Proofs of Termination of Rewrite Systems for Polytime Functions

Toshiyasu Arai¹ and Georg Moser²

¹ Kobe University, Graduate School of Science and Technology, arai@kurt.scitec.kobe-u.ac.jp

 2 University of Innsbruck, Computational Logic, $\tt georg.moser@uibk.ac.at$

Abstract. We define a new path order \prec_{POP} so that for a finite rewrite system R compatible with \prec_{POP} , the *complexity* or *derivation length function* Dl_R^f for each function symbol f is guaranteed to be bounded by a polynomial in the length of the inputs. Our results yield a simplification and clarification of the results obtained by Beckmann and Weiermann (Archive for Mathematical Logic, 36:11-30, 1996).

Keywords: Termination, term rewriting characterisation, derivation length, complexity theory.

1 Introduction

Suppose C denotes an inductively defined class of recursive number-theoretic functions and suppose each $f \in C$ is defined via an equation (or more generally a system of equations) of the form

$$f(\mathbf{x}) = t(\lambda \mathbf{y}.f(\mathbf{y}), \mathbf{x}) , \qquad (1)$$

where t may involve previously defined functions. In a term-rewriting context these defining equations are oriented from left to right and the canonical termrewriting characterisation $R_{\mathcal{C}}$ of \mathcal{C} can be defined as follows: The signature Σ of $R_{\mathcal{C}}$ includes for each function f in \mathcal{C} a corresponding function symbol f. In order to represent natural numbers Σ includes a constant 0 and a unary function symbol S. I.e. numbers are represented by their numerals. (Later we represent natural numbers in the form of binary strings.) For each function $f \in \mathcal{C} - \{0, S\}$, defined by (1), the rule

$$f(\mathbf{x}) \to t(\lambda \mathbf{y}.f(\mathbf{y}), \mathbf{x})$$
,

is added to $R_{\mathcal{C}}$. In all non-pathological cases the term rewrite system (TRS) $R_{\mathcal{C}}$ is terminating and confluent. $R_{\mathcal{C}}$ is best understood as a constructor TRS, where the constructors are 0 and S. Hence $R_{\mathcal{C}}$ may be conceived as a *functional program* implementing the functions in \mathcal{C} .

Term-rewriting characterisations have been studied e.g. in [1,2,3,4]. The analysis of $R_{\mathcal{C}}$ provides insight into the structure of \mathcal{C} or renders us with a delineation of a class of rewrite systems whose complexity (measured by the length of derivations) is guaranteed to belong to the class C. Term-rewriting characterisations turn the emphasis form the *definition* of a function f to its *computation*. An essential property of term-rewriting characterisations $R_{\mathcal{C}}$ is its *feasibility*: $R_{\mathcal{C}}$ is called *feasible*, if for each *n*-ary function $f \in C$, there exists a function symbol g in the signature of $R_{\mathcal{C}}$ such that $g(\overline{m}_1, \ldots, \overline{m}_n)$ computes the value of $f(m_1, \ldots, m_n)$ and the derivation length of this computation is bounded by a function from C.

We study term-rewriting characterisations of the complexity class **FP**. In particular, our starting point is a clever characterisation R'_B of **FP** introduced by Beckmann and Weiermann. In [1] the feasibility of R'_B is established and conclusively shown that any reduction strategy for R'_B yields an algorithm for $f \in \mathbf{FP}$ that runs in polytime. We provide a slight generalisation of the fact that R'_B is feasible. Moreover, we flesh out the crucial ingredients of the TRS R'_B by defining a path order for **FP**, denoted as \prec_{POP} . We show that for a finite TRS R, compatible with \prec_{POP} , the derivation length function Dl^f_R is bounded by a polynomial in the length of the inputs for any defined function symbol f. Furthermore \prec_{POP} is complete in the sense that for any function $f \in \mathbf{FP}$, there exists a TRS R computing f such that termination of R can be shown by \prec_{POP} .

2 A rewrite system for FP

In the following we need some notions from term rewriting and assume (at least nodding) acquaintance with term rewriting. (For background information, please see [5].) Let \mathcal{V} denote a countably infinite set of variables and Σ a signature. The set of terms over Σ and \mathcal{V} is denoted as $T(\Sigma, \mathcal{V})$, while the set of ground terms is written as $\mathcal{T}(\Sigma)$. The rewrite relation induced by a rewrite system R is denoted as \rightarrow_R , and its transitive closure by \rightarrow_R^* . We write $\tau(t)$ to denote the size of a term t, i.e. the number of symbols in t.

Conventions: Terms are denoted by r, s, t, possibly extended by subscripts. We write \mathbf{t} , to denote sequences of terms $t_1, \ldots, t_k \in T(\Sigma, \mathcal{V})$ and \mathbf{g} to denote sequences of function symbols g_1, \ldots, g_k , respectively. The letters i, j, k, l, m, n, possible extended by subscripts will always refer to natural numbers. The set of natural numbers is denoted as usual by \mathbb{N} .

We consider the class **FP** of *polytime computable functions*, i.e. those functions computable by a deterministic Turing machine M, such that M runs in time $\leq p(n)$ for all inputs of length n, where p denotes a polynomial. We consider equivalent formulations of the class of polytime computable functions in terms of recursion schemes.

Recursion schemes such as *bounded recursion* due to Cobham [6] generate exactly the functions computable in polytime. In contrast to this, Bellantoni-Cook [7] introduce certain *unbounded* recursion schemes that distinguish between arguments as to their position in a function. This separation of variables gives rise to the following definition of the *predicative recursive functions* \mathcal{B} ; for further details see [7]. We fix a suitable signature of predicative recursive function symbols B_{\cdot}

Definition 1. For $k, l \in \mathbb{N}$ we define $B^{k,l}$ inductively.

