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Abstract. We study the formal �rst order system Tind in the standard language
of Gentzen's LK. Tind extends LK by the purely logical rule of term-induction,
that is a restricted induction principle, deriving numerals instead of arbitrary
terms. This rule may be conceived as the logical image of full induction.

1. Introduction

Our object of study is the �rst order formal system Tind de�ned over
the standard language of Gentzen's LK [16,28]. Tind extends LK by the
following logical inference rule (A is quanti�er-free, c eigenvariable).

A(c), Γ→∆, A(S(c))
A(0), Γ→∆, A(Sn(0))

(tind)

The rule is called Term Induction. It formalises a restricted induction princi-
ple. Given the base and the step case for some quanti�er-free property A, we
are allowed to infer that A holds for all terms of the form 0, S(0), S(S(0)), . . .;
i.e. all numerals.1

This restricted induction principle is in stark contrast to the number-
theoretic (or mathematical) induction principle. The term-induction princi-
ple is part of pure logic. Consider mathematical induction (originally called
Kästner's principle), axiomatised as a rule.

A(c), Γ→∆, A(S(c))
A(0), Γ→∆, A(t)

(ind)

Matthias Baaz: Institut für Diskrete Mathematik und Geometrie, E104, Wied-
ner Hauptstrasse 8�10, Vienna University of Technology, Austria, email:
baaz@logic.at

Georg Moser: Computational Logic, Technikerstrasse 21a, University of Innsbruck,
Austria, email: georg.moser@uibk.ac.at

Key words or phrases: Term induction, Successor Induction, Herbrand's theorem,
Generalisation of Proofs

Mathematics Subject Classi�cation (2000): 03F07,03F20,03B10,03B35
1 We write n instead of Sn(0); this notation is used with respect to tuples of

terms, too.



2 Matthias Baaz, Georg Moser

Suppose the base and step case for the property A are provable. Then we
infer that A holds for an arbitrary term t, not only for a numeral.

We conceive mathematical induction as a rule that combines two prin-
ciples that we aim to separate. Firstly a speci�c generation of terms is
stipulated. Secondly a sort of closed world assumption is imposed asserting
that all terms in the basic language can be generated in this way. Our study
of term-induction accounts for an analysis of the �rst aspect. We think that
term-induction precisely captures the logical image of `full' induction.

Observe that the viewpoint of induction as a logical inference rule is
implicit in the literature. Recall Gentzen's second consistency proof [17,28]
of number theory. In the cut-elimination argument one has to deal with
induction inference-rules. These are analysed by �rstly evaluating the ar-
bitrary terms possible occurring in the induction formulas, thus reducing
those terms to numerals and secondly by eliminating the obtained (term-
)induction rule. (Compare [28], pp. 97�114.) Further, note that (variants of)
term induction were already employed in mathematical proofs long before
the concept of mathematical induction was introduced, cf. [18].

Consider Herbrand's Theorem; let A := ∃xP (x1, . . . , xn) be an existen-
tial formula with P (x1, . . . , xn) quanti�er free, provable in length2 k within
a usual Hilbert or Gentzen type system of pure logic. Herbrand's Theorem
expresses the existence of a valid disjunction

C1 ∨ · · · ∨ Cm , (1)

such that the Ci are instances of P (x1, . . . , xn); this disjunction is called
Herbrand disjunction.

It is a well-known fact that m, the number of disjuncts, is bounded by a
primitive recursive function which depends only on k and the logical com-
plexity of A. This is an immediate consequence of Gentzen's Hauptsatz.3 Us-
ing uni�cation-theoretic methods one can even bound the term-complexity
of the Herbrand disjunction. As the obtained bound does not depend on the
term-structure of the proof Π or the end-formula A, this bound is called
uniform. In particular a uniform bound is independent on term-parameters
occurring in A.

In Tind, there is no uniform bound on the number of disjuncts in Her-
brand disjunctions. We show this in Section 2.3; the reason for it is quite
obvious. Through the rule (tind) we allow the introduction of arbitrary
large numerals in a single proof step. Hence the (subtle) interdependence
between term-complexity and proof-complexity needed to gain the uniform
bound is lost. However, bounds on the length and the term-complexity of
Herbrand disjunctions can partly be secured. Suppose A denotes the exis-
tential statement ∃xP (x1, . . . , xn). A Herbrand disjunction H of A is called

2 In the following we conceive proofs as rooted trees whose vertices are sequents.
The length of a proof Π is the number of vertices in this tree.
3 In fact it is possible to bound m by a function that depends only on k. This

follows from the �rst ε-elimination theorem, cf. [20] pages 27�33, compare [2].
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in matrix-form with respect to the matrix C1(i1, . . . , ip)∨· · ·∨Cm(i1, . . . , ip),
if it is represented in the following way for some N .

N∨
i1=0

· · ·
N∨

ip=0

C1(i1, . . . , ip) ∨ · · · ∨ Cm(i1, . . . , ip) , (2)

where each Ci(i1, . . . , ip) is an instance of P (x1, . . . , xn) such that all numer-
als in this instance are fully indicated. Note that the number of quanti�ers n
and the number of `big' disjunctions p may be di�erent. A generalised Her-
brand's Theorem for Tind is established. We prove that if an (existential)
formula A is provable in Tind, then there exists a Herbrand disjunction H
in matrix-form as above, such that the following holds.

� The length of the matrix

C1(i1, . . . , ip) ∨ · · · ∨ Cm(i1, . . . , ip) ,

is uniformly bounded by a primitive recursive function depending on the
length of the proof of A and the logical complexity of A.

� The number of `big� disjunctions

N∨
i1=0

· · ·
N∨

ip=0

,

is uniformly bounded by a primitive recursive function depending on
the maximal iteration of (tind)-rules in the proof of A and the logical
complexity of A.

� Let the reduct of H be obtained by ignoring all occurring numerals. We
show that the term-complexity of the reduct of H is uniformly bounded
primitive recursively in the length of the proof and the size of the reduct
of A.

Assume that the proof Π of A is almost cut-free, i.e. it contains only
propositional cuts.

� Then (i) the length of the matrix is bounded by k + 1, if k denotes the
length of the proof of Π. Further, (ii) the number of `big' disjunctions is
bounded by the number of iterations of (tind)-rules in Π. This bound is
optimal. Finally (iii) the term-complexity of H is bounded elementarily
in the length of the proof and the size of the reduct of A.

Due to those results we conceive Herbrand disjunctions in matrix-form
as natural characterisation of theorems of Tind. On one hand the usual
results (see e.g. [21,2]) on uniform bounds known for Herbrand disjunctions
hold with respect to the inner disjunction. While on the other, the outer
part of the Herbrand disjunction given through the `big' disjunctions is
linked to the structure of (tind)-rules in the initial proof. I.e. the e�ect of
introducing the restricted form of induction can be captured in a speci�c
form of Herbrand disjunctions.
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We consequently study a reversion of Herbrand's Theorem: Given a
valid disjunction of the above form, does there exists a proof in Tind of
the existential statement A? This becomes a non-trivial task only, if we
consider sequences of Herbrand disjunctions (of A(n)) and seek uniform
proofs (of A(n)).4 The existence of some proof in Tind follows already by
the completeness of �rst-order logic.

As basis for our investigation on a reversion of Herbrand's theorem,
we study the decidability of the validity problem for disjunctions in matrix-
forms: Given a disjunction D of the special form (2) above, then the validity
problem for D is the query whether there exists an N such that D becomes
valid.

� We show that the presence of two `big' disjunction in D is already suf-
�cient to reduce the general halting problem to the uniform validity
problem. Using a Parikh-style argument we conclude that a reversion of
Herbrand's theorem is not possible in this case.

� On the other hand if we restrict our attention to disjunctions D with
only one `big' disjunction, then the validity problem remains decidable.

The latter result can be sharpened. We consider disjunctions D(n) with
a single parameter n of the form:

N(n)∨
i=0

C1(i,n) ∨ · · · ∨ Cm(i,n) , (3)

where the length m of the inner disjunction is independent on n; such dis-
junctions are called uniform. The uniform validity problem for D(n) is the
query whether there exists for all n a number N(n) such that D(n) is valid.

� We introduce the following restrictions on the form of D. Let the matrix
M of D be denoted as

C1(a,n) ∨ · · · ∨ Cm(a,n) ,

for some free variable a. Assume that for any occurrence of an atomic
formula A in M the variable a and the parameter n do not both occur
in A; such disjunctions are called simple. The uniform validity problem
for simple disjunctions is decidable.

For the class of simple uniform Herbrand disjunctions of form (3), we
obtain a reversion of Herbrand's theorem in the above sense. Let A(n)
denote the formula

∃x(C1(x,n) ∨ · · · ∨ Cm(x,n)) .

4 We call a formula A(n) uniformly derivable if there exists an in�nite sequence
of proofs Π(n) of A(n), such that |Π(n)|, the length of proof Π(n), is independent
on the parameter n.
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� If for any n, H(n) denotes a simple uniform Herbrand disjunction of
A(n), then A(n) is uniformly derivable in Tind by Π(n). The Π(n)
do not need iterated occurrences of (tind) rules: All occurring term-
induction inference occur in parallel. Further, the proofs Π(n) are almost
cut-free.

In this sense we capture the uniformity of the Herbrand disjunctions
H(n) of A(n) by showing the existence of uniform proofs Π(n) of A(n).
This renders further basis for our claim that (tind) expresses precisely the
logical content of induction.

In Section 2 we give basic de�nitions and notions and de�ne the inves-
tigated system Tind formally. We initially only consider almost cut-free
proofs; the general case is handled in Appendix A.

In Section 3.1 we show the uniform bound on the length of the inner
disjunction of Herbrand disjunction in matrix-form of form (2). Section 3.2
provides the results on the bounded term-complexity of Herbrand disjunc-
tions. These investigations dwell on the use of uni�cation techniques whose
basics are introduced in Section 3.2; additional material on uni�cation is
giving in Appendix C.

Section 4 deals with the reversion of Herbrand's theorem studied. In
Section 4.1 the validity problem is investigated. The proof of the reversion
of Herbrand's theorem studied, is given in the Sections 4.2, 4.3 and Sec-
tion 4.4. Some technical considerations have been collected in Appendix D.
In Appendix B we give applications of our results to questions related to
the structure and complexity of proofs.

2. Term Induction

2.1. Notions and De�nitions

A �rst-order language is determined by specifying its constants, variables,
logical symbols, and other auxiliary symbols like brackets or comma. In par-
ticular constants are either individual constants, function symbols of speci�c
arities, or predicate symbols of speci�c arities. We use the metasymbols
f, g, h, . . . to denote function symbols, while the metasymbols P,Q,R, . . .
vary through predicate symbols. Variables are either free variables or bound
variables. Free variables are denoted by lower-case letters from the begin-
ning of the alphabet, while bound variables are denoted by lower-case letter
from the end of the alphabet. The set of free variables is denoted as FV
while the set of bound variables is denoted as BV. We set V := FV∪BV.
As logical symbols ∧,∨,¬,⊃,∀,∃ are used. As usual the binary logical op-
erators ∧,∨,⊃ are written in in�x notation.

We �x a �rst-order language L which will henceforth be referred to as the
basic language. We assume that the constants of L include at least a nullary
constant 0 and an unary function symbol S. Apart from this assumption
we do not pose any restrictions which of the above mentioned symbols L
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actually contains. In every argument below we assume that L is �xed, and
hence omit the phase �of L�.

Terms are constructed as usually from constants, free variables, and
function symbols; while semi-terms are like terms but may as well contain
bound variables. We will use the metasymbols r, s, t, u, v, w, . . . to denote
terms and semi-terms. Formulas are de�ned as usual with the proviso that
only bound variables are allowed to be quanti�ed and only free variables may
occur free. Semi-formulas are similar to formulas with the exception that
both free and bound variables may occur free in a semi-formula. Hence-
forth A,B, C, . . . will be meta-variables ranging over formulas. To denote
quanti�er free formulas we usually use the metasymbols P,Q,R, . . .

An occurrence of a formula A in a formula B is called positive if it occurs
in the scope of an even number of negations, otherwise the occurrence is
called negative. An occurrence of ∃ in a formula is called weak (strong) if it
is the leading symbol of a positive (negative) subformula. Dually for ∀.

A sequence of symbols from L is called expression. Expressions which are
formed according to the recursive de�nitions of terms or formulas are called
well-formed. We use the metasymbol e to denote well-formed expressions.
If not noted otherwise we assume that an expression is well-formed, and
hence omit the phrase �well-formed�. We sometimes abbreviate sequences of
expressions like t1, . . . , tn by t. Instead of A(t1, . . . , tn) we may write A(t).
The set of variables occurring in an expression e is denoted as V(e).

De�nition 1. A tree is a structure (T,≤T ) such that

1. T is a �nite set.
2. ≤T is partial order on T .
3. There is a unique maximal element T̃ of T ; i.e. for all u ∈ T u ≤T T̃

holds. T̃ is called the root of the tree (T,≤T ).
4. For any u ∈ T , the set {v ∈ T | u ≤T v} is linearly ordered.

Since there is no chance of confusion we use the symbol T to denote
the whole structure (T,≤T ). The elements of T are called nodes. Due to
De�nition 1.4 any node v uniquely de�nes a linearly ordered set N = {w ∈
T | v ≤T w}. Assume u ∈ N , then u speci�es a subset P of N . A path
from u to v is de�ned as the sequence of (linearly ordered) elements of P .
We often confuse the set notation {v1, . . . , vn} of a path and its notation as
a sequence (v1, . . . , vn). The length of P�denoted as |P|�is given by the
number of nodes in it.

De�nition 2. If (T1,≤T1), . . . , (Tn,≤Tn
) are mutually disjoint trees, then

the structure

(T1, . . . , Tn) = (
⋃

Ti,
⋃

≤Ti
) ,

is called forest. Note that if u ∈ (T1, . . . , Tn), then there exists a unique
i ∈ {1, . . . , n} such that u ∈ Ti.
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A labelled tree T (or forest T ) is a tree (forest) together with a label
function L : T → X, where X is some set of labels. Usually X will be a set of
expressions. Any expression e can be conceived as a labelled tree T (e) such
that the root of T (e) corresponds to expression e itself and sons of the node
u corresponds to immediate subexpressions of L(u). Thus any subexpression
e0 of e uniquely de�nes an inner node u in the labelled tree T (e) such that
L(u) = e0. The position p of e0 in e is de�ned as the path P from the root
of T (e) to u. Given a position p in e, we denote the subexpression at p as
e/p; hence e0 = e/p.

De�nition 3. Let e0 be a subexpression of an expression e, such that p is
the position of e0 in e. Then the depth (of occurrence) of e0 in e is |p| − 1,
the length of the position p minus 1. The depth of e0 in e is denoted as
dp(e0, e).

De�nition 4. The depth of an expression e is de�ned as

max{|p| | p is a position in e} .

The depth of e is denoted as dp(e). Let E be a set of expressions. Then
dp(E) := max{dp(e)|e ∈ E}.

De�nition 5. The size of an expression is the number of symbols in e,
denoted as size(e).

De�nition 6. The complexity or logical depth of a formula (or a semi-
formula) A is de�ned as

max{|p| | p is a position of an atomic formula in e} .

The complexity of A is denoted as ld(A).

Let the set of terms in L be denoted as T .

De�nition 7. A substitution σ : V → T is a mapping from the set of free
variables to the set of terms. To denote a substitution σ we write

σ = {a1 7→ t1, . . . , an 7→ tn} .

Then σ(ai) = ti for i = 1, . . . , n and for all a ∈ V distinct from a1, . . . , an,
we stipulate σ(a) = a. The substitution that maps any variable to itself is
called empty. It is denoted as ε.

The application of a substitution σ to an expression e is usually written
as eσ instead of σ(e). We call the set {a | σ(a) 6= a} the domain�dom(σ)�
of σ and the set {σ(a) | a ∈ dom(σ)} the range, denoted as rg(σ). The con-
catenation of two substitution σ and λ (such that σ is applied before λ) is
written as σ ◦ λ. An expression e0 is an instance of e if eσ = e0 for some
substitution σ; alternatively we write e ≤ e0.
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De�nition 8. 1. Let A be a formula and t1, . . . , tn terms. If there exists a
formula B and n distinct variables a1, . . . , an such that A is equal to

B{a1 7→ t1, . . . , an 7→ tn} ,

then for each i (1 ≤ i ≤ n), the occurrences of ti in A are said to be
indicated in A. This fact is also expressed (less accurately) in writing B
as B(a1, . . . , an) and A as B(t1, . . . , tn).

2. We say that a term t is fully indicated in A if every occurrence of t in
A can be obtained by such an replacement (from some formula B, n = 1
and t = t1).

We assume familiarity with the theory of standard uni�cation, compare
e.g. [1]. However, we will review some crucial notions. A uni�cation problem
U is either > or ⊥ or a conjunction of equations (s1 = t1∧· · ·∧sk = tk).5 A
uni�cation problem U is called solved if all si are pairwise distinct variables
and si 6∈ V(tj); for all i, j. If U = (a1 = t1 ∧ · · · ∧ ak = tk) is in solved form,
then σ1 ◦ · · · ◦ σk is the uni�er induced by U ; where σi := {ai 7→ ti} and ◦
denotes the concatenation of substitutions.

Let σ, ρ be substitutions. If there exists a substitution ρ with τ ◦ρ = σ we
say that τ is more general than σ. On the other hand σ is called an instance
of τ . A substitution ρ = {a1 7→ b1, . . . , an 7→ bn}, where the variables in a
are distinct, similarly for b, is called renaming. Note that it must not be
the case that variable positions in e that are named di�erently, are named
equal in eρ.

2.2. The system Tind

The calculus underlying our investigation is Gentzen's LK, compare [16,28];
for our version of LK, see below. In order to formulate the sequent calcu-
lus, we must �rst introduce an auxiliary symbol→. For arbitrary formulas
A1, . . . , An and B1, . . . , Bm the expression

A1, . . . , An→B1, . . . , Bm ,

is called a sequent. Intuitively this means (for n, m ≥ 1) the formula A1 ∧
· · ·∧An ⊃ B1∨· · ·∨Bm. For n ≥ 1, A1, . . . , An→ means that A1∧· · ·∧An

yields a contradiction. For m ≥ 1,→B1, . . . , Bm means that B1 ∨ · · · ∨Bm

is valid. The empty sequent→ is interpreted as contradiction. For a given
sequent S = (Γ →∆), the standard interpretation is denoted as Ŝ or more
expressively as (

∧
Γ ⊃

∨
∆). A sequent S is valid, i� Ŝ is valid.

The formulas occurring in a sequent are called sequent formulas, where
the formulas left to → are the antecedent and the formulas right to →
are the succedent. In the following we abstract from the ordering in the
sequent formulas A1, . . . , An and B1, . . . , Bm. I.e. we consider these lists as

5 We often confuse the logical notation of a uni�cation problem (s1 = t1 ∧ · · · ∧
sk = tk) and its multiset notation {s1 = t1, . . . , sk = tk}.
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(�nite) multisets rather than as sequences. Greek capital letter Γ,∆,Λ, . . .
will be metasymbols that range over �nite multisets of sequent formulas.
The length of a sequent S = (A1, . . . , An → B1, . . . , Bm) (written |S|)
equals n + m. The size of S is the number of symbols in S. The depth
of S (written dp(S)) equals max{dp(C) | C is a sequent formula in S}.
The (logical) complexity of S (written as ld(S)) is de�ned as max{ld(C) |
C is a sequent formula in S}.

The axioms of LK are sequents of the form A→A. Note that A may be
an arbitrary complex formula. The structural and logical rules of LK are
given in Table 1, Table 2, respectively. The auxiliary and principal formulas
of the inferences mentioned are de�ned as usual, compare [28]. Note that
in ∀ : right and in ∃ : left the eigenvariable condition has to hold for a. In
∀ : right and in ∃ : left all occurrences of the free variable a are indicated,
while in ∀ : left and in ∃ : right not necessarily every t is indicated. We write
LK ` S to denote that S is the endsequent of a proof in LK.

Table 1. Structural Rules

Weakening:
Γ →∆

A, Γ →∆

Γ →∆

Γ →∆, A

Contraction:
A, A, Γ →∆

A, Γ →∆

Γ →∆, A, A

Γ →∆, A

Cut:
Γ1→∆1, A A, Γ2→∆2

Γ1, Γ2→∆1, ∆2

Table 2. Logical Rules

¬ : left:
Γ →∆, A

¬A, Γ →∆
¬ : right:

A, Γ →∆

Γ →∆,¬A

∧ : left:
A, B, Γ →∆

A ∧B, Γ →∆
∧ : right:

Γ →∆, A Λ→Θ, B

Γ, Λ→∆, Θ, A ∧B

∨ : left:
A, Γ →∆ B, Λ→Θ

A ∨B, Γ, Λ→∆, Θ
∨ : right:

Γ →∆, A, B

Γ →∆, A ∨B

⊃ : left:
Γ →∆, A B, Λ→Θ

A ⊃ B, Γ, Λ→∆, Θ
⊃ : right:

A, Γ →∆, B

Γ →∆, A ⊃ B

∀ : left:
A(t), Γ →∆

∀xA(x), Γ →∆
∀ : right:

Γ →∆, A(a)

Γ →∆,∀xA(x)

∃ : left
A(a), Γ →∆

∃xA(x), Γ →∆
∃ : right:

Γ →∆, A(t)

Γ →∆,∃xA(x)
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De�nition 9. Terms of the form 0, S(0), S(S(0)), . . . are called numerals.
The n-times iterated application of the function symbol S to 0 is denoted
as Sn(0). We usually write n for the numeral Sn(0), n ≥ 0. In addition we
write n = (n1, . . . ,nr) to denote the tuple (Sn1(0), . . . , Snr (0)).

Remark 1. Usually the unary function symbol S is interpreted as the suc-
cessor function. We want to emphasise that our results do not depend on
this interpretation. Our apology for still using the symbol S is that some
of the question considered in this work where originally posed in terms of
Peano arithmetic.

De�nition 10. Term Induction (tind) is the following inference rule.

P (c), Γ→∆, P (S(c))
P (0), Γ→∆, P (n)

where P is quanti�er-free. The eigenvariable a must not occur in the lower
sequent of the inference. P (0) and P (n) are called the principal formulas
and P (c), P (S(c)) are called the auxiliary formulas of (tind).

Extending LK by term induction, we obtain the formal system Tind
that will be studied in this paper. We write Tind `k S to denote that S
is the endsequent of a proof in Tind (with length k). If no confusion is
possible, we drop the reference to Tind.

Note that Tind and LK derive the same sequents. It is su�cient to
observe that any (tind)-inference

P (c), Γ→∆, P (S(c))
P (0), Γ→∆, P (n)

can be replaced by n−1 iterated applications of the cut-rule on the sequents

P (0), Γ→∆, P (1) · · · P (n− 1), Γ→∆, P (n) ,

which are obtained as instances of the upper sequent P (c), Γ→∆, P (S(c)).
We conceive proofs Π in Tind as labelled trees T (Π) such that the

root of T (Π) corresponds to the endsequent of Π and sons of the node u
corresponds to upper sequents of L(u). Let S1 and S2 be sequents in Π.
We say S1 is above S2 or S2 is below S1 if there exists a path in T (Π)
containing sequents S1 and S2, such that S1 ≤T (Π) S2. A proof in Tind
is called regular if �rstly all eigenvariables are distinct from one another,
and secondly if a free variable a occurs as an eigenvariable in a sequent S
of the proof, then a occurs only in sequents above S. In the following all
considered proofs are supposed to be regular.

De�nition 11. The length of a proof Π is the number of sequents that occur
in the proof. The length of Π is denoted as |Π|.
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A sequent S(n) is uniformly derivable, if there exists an in�nite sequence
of proofs Π(n) of S(n), such that |Π(n)| is independent on the parameter
n. We say that S(n) is uniformly derivable in k steps if |Π(n)| ≤ k for some
constant k independent on n. Let Ŝ(n) denote the standard interpretation of
S(n), then Ŝ(n) is called uniformly derivable (in k steps) if S(n) is uniformly
derivable (in k steps).

2.3. What makes Tind di�erent from LK?

Before we can assess the proof-theoretic di�erence between Tind and LK
we need some further de�nitions, compare [28].

De�nition 12. A sequent S = (Γ→∆) satis�es the property (P), if

1. All sequent formulas in Γ are either of form ∀y1, . . . ,∀ynP (y1, . . . , yn)
(P (y1, . . . , yn) quanti�er-free) or are quanti�er-free.

2. All sequent formulas in ∆ are either of form ∃x1, . . . ,∃xnP (x1, . . . , xn)
(P (x1, . . . , xn) quanti�er-free) or are quanti�er-free.

Convention. If not mentioned otherwise, we will assume that considered
endsequent satis�es the property (P).

We cannot drop this restrictions without crucially a�ecting some of our
theorems below, cf. Section 3.1. However this restriction is not too severe
as shown by the following proposition. We write A ↔ B to abbreviate the
conjunction A ⊃ B ∧B ⊃ A.

Proposition 1. Let S be an arbitrary endsequent. Then there exists a se-
quent S′ satisfying property (P) provable in Tind such that S′ ↔ S holds
(provable in Tind). Furthermore, Π ` S implies the existence of a proof Π ′

such that Π ′ ` S′ and |Π ′| ≤ O(|Π|) holds.

To prove the proposition one �rstly uses structural Skolemisation (see [4])
to eliminate strong quanti�ers from S. The idea is simple: Any quanti�er-
introduction rule, introducing a strong quanti�er, is removed. Simultane-
ously the respective eigenvariables are replaced by suitable chosen Skolem
functions. See [4] for a formal de�nition. This transforms Π to a proof
with an endsequent S1 free of strong quanti�er occurrences. Furthermore,
the proof-transformation does not increase the proof-length. Secondly one
transforms the sequent S1 into a sequent satisfying property (P). To this
end, it su�ces to move all occurring (weak) quanti�ers to the front of the
sequent formulas. This is established by adding suitable cuts representing
quanti�er-shiftings, cf. [6]. The length-bound follows from the proof in [6].

De�nition 13. Let S be a sequent satisfying property (P).

A1, . . . , An→B1, . . . , Bm ,

so that the Ai (i = 1, . . . , n) can be written as ∀yPi(y) and the Bi (i =
1, . . . ,m) can be written as ∃xQi(x). We assume the variables y are not
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shared among the Ai and the x are not shared among the Bi. If there exists
a valid sequent T

C1, . . . , Ck→D1, . . . Dl ,

so that each Ci is an instance of some Pj(y) (1 ≤ j ≤ n) and each Di is an
instance of some Qj(x) (1 ≤ j ≤ m), then T is called Herbrand sequent (of
S).

Any Herbrand sequent T (of S) uniquely de�nes a Herbrand disjunction
(of S) via the standard interpretation of sequents. It is a well-known fact
that any LK-provable sequent satisfying property (P) admits a Herbrand
sequent, cf. [19]. Furthermore, the length of a Herbrand sequent of S can
be bounded in the length of the LK-proof of S and the complexity of S.
One uses the fact that LK admits cut-elimination and that the length of
the cut-free proof is bounded in the length and the maximal complexity
of the cut formulas in the initial proof. Furthermore, one employs Parikh's
Theorem cf. [24,15] to bound the complexity of the cut formulas in the
proof-length and the complexity of S. We will state and prove a suitable
version of Parikh's Theorem in Appendix A.

Hence if S is provable by a proof in LK, then the bound on the length of a
Herbrand sequent of S is independent on the term-complexity in S. We call
such a bound uniform. The situation can be shortly described by saying
that LK admits uniform bounds on the length of Herbrand disjunctions.
This is no longer true if we consider the system Tind.

Theorem 1. In general no function can exist that bounds the length of the
Herbrand sequents of some sequent S in the length of the proof of S and its
logical complexity.

Proof. For any n, any Herbrand sequent of

∀x(P (x) ⊃ P (S(x))), P (0)→P (n) ,

has to contain in the antecedent all n − 1 implications P (i) ⊃ P (S(i)).
This is easily seen by applying the pigeon-hole principle. On the other hand
consider the trivial proof Π (P is atomic) given in Table 3. ut

Table 3. No uniform bound.

P (c)→P (c) P (S(c))→P (S(c))

P (c) ⊃ P (S(c)), P (c)→P (S(c))

∀x(P (x) ⊃ P (S(x))), P (c)→P (S(c))

∀x(P (x) ⊃ P (S(x))), P (0)→P (n)
(tind)
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Corollary 1. Let A be a formula of the form ∃xP (x1, . . . , xn), P (x1, . . . , xn)
is quanti�er free. Let C1 ∨ · · · ∨ Cm be a valid disjunction such that each
Ci (i = 1, . . . , n) is a instance of P (x1, . . . , xn). Then no function can exist
that bounds m in the length of the proof of A and its logical complexity.

3. A generalised Herbrand's Theorem for Tind

From the observations above we know that Tind does not admit uniform
bounds on the length of Herbrand disjunctions. The example given suggests
that this is connected to the fact that a (tind)-inference allows to introduce
arbitrary large numerals in one step. Thus in this section, we de�ne and
study a special form of Herbrand disjunctions that allows us to reveal the
impact of term-induction.

We introduce a separate set of variables NV to L. We use a,b, c,d, e as
meta-variables that range over the elements of NV. If not noted otherwise
expressions are free of variables from NV. Let e denote an expression, then
NV(e) denotes the set of variables belonging to NV that occur in e.

De�nition 14. Let S = (Γ →∆) be a sequent; assume the formulas in Γ
can be written as ∀y Pi(y), where Pi(y) is quanti�er-free, and the formulas
in ∆ can be written as ∃x Qi(x), Qi(x) quanti�er-free. We assume the
variables y (x) are not shared among the Ai (Bi).

Let M denote a sequent

C1, . . . , Ck→D1, . . . , Dl

such that each Ci is an instance of some Pj(y) and each Di is an instance
of some Qj(x). Both the Ci's and the Di's may contain variables from NV.

Assume further there exists a number N s.t. the sequent T = (Γ ?→∆?)
is valid, where

Γ ? := {Ciσ | 1 ≤ i ≤ k and σ : NV(Ci) → {0, . . . ,N}} ,

and
∆? := {Diσ | 1 ≤ i ≤ l and σ : NV(Di) → {0, . . . ,N}} .

Then T is called a Herbrand sequent in matrix-form (with respect to M).
The sequent M is called (Herbrand) matrix of T .

De�nition 15. Let S be a sequent; assume there exists a Herbrand sequent
T in matrix-form of S. Assume further T is chosen such that the length
of the induced Herbrand matrix is minimal (among all possible choices of
T ). Let M denote the Herbrand matrix of T . Then the matrix complexity
(written as HC(S)) of S is de�ned as the length of M .

Example 1. Let S(n) denote the sequent

P (0,0),∀xy(P (x, y) ⊃ P (S(x), y),∀xy(P (x, y) ⊃ P (x, f(y)))→
→P (n, fm(0)) .
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The sequent

P (0,0), P (0,0) ⊃ P (S(0),0), . . . , P (n− 1,0) ⊃ P (n,0),

P (n,0) ⊃ P (n, f(0)), . . . , P (n, fm−1(0)) ⊃ P (n, fm(0))→P (n, fm(0)) ,

denotes a Herbrand sequent T of S with (Herbrand) matrix M (c ∈ NV):

P (0,0), P (c,0) ⊃ P (S(c),0), P (n,0) ⊃ P (n, f(0)), . . .

P (n, fm−1(0)) ⊃ P (n, fm(0))→P (n, fm(0)) .

ut

We study the possible shapes of Herbrand sequents in matrix-form and
obtain uniform bounds on the matrix complexities. This allows us to char-
acterise the Herbrand disjunctions of Σ1-formulas provable in Tind. Note
that the matrix complexity can only be studied if we assume the existence
of a proof of a particular Σ1-formula. To simplify the presentation we �rstly
consider proofs that admit only quanti�er-free cut formulas. We dwell on
the general case in Appendix A.

De�nition 16. A proof in Tind that admits only quanti�er-free cut formu-
las is called almost cut-free.

Convention. For the remainder of this section we assume that the con-
sidered proofs are almost cut-free and the respective endsequent satisfy
property (P).

3.1. Extraction of Herbrand disjunctions from proofs

Let (A)m denote the multiset {A, . . . , A}, if the cardinality of this set equals
m. The number m is called the multiplicity of A. We introduce a notation
that counts the maximal number of iterations of (tind)-rules in Tind-proofs.

De�nition 17. it(Π) is de�ned inductively:

� If Π is an axiom, then it(Π) = 0.
� Otherwise consider the last inference rule Q of Π: If Q is a (tind)-
inference, then it(Π) = it(Π0) + 1, where Π0 denotes the subproof de-
ducing the upper sequent of Q. Now suppose Q is not a (tind)-inference,
but an inference with with upper sequents Si, deduced by proofs Πi. Then
it(Π) = max{it(Πi)}.

Lemma 1. Let Π be proof of S = (Γ → ∆) such that |Π| = k. Assume
Γ = A1, . . . , An and ∆ = B1, . . . , Bm. Then there exists a proof Π ′ of

(A1)a1 , . . . , (An)an→(B1)b1 , . . . , (Bm)bm ,

such that Π ′ only admits contractions on quanti�er-free formulas; |Π ′| ≤ k2,
Σn

i=1ai + Σm
i=1bi ≤ k + 1, and it(Π) = it(Π ′). Moreover, if Ai (Bi) is

quanti�er-free, then ai = 1 (bi = 1).
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Lemma 2. Let Π be a proof of S = (Γ →∆) admitting contractions only
on quanti�er-free formulas. Assume Γ = A1, . . . , An and ∆ = B1, . . . , Bm,
so that the Ai (i = 1, . . . , n) can be written as ∀yPi(y) and the Bi (i =
1, . . . ,m) can be written as ∃xQi(x). Then there exists a proof Π ′ (admitting
contractions only on quanti�er-free formulas) of

C1, . . . , Cn→D1, . . . , Dm ,

such that each Ci is an instances of Pi(y) and each Di is an instances
of Qi(x). Moreover in Π ′ only quanti�er-free formulas occur as weakening
formulas, |Π| = |Π ′|, and it(Π) = it(Π ′).

Theorem 2. Let Π be a proof of S = (Γ → ∆), such that |Π| = k and
it(Π) = l. There exists a Herbrand sequent T of S in matrix-form with
matrix M :

C1, . . . , Cn→D1, . . . , Dm ,

where each Ci can be written as Pi(a1, . . . ,api
) (Pi quanti�er-free) and each

Di can be written as Qi(b1, . . . ,bqi) (Qi quanti�er-free). The variables in
a need not be distinct from those in b. The Herbrand sequent T ful�ls

1. For each quanti�er-free formula P in Γ there exists an Ci, P = Ci and
similarly for each quanti�er-free P ∈ ∆ exists Di, P = Di.

2. |M| ≤ k + 1 and max({pi | i = 1, . . . , n} ∪ {qi | i = 1, . . . ,m}) ≤ l.

Proof. W.l.o.g. we can assume that in Π all structural rules act on quanti�er-
free formulas only. This is a consequence of Lemma 1 and Lemma 2. As Π
is an almost cut-free proof, Π is either cut-free or all cut formulas in Π are
quanti�er-free. Furthermore, S satis�es property (P), cf. De�nition 12. This
implies that the initial sequents in Π must not contain quanti�ers, because
no existential quanti�er may occur in the antecedent, while no universal
quanti�er may occur in the succedent. Another consequence of property (P)
is that propositional inferences, i.e. inferences introducing propositional log-
ical symbols, are applied only to quanti�er-free formulas. We proceed by
induction on k. We abbreviate induction hypothesis by i.h.

Let k = 1, then Π is an axiom A→A. We already know that A has to
be quanti�er-free. We set M equal to A→ A. By assumption A does not
contain elements of NV, therefore the sequent Γ ?→∆? is equal to A→A
which is trivially valid. Furthermore, |M| ≤ 2, and the number of di�erent
variables in NV(A) is ≤ 0 = it(Π).

This establishes the base case. Now assume k > 1. We proceed by case
distinction on the last inference Q of Π. Let Πi, i = 0 or i = 1, 2 denote the
subproof(s) deducing the upper sequent(s) of Q. We only consider the case
where Q = (tind).

� Assume Q is a (tind)-inference. By i.h. we conclude the existence of
matrix M0 of the form

P (c), C→D,P (S(c)) ,
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where P is quanti�er-free. Note that the eigenvariable c may occur in C
and in D. There exists a number N and variables a1, . . . ,ap; p ≤ it(Π0),
such that T (c) = (P (c), Γ ?(c) → ∆?(c), P (S(c)) is valid, where Γ ? is
the multiset of formulas {Ci(c,a1, . . . ,ap)σ | σ : NV(Ci) → {0, . . . ,N}}
and ∆? is the multiset of formulas {Di(c,a1, . . . ,ap)σ | σ : NV(Di) →
{0, . . . ,N}}. As T (c) is valid, each instance T (0), . . . , T (n) is valid, too.
Therefore the sequent T

P (0), Γ ?(0), . . . , Γ ?(n)→∆?(0), . . . ,∆?(n), P (n) ,

is valid. Let a denotes a fresh variable from NV; we de�ne the matrix
of T as the sequent

E1, . . . , En→F1, . . . , Fm ,

where Ei = Ci(a,a1, . . . ,ap) for i = 1, . . . , n and Fi = Di(a,a1, . . . ,ap)
for i = 1, . . . ,m.
It remains to verify (1)�(2). The �rst condition follows trivially by i.h.
The �rst part of condition (2) follows by i.h. as |M| = |M0|. The second
part follows as the number of di�erent variables in NV(E) or NV(F )
is ≤ p + 1 ≤ it(Π0) + 1 = it(Π).
ut

Proposition 2. Assume the notation of the theorem. Then the bound l on
max({pi | i = 1, . . . , n} ∪ {qi | i = 1, . . . ,m}) is optimal.

Proof. Let n be arbitrary and let S(n) =

∀x (P1(xi) ⊃ P1(S(xi)) ∨ · · ·
· · · ∨ P1(x1) ⊃ P1(S(x1))) , P1(0), . . . , Pm(0)→P1(n), . . . , Pm(n)

where x = x1, . . . , xm and P denotes a unary predicate symbol. In Table 4
we give the end-piece of a cut-free derivation of S(n) that uses exactly
m iterated (tind)-inferences. The form of the omitted subproof Π0 is ob-
vious. We claim that any Herbrand sequent of S(n) in matrix-form, that
ful�ls the requirements of the theorem has an Herbrand matrix C1, . . . , Ck→
D1, . . . , Dl s.t. for at least one i, Ci (or Di) has the form Ci(a1, . . . ,am) (or
Di(a1, . . . ,am)), where the ai are distinct variables from NV.

Clearly the proposition follows from this claim. We show the claim. Let
ni1, . . . , nim denote arbitrary natural numbers < n. Firstly observe that any
Herbrand sequent T of S(n) has to include all formulas

(P1(ni1) ⊃ P1(S(ni1))) ∨ · · · ∨ (Pm(nim) ⊃ Pm(S(nim))) , (4)

as sequent formulas in the antecedent. Assume to the contrary there exists
numbers n1, . . . , nm < n s.t.

∨m
i=1 Pi(ni) ⊃ Pi(S(ni)) is not present in T .

We de�ne an evaluation function v(I) on a suitable �rst-order structure I.

v(I)(Pi(r)) :=
{

true r ≤ ni

false r > ni
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Then v(I) falsi�es the sequent. Now the claim states that for at least one
i, the number of di�erent variables in NV(Ci) (or NV(Di)) has to be at
least m. Assume to the contrary that for all i the number of di�erent such
variables is strictly less than m. Then a counting argument reveals that it is
not possible to represent all necessary formulas of form (4) through suitable
instantiations of matrix C1, . . . , Ck→D1, . . . , Dl. This completes the proof
of the claim. ut

Table 4. Uniform cut-free derivation of S(n)

Π0Wm
i=1 (Pi(ai) ⊃ Pi(S(ai))) , P1(a1), . . . , Pm(am)→P1(S(a1)), . . . , Pm(S(am))

∀x
`Wm

i Pi(xi) ⊃ Pi(S(xi))
´
, P1(a1), . . . , Pm(am)→P1(S(a1)), . . . , Pm(S(an))

∀x
`Wm

i=1 Pi(xi) ⊃ Pi(S(xi))
´
, P1(0), . . . , Pm(am)→P1(n), . . . , Pm(S(an))

∀x
`Wm

i=1 Pi(xi) ⊃ Pi(S(xi))
´
, P1(0), . . . , Pm(0)→P1(n), . . . , Pm(n)

The ai, i = 1, . . . , m, are distinct eigenvariables and Π0 deduces the topmost
sequent.

Corollary 2. Let Π be an almost cut-free proof of S = (→∃xP (x1, . . . , xn)),
P quanti�er-free, such that |Π| = k and it(Π) = l. Then there exists a
number N and a Herbrand disjunction of the form

N∨
i1=0

· · ·
N∨

ip=0

C1(i1, . . . , ip) ∨ · · · ∨ Cm(i1, . . . , ip) , (5)

where each Ci(i1, . . . , ip) is an instance of P (x1, . . . , xn) such that all nu-
merals in this instance are fully indicated. Furthermore

1. The length of the `inner' disjunction C1 ∨ · · · ∨ Cm is ≤ k + 1.
2. The length of the `outer' disjunction

∨
i1
· · ·

∨
ip

is ≤ l.

3. The maximal iteration of (tind)-inferences in Π is an optimal bound on
the length of the `outer' disjunction.

Proof. If we employ the lemma on the Π and S we conclude the existence of
a Herbrand sequent T = (→Γ ?) in matrix-form and a Herbrand matrix M :
→C1, . . . , Cm, such that Γ ? is the multiset {Ciσ; σ : NV → {0, . . . ,N}}.

By Theorem 2.2 together with the standard interpretation of sequents,
we conclude m ≤ k + 1. This shows the �rst assertion. Now if we fully
indicate the variables in NV(Ci), Ci can be written as Ci(a1, . . . ,api

). Let
p = max{p}, then the Ci can be written more uniformly as Ci(a1, . . . ,ap).
Due to Theorem 2.2 if follows that p ≤ l. Furthermore, this bound is optimal,
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by Proposition 2. Recalling the standard interpretation of sequents this
implies the validity of the sequent

N∨
i1=0

· · ·
N∨

ip=0

C1(i1, . . . , ip) ∨ · · · ∨ Cm(i1, . . . , ip)

ut

De�nition 18. Herbrand disjunctions which are written in the form (5)
are called of matrix-form (with respect to the matrix C1(i1, . . . , ip) ∨ · · · ∨
Cm(i1, . . . , ip))

Example 1 (continued). Let S,T , and M be de�ned as above. Then the
Herbrand disjunction D of S can be written as

n∨
i=0

(
C(i,0) ∨ · · · ∨ C(i, fm−1(0))

)
,

where C(i, t) equals

¬P (0,0) ∨ (P (i, t) ∧ ¬P (S(i), t)) ∨ (P (n, t) ∧ ¬P (n, f(t))) ∨ P (n, fm(0)) .

ut

Remark 2. Theorem 2 shows that we can only `contract' iterated occurrences
of (tind)-inference in proofs into a single inference by an increase in proof-
length that depends on the occurring numerals in the endsequent.

Let Π, S be de�ned as in Theorem 2. The following proposition shows
that the assumptions that Π is almost cut-free and the fact that S satis�es
property (P) cannot be lifted without loosing the optimal bound on the
`outer' disjunction in the Herbrand disjunction H of S.

Proposition 3. 1. Let Π be an almost cut-free proof of T (not necessarily
ful�lling property (P)). Then no function f , depending only on it(Π),
can exist that bounds the length of the outer disjunction of any Herbrand
disjunction H, where H has the form (5).

2. Let Π be proof of T (not necessarily almost cut-free). Then no function
f , depending only on it(Π), can exist that bounds the length of the outer
disjunction of any Herbrand disjunction H, where H has the form (5).

Proof. First we show Proposition 3.1. Consider the sequents T (n) =

(∀x1P1(x1) ⊃ P1(S(x1))) ∨ · · ·
· · · ∨ (∀xmPm(xm) ⊃ Pm(S(xm))), P1(0), . . . , Pm(0)→P1(n), . . . , Pm(n)

These sequents are uniform derivable from m instances of the proof-fragment
Πi(n); i = 1, . . . ,m, given in Table 5 together with m−1 ∨ : left-inferences.
Obviously it(Πi) = 1 holds, hence by de�nition it(Π) = max{it(Πi)} = 1.
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However, any Herbrand sequent of T (n) has to have the form described in
the proof of Proposition 2 and the proposition follows.

To prove Proposition 3.2, we observe that the quanti�ers in T (n) can be
shifted outward by a single cut-inference with the sequent

∀x(P1(x1) ⊃ P1(S(x1))) ∨ · · · ∨ (Pm(xm) ⊃ Pm(S(xm)))→
→(∀x1P1(x1) ⊃ P1(S(x1))) ∨ · · · ∨ (∀xmPm(xm) ⊃ Pm(S(xm)))

It is easy to see that the length of the derivation of this sequent depends
only on the number of quanti�ers m but not on n. Hence T (n) can uniformly
transformed into the sequent S(n) for any n. ut

Table 5. Proof fragment Πi(n)

Pi(ai)→Pi(ai) Pi(S(ai))→Pi(S(ai))

Pi(ai) ⊃ Pi(S(ai)), Pi(ai)→Pi(S(ai))

∀xiPi(xi) ⊃ Pi(S(xi)), Pi(ai)→Pi(S(ai))

∀xiPi(xi) ