
New Completeness Results for Lazy Conditional Narrowing

Mircea Marin
Johann Radon Institute for Computational and

Applied Mathematics
Austrian Academy of Sciences

A-4040 Linz, Austria

mircea.marin@oeaw.ac.at

Aart Middeldorp
Institute of Computer Science

University of Innsbruck
A-6020 Innsbruck, Austria

aart.middeldorp@uibk.ac.at

ABSTRACT
We show the completeness of the lazy conditional narrowing
calculus (LCNC) with leftmost selection for the class of de-
terministic conditional rewrite systems (CTRSs). Determin-
istic CTRSs permit extra variables in the right-hand sides
and conditions of their rewrite rules. From the complete-
ness proof we obtain several insights to make the calculus
more deterministic. Furthermore, and similar to the refine-
ments developed for the unconditional case, we succeeded in
removing all nondeterminism due to the choice of the infer-
ence rule of LCNC by imposing further syntactic conditions
on the participating CTRSs and restricting the set of solu-
tions for which completeness needs to be established.

Categories and Subject Descriptors
D.1.6 [Programming Techniques]: Logic Programming;
F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems

General Terms
Algorithms, Theory

Keywords
Narrowing, Conditional Rewriting, Evaluation Strategies

1. INTRODUCTION
Narrowing was originally invented as a general method

for solving unification problems in equational theories that
are presented by confluent term rewriting systems (TRSs
for short). More recently, narrowing was proposed as the
computational mechanism of functional-logic programming
languages and several new completeness results concerning
the completeness of various narrowing strategies and calculi
have been obtained in the past few years. Here complete-
ness means that for every solution to a given goal a solution
that is at least as general is computed by the narrowing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPDP’04, August 24–26, Verona, Italy.
Copyright 2004 ACM 1-58113-819-9/04/0008 ...$5.00.

strategy. In the literature numerous calculi consisting of a
small number of more elementary inference rules that simu-
late narrowing have been proposed (e.g. [7, 11, 16]).

Completeness issues for the lazy narrowing calculus lnc
have been extensively studied in [11] and [10]. The main
result of [11] is the completeness of lnc with leftmost selec-
tion for arbitrary confluent TRSs and normalized solutions.
In [10] restrictions on the participating TRSs and solutions
are presented which guarantee that all nondeterminism due
to the choice of inference rule of lnc is removed. The re-
sulting calculus lncd satisfies similar optimality properties
as the needed narrowing strategy of Antoy et al. [4].

In this paper we consider the lazy conditional narrow-
ing calculus lcnc of [12]. lcnc is the extension of lnc to
conditional term rewrite systems (CTRSs for short). The
extension is motivated by the observation that CTRSs are
much more suitable than unconditional TRSs for describing
interesting problems in a natural and concise way. How-
ever, the additional expressive power raises two problems:
(1) completeness results are harder to obtain, and (2) the
search space increases dramatically because the conditions
of the applied rewrite rule are added to the current goal.

In [12] three completeness results for lcnc are presented:
(a) lcnc with leftmost selection is complete with respect
to normalized solutions for confluent CTRSs without ex-
tra variables, (b) lcnc is strongly complete whenever ba-
sic conditional narrowing is complete, and (c) lcnc is com-
plete for terminating level-confluent conditional rewrite sys-
tems. Strong completeness means completeness with respect
to any selection function and basic conditional narrowing
is known to be complete for several classes of terminating
CTRSs. So the only completeness result which does not
assume some kind of termination assumption does not per-
mit extra variables in the conditions and right-hand sides
of the rewrite rules. In this paper we show the complete-
ness of lcnc with leftmost selection (lcnc`) for the class
of deterministic CTRSs. Determinism was introduced by
Ganzinger [6] and has proved to be very useful for the study
of the (unique) termination behavior of well-moded Horn
clause programs (cf. [14]).

An important problem is to find refinements of lcnc`

which reduce the search space while preserving complete-
ness. From the completeness proof of lcnc` we obtain sev-
eral insights to make the calculus more deterministic. Fur-
thermore, and similar to the refinements developed in [10]
for the unconditional case, we succeeded in removing all
nondeterminism due to the choice of the inference rule by
imposing further syntactic conditions on the participating

CTRSs and restricting the set of solutions for which com-
pleteness needs to be established.

The paper is structured as follows. In Section 2 we fix our
notation and terminology and recall some relevant proper-
ties of conditional term rewriting and lazy conditional nar-
rowing. In Section 3 we show that lcnc` is complete with
respect to normalized solutions for deterministic CTRSs. In
the next two sections we propose various refinements which
reduce the search space of lcnc` without affecting com-
pleteness. Section 4 contains the refinements which hold in
general whereas the refinements that rely on further condi-
tions on the participating CTRSs and the solutions for which
completeness is guaranteed are discussed in Section 5. Most
of the proofs of the results in Sections 3, 4, and 5 can be
found in the appendix. We provide some examples in Sec-
tion 6 to confirm the effectiveness of our refinements. In
Section 7 we argue why it makes sense to develop efficient
narrowing calculi that operate on CTRSs rather than to rely
on transformations into unconditional TRSs.

2. PRELIMINARIES
Familiarity with term rewriting ([5]) will be helpful. A

recent survey of conditional term rewriting can be found in
[15]. We consider a set T (F ,V) of terms built from a set
of function symbols with given arities F and a countably
infinite set of variables V. We write root(t) for the root
symbol of a term t and Var(t) for the set of variables which
occur in t. An equation is either an unoriented equation
s ≈ t, an oriented equation s

�
t, or the constant true. We

assume that ≈,
�

, true /∈ F . An equation between identical
terms is called trivial. A goal is a sequence of equations.
The empty sequence is denoted by � . A proper goal does
not contain any occurrences of true. A CTRS R is a set of
rewrite rules of the form l → r ⇐ c such that l /∈ V and the
conditional part c is a proper goal. We require that Var(r) ⊆
Var(l, c). (So we deal with so-called 3-CTRSs in this paper.)
We write l → r for l → r ⇐ � . If the conditional part of
every rewrite rule consists of unoriented (oriented) equations
then R is called a join (oriented) CTRS. We define the
rewrite relation →R associated with R on terms inductively
as follows: s →R t if there exists a rewrite rule l → r ⇐ c in
R, a position p in s, and a substitution θ such that s|p = lθ,
t = s[rθ]p, and R ` e for all equations e in cθ. The latter
is defined as follows: R ` s

�
t if s →∗

R t and R ` s ≈ t
if there exists a term u such that s →∗

R u and t →∗
R u.

We extend →R to equations as follows: s ≈ t →R e if one
of the following three alternatives holds: (1) e = true and
s = t, (2) e = s′ ≈ t and s →R s′, or (3) e = s ≈ t′ and
t →R t′, and s

�
t →R e if either e = true and s = t

or e = s′ ≈ t and s →R s′. So unoriented equations are
interpreted as joinability statements. Furthermore, for goals
G we define G →R G′ if G = G1, e, G2; G′ = G1, e

′, G2, and
e →R e′. It is well-known that R ` G if and only if G →∗

R >
where > denotes any sequence of trues. The set FD of
defined function symbols of R is defined as {root(l) | l →
r ⇐ c ∈ R}. Function symbols in FC = F \ FD are called
constructors. A substitution θ is a solution of a goal G if
Gθ →∗

R >. Since confluence is insufficient [19] to guarantee
that joinability coincides with the equality relation induced
by the underlying conditional equational theory, we decided
to drop confluence and use the above notion of solution.
We say that θ is X-normalized for a subset X of V if every
variable in X is mapped to a normal form with respect to R.