- $\begin{array}{l} \ S_i^{0,1} \in B^{0,1}, \ where \ i \in [0,1]. \\ \ O^{k,l} \in B^{k,l}. \end{array}$
- $\begin{array}{l} & -U_r^{k,l} \in B^{k,l}, \ \text{for all } r \in [1, k+l]. \\ & -P^{0,1} \in B^{0,1}. \end{array}$
- $C^{0,3} \in B^{0,3}$
- $If f \in B^{k',l'}, g_1, \dots, g_{k'} \in B^{k,0}, and h_1, \dots, h_{l'} \in B^{k,l}, then \operatorname{SUB}_{k',l'}^{k,l}[f, \mathbf{g}, \mathbf{h}] \in B^{k,l}.$
- If $g \in B^{k,l}$, $h_0, h_1 \in B^{k+1,l+1}$, then $\text{PREC}^{k+1,l}[g, h_1, h_2] \in B^{k+1,l}$.

Set $B := \bigcup_{k \mid l \in \mathbb{N}} B^{k,l}$.

To simplify notation we usually drop the superscripts, when denoting predicative recursive function symbols. Occasionally, we even write SUB (, PREC), instead of $\text{SUB}^{k,l}[f, \mathbf{g}]$ (,PRECⁿ⁺¹[g, h]). No confusion will arise from this.

The binary successor function $m \mapsto 2m + i, i \in \{0, 1\}$ is denoted as \mathcal{S}_i . Every natural number can be buildt up from 0 with repeated applications of S_i . The binary length of a number m is defined as follows: |0| := 0 and $|S_i(m)| := |m| + 1$.

We write $\mathbb{N}^{k,l}$ for $\mathbb{N}^k \times \mathbb{N}^l$ and for $f \colon \mathbb{N}^{k,l} \to \mathbb{N}$, write $f(m_1, \ldots, m_k; n_1, \ldots, n_l)$ instead of $f(\langle m_1, \ldots, m_k \rangle, \langle n_1, \ldots, n_l \rangle)$. The arguments occurring to the left of the semi-colon are called *normal*, while the arguments to the right are called safe.

We define the following functions: $S_i^{0,1}$, $i \in \{0,1\}$ denotes the function $\langle ;m \rangle \mapsto 2m + i$. $\mathcal{O}^{k,l}$ denotes the function $\langle \mathbf{m}; \mathbf{n} \rangle \mapsto 0$. $\mathcal{U}_r^{k,l}$ denotes the function $\langle m_1, \ldots, m_k; m_{k+1}, \ldots, m_{k+l} \rangle \mapsto m_r$. $\mathcal{P}^{0,1}$ denotes the unique number-theoretic function satisfying the following equations: f(;0) = 0, $f(;\mathcal{S}_i(m)) = m$. $\mathcal{C}^{0,3}$ denotes the unique function satisfying: $f(; 0, m_0, m_1) = m_0, f(; \mathcal{S}_i(m), m_0, m_1) =$

If $f: \mathbb{N}^{k',l'} \to \mathbb{N}, g_i: \mathbb{N}^{k,0} \to \mathbb{N}$ for $i \in [1,k'], h_j: \mathbb{N}^{k,l} \to \mathbb{N}$ for $j \in [1,l']$, then $\mathcal{SUB}^{k,l}_{k',l'}[f, \mathbf{g}, \mathbf{h}]$ denotes the function $\langle \mathbf{m}; \mathbf{n} \rangle \mapsto f(g_1(\mathbf{m};), \dots, g_{k'}(\mathbf{m};); h_1(\mathbf{m}; \mathbf{n}), \dots, h_{l'}(\mathbf{m}; \mathbf{n})).$

If $g: \mathbb{N}^{k,l} \to \mathbb{N}, h_i: \mathbb{N}^{k+1,l+1} \to \mathbb{N}$ for $i \in [0,1]$ then $\mathcal{PREC}^{k+1,l}[g,h_1,h_2]$ denotes the unique number-theoretic function f satisfying: $f(0, \mathbf{m}; \mathbf{n}) = g(\mathbf{m}; \mathbf{n})$ and $f(\mathcal{S}_i(m), \mathbf{m}; \mathbf{n}) = h_i(m, \mathbf{m}; \mathbf{n}, f(m, \mathbf{m}; \mathbf{n})).$

Definition 2. For $k, l \in \mathbb{N}$ we define $\mathcal{B}^{k,l}$ inductively.

 $\begin{array}{l} - \ \mathcal{S}_i^{0,1} \in \mathcal{B}^{0,1}, \ where \ i \in [0,1]. \\ - \ \mathcal{O}^{k,l} \in \mathcal{B}^{k,l}. \end{array}$ $- \mathcal{U}_r^{k,l} \in \mathcal{B}^{k,l}, \text{ for all } r \in [1, k+l].$ $- \mathcal{P}^{0,1} \in \mathcal{B}^{0,1}.$ $- \mathcal{C}^{0,3} \in \mathcal{B}^{0,3}$ $- If f \in \mathcal{B}^{k',l'}, g_1, \ldots, g_{k'} \in \mathcal{B}^{k,0}, and h_1, \ldots, h_{l'} \in \mathcal{B}^{k,l}, then \, \mathcal{SUB}^{k,l}_{k',l'}[f, \mathbf{g}, \mathbf{h}] \in$ $\mathcal{B}^{k,l}$

Table 1. A Feasible Term-Rewriting Characterisation of the Predicative Recursive Functions $O^{k,l}(\mathbf{x};\mathbf{a}) \to 0$, zero $U^{k,l}(x_1,\ldots,x_k;x_{k+1},\ldots,x_{k+l}) \to x_r$ projection $P^{0,1}(;0) \to 0$, [predecessor] $P^{0,1}(;S_i(;a)) \rightarrow a$, $C^{0,3}(;0,a_0,a_1) \to a_0$, [conditional] $C^{0,3}(;S_i(;a),a_1,a_0) \to a_{2-i}$, $\operatorname{SUB}^{k,l}[f, \mathbf{g}, \mathbf{h}](\mathbf{x}; \mathbf{n}) \to f(\mathbf{g}(\mathbf{x};); \mathbf{h}(\mathbf{x}; \mathbf{n}))$, [safe composition] $\operatorname{PREC}^{k+1,l}[g,h_1,h_2](0,\mathbf{x};\mathbf{n}) \to g(\mathbf{x};\mathbf{n}) ,$ [predicative recursion $PREC^{k+1,l}[g,h_1,h_2](S_i(;b),\mathbf{x};\mathbf{n}) \to$ on notation $\rightarrow h_i(b, \mathbf{x}; \mathbf{n}, \operatorname{PREC}^{k+1, l}[q, h_1, h_2](b, \mathbf{x}; \mathbf{n}))$ We use the following notation: $i \in [0, 1]$ and $r \in [1, k + l]$.

- If $g \in \mathcal{B}^{k,l}$, $h_0, h_1 \in \mathcal{B}^{k+1,l+1}$, then $\mathcal{PREC}^{k+1,l}[g, h_1, h_2] \in \mathcal{B}^{k+1,l}$.

The set of predicative recursive functions is defined as $\mathcal{B} = \bigcup_{k,l} \mathcal{B}^{k,l}$.

It follows from the definitions that for each $f \in B$, there exists a unique predicative recursive function $f^{\mathcal{B}}$; the latter is called the *interpretation* of f in $\underline{\mathcal{B}}$. For every number m we define its *numeral* $\overline{m} \in T(B, \mathcal{V})$ as follows: $\overline{0} := 0$, $\overline{\mathcal{S}}_i(;m) := S_i(;m)$ for $i \in [0, 1]$. We write $\overline{\mathbf{m}}$ to denote a sequence of numerals $\overline{m}_1, \ldots, \overline{m}_k$. Now the polytime computable functions **FP** can be defined as follows, see [7]:

$$\mathbf{FP} = igcup_k \mathcal{B}^{k,0}$$
 .

In [1] a clever *feasible* term-rewriting characterisation R'_B of the predicative recursive functions \mathcal{B} is given. By Bellantoni's result this yields a feasible term-rewriting characterisation of the class of polytime computable functions **FP**. The (infinite) TRS is given in Table 1.

The TRS R'_B is terminating and confluent. Termination follows by recursive path order (RPO). Confluence is a consequence of the fact that R'_B is orthogonal. Note the restriction in the rewrite rules for *safe composition* and *predicative recursion*. These rules only apply if all *safe* arguments are numerals, i.e. in normal-form. This peculiar restriction is necessary as the canonical term-rewriting characterisation R_B of \mathcal{B} , admits exponential lower-bounds, hence R_B is *non-feasible*, compare. [1].

Let R denote a TRS. A *derivation* is a sequence of terms $t_i, i \in \mathbb{N}$, such that for all $i, t_i \to_R t_{i+1}$. The $(i+1)^{th}$ element of a sequence a is denoted as $(a)_i$. We write \frown for the concatenation of sequences and define the length

|a| of a sequence a as usually. We define a partial order \subseteq on pairs of sequences. $a \subseteq b$, if b is an extension of a, i.e. $|a| \leq |b|$ and for all i < |a| we have $(a)_i = (b)_i$. A derivation d with $(d)_0 = t$ is called *derivation starting with* t. The *derivation tree* $\mathcal{T}_R(t)$ of t is defined as the structure $(T(t), \subseteq)$, where $T(t) := \{d|d \text{ is a derivation starting with }t\}$. The root of $\mathcal{T}_R(t)$ is denoted by t (instead of (t)).

We measure the *complexity* or *derivation length* of the computation of $f(\overline{\mathbf{m}})$ by the *height* of $\mathcal{T}_R(f(\overline{\mathbf{m}}))$; more concisely we define the *derivation length func*tion $\mathrm{Dl}_R^f: \mathcal{T}(\Sigma) \to \mathbb{N}$:

$$\mathrm{Dl}_{R}^{f}(\overline{\mathbf{m}}) := \max\{n \mid \exists t_{0}, \ldots, t_{n} \in \mathcal{T}(\Sigma) \left(t_{n} \leftarrow_{R} \ldots \leftarrow_{R} t_{0} = f(\overline{\mathbf{m}})\right)\}.$$

Based on these definitions we make the notion of *feasible* term-rewriting characterisation precise. A term-rewriting characterisation $R_{\mathcal{C}}$ of a function class \mathcal{C} is called *feasible*, if for each *n*-ary function $f \in \mathcal{C}$, there exists a function symbol g in the signature of $R_{\mathcal{C}}$ such that $g(\overline{m}_1, \ldots, \overline{m}_n)$ computes the value of $f(m_1, \ldots, m_n)$ and $\mathrm{Dl}^f_{R_{\mathcal{C}}}$ is bounded by a function from \mathcal{C} . For the rewrite system R'_B we have the following proposition.

Proposition 1. For every $f \in \mathcal{B}$, $\operatorname{Dl}_{R'_B}^f$ is bounded by a monotone polynomial in the length of the normal inputs. Specifically for each f we can find a number $\ell(f)$ so that $\operatorname{Dl}_{R'_B}^f(\overline{\mathbf{m}}; \overline{\mathbf{n}}) \leq (2+|\mathbf{m}|)^{\ell(f)}$, where $|\mathbf{m}|$ denotes the sum of the length normal inputs m_i .

Proof. See [8] for a proof, essentially we employ the observation that the derivation trees $\mathcal{T}_{R'_B}(f(\mathbf{m};\mathbf{n}))$ are *isomorphic* no matter how the safe input numerals \mathbf{n} vary, to drop the dependency on the length of the normal inputs. \Box

3 A path ordering for FP

To extend the above results and to facilitate the study of the polytime computable functions in a term-rewriting framework, we introduce in this section a new *path order for* **FP**, which is a *miniaturisation* of the recursive path order, cf. [5], see also [9].

In the definition we make use of an auxiliary varyadic function symbol 'list' of arbitrary, but finite arity, to denote sequences s_0, \ldots, s_n of terms. Instead of $list(s_0, \ldots, s_n)$ we write (s_0, \ldots, s_n) . We write $a \frown b$ for sequences $a = (s_0, \ldots, s_n)$, $b = (s_{n+1}, \ldots, s_{n+m})$ to denote the concatenation (s_0, \ldots, s_{n+m}) of a and b.

