting), and RFC matchbounds (for
string rewriting), using a recent re-implementation [3] of Endrullis’ decomposition method [1].

Nontermination is proved by enumerating forward closures and transport systems, and
checking for loops or rotations (for cycle rewriting).

A rotating R-derivation is a non-empty R-derivation u→+
R v such that there exist p, q

with u = qp, v = pq+. If R admits a rotating derivation, then R is cycle-nonterminating.
We enumerate closures u0 →+ v0 and then determine w such that u = u0w = qp and
v = v0w = pq+. This method was already used by matchbox in the 2015 competition.

A transport system [2] for R over Σ is given by (Γ, p, φ) where Γ ⊂ Σ+ is finite, p ∈ Σ∗,
and φ : Γ→ Γ∗ is a morphism, such that ∀x ∈ Γ : xp→∗

R p φ(x).
For example, R = {a03 → 12a, b13 → 05b}, constructed by Hans Zantema as test case

nt15 for cycle termination, has, e.g., ba0 · 05 →3
R 05 · b1a, and thus admits a transport system

({0, b1a, ba0}, 05, {0 7→ 0, b1a 7→ ba0 · 0, ba0 7→ ba1}).
A transport system is rotating if there is x ∈ Γ with x ∈ φ+(x). If R admits a rotating

transport system, then R is cycle-nonterminating.
The transport system from the previous example is rotating for x = b1a, since x ∈ φ2(x).
A transport system is looping if p ∈ Γ+ and there are x ∈ Γ, k ∈ N such that xkp v φk(x),

where v denotes the scattered subword relation. If R admits a looping transport system,
then R is non-terminating. The point is that the length of the loop may be exponential in
the size of the transport system.

Transport systems were used by matchbox in the 2008 competition, for string rewriting.
The (obvious) variation (in fact, simplification) for cycle rewriting is new.

Before all of the above, matchbox tries to remove rules by additive weights. The cor-
responding system of linear inequalities is solved by Fourier Motzkin elimination. Also,
matchbox strips common prefixes and suffixes from left and right hand sides of rules.

Pre-competition tests show that 1. matchbounds implementation performs well, 2. strip-
ping and RFC matchbounds solve hard one-rule problems, and 3. rotating transport systems
are quite helpful for cycle-nontermination.
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TermComp 2016 Participant: NaTT∗

Akihisa Yamada

University of Innsbruck, Austria

1 Overview

NaTT [4], standing for Nagoya Termination Tool, or New alps Termination Tool,1 is a
termination prover for TRSs, which is available at

http://www.trs.cm.is.nagoya-u.ac.jp/NaTT/

Supported categories are as follows:

TRS/SRS Standard: NaTT implements only basic components of the dependency pair (DP)
framework [2], and its power is mostly due to the weighted path order [5], which provides
and strengthens many previously known reduction pair techniques as its instances. This
year’s version has a finer analysis of the dependency graph and usable rules.

TRS/SRS Relative: Since the last year NaTT is capable of proving relative termination via
the DP framework [3].

TRS Equational: This year it implements a new formalized AC-DP framework [6].

All the reduction pair constraints are encoded into incremental SMT problem scripts,
which can be piped to any solver that complies the SMT-LIB 2.0 standard. The competition
version of NaTT uses Z3 [1] as the back-end SMT solver.

NaTT is particularly fast, due to several efforts in SMT encoding. Since state-of-the-art
SMT solvers including Z3 are still not so efficient on non-linear problems, NaTT transforms
non-linear expressions into linear ones using a straightforward but effective if-then-else blast-
ing [4]. It moreover utilizes the incremental feature of SMT solvers, and this year it has
been further optimized: generating variables and constraints corresponding to a rewrite rule
(or a DP) is delayed until the rewrite rule is involved in the considered DP problem.
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1 Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In TACAS

2008, volume 4963 of LNCS, pages 337–340, 2008.
2 J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework: Com-

bining techniques for automated termination proofs. In LPAR 2004, volume 3452 of LNAI,
pages 75–90, 2004.

3 J. Iborra, N. Nishida, G. Vidal, and A. Yamada. Relative termination via dependency
pairs. J. Autom. Reasoning, 2016. Available online.

4 A. Yamada, K. Kusakari, and T. Sakabe. Nagoya Termination Tool. In RTA-TLCA 2014,
volume 8560 of LNCS, pages 466–475, 2014.
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∗ This research was partly supported by the Austrian Science Fund (FWF) project Y 757.
1 Thanks to Masahiko Sakai for the original name, and Nao Hirokawa for the alternative.
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