The lazy conditional narrowing calculus lcnc` consists of
the following inference rules:

[o] outermost narrowing

f(s1, . . . , sn) � t, G

s1
�

l1, . . . , sn
�

ln, c, r � t, G
� ∈ {≈,

�
, ≈}

if f(l1, . . . , ln) → r ⇐ c is a fresh variant of a rewrite
rule in R,

[i] imitation

f(s1, . . . , sn) � x, G

(s1 � x1, . . . , sn � xn, G)θ
� ∈ {≈,

�
, ≈, � }

if θ = {x 7→ f(x1, . . . , xn)} with x1, . . . , xn fresh vari-
ables,

[d] decomposition

f(s1, . . . , sn) � f(t1, . . . , tn), G

s1 � t1, . . . , sn � tn, G
� ∈ {≈,

�
}

[v] variable elimination

s � x, G

Gθ

x � s, G

Gθ
s /∈ V

if x /∈ Var(s), � ∈ {≈,
�
}, and θ = {x 7→ s},

[t] removal of trivial equations

s � s, G

G
� ∈ {≈,

�
}

In the above rules we use s ≈t to denote the equation
t ≈ s and s � t to denote the equation t

�
s. Compared

to the definition of lcnc in [12], in lcnc` leftmost selection
is built-in. Another difference is that the parameter-passing
equations s1

�
l1, . . . , sn

�
ln created by the outermost

narrowing rule [o] are regarded as oriented equations. This
is in line with the earlier completeness proofs for lnc and
lcnc [10, 11, 12]. Parameter-passing equations must even-
tually be solved in order to obtain a refutation, but it is
not required that they are solved right away. That is the
reason why calculi in the lnc family are called lazy. Fur-
thermore, the conditions c are placed before r � t whereas
in [12] they are placed after r � t. The relative locations
of c and r � t are irrelevant for the completeness results
reported in that paper, but our new completeness proofs do
not go through if we stick to the order in [12]. If the vari-
able elimination rule [v] is applied to an equation between
two different variables, we can only eliminate the variable on
the right-hand side. Finally, the removal of trivial equations
rule [t] is usually restricted to equations between identical
variables. The variation adopted here avoids some infinite
derivations as well as refutations which eventually compute
substitutions which are subsumed by the empty substitution
of the [t]-step and therefore redundant.

If G1 and G2 are the upper and lower goal in the inference
rule [α], we write G1 ⇒[α] G2. The applied rewrite rule or

substitution may be supplied as subscript, that is, we write
things like G1 ⇒[o], l → r ⇐ c G2 and G1 ⇒[i], θ G2. A fi-

nite lcnc`-derivation G1 ⇒θ1
· · · ⇒θn−1

Gn may be abbre-

viated to G1 ⇒∗

θ G2 where θ is the composition θ1 · · · θn−1

of the substitutions θ1, . . . , θn−1 computed along its steps.
An lcnc`-refutation is an lcnc`-derivation ending in the
empty goal � .

3. SOUNDNESS AND COMPLETENESS
Soundness of lcnc` is not difficult to prove.

Theorem 1. Let R be an arbitrary CTRS and G a proper
goal. If G ⇒∗

θ � then θ is a solution of G.

It is known that the unconditional variant of lcnc` is
complete for (confluent) TRSs and normalized solutions θ
([11, Corollary 40]). The following well-known example shows
that extra variables in the rewrite rules may result in incom-
pleteness.

Example 1. Consider the (confluent) CTRS consisting of
the rules f(x) → a ⇐ y ≈ g(y) and b → g(b). The sub-
stitution θ = {x 7→ a} is a normalized solution of the goal
G = f(x) ≈ a. Any lcnc`-derivation of G must start with
the [o]-step

G ⇒[o] x
�

x1, y1 ≈ g(y1), a ≈ a.

The newly generated goal contains the equation y1 ≈ g(y1)
whose descendants are always of the form z ≈ g(z) with
z ∈ V. Hence lcnc` cannot solve the goal G.

Definition 1. Let X be a finite set of variables. A proper
goal G = e1, . . . , en is called X-deterministic if

Var(si) ⊆ X ∪
i−1�

j=1

Var(ej)

when ei = si
�

ti, and

Var(ei) ⊆ X ∪
i−1�

j=1

Var(ej)

when ei = si ≈ ti, for all 1 � i � n. A CTRS R is called
deterministic if the conditional part c of every rewrite rule
l → r ⇐ c in R is Var(l)-deterministic.

The CTRS of Example 1 is not deterministic since the
variable y occurring in the condition of the rewrite rule
f(x) → a ⇐ y ≈ g(y) does not occur in its left-hand side
f(x).

It should be remarked that the above definition of deter-
minism (which was introduced by Ganzinger [6] to study
the termination behavior of well-moded logic programs) has
nothing to do with confluence or deterministic evaluation of
terms. CTRSs are called deterministic because there is no
guessing of suitable instantiations of extra variables when
executing a conditional rewrite rule. In particular, every
CTRS without extra variables is deterministic.

The following oriented CTRS R is a natural encoding of
the efficient computation of Fibonacci numbers:

0 + y → y fst(〈x, y〉) → x
s(x) + y → s(x + y) snd(〈x, y〉) → y

fib(0) → 〈0, s(0)〉
fib(s(x)) → 〈z, y + z〉 ⇐ fib(x)

�
〈y, z〉

Note that R is deterministic. It is also terminating. How-
ever, when we change the oriented condition fib(x)

�
〈y, z〉

into an unoriented condition fib(x) ≈ 〈y, z〉 then we lose ter-
mination: Because fib(s(0)) →+ 〈s(0), s(0)〉 we have fib(0) ↓
〈0, fst(fib(s(0)))〉 and thus

fib(s(0)) → 〈fst(fib(s(0))), 0 + fst(fib(s(0)))〉,

which gives rise to an infinite rewrite sequence. As a con-
sequence, the completeness results for lcnc presented in
[12], which deal only with join CTRSs, do not apply to this
CTRS. The completeness result presented below does not
have this problem.

Theorem 2. Let R be a deterministic CTRS and G an
X-deterministic goal. If θ is an X-normalized solution of
G then there exists an lcnc-refutation G ⇒∗

θ′
� such that

θ′ � θ [Var(G)].

The proof is based on a transformation of rewrite proofs
of Gθ and is given in Appendix A. The crucial insight is
that determinism permits one to identify suitable sets of
variables X1, X2, . . . such that each intermediate goal Gi

in the refutation G ⇒ G1 ⇒ G2 ⇒ · · · ⇒ � that is being
constructed is Xi-deterministic.

Note that any proper goal G has a minimal set of variables
X ⊆ Var(G) for which it is X-deterministic. This set will be
denoted by XG in the following. An XG-normalized solution
of G will simply be called normalized.

4. REFINEMENTS I
In this section we present several improvements of lcnc`

which do neither affect the completeness result stated in
Theorem 2 nor require any further restrictions on the par-
ticipating CTRSs and the solutions for which completeness
needs to established.

The correctness of the refinement expressed in the follow-
ing lemma is an immediate consequence of the completeness
proof. Here “eagerly” means that we do not have to con-
sider other applicable inference rules in order to guarantee
completeness.

Lemma 1. If R is a deterministic CTRS then the calcu-
lus obtained from lcnc` by applying inference rule [t] ea-
gerly, and applying inference rule [v] eagerly to equations
x

�
t with x 6= t is complete with respect to normalized

solutions.

Completeness with respect to normalized solutions does
not imply that all solutions computed by lcnc` are normal-
ized. This is illustrated in the following example.

Example 2. Consider the TRS consisting of the two rules
f(a) → b and g(b) → c together with the goal

G = x ≈ f(y), g(x) ≈ c, f(y) ≈ b.

The following lcnc`-refutation computes the non-normalized
solution θ = {x 7→ f(a), y 7→ a}:

G ⇒[v], {x 7→ f(y)} g(f(y)) ≈ c, f(y) ≈ b

⇒[o], g(b) → c f(y)
�

b, c ≈ c, f(y) ≈ b

⇒[o], f(a) → b y
�

a, b
�

b, c ≈ c, f(y) ≈ b

⇒[v], {y 7→ a} b
�

b, c ≈ c, f(a) ≈ b

⇒2
[t] f(a) ≈ b

⇒[o], f(a) → b a
�

a, b ≈ b

⇒2

[t] � .

Substitution θ can be normalized to θ′ = {x 7→ b, y 7→ a}.
Since θ′ is also a computed answer substitution of G:

G ⇒[o], f(a) → b y
�

a, x ≈ b, g(x) ≈ c, f(y) ≈ b

⇒[v], {y 7→ a} x ≈ b, g(x) ≈ c, f(a) ≈ b

⇒[v], {x 7→ b} g(b) ≈ c, f(a) ≈ b

⇒[o], g(b) → c b
�

b, c ≈ c, f(a) ≈ b

⇒2

[t] f(a) ≈ b

⇒[o], f(a) → b a
�

a, b ≈ b

⇒2
[t] � ,

there is no need to compute the non-normalized solution θ.