Let Σ be a signature. We write $T^*(\Sigma, \mathcal{V})$ to denote the set of all finite sequences of terms in $T(\Sigma, \mathcal{V})$. To ensure that $T(\Sigma, \mathcal{V}) \subset T^*(\Sigma, \mathcal{V})$, any term is identified with the sequence list(t) = (t). We denote sequences by a, b, c, both possible extended with subscripts. Sometimes we write fa as abbreviations of $f(t_0, \ldots, t_n)$, if $a = (t_0, \ldots, t_n)$.

We suppose a partial well-founded relation on S, the *precedence*, denoted as <. We write $f \sim g$ if $(f \leq g) \land (g \leq f)$ and we write f > g and g < f

interchangeably. Further, we suppose that the signature Σ contains two unary symbols S_0, S_1 of lowest rank in the precedence. I.e. $\Sigma = \{S_0, S_1\} \cup \Sigma'$ and $S_0 \sim S_1$ and for all $f \in \Sigma', S_0, S_1 < f$. Moreover, we define 0 := (). For every number m we define its numeral $\overline{m} \in T(\Sigma, \mathcal{V})$ as follows: $\overline{0} := (); \overline{S_i(m)} := S_i(\overline{m})$ for $i \in [0, 1]$.

The definition of the path order for **FP** (POP) \prec_{POP} (induced by <) is based on an auxiliary order \sqsubset . The separation in two orders is necessary to break the strength of the recursive path order that induces primitive recursive derivation length, cf. [10].

Definition 3. Inductive definition of \sqsubseteq induced by <.

1. $\exists j \in [1, n] (s \sqsubseteq t_j) \Longrightarrow s \sqsubset f(t_1, \dots, t_n)$, 2. $t = f(t_1, \dots, t_n) \& s = g(s_1, \dots, s_m)$ with $g < f \& \forall i \in [1, m] (s_i \sqsubset t)$ $\Longrightarrow s \sqsubset t$.

Definition 4. Inductive definition of \prec_{POP} induced by $\langle ; \prec_{POP}$ is based on \sqsubset .

- 1. $s \sqsubset t \Longrightarrow s \prec_{\operatorname{pop}} t$,
- 2. $\exists j \in [1, n] \ (s \preceq_{\text{POP}} t_j) \Longrightarrow s \prec_{\text{POP}} f(t_1, \dots, t_n) \& s \prec_{\text{POP}} (t_1, \dots, t_n)$,
- 3. $t = f(t_1, \dots, t_n) \& (m = 0 \text{ or } (\exists i_0 (\forall i \neq i_0 (s_i \sqsubset t) \& s_i \prec_{\text{POP}} t)) \implies (s_1, \dots, s_m) \prec_{\text{POP}} t,$
- 4. $t = f(t_0, ..., t_n)$ & $s = g(s_0, ..., s_m)$ with $f \sim g$ & $(s_0, ..., s_m) \prec_{POP} (t_0, ..., t_n) \implies s \prec_{POP} t$,
- 5. $a \approx a_0 \frown \cdots \frown a_n \& \forall i \leq n \ (a_i \preceq_{\text{POP}} b_i) \& \exists i \leq n \ (a_i \prec_{\text{POP}} b_i)$ $\implies a \prec_{\text{POP}} (b_0, \ldots, b_n) \text{ if } n \geq 1 ,$

 $a \approx a_0 \cap \cdots \cap a_n$ denotes the fact that the sequence a of terms is obtained from the concatenated $a_0 \cap \cdots \cap a_n$ by permutation.

Note that due to rule 3 () $\prec_{POP} a$ for any sequence $a \in T^*(\Sigma, \mathcal{V})$. Further, we write $s \succ_{POP} t$ for $t \prec_{POP} s$. It is not difficult to argue that \prec_{POP} is a reduction order. A number of relations are missing; we mention only the following:

$$-t = f(t_1, \ldots, t_n) \& s = g(s_1, \ldots, s_m) \text{ with } g < f \& \forall i \in [1, m] (s_i \prec_{\text{POP}} t) \Longrightarrow s \prec_{\text{POP}} t.$$

We indicate the reasons for the omission of this clause.

Example 1. Consider the following TRS, where Σ contains additionally the symbols a, g, h, f with precedence a, h < f, g < h.

$$f(0) \to a$$
 $f(S_i(x)) \to h(f(x))$ $h(x) \to g(x, x)$.

It is easy to see that \prec_{POP} cannot handle the TRS in the example, but would if rule above is included. However, note that the TRS admits an *exponential lower-bound* on the derivation length function.

We introduce suitable approximations \prec_k of \prec_{POP} .

Definition 5. Inductive definition of \Box_k^l induced by <; we write \Box_k to abbreviate \Box_k^k .

 $1. \exists j \in [1, n] (s \sqsubseteq_k^l t_j) \Longrightarrow s \sqsubset_k^l f(t_0, \dots, t_n) ,$ $2. t = f(t_0, \dots, t_n) \& s = g(s_0, \dots, s_m) \text{ with } g < f \& m < k \& \forall i (s_i \sqsubset_k^l t) \\ \Longrightarrow s \sqsubset_k^{l+1} t .$

Definition 6. Inductive definition of \prec_k induced by $\langle ; \prec_k$ is based on \sqsubset_k .

- 1. $s \sqsubset_k t \Longrightarrow s \prec_k t$,
- 2. $\exists j \in [1,n] \ (s \leq_k t_j) \Longrightarrow s \prec_k f(t_1,\ldots,t_n)$,
- 3. $t = f(t_1, \ldots, t_n) \& (m = 0 \text{ or } \exists i_0 \in [1, m] (\forall i \neq i_0 (s_i \sqsubset_k t) \& s_{i_0} \prec_k t)) \& m < k \Longrightarrow (s_1, \ldots, s_m) \prec_k t$
- 4. $t = f(t_0, ..., t_n) \& s = g(s_0, ..., s_m) \text{ with } f \sim g \& (s_0, ..., s_m) \prec_k (t_0, ..., t_n) \& m < \max\{k, n\} \Longrightarrow s \prec_k t$,
- 5. $a \approx a_0 \land \dots \land a_n \& \forall i \leq n \ (a_i \preceq_k b_i) \& \exists i \leq n \ (a_i \prec_k b_i) \Longrightarrow a \prec_k (b_0, \dots, b_n) \text{ if } n \geq 1$.

