
Proofs of Termination of Rewrite Systems for

Polytime Functions

Toshiyasu Arai1 and Georg Moser2

1 Kobe University, Graduate School of Science and Technology,
arai@kurt.scitec.kobe-u.ac.jp

2 University of Innsbruck, Computational Logic, georg.moser@uibk.ac.at

Abstract. We de�ne a new path order ≺pop so that for a �nite rewrite
system R compatible with ≺pop, the complexity or derivation length func-
tion DlfR for each function symbol f is guaranteed to be bounded by a
polynomial in the length of the inputs. Our results yield a simpli�cation
and clari�cation of the results obtained by Beckmann and Weiermann
(Archive for Mathematical Logic, 36:11�30, 1996).

Keywords: Termination, term rewriting characterisation, derivation length, com-
plexity theory.

1 Introduction

Suppose C denotes an inductively de�ned class of recursive number-theoretic
functions and suppose each f ∈ C is de�ned via an equation (or more generally
a system of equations) of the form

f(x) = t(λy.f(y),x) , (1)

where t may involve previously de�ned functions. In a term-rewriting context
these de�ning equations are oriented from left to right and the canonical term-
rewriting characterisation RC of C can be de�ned as follows: The signature Σ
of RC includes for each function f in C a corresponding function symbol f . In
order to represent natural numbers Σ includes a constant 0 and a unary function
symbol S. I.e. numbers are represented by their numerals. (Later we represent
natural numbers in the form of binary strings.) For each function f ∈ C−{0, S},
de�ned by (1), the rule

f(x)→ t(λy.f(y),x) ,

is added to RC . In all non-pathological cases the term rewrite system (TRS)
RC is terminating and con�uent. RC is best understood as a constructor TRS,
where the constructors are 0 and S. Hence RC may be conceived as a functional
program implementing the functions in C.

Term-rewriting characterisations have been studied e.g. in [1,2,3,4]. The anal-
ysis of RC provides insight into the structure of C or renders us with a delineation

of a class of rewrite systems whose complexity (measured by the length of deriva-
tions) is guaranteed to belong to the class C. Term-rewriting characterisations
turn the emphasis form the de�nition of a function f to its computation. An
essential property of term-rewriting characterisations RC is its feasibility : RC is
called feasible, if for each n-ary function f ∈ C, there exists a function sym-
bol g in the signature of RC such that g(m1, . . . ,mn) computes the value of
f(m1, . . . ,mn) and the derivation length of this computation is bounded by a
function from C.

We study term-rewriting characterisations of the complexity class FP. In
particular, our starting point is a clever characterisation R′

B of FP introduced
by Beckmann and Weiermann. In [1] the feasibility of R′

B is established and
conclusively shown that any reduction strategy for R′

B yields an algorithm for
f ∈ FP that runs in polytime. We provide a slight generalisation of the fact
that R′

B is feasible. Moreover, we �esh out the crucial ingredients of the TRS
R′

B by de�ning a path order for FP, denoted as ≺pop. We show that for a �nite
TRS R, compatible with ≺pop, the derivation length function DlfR is bounded
by a polynomial in the length of the inputs for any de�ned function symbol f .
Furthermore ≺pop is complete in the sense that for any function f ∈ FP, there
exists a TRS R computing f such that termination of R can be shown by ≺pop.

2 A rewrite system for FP

In the following we need some notions from term rewriting and assume (at least
nodding) acquaintance with term rewriting. (For background information, please
see [5].) Let V denote a countably in�nite set of variables and Σ a signature.
The set of terms over Σ and V is denoted as T (Σ,V), while the set of ground
terms is written as T (Σ). The rewrite relation induced by a rewrite system R is
denoted as →R, and its transitive closure by →∗

R. We write τ(t) to denote the
size of a term t, i.e. the number of symbols in t.

Conventions: Terms are denoted by r, s, t, possibly extended by subscripts.
We write t, to denote sequences of terms t1, . . . , tk ∈ T (Σ,V) and g to denote
sequences of function symbols g1, . . . , gk, respectively. The letters i, j, k, l, m, n,
possible extended by subscripts will always refer to natural numbers. The set of
natural numbers is denoted as usual by N.

We consider the class FP of polytime computable functions, i.e. those func-
tions computable by a deterministic Turing machine M , such that M runs in
time ≤ p(n) for all inputs of length n, where p denotes a polynomial. We consider
equivalent formulations of the class of polytime computable functions in terms
of recursion schemes.

Recursion schemes such as bounded recursion due to Cobham [6] generate
exactly the functions computable in polytime. In contrast to this, Bellantoni-
Cook [7] introduce certain unbounded recursion schemes that distinguish between
arguments as to their position in a function. This separation of variables gives
rise to the following de�nition of the predicative recursive functions B; for further

details see [7]. We �x a suitable signature of predicative recursive function symbols
B.

De�nition 1. For k, l ∈ N we de�ne Bk,l inductively.

� S0,1
i ∈ B0,1, where i ∈ [0, 1].

� Ok,l ∈ Bk,l.
� Uk,l

r ∈ Bk,l, for all r ∈ [1, k + l].
� P 0,1 ∈ B0,1.
� C0,3 ∈ B0,3.
� If f ∈ Bk′,l′ , g1, . . . , gk′ ∈ Bk,0, and h1, . . . , hl′ ∈ Bk,l,

then SUBk,l
k′,l′ [f,g,h] ∈ Bk,l.

� If g ∈ Bk,l, h0, h1 ∈ Bk+1,l+1, then PRECk+1,l[g, h1, h2] ∈ Bk+1,l.

Set B :=
⋃

k,l∈N Bk,l.

To simplify notation we usually drop the superscripts, when denoting pred-
icative recursive function symbols. Occasionally, we even write SUB (, PREC),
instead of SUBk,l[f,g] (,PRECn+1[g, h]). No confusion will arise from this.

The binary successor function m 7→ 2m+ i, i ∈ {0, 1} is denoted as Si. Every
natural number can be buildt up from 0 with repeated applications of Si. The
binary length of a number m is de�ned as follows: |0| := 0 and |Si(m)| := |m|+1.

We write Nk,l for Nk×Nl and for f : Nk,l → N, write f(m1, . . . ,mk;n1, . . . , nl)
instead of f(〈m1, . . . ,mk〉, 〈n1, . . . , nl〉). The arguments occurring to the left of
the semi-colon are called normal, while the arguments to the right are called
safe.

We de�ne the following functions: S0,1
i , i ∈ {0, 1} denotes the function

〈;m〉 7→ 2m + i. Ok,l denotes the function 〈m;n〉 7→ 0. Uk,l
r denotes the function

〈m1, . . . ,mk;mk+1, . . . ,mk+l〉 7→ mr. P0,1 denotes the unique number-theoretic
function satisfying the following equations: f(; 0) = 0, f(;Si(m)) = m. C0,3 de-
notes the unique function satisfying: f(; 0,m0,m1) = m0, f(;Si(m),m0,m1) =
mi.

If f : Nk′,l′ → N, gi : Nk,0 → N for i ∈ [1, k′], hj : Nk,l → N for j ∈ [1, l′], then
SUBk,l

k′,l′ [f,g,h] denotes the function 〈m;n〉 7→ f(g1(m;), . . . , gk′(m;); h1(m;n),
. . . , hl′(m;n)).

If g : Nk,l → N, hi : Nk+1,l+1 → N for i ∈ [0, 1] then PRECk+1,l[g, h1, h2]
denotes the unique number-theoretic function f satisfying: f(0,m;n) = g(m;n)
and f(Si(m),m;n) = hi(m,m;n, f(m,m;n)).

De�nition 2. For k, l ∈ N we de�ne Bk,l inductively.

� S0,1
i ∈ B0,1, where i ∈ [0, 1].

� Ok,l ∈ Bk,l.
� Uk,l

r ∈ Bk,l, for all r ∈ [1, k + l].
� P0,1 ∈ B0,1.
� C0,3 ∈ B0,3.
� If f ∈ Bk′,l′ , g1, . . . , gk′ ∈ Bk,0, and h1, . . . , hl′ ∈ Bk,l, then SUBk,l

k′,l′ [f,g,h] ∈
Bk,l.

Table 1. A Feasible Term-Rewriting Characterisation of the Predicative Re-
cursive Functions

Ok,l(x;a)→ 0 , [zero]

Uk,l(x1, . . . , xk; xk+1, . . . , xk+l)→ xr , [projection]

P 0,1(; 0)→ 0 , [predecessor]

P 0,1(; Si(; a))→ a ,

C0,3(; 0, a0, a1)→ a0 , [conditional]

C0,3(; Si(; a), a1, a0)→ a2−i ,

SUB
k,l[f,g,h](x;n)→ f(g(x;);h(x;n)) , [safe composition]

PREC
k+1,l[g, h1, h2](0,x;n)→ g(x;n) , [predicative recursion

PREC
k+1,l[g, h1, h2](Si(; b),x;n)→ on notation]

→ hi(b,x;n,PRECk+1,l[g, h1, h2](b,x;n)) .

We use the following notation: i ∈ [0, 1] and r ∈ [1, k + l].

� If g ∈ Bk,l, h0, h1 ∈ Bk+1,l+1, then PRECk+1,l[g, h1, h2] ∈ Bk+1,l.

The set of predicative recursive functions is de�ned as B =
⋃

k,l B
k,l.

It follows from the de�nitions that for each f ∈ B, there exists a unique
predicative recursive function fB; the latter is called the interpretation of f in
B. For every number m we de�ne its numeral m ∈ T (B,V) as follows: 0 := 0,
Si(;m) := Si(;m) for i ∈ [0, 1]. We write m to denote a sequence of numer-
als m1, . . . ,mk. Now the polytime computable functions FP can be de�ned as
follows, see [7]:

FP =
⋃
k

Bk,0 .

In [1] a clever feasible term-rewriting characterisation R′
B of the predicative

recursive functions B is given. By Bellantoni's result this yields a feasible term-
rewriting characterisation of the class of polytime computable functions FP.
The (in�nite) TRS is given in Table 1.

The TRS R′
B is terminating and con�uent. Termination follows by recur-

sive path order (RPO). Con�uence is a consequence of the fact that R′
B is

orthogonal. Note the restriction in the rewrite rules for safe composition and
predicative recursion. These rules only apply if all safe arguments are numerals,
i.e. in normal-form. This peculiar restriction is necessary as the canonical term-
rewriting characterisation RB of B, admits exponential lower-bounds, hence RB

is non-feasible, compare. [1].
Let R denote a TRS. A derivation is a sequence of terms ti, i ∈ N, such

that for all i, ti →R ti+1. The (i + 1)th element of a sequence a is denoted as
(a)i. We write a for the concatenation of sequences and de�ne the length

|a| of a sequence a as usually. We de�ne a partial order ⊆ on pairs of se-
quences. a ⊆ b, if b is an extension of a, i.e. |a| ≤ |b| and for all i < |a| we
have (a)i = (b)i. A derivation d with (d)0 = t is called derivation starting with
t. The derivation tree TR(t) of t is de�ned as the structure (T (t),⊆), where
T (t) := {d|d is a derivation starting with t}. The root of TR(t) is denoted by t
(instead of (t)).

We measure the complexity or derivation length of the computation of f(m)
by the height of TR(f(m)); more concisely we de�ne the derivation length func-
tion DlfR : T (Σ)→ N:

DlfR(m) := max{n | ∃ t0, . . . , tn ∈ T (Σ) (tn ←R . . .←R t0 = f(m))} .

Based on these de�nitions we make the notion of feasible term-rewriting
characterisation precise. A term-rewriting characterisation RC of a function class
C is called feasible, if for each n-ary function f ∈ C, there exists a function
symbol g in the signature of RC such that g(m1, . . . ,mn) computes the value
of f(m1, . . . ,mn) and DlfRC

is bounded by a function from C. For the rewrite
system R′

B we have the following proposition.

Proposition 1. For every f ∈ B, DlfR′
B

is bounded by a monotone polynomial
in the length of the normal inputs. Speci�cally for each f we can �nd a number
`(f) so that DlfR′

B
(m;n) ≤ (2+ |m|)`(f), where |m| denotes the sum of the length

normal inputs mi.

Proof. See [8] for a proof, essentially we employ the observation that the deriva-
tion trees TR′

B
(f(m;n)) are isomorphic no matter how the safe input numerals

n vary, to drop the dependency on the length of the normal inputs. ut

3 A path ordering for FP

To extend the above results and to facilitate the study of the polytime com-
putable functions in a term-rewriting framework, we introduce in this section a
new path order for FP, which is a miniaturisation of the recursive path order,
cf. [5], see also [9].

In the de�nition we make use of an auxiliary varyadic function symbol `list'
of arbitrary, but �nite arity, to denote sequences s0, . . . , sn of terms. Instead of
list(s0, . . . , sn) we write (s0, . . . , sn). We write aab for sequences a = (s0, . . . , sn),
b = (sn+1, . . . , sn+m) to denote the concatenation (s0, . . . , sn+m) of a and b.

Let Σ be a signature. We write T ∗(Σ,V) to denote the set of all �nite se-
quences of terms in T (Σ,V). To ensure that T (Σ,V) ⊂ T ∗(Σ,V), any term is
identi�ed with the sequence list(t) = (t). We denote sequences by a, b, c, both
possible extended with subscripts. Sometimes we write fa as abbreviations of
f(t0, . . . , tn), if a = (t0, . . . , tn).

We suppose a partial well-founded relation on S, the precedence, denoted
as <. We write f ∼ g if (f . g) ∧ (g . f) and we write f > g and g < f

interchangeably. Further, we suppose that the signature Σ contains two unary
symbols S0, S1 of lowest rank in the precedence. I.e. Σ = {S0, S1} ∪ Σ′ and
S0 ∼ S1 and for all f ∈ Σ′, S0, S1 < f . Moreover, we de�ne 0 := (). For every
number m we de�ne its numeral m ∈ T (Σ,V) as follows: 0 := (); Si(m) := Si(m)
for i ∈ [0, 1].

The de�nition of the path order for FP (POP) ≺pop (induced by <) is based
on an auxiliary order @. The separation in two orders is necessary to break the
strength of the recursive path order that induces primitive recursive derivation
length, cf. [10].

De�nition 3. Inductive de�nition of v induced by <.

1. ∃j ∈ [1, n] (s v tj) =⇒ s @ f(t1, . . . , tn) ,
2. t = f(t1, . . . , tn) & s = g(s1, . . . , sm) with g < f & ∀i ∈ [1,m] (si @ t)

=⇒ s @ t .

De�nition 4. Inductive de�nition of ≺pop induced by <; ≺pop is based on @.

1. s @ t =⇒ s ≺pop t ,

2. ∃j ∈ [1, n] (s �pop tj) =⇒ s ≺pop f(t1, . . . , tn) & s ≺pop (t1, . . . , tn) ,
3. t = f(t1, . . . , tn) & (m = 0 or (∃i0 (∀i 6= i0 (si @ t) & si ≺pop t))

=⇒ (s1, . . . , sm) ≺pop t ,

4. t = f(t0, . . . , tn) & s = g(s0, . . . , sm) with f ∼ g & (s0, . . . , sm) ≺pop
(t0, . . . , tn)
=⇒ s ≺pop t ,

5. a ≈ a0 a · · ·aan & ∀i ≤ n (ai �pop bi) & ∃i ≤ n (ai ≺pop bi)
=⇒ a ≺pop (b0, . . . , bn) if n ≥ 1 ,

a ≈ a0 a · · ·a an denotes the fact that the sequence a of terms is obtained
from the concatenated a0 a · · ·aan by permutation.

Note that due to rule 3 () ≺pop a for any sequence a ∈ T ∗(Σ,V). Further, we
write s �pop t for t ≺pop s. It is not di�cult to argue that ≺pop is a reduction
order. A number of relations are missing; we mention only the following:

� t = f(t1, . . . , tn) & s = g(s1, . . . , sm) with g < f & ∀i ∈ [1,m] (si ≺pop
t) =⇒ s ≺pop t.

We indicate the reasons for the omission of this clause.

Example 1. Consider the following TRS, where Σ contains additionally the sym-
bols a, g, h, f with precedence a, h < f , g < h.

f(0)→ a f(Si(x))→ h(f(x)) h(x)→ g(x, x) .

It is easy to see that ≺pop cannot handle the TRS in the example, but would
if rule above is included. However, note that the TRS admits an exponential
lower-bound on the derivation length function.

We introduce suitable approximations ≺k of ≺pop.

De�nition 5. Inductive de�nition of @l
k induced by <; we write @k to abbrevi-

ate @k
k.

1. ∃j ∈ [1, n] (s vl
k tj) =⇒ s @l

k f(t0, . . . , tn) ,
2. t = f(t0, . . . , tn) & s = g(s0, . . . , sm) with g < f & m < k & ∀i (si @l

k t)
=⇒ s @l+1

k t .

De�nition 6. Inductive de�nition of ≺k induced by <; ≺k is based on @k.

1. s @k t =⇒ s ≺k t ,

2. ∃j ∈ [1, n] (s �k tj) =⇒ s ≺k f(t1, . . . , tn) ,
3. t = f(t1, . . . , tn) & (m = 0 or ∃i0 ∈ [1,m] (∀i 6= i0 (si @k t) & si0 ≺k t))

& m < k =⇒ (s1, . . . , sm) ≺k t ,

4. t = f(t0, . . . , tn) & s = g(s0, . . . , sm) with f ∼ g & (s0, . . . , sm) ≺k

(t0, . . . , tn) & m < max{k, n} =⇒ s ≺k t ,

5. a ≈ a0 a · · · a an & ∀i ≤ n (ai �k bi) & ∃i ≤ n (ai ≺k bi) =⇒ a ≺k

(b0, . . . , bn) if n ≥ 1 .

In the following we prove that if for a �nite rewrite system R, R ⊆≺pop, then
it even holds that →R⊆≺k, where k depends on R only.

Lemma 1. If s ≺k t and k < l, then s ≺l t.

We introduce the auxiliary measure |.| : T ∗(Σ,V) → N: (i) |x| := 1, x ∈ V,
(ii) |(s1, . . . , sn)| := max{n, |s1|, . . . , |sn|}, (iii) |fa| := |a|+ 1.

Lemma 2. If s ≺pop t, then for any substitution σ, sσ ≺|s| tσ.

Lemma 3. If t = f(t1, . . . , v, . . . , tn), s = f(t1, . . . , u, . . . , tn) with u ≺k v,
where k ≥ max{ar(f) : f ∈ Σ}, then s ≺k t.

Recall that ≺pop is a reduction order. Hence the assumption R ⊆≺pop implies
→R⊆≺pop.

Lemma 4. If t →R s, then s ≺k t, where k = max{max{τ(r)|(l → r) ∈
R},max{ar(f)|f ∈ S}}.

We set

Gk(σ) := max{n ∈ N | ∃(a0, . . . , an) (an ≺k · · · ≺k a0 = a)} ,
Fk,p(n) := max{Gk(fa) : rk(f) = p & Gk(a) ≤ n} ,

where rk(f) : Σ → N is de�ned inductively: rk(f) := max{rk(g)+1: g ∈ Σ∧g ≺
f}. We collect some properties of the function Gk in the next lemma.

Lemma 5. 1. Gk((s0, . . . , sn)) =
∑n

i=0 Gk(ai).
2. Gk(m) = |m| for any natural number m.

Lemma 6. Inductively we de�ne dk,0 := 2 and dk,p−1 := (dk,p)k +1. Then there
exists a constant c (depending only on k and p) such that Fk,p(n) ≤ c ·ndk,p + c.

Proof. The lemma is proven by main induction on p and side induction on σ.
Set a := (t0, . . . , tn) and let w ≺k f(t0, . . . , tn) =: t, rk(f) = p and w

maximal. By assumption Gk(a) ≤ n. We prove

Gk(w) < cndk,p for almost all n ,

by case-distinction on the de�nition of ≺k. It su�ces to consider the case w =
(r0, . . . , rm).

Case. p = 0 and ∀i ≤ m (ri @k t). By de�nition of ≺pop we have ∀i ≤ m ∃j ≤
n (ri �k tj). Then Gk(w) ≤ Gk(a) = n. Hence

Gk(w) ≤ kn < cn2 ,

where we set c := k.

Case. p = 0, ∀i 6= i0 (ri @k t), and ri0 ≺k t. By de�nition of ≺pop we have ∀i ≤
m ∃j ≤ n (ri �k tj) and ri0 = f(s0, . . . , sl), rk(f) = 0, with (s0, . . . , sl) ≺k a.
Hence by induction hypothesis (IH) on a, there exists a constant c, such that
Gk(ri0) ≤ c(n− 1)2 a.e. Employing Lemma 5.1 we obtain:

Gk(w) = Gk((r0, . . . , rm)) =
m∑

i=0

Gk(ri) ≤ c(n− 1)2 + (k − 1)n < cn2 ,

as we can assume c > k.

Case. p > 0 and ∀i ≤ m (ri @k t). Let i be arbitrary. We can assume ri =
g(s0, . . . , sl), g ≺ f , and ∀i ≤ l (si @k−1

k t). Otherwise, if ri = g(s0, . . . , sl) with
g � f s.t. there ∃j ≤ n (ri v tj) we proceed as in the �rst case. By IH there
exists c and d = dk,p s.t. Fk,p(n) ≤ cnd a.e.

We show the existence of a constant c′ s.t. Fk,p+1(n) ≤ c′nd′ , where d′ =
dk,p+1. We de�ne f(a) := cad and g(0)(a) := a, g(l+1)(a) = f(g(l)(a) · k); we
obtain:

s @l
k t =⇒ Gk(s) ≤ g(l)(n) a.e. (?)