We propose a simple marking strategy to avoid computing
(many) non-normalized solutions. Before presenting the for-
mal details, we illustrate how this strategy avoids the first
refutation in the previous example. We want to compute
normalized bindings xθ and yθ for the variables x and y.
Therefore, we mark the occurrences of x and y in G with
the marker †. Whenever a marked variable is instantiated
we mark the root symbol of the instantiation. So the first
step becomes

x† ≈ f(y†), g(x†) ≈ c, f(y†) ≈ b

⇒[v], {x† 7→ f†(y†)} g(f†(y†)) ≈ c, f(y†) ≈ b.

Note that only the first occurrence of f in the new goal is
marked. The next step is the same as before since the marker
is not involved:

g(f†(y†)) ≈ c, f(y†) ≈ b

⇒[o], g(b) → c f
†(y†)

�
b, c ≈ c, f(y†) ≈ b.

At this point we do not perform the [o] step since the marker
on f signals that any instantiation f(yθ) of f(y) should be
normalized, but then f(yθ) cannot be rewritten to b. Since
there are no other applicable inference rules, the derivation
ends in failure after just two steps.

By modifying the inference rules [i], [d], [v], and [t] of
lcnc` as described below, the introduction and propagation
of the markers is achieved. We consider terms from T (F ∪
F†,V ∪ V†) where F† (V†) is the set of marked function
symbols (variables). We write t† for the term obtained from
t by marking its root symbol, provided the root symbol of
t is unmarked. Otherwise t† = t. Furthermore, the result
of erasing all markers in a term t (goal G, substitution θ) is
denoted by u(t) (u(G), u(θ)).

[i] imitation

f(s1, . . . , sn)
�

x, G

(s1
�

x1, . . . , sn
�

xn, G)θ

f(s1, . . . , sn) � x†, G

s1θ′ � x†
1, . . . , snθ′ � x†

n, Gθ′

with � ∈ {≈,
�

, ≈}, θ = {x 7→ f(x1, . . . , xn), x† 7→
f†(x1, . . . , xn)}, θ′ = {x, x† 7→ f†(x1, . . . , xn)}, and
x1, . . . , xn fresh variables,

[d] decomposition

f(s1, . . . , sn) � f(t1, . . . , tn), G

s1 � t1, . . . , sn � tn, G

f†(s1, . . . , sn) � f(t1, . . . , tn), G

s†1 � t1, . . . , s
†
n � tn, G

f(s1, . . . , sn) � f†(t1, . . . , tn), G

s1 � t†1, . . . , sn � t†n, G

f†(s1, . . . , sn) � f†(t1, . . . , tn), G

s†1 � t†1, . . . , s
†
n � t†n, G

with � ∈ {≈,
�
},

[v] variable elimination

x† � s, G

Gθ′
s /∈ V ∪ V† s � x†, G

Gθ′

s
�

x, G

Gθ

with x /∈ Var(u(s)), � ∈ {≈,
�
}, θ = {x 7→ s, x† 7→

s†}, and θ′ = {x, x† 7→ s†}∪{y 7→ y† | y ∈ Var(u(s))},

[t] removal of trivial equations

s � t, G

G

u(s) = u(t)
� ∈ {≈,

�
}

Note that the imitation rule [i] is not applicable if the root
symbol of the non-variable side of the equation is marked.
Imitation is also not applicable to oriented equations whose
left-hand side is a (marked) variable. Further note that [i]
and [v] do not apply to equations of the form s ≈ x, x ≈ s,
or x

�
s. These optimizations are a consequence of the

proof of Theorem 3.
Let lcnc†

` be the calculus obtained from lcnc` by adjust-
ing the inference rules [i], [d], [v], [t] as described above and
adopting the selection strategy illustrated in Tables 1 and 2.
Here the symbol “;” separates (groups of) rules in decreas-
ing order of priority. The subscript (1 or 2) in [o] indicates
to which side (left or right) of the selected equation the rule
is applied. Note that the result of Lemma 1 is incorporated
in the selection strategy of lcnc†

` . For a proper goal G we

denote by G† the result of marking in G all variables be-
longing to XG. The completeness proof of lcnc†

` is given in
Appendix B.

Theorem 3. Let R be a deterministic CTRS and θ a
normalized solution of a proper goal G. There exists an
lcnc†

`-refutation G† ⇒∗

θ′
� such that u(θ′) � θ [Var(G)].

Our marking strategy avoids the computation of many
non-normalized solutions, but it does not always succeed.
This can be seen from the goal G = x ≈ f(a) and the TRS
R = {f(x) → x}. We have the refutation

G† = x† ≈ f(a) ⇒[v], {x, x† 7→ f†(a)} �

which computes the non-normalized solution {x 7→ f(a)}.

5. REFINEMENTS II
Tables 1 and 2 reveal that the don’t know nondetermin-

ism of lcnc†
` is still high. Further refinements are needed if

we want to make lcnc†
` an appealing computational model.

For the unconditional version lnc of lcnc`, such refine-
ments have been successfully identified [10] by confining the
computation to more restricted classes of rewrite systems
and to equations with strict semantics. In the sequel we
investigate whether these refinements can be generalized to
lcnc`.

Table 1: LCNC†
`: Selection of inference rule for unoriented equation s ≈ t.

root(s)� root(t)
F† FC FD V† V

F† [t]; [d] [t]; [d] [t]; [d], [o]2 [v] ×

FC [t]; [d] [t]; [d] [o]2 [i], [v] ×

FD [t]; [d], [o]1 [o]1 [t]; [d], [o]1, [o]2 [o]1, [i], [v] ×

V† [v] [i], [v] [o]2, [i], [v] [t]; [v] ×

V × × × × ×

Table 2: LCNC†
`: Selection of inference rule for oriented equation s

�
t.

root(s)� root(t)
F† FC FD V ∪ V†

F† [t]; [d] [t]; [d] [t]; [d] [v]

FC [t]; [d] [t]; [d] × [i], [v]

FD [t]; [d], [o]1 [o]1 [t]; [d], [o]1 [o]1, [i], [v]

V† [v] [v] [v] [t]; [v]

V × × × ×

5.1 Eager Variable Elimination
Eager variable elimination is the problem of identifying

sufficient criteria which guarantee that the eager application
of inference rule [v] preserves completeness. For lnc with
leftmost selection it is known that if the underlying TRS sat-
isfies the standardization theorem then eager variable elimi-
nation for so-called descendants of parameter-passing equa-
tions preserves completeness [11]. Descendants for lcnc` are
defined as follows. The selected equation f(s1, . . . , sn) � t
in rule [o] has r � t as only one-step descendant. In rule
[i] all equations siθ ≈ xi are one-step descendants of the
selected equation f(s1, . . . , sn) � x. The selected equa-
tion f(s1, . . . , sn) � f(t1, . . . , tn) in rule [d] has all equa-
tions si � ti as one-step descendants. Finally, the selected
equations in rules [v] and [t] have no one-step descendants.
One-step descendants of non-selected equations are defined
as expected. Descendants are obtained from one-step de-
scendants by reflexivity and transitivity. Observe that ev-
ery equation in an lcnc`-derivation descends from either an
equation in the initial goal, a parameter-passing equation,
or an equation in the conditional part of the rewrite rule
used in the [o] rule.

Suzuki [17] showed that standardization holds for left-
linear join CTRSs. However, left-linearity is insufficient for
oriented CTRSs as shown in Example 4 in Appendix C.
Standardization is recovered if we impose a natural fresh-
ness condition on the variables in the right-hand sides of
oriented equations. A CTRS is called fresh if every oriented
equation s

�
t in the conditional part c of every rewrite rule

l → r ⇐ c satisfies Var(l) ∩ Var(t) = � .
To distinguish parameter-passing descendants from other

oriented equations we denote them by s � t instead of s
�

t.
Let lcnceve

` be the calculus obtained from lcnc†
` by incor-

porating the introduction and propagation of parameter-
passing equations (in the obvious way) and imposing the
selection strategy depicted in Table 3 for parameter-passing

descendants. The F† ∪ V† column is explained by the (easy
to prove) observation that, due to left-linearity, no right-
hand side of a parameter-passing equations contains any
marks.

Theorem 4. Let R be a left-linear fresh deterministic
CTRS and θ a normalized solution of a proper goal G. There
exists an lcnceve

` -refutation G† ⇒∗

θ′
� such that u(θ′) �

θ [Var(G)].

This result generalizes the eager variable elimination strat-
egy for lnc. Our proof, which is sketched in Appendix C,
is much simpler than the one in [10, 11]. The following
example shows the necessity of the freshness condition.

Example 3. Consider the left-linear deterministic CTRS
R consisting of the rules (1) f(x) → x and (2) g(x, y) →
x ⇐ x

�
y together with the goal G = g(x, f(y)) ≈ a. Note

that R is not fresh. The substitution θ = {x, y 7→ a} is
a normalized solution of G. The (only maximal) lcnceve

` -
derivation

G† ⇒[o], (2) x† � x1, f(y
†) � y1, x1

�
y1, x1 ≈ a

⇒
[v], {x1, x

†
1 7→ x†}

f(y†) � y1, x
† �

y1, x
† ≈ a

⇒
[v], {y1 7→ f(y†), y†

1 7→ f†(y†)}
x† �

f(y†), x† ≈ a

⇒[v], {x, x† 7→ f†(y†)} f
†(y†) ≈ a

terminates in the nonempty goal f†(y†) ≈ a. Hence lcnceve
`

is incomplete for arbitrary left-linear deterministic CTRSs.

Just as in the unconditional case [10], the remaining non-
determinism in the selection of inference rules for descen-
dants of parameter-passing equations (viz. [d], [o]1 in the
FD/FD entry of Table 3) is eliminated by adopting the con-
structor discipline. A CTRS is called a conditional construc-
tor system (CCS for short) if the arguments l1, . . . , ln of the

Table 3: LCNCeve
` : Selection of inference rule for parameter-passing descendant s � t.

root(s)� root(t)
FC FD V F† ∪ V†

F† [t]; [d] [t]; [d] [v] ×

FC [t]; [d] × [v] ×

FD [o]1 [t]; [d], [o]1 [v] ×

V† [v] [v] [v] ×

V × × × ×

left-hand side f(l1, . . . , ln) of every rewrite rule do not con-
tain defined symbols. The proof of the following lemma is
similar to the one for unconditional systems [10, Lemma 3.1].

Lemma 2. Let R be a left-linear CTRS. If G ⇒∗ G1, s �
t, G2 is an lcnceve

` -derivation then Var(G1, s)∩Var(t) = � .
Moreover, if R is a CCS then t does not contain defined
symbols.

In particular, the occur-check in rule [v] is unnecessary
when dealing with descendants of parameter-passing equa-
tions.

5.2 Strict Semantics
Next we consider the nondeterminism in the selection of

inference rules for descendants of initial equations and equa-
tions originating from the conditional parts of the applied
rewrite rules in applications of the rule [o]. Just as in the
unconditional case [10], it turns out that strictness is the
key to eliminating this nondeterminism. So we no longer
require that all normalized solutions are subsumed by com-
puted answer substitutions, instead we only demand com-
pleteness with respect to normalized strict solutions.

In the literature [4, 8, 13] a substitution θ is called a strict
solution of an equation s ≈ t if sθ and tθ rewrite to the same
ground term without defined symbols. We do not require
groundness. We say that θ is a strict solution of an oriented
equation s

�
t if sθ rewrites to tθ and tθ is a term with-

out defined symbols. These notions are easily incorporated
into the definition of conditional rewriting. So when a con-
ditional rewrite rule l → r ⇐ c is applied with substitution
θ, we require that θ is a strict solution of the equations in
c. Hence, as far as semantics is concerned, we do not dis-
tinguish equations in the initial goal from equations in the
conditional parts of the rewrite rules.

The inference rules of lcncs
`, the strict version of lcnc`,

are given below. Note that we take lcnc` rather than lcnc†
`

as the starting point, but we distinguish parameter-passing
descendants from descendants of other oriented equations
by using the symbol � to denote the former.

[o] outermost narrowing

f(s1, . . . , sn) � t, G

s1 � l1, . . . , sn � ln, c, r � t,G
� ∈ {≈, ≈,

�
, � }

if f(l1, . . . , ln) → r ⇐ c is a fresh variant of a rewrite
rule in R,

[i] imitation

g(s1, . . . , sn) � x,G

(s1 � x1, . . . , sn � xn, G)θ

� ∈ {≈, ≈,
�
}

g ∈ FC

f(t1, . . . , tn) � x, G

(t1 � x1, . . . , tn � xn, G)θ′

if g(s1, . . . , sn) /∈ T (FC,V), θ = {x 7→ g(x1, . . . , xn)},
and θ′ = {x 7→ f(x1, . . . , xn)} with x1, . . . , xn fresh
variables,

[d] decomposition

g(s1, . . . , sn) � g(t1, . . . , tn), G

s1 � t1, . . . , sn � tn, G

� ∈ {≈,
�
}

g ∈ FC

f(s1, . . . , sn) � f(t1, . . . , tn), G

s1 � t1, . . . , sn � tn, G

[v] variable elimination

x � s, G

Gθ
s /∈ V

s � x, G

Gθ
s ∈ T (FC,V)

s � x, G

Gθ

x � s, G

Gθ
s ∈ T (FC,V) \ V

if x /∈ Var(s), � ∈ {≈,
�
}, and θ = {x 7→ s},

[t] removal of trivial equations

s � s,G

G

� ∈ {≈,
�
}

s ∈ T (FC,V)
s � s, G

G

The calculus lcncs
` imposes the selection strategy given in

Table 4. We state the completeness of lcncs
` without proof.

Theorem 5. Let R be a deterministic CTRS and θ a
normalized strict solution of G. There exists an lcncs

`-
refutation G ⇒∗

θ′
� such that θ′ � θ [Var(G)].

From Table 4 we learn that lcncs
` is nondeterministic only

for parameter-passing descendants s � t with root(s) ∈ FD

and either root(t) ∈ FD or root(t) ∈ V. The latter disap-
pears by adopting the left-linearity and freshness conditions
from the first half of this section (since it can be shown that
the completeness proofs of Theorems 4 and 5 are compat-
ible) and the former disappears by restricting ourselves to
left-linear CCSs. Hence we conclude this section by stating
that for the class of left-linear fresh deterministic CCSs we
have a fully deterministic set of inference rules, which we de-
note by lcncd, that is complete with respect to normalized
strict solutions.

6. BENCHMARKS
We compare the three calculi lcnc`, lcnceve

` , and lcncd

on a small number of examples. We implemented these cal-
culi in ρLog [9], a system for rule based programming which

Table 4: LCNCs
`: Selection of inference rule.

s ≈ t

FC FD V

FC [t]; [d] [o]2 [v]; [i]

FD [o]1 [o]1 [o]1
V [v]; [i] [o]2 [t]; [v]

s
�

t

FC FD V

FC [t]; [d] × [v]; [i]

FD [o]1 [t]; [o]1 [o]1
V [v] × [t]; [v]

s � t

FC FD V

FC [t]; [d] × [v]; [i]

FD [o]1 [t]; ([o]1, [d]) [o]1, [i], [v]

V [v] [v] [t]; [v]

Table 5: The goals fib(x) ≈ 〈x, y〉 and Gn (0 � n � 4).

lcnc` lcnceve
` lcncd

length R N T R N T R N T

5 2 33 0.06 1 15 0.03 1 15 0.04
10 10 296 0.40 3 69 0.11 1 37 0.06
15 278 3521 4.67 13 484 0.63 2 71 0.11
20 390 39912 99.81 13 3848 5.22 2 113 0.15
25 ? ? ? 13 51777 198.26 2 167 0.20

lcnc` lcnceve
` lcncd

n R N T R N T R N T

0 4 16 0.04 2 9 0.02 1 8 0.02
1 14 52 0.08 5 20 0.04 2 16 0.03
2 36 128 0.19 9 33 0.06 3 24 0.03
3 82 284 0.40 14 48 0.08 4 32 0.05
4 176 600 0.83 20 65 0.11 5 40 0.06

is built on top of Mathematica 5. The benchmarks were run
on a PC equipped with a 1.3 GHz Centrino processor, 1 GB
RAM memory, and the Windows XP operating system. In
Table 5 we use the CTRS for computing Fibonacci numbers
given in Section 3 and the goal G = fib(x) ≈ 〈x, y〉, which
admits the two normalized solutions {x 7→ 0, y 7→ s(0)} and
{x 7→ s(0), y 7→ s(0)}, as well as the goals Gn = x+y ≈ sn(0)
for 0 � n � 4. The search trees for the goals Gn are finite
for all three calculi. Since the search tree for G is infinite, we
give the number of nodes (N) and the number of refutations
(R) for given depths. The time (T) needed by our implemen-
tation to compute the (approximated) search trees is listed
as well. The “?” entries denote a timeout of 30 minutes.

Comparing the N -columns of Table 5, we observe a dra-
matic reduction of the search space for solutions as we move
from lcnc` via lcnceve

` to lcncd. For example, the partial
search trees of depth 20 of these calculi have the following
sizes: 39912 nodes for lcnc`, 3848 nodes for lcnceve

` , and
113 nodes for lcncd. A smaller N implies a smaller com-
putation time T , but the relationship is not linear because
the node size is not constant and therefore the memory re-
quirements and thus the memory allocation time may vary
among nodes.

Next we consider the following specification of the quick-
sort algorithm:

0 + y → y 0 ≤ x → t

s(x) + y → s(x + y) s(x) ≤ 0 → f

split(x, []) → 〈[], []〉 s(x) ≤ s(y) → x ≤ y
split(x, [y|z]) → 〈u, [y|v]〉 ⇐ x ≤ y

�
t, split(x, z)

�
〈u, v〉

split(x, [y|z]) → 〈[y|u], v〉 ⇐ x ≤ y
�

f, split(x, z)
�

〈u, v〉
app([], y) → y app([x|y], z) → [x|app(y, z)]
qsort([]) → []

qsort([x|y]) → app(qsort(u), [x|qsort(v)]) ⇐
split(x, y)

�
〈u, v〉

and the goals H1 = qsort([s(0), 0, s(s(0))]) ≈ x and H2 =
qsort([s(0), 0, s(s(s(0))), s(s(0))]) ≈ x. Note that these rules
constitute a left-linear fresh deterministic CTRS, and there-
fore we can employ any of our calculi to solve them. The

behavior of lcnc`, lcnceve
` , and lcncd on these goals is

shown in Tables 6 and 7. The tables reveal that both mem-
ory consumption (N) and computing time (T) become much
smaller as we adopt a better refinement. For H1, lcncd gen-
erates a finite search space with 193 nodes and a single so-
lution in 0.23 seconds, whereas lcnc` and lcnceve

` require
more than 30 minutes to compute search trees that have
more than 32000 nodes.

7. CONCLUDING REMARKS
In general, a rewrite step in a CTRS involves the search for

suitable instances for the extra variables in the conditions
and right-hand sides of the rewrite rules, and this search
boils down to solving E-unification problems. Deterministic
CTRSs have the nice property that the there is no need for
unification during rewriting. When we apply a rule we first
match its left-hand side with the expression that we attempt
to evaluate and, if the matching succeeds, we evaluate its
conditions from left to right. So it is perhaps no surprise
that deterministic CTRSs can be automatically transformed
into unconditional TRSs. We refrain from giving a formal
definition of this transformation—the interested reader is
referred to the comprehensive survey of Ohlebusch [15]—but
note that the process is similar to lambda-lifting. For the
Fibonacci example in Section 3, the conditional rule would
be transformed into the two unconditional rules fib(s(x)) →
U(fib(x)) and U(〈y, z〉) → 〈z, y + z〉 where U is an auxiliary
function symbol. Given an arbitrary deterministic CTRS R
and a goal G that we want to solve, there are now two ways
to proceed. We can apply a narrowing calculus like lcncd

developed in this paper with respect to R and G or we could
first transform R into an unconditional TRS U(R) and then
apply a simpler calculus like lncd with respect to U(R) and
G. Which approach is to be preferred?

• By eliminating conditions (or any transformation for
that matter) the syntactic structure is modified which
may adversely affect the applicability of certain opti-
mizations that rely on syntactic restrictions. For in-

Table 6: The goal H1.

lcnc` lcnceve
` lcncd

length R N T R N T R N T

5 5 35 0.06 1 10 0.03 0 9 0.02
10 43 549 0.71 1 25 0.05 0 24 0.04
15 59 6837 9.23 1 39 0.07 0 38 0.06
20 59 51373 71.89 1 54 0.09 0 53 0.08
25 59 226525 698.47 1 72 0.10 0 71 0.10
50 ? ? ? 2729 32535 57.48 0 122 0.13
89 ? ? ? ? ? ? 1 193 0.23

Table 7: The goal H2.

lcnc` lcnceve
` lcncd

length R N T R N T R N T

5 5 35 0.06 1 10 0.03 0 9 0.02
10 29 549 0.73 1 25 0.05 0 24 0.04
15 249 6837 12.63 1 39 0.07 0 38 0.06
20 281 51373 371.42 1 54 0.09 0 53 0.08
151 ? ? ? ? ? ? 1 363 0.41

stance, if we transform a left-linear fresh determinis-
tic CCS (for which we showed lcncd to be complete)
into an unconditional TRS, are the syntactic condi-
tions that are needed to ensure the completeness of
lncd satisfied?

• By introducing auxiliary function symbols, derivations
typically will get longer and, unless we adopt strict se-
mantics, computed solutions may contain these sym-
bols. In Table 8 we compare lcncd and lncd on the
goals H1 and H2 with respect to the quicksort CTRSs
R and its unconditional counterpart U(R). There is
not much difference in execution speed, but the refu-
tations computed by lcncd are clearly shorter.

• The main problem with the transformational approach
is that it is not clear whether it is sound for narrow-
ing. Already for the pure rewriting case there exists
a surprisingly complicated example by Marchiori (see
[15, Example 7.2.14]) which shows that after applying
the transformation sketched above the rewrite relation
restricted to terms of the original CTRS is enlarged.
This example does not involve any extra variables and
hence is trivially deterministic.

Investigating under which conditions known transfor-
mations are sound for narrowing and developing trans-
formations that are better suited to work with narrow-
ing we leave as an interesting but challenging topic for
further research.

With respect to the last item, it is interesting to mention
the recent paper by Antoy et al. [2] in which a modifica-
tion of a transformation of Viry [18] is defined that maps a
certain class of left-linear CCSs without extra variables to
weakly orthogonal TRSs such that the parallel narrowing
strategy of [3] can be used on the target system in order
to solve equations in the original CTRSs. Concerning the

restriction of disallowing extra variables, the authors write
that extra variables can be eliminated by applying lambda-
lifting. As indicated above, it is unclear to us whether such
a preprocessing step would preserve the solvability of equa-
tions.

Another recent paper about transformations and narrow-
ing is [1]. Here a simple transformation (deconditionaliza-
tion) from left-linear CCSs with strict equality to TRSs
is defined which preserves (a special form of) normalized
rewriting. The proof sketch in the paper does not consider
extra variables and from the discussion in Section 4.5 we
are unable to reconstruct the intended semantics of rewrit-
ing and narrowing in the presence of extra variables.

8. REFERENCES
[1] S. Antoy. Constructor-based conditional narrowing. In

Proc. 3rd PPDP, pages 199–206, 2001.

[2] S. Antoy, B. Brassel, and M. Hanus. Conditional
narrowing without conditions. In Proc. 5th PPDP,
pages 20–31, 2003.

[3] S. Antoy, R. Echahed, and M. Hanus. Parallel
evaluation strategies for functional logic languages. In
Proc. 14th ICLP, pages 138–152, 1997.

[4] S. Antoy, R. Echahed, and M. Hanus. A needed
narrowing strategy. J. ACM, 47(4):776–822, 2000.

[5] F. Baader and T. Nipkow. Term Rewriting and All
That. Cambridge University Press, 1998.

[6] H. Ganzinger. Order-sorted completion: The
many-sorted way. TCS, 89:3–32, November 1991.

[7] J. C. González-Moreno, M. T. Hortalá-González, and
M. Rodŕıguez-Artalejo. Polymorphic types in
functional logic programming. JFLP, 2001(1), 2001.

[8] M. Hanus. A unified computation model for functional
and logic programming. In Proc. 24th POPL, pages
80–93, 1997.

Table 8: LCNCd with R versus LNCd with U(R).

H1 H2

lcncd lncd lcncd lncd

length R N T R N T R N T R N T

5 0 9 0.02 0 7 0.01 0 9 0.02 0 7 0.01
10 0 24 0.04 0 19 0.04 0 24 0.04 0 19 0.04
15 0 38 0.06 0 37 0.07 0 38 0.06 0 37 0.07
20 0 53 0.08 0 42 0.07 0 53 0.08 0 42 0.07
25 0 71 0.10 0 53 0.08 0 71 0.11 0 53 0.07
50 0 122 0.13 0 104 0.13 0 129 0.17 0 119 0.15
89 1 193 0.23 0 183 0.21 0 210 0.25 0 171 0.21
123 1 233 0.27 0 299 0.36 0 250 0.28
151 1 363 0.41 0 324 0.38
211 1 435 0.50

[9] M. Marin and F. Piroi. Deduction and presentation in
ρLog. In Proc. Mathematical Knowledge Management
Symposium, volume 93 of ENTCS, pages 161–182,
2004.

[10] A. Middeldorp and S. Okui. A deterministic lazy
narrowing calculus. JSC, 25(6):733–757, 1998.

[11] A. Middeldorp, S. Okui, and T. Ida. Lazy narrowing:
Strong completeness and eager variable elimination.
TCS, 167(1,2):95–130, 1996.

[12] A. Middeldorp, T. Suzuki, and M. Hamada. Complete
selection functions for a lazy conditional narrowing
calculus. JFLP, 2002(3), March 2002.

[13] J. J. Moreno-Navarro and M. Rodriguez-Artalejo.
Logic programming with functions and predicates:
The language BABEL. JLP, 12(3-4):191–223, 1992.

[14] E. Ohlebusch. Termination of logic programs:
Transformational methods revisited. AAECC,
12:73–116, 2001.

[15] E. Ohlebusch. Advanced Topics in Term Rewriting.
Springer, 2002.

[16] C. Prehofer. Solving Higher-Order Equations: From
Logic to Programming. Progress in Theoretical
Computer Science. Birkhäuser, 1998.

[17] T. Suzuki. Standardization theorem revisited. In Proc.
5th ALP, volume 1139 of LNCS, pages 122–134, 1996.

[18] P. Viry. Elimination of conditions. JSC, 28:381–400,
1999.

[19] T. Yamada, J. Avenhaus, C. Loŕıa-Sáenz, and
A. Middeldorp. Logicality of conditional rewrite
systems. TCS, 236(1,2):209–232, 2000.

APPENDIX

A. PROOF OF THEOREM 2
In this section we prove the completeness of lcnc for de-

terministic CTRSs. We start by defining some useful con-
cepts. For a substitution θ and a set of variables X, we
denote (X \ D(θ)) ∪ IX(θ) by VarX(θ). Here D(θ) = {x ∈
V | θ(x) 6= x} denotes the domain of θ, which is always as-
sumed to be finite, and IX(θ) = �

x∈D(θ)∩X
Var(xθ) the set

of variables introduced by the restriction of θ to X. The
proof of the following lemma is straightforward.

Lemma 3. If G is an X-deterministic goal and σ a sub-
stitution then Gσ is IX(σ)-deterministic.

For a CTRS R we let R+ = R∪{x ≈ x → true, x
�

x →
true}. We use the variant of conditional rewriting in which
the list of instantiated conditions of the applied rewrite rule
is explicitly added to the goal after every rewrite step. For-
mally, we use the intermediate rewrite relation � defined as
follows: G � G′ if G = G1, e,G2, G′ = G1, cθ, e′, G2, and
e →R e′ by applying the rewrite rule l → r ⇐ c ∈ R+ with
substitution θ. The equation e′ is called the (immediate)
descendant of e in the intermediate rewrite step. The no-
tion of descendant is generalized to arbitrary intermediate
rewrite derivations in the obvious way. It is well-known that
R ` G if and only if G � ∗ >.

Definition 2. A state is a quadruple 〈G, θ, Π, X〉 consist-
ing of a proper goal G, an X-normalized solution of G, and
an intermediate rewrite sequence Π: Gθ � ∗ > such that
always the leftmost equation different from true is rewrit-
ten and only rewrite rules from R0 are applied to trivial
equations. A state 〈G, θ, Π, X〉 is deterministic if G is X-
deterministic.

The two assumptions about rewrite proofs are harmless
because it is easy to prove that every intermediate rewrite
sequence Gθ � ∗ > can be transformed into one which sat-
isfies these assumptions. Without the second assumption,
our definition of state coincides with the notion of normal-
ized state in [12, Definition 3.1]. The intended meaning of
a state 〈G, θ, Π,X〉 is as follows:

Given a goal G with X-normalized solution θ and
rewrite proof Π: Gθ � ∗ >, find an lcnc`-refutation
G ⇒∗

σ � such that σ � θ [Var(G)].

To solve this problem, we apply proof steps called state
transformations. Each proof step takes as input a state
S = 〈G, θ, Π,X〉 and a finite set of variables W , and pro-
duces a simpler state S′ = 〈G′, θ′, Π′, X ′〉 and an lcnc` step
π : G ⇒σ G′ such that θ = σθ′ [W]. We denote this opera-
tion by 〈S′, σ〉 = φlcnc`

(S, W) and depict it as

S
σ�����
W

S′.

The notion of “simpler” is captured by a well-founded rela-
tion � on states. In this setting, a successful transformation
is a finite sequence of proof steps

〈G, θ, Π,X〉
σ1�����
W1

〈G1, θ1, Π1, X1〉
σ2�����
W2

· · ·
σn�����
Wn

〈 � , θn, Πn, Xn〉

which we abbreviate to

〈G, θ, Π, X〉
σ1σ2···σn� ���

W1,W2,...,Wn

〈 � , θn, Πn, Xn〉

where the sets W1, . . . , Wn are chosen in such a way that
θ = σ1σ2 · · ·σnθn [Var(G)]. Then, by concatenating the
lcnc`-steps obtained along the transformation, we obtain
the lcnc`-refutation G ⇒∗

σ � with σ = σ1σ2 · · · σn, pro-
viding an answer to the problem posed by the initial state
〈G, θ, Π,X〉.

The definition of the state transformation φlcnc`
is based

on five more elementary state transformations φ[α](S, W)

with α ∈ {o, i, t, v, d}. These transformations transform
a state S = 〈G, θ, Π, X〉 with G 6= � and a finite set of
variables W into a simpler state S′ = 〈G′, θ′, Π′, X ′〉 and a
substitution σ such that θ = σθ′ [W]. In the statements
of the following five lemmata we assume that S is a state
〈G, θ, Π,X〉 with G = e, G1 and that W is a finite set of
variables. We refrain from spelling out the proofs since they
are obtained by straightforward modifications of the proofs
of the transformation lemmata in [12, Lemmata 3.4–3.8].

Lemma 4. If e = s � t with � ∈ {≈,
�
} and a descen-

dant of eθ is rewritten at position 1 or if e = s � t with
� = ≈and a descendant of eθ is rewritten at position 2,
and l → r ⇐ c ∈ R is the employed rewrite rule in the first
such step then there exists a state S′ = 〈G′, θ′, Π′, X〉 with
G′ = s

�
l, c, r � t, G1 such that θ′ = θ [W] and in Π′ no

descendant of sθ′ �
lθ′ is rewritten at position 1. We denote

the pair 〈S′, ε〉 by φ[o](S, W).

Lemma 5. If e = f(s1, . . . , sn) � g(t1, . . . , tm) with � ∈
{≈,

�
} such that no descendant of e is rewritten at position

1 or 2, then f = g, m = n, and there exists a state S ′ =
〈G′, θ, Π′, X〉 with G′ = s1 � t1, . . . , sn � tn, G1. We denote
the pair 〈S′, ε〉 by φ[d](S, W).

Lemma 6. If e = f(s1, . . . , sn) � x with � ∈ {≈, ≈,
�

, � }
and root(xθ) = f then there exists a state S ′ = 〈Gσ, θ′, Π′, X ′〉
with X ′ = IX(σ) such that θ = σθ′ [W]. Here σ = {x 7→
f(x1, . . . , xn)} and x1, . . . , xn /∈ X ∪W . We denote the pair
〈S′, σ〉 by φ[i](S, W).

Lemma 7. If e = s � x with s 6= x and � ∈ {≈, ≈,
�

, � }
such that eθ is rewritten to true in the first step of Π then
there exists a state S′ = 〈G1σ, θ′, Π′, X ′〉 with σ = {x 7→ s}
and X ′ = IX(σ) such that θ = σθ′ [W]. We denote the pair
〈S′, σ〉 by φ[v](S, W).

Lemma 8. If e = s � s with � ∈ {≈,
�
} then there exists

a state S′ = 〈G1, θ, Π′, X〉. We denote the pair 〈S′, ε〉 by
φ[t](S, W).

We denote by � the well-founded ordering on states de-
fined in [12, Definition 3.10].

Lemma 9 ([12, Lemma 3.11]). Let S be a state and W
a finite set of variables. If φ[α](S, W) = 〈S′, σ〉 is defined

then S � S′.

Lemma 10. If a deterministic state S satisfies the condi-
tions of Lemma 4 then s /∈ V.

Proof. Because θ′ is a solution of G′ = s
�

l, c, r � t, G1,
we have sθ = sθ′ →∗

R lθ →R rθ, so sθ is not a normal form.
Since S is deterministic, Var(s) ⊆ X and θ

�
X is normalized.

Hence s cannot be a variable.

Lemma 11. Let S be a deterministic state and W a finite
set of variables. If φ[α](S, W) = 〈S′, σ〉 is defined then S′ is

deterministic.

Proof. Let S = 〈G, θ, Π, X〉 with G = e, G1 and S′ =
〈G′, θ′, Π′, X ′〉. We distinguish five cases.

1. If α = o then X ′ = X, e = s � t with � ∈ {≈, ≈,
�
}

and G′ = s
�

l, c, r � t, G1 for some rewrite rule l →
r ⇐ c ∈ R. We have Var(s) ⊆ X because G is X-
deterministic. Since R is deterministic, c is Var(l)-
deterministic. We have Var(r) ⊆ Var(l, c). If � =

�
then G1 is X ∪ Var(s)-deterministic and thus G′ is X-
deterministic. If � ∈ {≈, ≈} then Var(t) ⊆ X and G1

is X ∪ Var(e)-deterministic. Hence also in this case we
conclude that G′ is X-deterministic.

2. If α = d then X ′ = X, e = f(s1, . . . , sn) � f(t1, . . . , tn)
with � ∈ {≈,

�
} and G′ = s1 � t1, . . . , sn � tn, G1.

We have Var(s) ⊆ X because G is X-deterministic. If
� = ≈ then also Var(t) ⊆ X and G1 is X ∪ Var(e)-de-
terministic. If � =

�
then G1 is X ∪ Var(s)-determin-

istic. In both cases we conclude that G′ is X-determin-
istic.

3. If α = i then G′ = Gσ and X ′ = IX(σ). Lemma 3
yields that G′ is X ′-deterministic.

4. If α = v then e = s � x, σ = {x 7→ s}, G′ = G1σ and
X ′ = IX(σ). From Lemma 3 we learn that Gσ = s �
s, G′ is X ′-deterministic. Since Var(s) ⊆ X ′, it follows
that G′ is X ′-deterministic as well.

5. Finally, if α = t then e = s � s, G′ = G1 and X ′ = X.
We have Var(s) ⊆ X because G is X-deterministic.
Hence G′ is deterministic, too.

We are now ready to define our state transformation func-
tion φlcnc`

.

Lemma 12. Let R be a deterministic CTRS. For every
deterministic state S = 〈G, θ, Π,X〉 and finite set of vari-
ables W there exist a deterministic state S ′ = 〈G′, θ′, Π′, X ′〉
and an lcnc`-step G ⇒σ G′ such that θ = σθ′ [W], X ′ =
IX(σ), and S � S′. We denote the pair 〈S′, σ〉 by φlcnc`

(S, W).

Proof. We distinguish the following cases. In each case
we assume that the preceding cases are not applicable.

1. If e = s � s with � ∈ {≈,
�
} then we let φlcnc`

(S, W) =
φ[t](S, W). Since G ⇒[t] G′, the result follows from

Lemma 8.

2. If e = f(s1, . . . , sn) � g(t1, . . . , tm) with � ∈ {≈,
�
}

such that no descendant of e is rewritten at position 1 or
2, then we can apply Lemma 5. So we let φlcnc`

(S, W) =
φ[d](S, W). Since f = g and m = n we have G ⇒[d] G′.

3. If e = x
�

t with x 6= t then xθ →∗
R tθ because θ is

a solution of G. We have x ∈ X because S is deter-
ministic and thus xθ is a normal form with respect to
R. Hence xθ = tθ. Since x 6= t this is only possible if
x /∈ Var(t). It follows that eθ is rewritten to true in
the first step of Π. Hence we can apply Lemma 7. So
we let φlcnc`

(S, W) = φ[v](S, W). Since x /∈ Var(t), we

indeed have G ⇒[v], σ G′.

4. Suppose e = s � t with � ∈ {≈,
�
} and a descen-

dant of eθ is rewritten at position 1 or e = s � t with
� = ≈and a descendant of eθ is rewritten at position
2. Lemma 4 yields φ[o](S, W) = 〈S′′, ε〉 with S′′ =

〈G′′, θ′, Π′′, X〉 and G′′ = s
�

f(l1, . . . , ln), c, r � t, G1

for some rewrite rule f(l1, . . . , ln) → r ⇐ c of R such
that in Π′′ no descendant of s

�
f(l1, . . . , ln) is rewrit-

ten at position 1 or 2. The state S′′ is deterministic by
Lemma 11 and hence s /∈ V according to Lemma 10. So
we have s = f(s1, . . . , sn). Now we apply Lemma 5 to
S′′ and W . So we define φlcnc`

(S, W) = φ[d](S
′′, W).

We have G′ = s1
�

l1, . . . , sn
�

ln, c, r � t, G1 and
thus G ⇒[o] G′ as desired.

5. Let e = s � x such that sθ = xθ and either s ∈ V \ {x}
and � = ≈ or s /∈ V and � ∈ {≈, ≈,

�
}. So eθ is

rewritten to true in the first step of Π. Since s 6=
x, we can apply Lemma 7. So we let φlcnc`

(S, W) =
φ[v](S, W). Since x /∈ Var(s), G ⇒[v], σ G′ is a valid
lcnc`-step.

6. In the remaining case we have e = s � x with s /∈ V,
� ∈ {≈, ≈,

�
}, and sθ 6= xθ. If � ∈ {≈, ≈} then

x ∈ X and thus xθ is a normal form, so sθ →∗
R xθ. If

� =
�

then sθ →∗
R xθ by definition. We may assume

that all steps in sθ →∗
R xθ take place below the root,

since otherwise case 4 would apply. Hence root(xθ) =
root(s). Lemma 6 yields φ[i](S, W) = 〈S′′, σ〉 with

S′′ = 〈G′′, θ′, Π, X ′〉, σ = {x 7→ f(x1, . . . , xn)}, and
G′′ = sσ � f(x1, . . . , xn), G1σ. Next we apply Lemma 5
to S′′ and W . So we define φlcnc`

(S, W) = φ[d](S
′′, W)

and we obtain G ⇒[i], σ G′.

In all cases we obtained 〈S′, σ〉 by one or two applications
of Lemmata 4–8. So S � S′ according to Lemma 9. Note
that if σ = ε then X ′ = IX(σ) = X.

We are now ready for the proof of the completeness of
lcnc`.

Theorem 2. Let R be a deterministic CTRS and G an
X-deterministic goal. If θ is an X-normalized solution of G
then G ⇒∗

θ′
� for some substitution θ′ with θ′ � θ [Var(G)].

Proof. Since θ is a solution of G, there exists an inter-
mediate rewrite sequence Π: Gθ � ∗ >. We may assume
that Π satisfies the conditions stated in Definition 2. Hence
S = 〈G, θ, Π, X〉 is a state. We use induction with respect to
the well-founded order � on states. To make the induction
work we prove that for any finite set of variables W there
exists θ′ with G ⇒∗

θ′
� and θ′ � θ [W]. In the base case G

is the empty goal and we take the empty lcnc`-refutation.
If G 6= � then we perform the following construction:

〈G, θ, Π, X〉
σ1�����
W

〈G1, θ1, Π1, X1〉
σ2�����

W1,...
〈2, θ2, Π2, X2〉

Lemma 12 induction hypothesis

where W1 = W ∪ IW (σ1) and σ2 � θ1 [W1]. Let θ′ = σ1σ2.
Clearly θ′ � σ1θ1 = θ [W]. We obtain the lcnc`-refutation
G ⇒σ1 G′ ⇒∗

σ2 � .

B. PROOF OF THEOREM 3

Definition 3. We call S = 〈G, θ, Π,X〉 with a marked goal
G a marked state if u(S) = 〈u(G), θ, Π, X〉 is a state. A

marked state 〈G, θ, Π, X〉 is said to be properly marked if
the following two conditions are satisfied:

1. every unmarked occurrence in G of a variable in X
appears in a subterm with marked root symbol,

2. u(t)θ is a normal form for every subterm t with marked
root symbol that occurs in G.

Theorem 3. Let R be a deterministic CTRS and θ a
normalized solution of a proper goal G. There exists an
lcnc†

`-refutation G† ⇒∗

θ′
� such that u(θ′) � θ [Var(G)].

Proof. The key idea is that φlcnc`
can be lifted to prop-

erly marked states. First we show that the initial marked
state 〈G†, θ, Π, XG〉 is properly marked. The first condi-
tion of Definition 3 is satisfied by the definition of G† and
the second condition follows because the only marked sub-
terms in G† are of the form x† with x ∈ XG and θ

�
XG

is normalized by assumption. Next let S = 〈G, θ, Π,X〉 a
properly marked state and W a finite set of variables such
that φlcnc`

(u(S), W) = 〈S′, σ〉 with S′ = 〈G′, θ′, Π′, X ′〉. So
u(G) ⇒σ G′. We have to show the existence of a properly
marked state S′′ = 〈G′′, θ′, Π′, X ′〉 and a marked substitu-
tion σ′ such that u(S′′) = S′, u(σ′) = σ and G ⇒σ′ G′′ is

an lcnc†
`-step. We follow the case analysis in the proof of

Lemma 12. Let G = e,G1.

1. Because [t] is applicable to any marked version of a
trivial equation, we clearly have G ⇒[t], ε G′′ for some

goal G′′ with u(G′′) = G′.

2. In this case there is also no problem since in lcnc†
`

the rule [d] is defined for all possible combinations of
marking the two root symbols.

3. We have u(e) = x
�

t with x ∈ X. Hence e = x† �
t′

with u(t′) = t. If t′ /∈ V ∪V† then we obtain G ⇒[v], σ′

G′′ with σ′ = {x, x† 7→ t†} ∪ {y 7→ y† | y ∈ Var(u(t))}.
Clearly u(G′′) = G′ and u(σ′) = σ. If t ∈ V ∪ V† then
we can apply [v] with binding σ′ = {t, t† 7→ x†}, which
corresponds to the binding σ = {u(t) 7→ x} that is used
in the lcnc`-step u(G) ⇒σ G′.

4. We have u(e) = f(s1, . . . , sn) � t and f(s1, . . . , sn)θ
is reducible. In order to lift the [o]-step, we have to
make sure that e = f(s′1, . . . , s

′
n) � t′. Suppose to the

contrary that the displayed f in e is marked. Then,
according to the second condition in Definition 3, the
term u(f†(s′1, . . . , s

′
n))θ is a normal form. This is im-

possible as u(f†(s′1, . . . , s
′
n))θ = f(s1, . . . , sn)θ.

5. In this case we reason as in case 3 above.

6. We have u(e) = s � x with s /∈ V and � ∈ {≈, ≈,
�
}.

If � ∈ {≈, ≈} then x ∈ X and thus e = s′ � x†

with u(s′) = s and hence we can apply [i] with binding
{x 7→ f(x1, . . . , xn), x† 7→ f†(x1, . . . , xn)}. If � =

�
then there are two possibilities: e = s′

�
x† or e =

s′
�

x, but in both cases the imitation rule of lcnc†
` is

applicable.

We did not show yet that the resulting marked state S′′ =
〈G′′, θ′, Π′, X ′〉 is properly marked. Both conditions in Defi-
nition 3 are easily proved by inspecting the step u(G) ⇒σ G′

and the inference rules of lcnc†
` .

C. PROOF SKETCH OF THEOREM 4
First we recall the notion of standard intermediate rewrite

sequence. In the following we use PosF (t) to denote the set
of non-variable positions in the term t.

Definition 4. An intermediate rewrite sequence G � ∗ >
is called standard if q\p ∈ PosF (l′) whenever G � ∗ > can
be written as follows:

G � ∗ >, e, G′ � p >, cθ, e[rθ]p, G′

� ∗ >, e[rθ]p, G′ � ∗ >, e′, G′

� ��� �
� q >, c′θ′, e′[r′θ′]q , G

′

� ∗ >

where l → r ⇐ c and l′ → r′ ⇐ c′ are the rewrite rules
used in the � p and � q-steps, such that ε < q < p and in
the underbraced part no rewrite rule is applied to a position
above p.

Theorem 6. Let R be a left-linear fresh CTRS and G a
goal. Every intermediate rewrite sequence G � ∗ > can be
transformed into a standard sequence from G to >.

Proof. The proof is essentially the same as the proof of
standardization for left-linear join CTRSs (Suzuki [17, The-
orem 5.10]). The only complication is that we must show
that the relation “⇒” for eliminating so-called anti-standard
pairs is well-defined, which amounts to proving that rewrit-
ing can be performed at positions which are descendants of
positions below the pattern position of a � -step, cf. [17,
Definition 5.3]. This follows from the simple observation
that in fresh CTRSs there are no such descendants in the
right-hand sides of oriented equations in the conditions.

The following example shows the necessity of the freshness
condition.

Example 4. Consider the left-linear deterministic CTRS
R of Example 3 and the equation g(a, f(a)) ≈ a. The inter-
mediate rewrite sequence

g(a, f(a)) ≈ a � g(a, a) ≈ a � a
�

a, a ≈ a

� true, a ≈ a � >

is not standard because the first two steps form an anti-
standard pair (since rewriting the second argument f(a) of
g(a, f(a)) does not contribute to the creation of the redex
pattern g(� , �) of the second step.) However, we cannot
apply the second rule to g(a, f(a)) because the condition a

�
f(a) is invalid. It follows that there is no standard rewrite
sequence g(a, f(a)) � ∗ >.

Definition 5. A state S = 〈G, θ, Π, X〉 is called standard
if Π is standard and for every parameter-passing descendant
e = s

�
t in G the following property holds: if a descendant

of eθ is rewritten at position 1p and subsequent descendants
are not rewritten at a position ε < q < 1p then p ∈ PosF (t).

The next lemma states that φlcnc`
preserves standardness.

We omit the proof.

Lemma 13. Let R be a deterministic fresh CTRS and
W a finite set of variables. If the state S is standard and
φlcnc`

(S, W) = 〈S′, σ〉 then S′ is standard.

Theorem 7. Let R be a left-linear fresh deterministic
CTRS. Then the calculus obtained from lcnc` by applying
inference rule [v] eagerly to descendants t

�
x of parameter-

passing equations with x /∈ Var(t) is complete with respect
to normalized solutions.

Proof. Let θ be a normalized solution of a proper goal G.
So there exists a rewrite proof Π: Gθ � ∗ > which we may
assume to be standard according to Theorem 6. Since there
are no parameter-passing descendants in G, the initial state
〈G, θ, Π, XG〉 is standard. We obtain an lcnc`-refutation
as in the proof of Theorem 2. According to Lemma 13, all
states produced along the way are standard. Now suppose
that S′ = 〈G′, θ′, Π′, X ′〉 is one of these states such that
G′ = t

�
x, G′′ with t

�
x is a parameter-passing descendant

satisfying x /∈ Var(t). We have to show that the lcnc`-step
produced in Lemma 12 uses the variable elimination rule.
We claim that xθ = tθ. If xθ 6= tθ then in the rewrite proof
of the equation (t

�
x)θ′ in Π′ a rewrite rule is applied to

the left-hand side tθ. Suppose the last such application is a
position p. According to the definition of standard state we
must have p ∈ PosF (x), which is clearly impossible. Hence
xθ = tθ. It follows that case 5 (case 1 if t ∈ V) of the proof of
Lemma 12 applies and thus the resulting lcnc`-step indeed
uses the [v] rule.

Note that Lemma 1 takes care of parameter-passing de-
scendants of the form x

�
t.

Theorem 4. Let R be a left-linear fresh deterministic
CTRS and θ a normalized solution of G. There exists an
lcnceve

` -refutation G† ⇒∗

θ′
� such that u(θ′) � θ [Var(G)].

Proof. From the preceding theorem we obtain an lcnc`-
refutation G ⇒∗

θ′′
� such that θ′′ � θ [Var(G)] and in

which all selected parameter-passing descendants t
�

x with
x /∈ Var(t) are subjected to the [v] rule. According to the

proof of Theorem 3 this refutation can be lifted to an lcnc†
`-

refutation. Using � to denote descendants of parameter-
passing equations, we finally obtain an lcnceve

` -refutation
G† ⇒∗

θ′
� such that u(θ′) = θ′′ and the selection strategy

of Table 3 is respected.