In the following we prove that if for a finite rewrite system $R, R \subseteq \prec_{\text{POP}}$, then it even holds that $\rightarrow_R \subseteq \prec_k$, where k depends on R only.

Lemma 1. If $s \prec_k t$ and k < l, then $s \prec_l t$.

We introduce the auxiliary measure $|.|: T^*(\Sigma, \mathcal{V}) \to \mathbb{N}$: (i) $|x| := 1, x \in \mathcal{V}$, (ii) $|(s_1, \ldots, s_n)| := \max\{n, |s_1|, \ldots, |s_n|\}$, (iii) |fa| := |a| + 1.

Lemma 2. If $s \prec_{POP} t$, then for any substitution σ , $s\sigma \prec_{|s|} t\sigma$.

Lemma 3. If $t = f(t_1, \ldots, v, \ldots, t_n)$, $s = f(t_1, \ldots, u, \ldots, t_n)$ with $u \prec_k v$, where $k \ge \max\{\operatorname{ar}(f) : f \in \Sigma\}$, then $s \prec_k t$.

Recall that \prec_{POP} is a reduction order. Hence the assumption $R \subseteq \prec_{POP}$ implies $\rightarrow_R \subseteq \prec_{POP}$.

Lemma 4. If $t \to_R s$, then $s \prec_k t$, where $k = \max\{\max\{\tau(r)|(l \to r) \in R\}, \max\{\arg(f)|f \in S\}\}$.

We set

$$G_k(\sigma) := \max\{n \in \mathbb{N} \mid \exists (a_0, \dots, a_n) \ (a_n \prec_k \dots \prec_k a_0 = a)\},$$

$$F_{k,p}(n) := \max\{G_k(fa): \operatorname{rk}(f) = p \& G_k(a) \le n\},$$

where $\operatorname{rk}(f) \colon \Sigma \to \mathbb{N}$ is defined inductively: $\operatorname{rk}(f) := \max\{\operatorname{rk}(g) + 1 \colon g \in \Sigma \land g \prec f\}$. We collect some properties of the function G_k in the next lemma.

Lemma 5. 1. $G_k((s_0, \ldots, s_n)) = \sum_{i=0}^n G_k(a_i)$. 2. $G_k(\overline{m}) = |m|$ for any natural number m.

Lemma 6. Inductively we define $d_{k,0} := 2$ and $d_{k,p-1} := (d_{k,p})^k + 1$. Then there exists a constant c (depending only on k and p) such that $F_{k,p}(n) \leq c \cdot n^{d_{k,p}} + c$.

Proof. The lemma is proven by main induction on p and side induction on σ .

Set $a := (t_0, \ldots, t_n)$ and let $w \prec_k f(t_0, \ldots, t_n) =: t$, $\operatorname{rk}(f) = p$ and w maximal. By assumption $G_k(a) \leq n$. We prove

$$G_k(w) < cn^{d_{k,p}}$$
 for almost all n ,

by case-distinction on the definition of \prec_k . It suffices to consider the case $w = (r_0, \ldots, r_m)$.

CASE. p = 0 and $\forall i \leq m$ $(r_i \sqsubset_k t)$. By definition of \prec_{POP} we have $\forall i \leq m \exists j \leq n \ (r_i \preceq_k t_j)$. Then $G_k(w) \leq G_k(a) = n$. Hence

$$G_k(w) \le kn < cn^2$$
,

where we set c := k.

CASE. p = 0, $\forall i \neq i_0$ $(r_i \sqsubset_k t)$, and $r_{i_0} \prec_k t$. By definition of \prec_{POP} we have $\forall i \leq m \exists j \leq n \ (r_i \preceq_k t_j)$ and $r_{i_0} = f(s_0, \ldots, s_l)$, $\operatorname{rk}(f) = 0$, with $(s_0, \ldots, s_l) \prec_k a$. Hence by induction hypothesis (IH) on a, there exists a constant c, such that $G_k(r_{i_0}) \leq c(n-1)^2$ a.e. Employing Lemma 5.1 we obtain:

$$G_k(w) = G_k((r_0, \dots, r_m)) = \sum_{i=0}^m G_k(r_i) \le c(n-1)^2 + (k-1)n < cn^2$$
,

as we can assume c > k.

CASE. p > 0 and $\forall i \leq m$ $(r_i \sqsubset_k t)$. Let *i* be arbitrary. We can assume $r_i = g(s_0, \ldots, s_l), g \prec f$, and $\forall i \leq l$ $(s_i \sqsubset_k^{k-1} t)$. Otherwise, if $r_i = g(s_0, \ldots, s_l)$ with $g \succ f$ s.t. there $\exists j \leq n$ $(r_i \sqsubseteq t_j)$ we proceed as in the first case. By IH there exists *c* and $d = d_{k,p}$ s.t. $F_{k,p}(n) \leq cn^d$ a.e.

We show the existence of a constant c' s.t. $F_{k,p+1}(n) \leq c'n^{d'}$, where $d' = d_{k,p+1}$. We define $f(a) := ca^d$ and $g^{(0)}(a) := a$, $g^{(l+1)}(a) = f(g^{(l)}(a) \cdot k)$; we obtain:

$$s \sqsubset_k^l t \Longrightarrow \mathbf{G}_k(s) \le g^{(l)}(n) \text{ a.e.}$$
 (*)

To see (*) we show by induction on l, that $s \sqsubset_k^l t$ implies $G_k(s) \leq g^{(l)}(n)$, where $g^{(l)}(n) = c_0 a^{d^{(l)}}$ with $c_0 = c \sum_{i=0}^{l-1} d^i k \sum_{i=1}^{l} d^i$. Suppose l > 0, then we obtain by IH on the claim and $F_{k,p}(n) \leq c n^d$ we obtain:

$$\mathbf{G}_k(s) \le c[(c_0 n^{d^l}) \cdot k]^d = c_1 n^{d^{l+1}} \mathbf{a.e.} \ ,$$

where $c_1 = c \sum_{i=0}^{l} d^i k \sum_{i=1}^{l+1} d^i$. This accomplishes the claim. Now the upper-bound for $G_k(w)$ follows:

 $G_k(w) \le kg^{(k)}(n) < c'n^{d'}$ a.e.,

where $c' = c^{\sum_{i=0}^{k-1} d^i} k^{\sum_{i=0}^{k} d^i}$ and $d' = d^{k+1} + 1 = d_{k,p+1}$.

CASE. p > 0, $\forall i \neq i_0$ $(r_i \sqsubset_k t)$, and $r_{i_0} \prec_k t$. By definition $\forall i \leq m \exists j \leq n \ (r_i \preceq_k t_j)$, and $r_{i_0} = f_{(s_0, \ldots, s_l)}$ so that $(s_0, \ldots, s_l) \prec_k a$. Let c, c', d' be defined as above. By IH on σ we obtain $G_k(r_{i_0}) \leq c'(n-1)^{d'}$ and thus

$$G_k(w) \le c'(n-1)^{d'} + (k-1) \cdot c \cdot n^{d^k} < c'n^{d'}$$
.

Recall the definition of the derivation length function:

$$\mathrm{Dl}_{R}^{f}(\overline{\mathbf{m}}) = \max\{l \mid \exists t_{0}, \dots, t_{n} \in \mathcal{T}(\Sigma) \left(t_{n} \leftarrow_{R} \dots \leftarrow_{R} t_{0} = f(\overline{\mathbf{m}})\right)\}$$

We have established the following theorem.

Theorem 1. If for a finite TRS R defined over $T(\Sigma, \mathcal{V})$, $R \subseteq \prec_{POP}$ then for each $f \in \Sigma$, Dl_R^f is bounded by a monotone polynomial in the sum of the binary length of the inputs.

Proof. Let R be a finite TRS defined over $T(\Sigma, \mathcal{V})$, such that for every rule $(l \to r) \in R$, $r \prec_{\text{POP}} l$ holds. This implies that for any two terms $t, s, t \to_R s$ implies $s \prec_{\text{POP}} t$. Hence by Lemma 4 there exists $k \in \mathbb{N}$, s.t. $\leftarrow_R \subseteq \prec_k$. Suppose f is an n-ary function symbol and set $t := f(\overline{m}_1, \ldots, \overline{m}_n)$. By definition it follows that

$$\operatorname{Dl}_{R}^{f}(\overline{m}_{1},\ldots,\overline{m}_{n}) \leq \operatorname{G}_{k}(f(\overline{m}_{1},\ldots,\overline{m}_{n}))$$

By Lemma 6 there exists a polynomial p, depending only on k and the rank of f, s.t.

$$G_k(f(\overline{m}_1,\ldots,\overline{m}_n)) \le p(G_k((\overline{m}_1,\ldots,\overline{m}_n)))$$

Employing with Lemma 5, we obtain $\text{Dl}_R^f(\overline{m}_1, \ldots, \overline{m}_n) \leq p(\sum_{i=1}^n |m_i|).$

4 Predicative Recursion and POP

In the previous section we have shown that if for a finite TRS R, defined over $T^*(\Sigma, \mathcal{V})$, $R \subseteq \prec_{\text{POP}}$, then the derivation length function Dl_R^f is bounded by a monotone polynomial in the binary length of the inputs. As an application of Theorem 1, we prove in this section that $\text{Dl}_{R'_B}^f$ is bounded by a monotone polynomial in the binary length of the normal inputs. I.e. we give an alternative proof of Prop. 1. As R'_B exactly characterises the functions in **FP** this yields that \prec_{POP} —via the mapping S defined below—exactly characterises the class of polytime computable functions **FP**.

It suffices to define a mapping S: $T(B) \to T^*(\Sigma)$, such that S is a monotone interpretation such that $S(l\sigma) \succ_{POP} S(r\sigma)$ holds for all $(l \to r) \in R'_B$. We suppose the signature Σ is defined such that for any function symbol $f \in B^{k,l}$ there is a function symbol $f' \in \Sigma$ of arity k. Moreover, Σ includes two constants S_0, S_1 and a varyadic function symbol \bullet of lowest rank. We need a few auxiliary notions: $\operatorname{sn}(\overline{n}) := n$ for numerals \overline{n} ; $\operatorname{sn}(f(\mathbf{t}; \mathbf{s})) = \sum_j (\operatorname{sn}(s_j))$, otherwise. For every number m we define its representation $\widehat{m} \in T(\Sigma, \mathcal{V})$ as follows: $\widehat{0} := \bullet; \widehat{\mathcal{S}_i(m)} := \bullet(S_i) * \widehat{m}$ for $i \in [0, 1]$, where $\bullet(s_0, \ldots, s_i) * \bullet(s_{i+1}, \ldots, s_n) := \bullet(s_0, \ldots, s_n)$. We define S: $T(B) \to T^*(\Sigma)$ by mutual induction together with the interpretation N: $T(B) \to T^*(\Sigma)$.

Definition 7.

- $S(\overline{n}) := () \text{ and } S(S_i(;t)) := (S_i) \cap S(t) \text{ for } t \neq \overline{n} \text{ (i.e. } t \text{ is not a numeral)}.$
- For $f \neq S_i$, define $S(f(t; s)) := (f(N(t_0), \dots, N(t_n)), S(s_0), \dots, S(s_m))$.
- $\mathbf{N}(t) := \bullet \mathbf{S}(t) * \widehat{sn(t)}.$

First we show that for $Q \in \{S, N\}$, $Q(l\sigma) \succ_{POP} Q(r\sigma)$. More precisely we show the following lemma.

Lemma 7. Let $(l \to r) \in R'_B$, σ a ground substitution, such that $l\sigma, r\sigma \in T(B)$. Then there exists k, depending on the rule $(l \to r)$, such that $Q(r\sigma) \prec_k Q(l\sigma)$.

Proof. Let $(l \rightarrow r)$ and σ as in the assumptions of the lemma. We sketch the proof by considering the rule:

$$\operatorname{PREC}^{p+1,q}[g,h_1,h_2](S_i(t),\mathbf{t};\mathbf{n}) \to h_i(t,\mathbf{t};\mathbf{n},\operatorname{PREC}[g,h_1,h_2](t,\mathbf{t};\mathbf{n}))$$

We abbreviate $F := \operatorname{PREC}^{p+1,q}[g,h_1,h_2]$ and set $k := 1 + \max\{3, p+1, q+1\}$. Let $\operatorname{lh}(f), f \in B$ be defined as follows: $\operatorname{lh}(f) := 1$, for $f \in \{S_i, O, U, P\}$. $\operatorname{lh}(\operatorname{SUB}[f, \mathbf{g}, \mathbf{h}]) := 1 + \operatorname{lh}(f) + \operatorname{lh}(g_1) + \cdots + \operatorname{lh}(g_{k'}) + \operatorname{lh}(h_1) + \cdots + \operatorname{lh}(h_{l'})$. $\operatorname{lh}(\operatorname{PREC}[g, h_1, h_2]) := 1 + \operatorname{lh}(g) + \operatorname{lh}(h_1) + \operatorname{lh}(h_2)$. Then we define the precedence $< \operatorname{over} \Sigma$ compatible with lh, i.e. f' < g' if $\operatorname{lh}(f) < \operatorname{lh}(g)$. For $\mathbf{Q} = \mathbf{S}$, we employ the following sequence of comparisons:

$$S(F(S_i(;t), \mathbf{t}; \mathbf{n}))$$

= $(F'(N(S_i(;t)), N(t_1), \dots, N(t_p)), S(\overline{n}_1), \dots, S(\overline{n}_q))$
= $F'(N(S_i(;t)), N(t_1), \dots, N(t_p))$
= $F'(\bullet(S_i) * N(t)), N(t_1), \dots, N(t_p))$.

By definition $S(\overline{n}_i) = ()$ and for each $t \in T(\Sigma, \mathcal{V}), t = (t)$. Moreover it is a direct consequence of the definitions that $N(S_i(;t)) = \bullet(S_i) * N(t)$. Further:

$$F'(\bullet(S_i) * \mathbf{N}(t), \mathbf{N}(t_1), \dots, \mathbf{N}(t_p))$$

$$\succ_k (h'_i(\mathbf{N}(t), \mathbf{N}(t_1), \dots, \mathbf{N}(t_p)), F'(\mathbf{N}(t), \mathbf{N}(t_1), \dots, \mathbf{N}(t_p))) ,$$

By Definition 6.4 we obtain $\bullet(S_i) * \mathcal{N}(t) \succ_k \mathcal{N}(t)$. This yields by rules 6.4 and 6.5 using k > p + 1: $F'(\bullet(S_i) * \mathcal{N}(t), \mathcal{N}(t_1), \ldots, \mathcal{N}(t_p)) \succ_k F'(\mathcal{N}(t), \mathcal{N}(t_1), \ldots, \mathcal{N}(t_p))$. Finally applying Definition 6.3 together with rule 6.2 and 5.2 yields the inequality. In these rule applications we employ k > q + 1 and $F' > h'_i$.

$$\begin{aligned} &(h'_i(\mathbf{N}(t),\mathbf{N}(t_1),\ldots,\mathbf{N}(t_p)),F'(\mathbf{N}(t),\mathbf{N}(t_1),\ldots,\mathbf{N}(t_p))) \\ &=(h'_i(\mathbf{N}(t),\mathbf{N}(t_1),\ldots,\mathbf{N}(t_p))),\mathbf{S}(n_1),\ldots,\mathbf{S}(n_l),F'(\mathbf{N}(t),\mathbf{N}(t_1),\ldots,\mathbf{N}(t_p))) \\ &=\mathbf{S}(h_i(t,\mathbf{t};\mathbf{n},F(t,\mathbf{t};\mathbf{n}))) \ . \end{aligned}$$

Finally, it is easy to see that $N(F(S_i(;t),\mathbf{t};\mathbf{n})) \succ_k N(h_i(t,\mathbf{t};\mathbf{n},F(t,\mathbf{t};\mathbf{n})))$. We established the lemma for the rule $F(S_i(;t),\mathbf{t};\mathbf{n}) \rightarrow h_i(t,\mathbf{t};\mathbf{n},F(t,\mathbf{t};\mathbf{n}))$. The other rules follow similar.

Note that the definition of k in all cases depends on the arity-information encoded in the head function symbol on the left-hand side. Moreover at most 3 iterated applications of \Box_k are necessary.

The next lemma establish monotonicity for the interpretations S, N.

Lemma 8. For $k \in \mathbb{N}$ and for $u, v \in T(\Sigma)$, $Q(u) \prec_k Q(v)$ for $Q \in \{S, N\}$. Suppose $f \in B^{p,q}$ and $\overline{t}, \overline{s} \in T(\Sigma)$. Then

$$- \mathsf{Q}(f(t_1,\ldots,u,\ldots,t_p;\overline{s}) \prec_k \mathsf{Q}(f(t_1,\ldots,v,\ldots,t_p;\overline{s}) \text{ for } \mathsf{Q} \in \{\mathsf{S},\mathsf{N}\}, \text{ and} \\ - \mathsf{Q}(f(\overline{t};s_1,\ldots,u,\ldots,s_q) \prec_k \mathsf{Q}(f(\overline{t};s_1,\ldots,v,\ldots,s_q)) \text{ for } \mathsf{Q} \in \{\mathsf{S},\mathsf{N}\}.$$

We define the derivation length function $\text{Dl}_{R'_B}^f$ over the ground term-set $T(\Sigma)$:

$$\mathrm{Dl}_{R'_B}^f(\overline{\mathbf{m}};\overline{\mathbf{n}}) := \max\{n \mid \exists t_0, \dots, t_n \in T(B) \left(t_n \leftarrow_{R'_B} \dots \leftarrow_{R'_B} t_0 = f(\overline{\mathbf{m}};\overline{\mathbf{n}})\right)\}.$$

Recall the definition of the derivation tree $\mathcal{T}_{R'_B}$. Note that for each $t \in T(B, \mathcal{V})$, $\mathcal{T}_{R'_B}(t)$ is finite. This follows from the fact that R'_B is terminating and $\mathcal{T}_{R'_B}(t)$ is finitely branching. The latter is shown by well-founded induction on $\to_{R'_B}$. Let $f \in B$ be a fixed predicative recursive function symbol. As the derivation tree $\mathcal{T}_{R'_B}(f(\overline{\mathbf{m}}; \overline{\mathbf{n}}))$ is finite only finitely many function symbols occur in $\mathcal{T}_{R'_B}(f(\overline{\mathbf{m}}; \overline{\mathbf{n}}))$. This allows to define a finite subset $F \subset B$, such that all terms occurring in $\mathcal{T}_{R'_B}(f(\overline{\mathbf{m}}; \overline{\mathbf{n}}))$ belong to T(F). We define

$$k := 1 + \max(\{3\} \cup \{p, q+1 | f^{p,q} \in B \text{ occurs in } \mathcal{T}_{R'_{\mathcal{D}}}(f(\overline{\mathbf{m}}; \overline{\mathbf{n}}))\})$$

Let R' denote the restriction of R'_B to T(F). Then, we have $\mathrm{Dl}^f_{R'_B}(\overline{\mathbf{m}}; \overline{\mathbf{n}}) = \mathrm{Dl}^f_{R'}(\overline{\mathbf{m}}; \overline{\mathbf{n}})$. From these observations together with Lemma 7 and 8 we conclude Lemma 9. Let $s, t \in T(F)$ such that $t \to_R s$. Then $\mathrm{S}(s) \prec_k \mathrm{S}(t)$.

In summary we obtain, by following the pattern of the proof of Thm. 1:

Theorem 2. For every $f \in B$, $\operatorname{Dl}_{R'_B}^f(\overline{m}_1, \ldots, \overline{m}_p; \overline{n}_1, \ldots, \overline{n_q})$ is bounded by a monotone polynomial in the sum of the length of the normal inputs m_1, \ldots, m_p .

5 Conclusion

The main contribution of this paper is the definition of a path order for **FP**, denoted as \prec_{POP} . This path order has the property that for a finite TRS R compatible with \prec_{POP} , the derivation length function Dl_R^f is bounded by a polynomial in the length of the inputs for any defined function symbol f in the signature of R. Moreover \prec_{POP} is complete in the sense that for a function $f \in \mathbf{FP}$, there exists a TRS R computing f such that such that termination of R follows by \prec_{POP} . Another feature of \prec_{POP} is, that its definition is devoid of the separation of normal and safe arguments, present in the definition of the predicative recursive functions and therefore in the definition of the term-rewriting characterisation R'_B .

We briefly relate our findings to the notion of the *light multiset path order*, denoted as \prec_{LMPO} , introduced by Marion in [11]. It is possible to define a variant of \prec_{POP} —denoted as \prec_{POPV} —such that Theorem 1 remains true for \prec_{POPV} when suitably reformulated. While Definition 3 and 4 are based on an arbitrary signature, the definition of \prec_{POPV} assumes that normal and safe arguments are separated as in Section 2. It is easy to see that $\prec_{\text{POPV}}\subset\prec_{\text{LMPO}}$ and this inclusion is strict as \prec_{LMPO} proves termination of the non-feasible rewrite system R_B , while \prec_{POPV} clearly does not. On the other hand let R be a functional program (i.e. a constructor TRS) computing a number-theoretic function f. A termination proof of R via \prec_{LMPO} guarantees the existence of a polytime algorithm for f. However, a termination proof of R via or the introduced path order \prec_{POPV} (or \prec_{POP}) guarantees that R itself is already a polytime algorithm for f. It seems clear to us that the latter property is of more practical value.

Acknowledgments. We would like to thank Arnold Beckmann who uncovered an embarrassing error in an earlier version of this paper.

References

- Beckmann, A., Weiermann, A.: A term rewriting characterization of the polytime functions and related complexity classes. Archive for Mathematical Logic 36 (1996) 11–30
- 2. Cichon, E.A., Weiermann, A.: Term rewriting theory for the primitive recursive functions. Annals of Pure and Applied Logic 83 (1997) 199-223
- Oitavem, I.: A term rewriting characterization of the functions computable in polynomal space. Archive for Mathematical Logic 41 (2002) 35-47
- Bonfante, G., Marion, J.Y., Moyen, J.Y.: Quasi-intepretations and small space bounds. In: Proceedings of RTA'2005. (2005) 150-164
- 5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)
- Cobham, A.: The intrinsic computational difficulty of functions. In Bar-Hillel, Y., ed.: Logic, Methodology and Philosophy of Science, proceedings of the second International Congress, Jerusalem, 1964, North-Holland (1965)
- 7. Bellantoni, S., Cook, S.: A new recursion-theoretic characterization of the polytime functions. Comput. Complexity 2 (1992) 97–110
- Arai, T., Moser, G.: A note on a term rewriting characterization of PTIME. In: Proc. of WST'2004. (2004) 10–13 Extended Abstract.
- 9. Buchholz, W.: Proof-theoretical analysis of termination proofs. Annals of Pure and Applied Logic **75** (1995) 57–65
- Hofbauer, D.: Termination proofs by multiset path orderings imply primitive recursive derivation lengths. TCS 105 (1992) 129-140
- Marion, J.: Analysing the implicit complexity of programs. Information and Computation 183 (2003) 2-18