To see (?) we show by induction on l, that s @l
k t implies Gk(s) ≤ g(l)(n),

where g(l)(n) = c0a
d(l)

with c0 = c
Pl−1

i=0 di

k
Pl

i=1 di

. Suppose l > 0, then we obtain
by IH on the claim and Fk,p(n) ≤ cnd we obtain:

Gk(s) ≤ c[(c0n
dl

) · k]d = c1n
dl+1

a.e. ,

where c1 = c
Pl

i=0 di

k
Pl+1

i=1 di

. This accomplishes the claim.
Now the upper-bound for Gk(w) follows:

Gk(w) ≤ kg(k)(n) < c′nd′ a.e. ,

where c′ = c
Pk−1

i=0 di

k
Pk

i=0 di

and d′ = dk+1 + 1 = dk,p+1.

Case. p > 0, ∀i 6= i0 (ri @k t), and ri0 ≺k t. By de�nition ∀i ≤ m ∃j ≤ n (ri �k

tj), and ri0 = f(s0, . . . , sl) so that (s0, . . . , sl) ≺k a. Let c, c′, d′ be de�ned as

above. By IH on σ we obtain Gk(ri0) ≤ c′(n− 1)d′ and thus

Gk(w) ≤ c′(n− 1)d′ + (k − 1) · c · ndk

< c′nd′ .

ut

Recall the de�nition of the derivation length function:

DlfR(m) = max{l | ∃ t0, . . . , tn ∈ T (Σ) (tn ←R . . .←R t0 = f(m))}

We have established the following theorem.

Theorem 1. If for a �nite TRS R de�ned over T (Σ,V), R ⊆≺pop then for
each f ∈ Σ, DlfR is bounded by a monotone polynomial in the sum of the binary
length of the inputs.

Proof. Let R be a �nite TRS de�ned over T (Σ,V), such that for every rule
(l → r) ∈ R, r ≺pop l holds. This implies that for any two terms t, s, t →R s
implies s ≺pop t. Hence by Lemma 4 there exists k ∈ N, s.t.←R⊆≺k. Suppose f
is an n-ary function symbol and set t := f(m1, . . . ,mn). By de�nition it follows
that

DlfR(m1, . . . ,mn) ≤ Gk(f(m1, . . . ,mn)) .

By Lemma 6 there exists a polynomial p, depending only on k and the rank of
f , s.t.

Gk(f(m1, . . . ,mn)) ≤ p(Gk((m1, . . . ,mn)) .

Employing with Lemma 5, we obtain DlfR(m1, . . . ,mn) ≤ p(
∑n

i=1|mi|). ut

4 Predicative Recursion and POP

In the previous section we have shown that if for a �nite TRS R, de�ned over
T ∗(Σ,V), R ⊆≺pop, then the derivation length function DlfR is bounded by
a monotone polynomial in the binary length of the inputs. As an application
of Theorem 1, we prove in this section that DlfR′

B
is bounded by a monotone

polynomial in the binary length of the normal inputs. I.e. we give an alternative
proof of Prop. 1. As R′

B exactly characterises the functions in FP this yields
that ≺pop�via the mapping S de�ned below�exactly characterises the class of
polytime computable functions FP.

It su�ces to de�ne a mapping S: T (B)→ T ∗(Σ), such that S is a monotone
interpretation such that S(lσ) �pop S(rσ) holds for all (l → r) ∈ R′

B . We
suppose the signature Σ is de�ned such that for any function symbol f ∈ Bk,l

there is a function symbol f ′ ∈ Σ of arity k. Moreover, Σ includes two constants
S0, S1 and a varyadic function symbol • of lowest rank. We need a few auxiliary
notions: sn(n) := n for numerals n; sn(f(t; s)) =

∑
j(sn(sj)), otherwise. For

every number m we de�ne its representation m̂ ∈ T (Σ,V) as follows: 0̂ :=
•; Ŝi(m) := •(Si) ∗ m̂ for i ∈ [0, 1], where •(s0, . . . , si) ∗ •(si+1, . . . , sn) :=
•(s0, . . . , sn). We de�ne S: T (B) → T ∗(Σ) by mutual induction together with
the interpretation N: T (B)→ T ∗(Σ).

De�nition 7.

� S(n) := () and S(Si(; t)) := (Si)aS(t) for t 6≡ n (i.e. t is not a numeral).

� For f 6= Si, de�ne S(f(t; s)) := (f(N(t0), . . . ,N(tn)),S(s0), . . . ,S(sm)).

� N(t) := •S(t) ∗ ŝn(t).

First we show that for Q ∈ {S,N}, Q(lσ) �pop Q(rσ). More precisely we
show the following lemma.

Lemma 7. Let (l→ r) ∈ R′
B, σ a ground substitution, such that lσ, rσ ∈ T (B).

Then there exists k, depending on the rule (l→ r), such that Q(rσ) ≺k Q(lσ).

Proof. Let (l → r) and σ as in the assumptions of the lemma. We sketch the
proof by considering the rule:

PREC
p+1,q[g, h1, h2](Si(; t), t;n)→ hi(t, t;n,PREC[g, h1, h2](t, t;n)) .

We abbreviate F := PREC
p+1,q[g, h1, h2] and set k := 1 + max{3, p + 1, q +

1}. Let lh(f), f ∈ B be de�ned as follows: lh(f) := 1, for f ∈ {Si, O, U, P}.
lh(SUB[f,g,h]) := 1 + lh(f) + lh(g1) + · · · + lh(gk′) + lh(h1) + · · · + lh(hl′).
lh(PREC[g, h1, h2]) := 1+lh(g)+lh(h1)+lh(h2). Then we de�ne the precedence
< over Σ compatible with lh, i.e. f ′ < g′ if lh(f) < lh(g). For Q = S, we employ
the following sequence of comparisons:

S(F (Si(; t), t;n))
= (F ′(N(Si(; t)),N(t1), . . . ,N(tp)),S(n1), . . . ,S(nq))
= F ′(N(Si(; t)),N(t1), . . . ,N(tp))
= F ′(•(Si) ∗N(t)),N(t1), . . . ,N(tp)) .

By de�nition S(ni) = () and for each t ∈ T (Σ,V), t = (t). Moreover it is a direct
consequence of the de�nitions that N(Si(; t)) = •(Si) ∗N(t). Further:

F ′(•(Si) ∗N(t),N(t1), . . . ,N(tp))
�k (h′i(N(t),N(t1), . . . ,N(tp)), F ′(N(t),N(t1), . . . ,N(tp))) ,

By De�nition 6.4 we obtain •(Si)∗N(t) �k N(t). This yields by rules 6.4 and 6.5
using k > p + 1: F ′(•(Si) ∗N(t),N(t1), . . . ,N(tp)) �k F ′(N(t),N(t1), . . . ,N(tp)).
Finally applying De�nition 6.3 together with rule 6.2 and 5.2 yields the inequal-
ity. In these rule applications we employ k > q + 1 and F ′ > h′i.

(h′i(N(t),N(t1), . . . ,N(tp)), F ′(N(t),N(t1), . . . ,N(tp)))
= (h′i(N(t),N(t1), . . . ,N(tp))),S(n1), . . . ,S(nl), F ′(N(t),N(t1), . . . ,N(tp)))
= S(hi(t, t;n, F (t, t;n))) .

Finally, it is easy to see that N(F (Si(; t), t;n)) �k N(hi(t, t;n, F (t, t;n)).
We established the lemma for the rule F (Si(; t), t;n) → hi(t, t;n, F (t, t;n)).
The other rules follow similar.

Note that the de�nition of k in all cases depends on the arity-information
encoded in the head function symbol on the left-hand side. Moreover at most 3
iterated applications of @k are necessary. ut

The next lemma establish monotonicity for the interpretations S,N.

Lemma 8. For k ∈ N and for u, v ∈ T (Σ), Q(u) ≺k Q(v) for Q ∈ {S,N}.
Suppose f ∈ Bp,q and t, s ∈ T (Σ). Then

� Q(f(t1, . . . , u, . . . , tp; s) ≺k Q(f(t1, . . . , v, . . . , tp; s) for Q ∈ {S,N}, and
� Q(f(t; s1, . . . , u, . . . , sq) ≺k Q(f(t; s1, . . . , v, . . . , sq)) for Q ∈ {S,N}.

We de�ne the derivation length function DlfR′
B

over the ground term-set

T (Σ):

DlfR′
B
(m;n) := max{n | ∃ t0, . . . , tn ∈ T (B)

(
tn ←R′

B
. . .←R′

B
t0 = f(m;n)

)
} .

Recall the de�nition of the derivation tree TR′
B
. Note that for each t ∈ T (B,V),

TR′
B
(t) is �nite. This follows from the fact that R′

B is terminating and TR′
B
(t)

is �nitely branching. The latter is shown by well-founded induction on →R′
B
.

Let f ∈ B be a �xed predicative recursive function symbol. As the deriva-
tion tree TR′

B
(f(m;n)) is �nite only �nitely many function symbols occur in

TR′
B
(f(m;n)). This allows to de�ne a �nite subset F ⊂ B, such that all terms

occurring in TR′
B
(f(m;n)) belong to T (F). We de�ne

k := 1 + max({3} ∪ {p, q + 1|fp,q ∈ B occurs in TR′
B
(f(m;n))}) .

Let R′ denote the restriction of R′
B to T (F). Then, we have DlfR′

B
(m;n) =

DlfR′(m;n). From these observations together with Lemma 7 and 8 we conclude

Lemma 9. Let s, t ∈ T (F) such that t→R s. Then S(s) ≺k S(t).

In summary we obtain, by following the pattern of the proof of Thm. 1:

Theorem 2. For every f ∈ B, DlfR′
B
(m1, . . . ,mp;n1, . . . , nq) is bounded by a

monotone polynomial in the sum of the length of the normal inputs m1, . . . ,mp.

5 Conclusion

The main contribution of this paper is the de�nition of a path order for FP,
denoted as ≺pop. This path order has the property that for a �nite TRS R com-
patible with ≺pop, the derivation length function DlfR is bounded by a polynomial
in the length of the inputs for any de�ned function symbol f in the signature
of R. Moreover ≺pop is complete in the sense that for a function f ∈ FP, there
exists a TRS R computing f such that such that termination of R follows by

≺pop. Another feature of ≺pop is, that its de�nition is devoid of the separation of
normal and safe arguments, present in the de�nition of the predicative recursive
functions and therefore in the de�nition of the term-rewriting characterisation
R′

B .
We brie�y relate our �ndings to the notion of the light multiset path order,

denoted as ≺lmpo, introduced by Marion in [11]. It is possible to de�ne a vari-
ant of ≺pop�denoted as ≺popv�such that Theorem 1 remains true for ≺popv
when suitably reformulated. While De�nition 3 and 4 are based on an arbitrary
signature, the de�nition of ≺popv assumes that normal and safe arguments are
separated as in Section 2. It is easy to see that ≺popv⊂≺lmpo and this inclusion is
strict as ≺lmpo proves termination of the non-feasible rewrite system RB , while
≺popv clearly does not. On the other hand let R be a functional program (i.e.
a constructor TRS) computing a number-theoretic function f . A termination
proof of R via ≺lmpo guarantees the existence of a polytime algorithm for f .
However, a termination proof of R via or the introduced path order ≺popv (or
≺pop) guarantees that R itself is already a polytime algorithm for f . It seems
clear to us that the latter property is of more practical value.

Acknowledgments. We would like to thank Arnold Beckmann who uncov-
ered an embarrassing error in an earlier version of this paper.

References

1. Beckmann, A., Weiermann, A.: A term rewriting characterization of the polytime
functions and related complexity classes. Archive for Mathematical Logic 36 (1996)
11�30

2. Cichon, E.A., Weiermann, A.: Term rewriting theory for the primitive recursive
functions. Annals of Pure and Applied Logic 83 (1997) 199�223

3. Oitavem, I.: A term rewriting characterization of the functions computable in
polynomal space. Archive for Mathematical Logic 41 (2002) 35�47

4. Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-intepretations and small space
bounds. In: Proceedings of RTA'2005. (2005) 150�164

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge Univeristy
Press (1998)

6. Cobham, A.: The intrinsic computational di�culty of functions. In Bar-Hillel,
Y., ed.: Logic, Methodology and Philosophy of Science, proceedings of the second
International Congress, Jerusalem, 1964, North-Holland (1965)

7. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime
functions. Comput. Complexity 2 (1992) 97�110

8. Arai, T., Moser, G.: A note on a term rewriting characterization of PTIME. In:
Proc. of WST'2004. (2004) 10�13 Extended Abstract.

9. Buchholz, W.: Proof-theoretical analysis of termination proofs. Annals of Pure
and Applied Logic 75 (1995) 57�65

10. Hofbauer, D.: Termination proofs by multiset path orderings imply primitive re-
cursive derivation lengths. TCS 105 (1992) 129�140

11. Marion, J.: Analysing the implicit complexity of programs. Information and Com-
putation 183 (2003) 2�18

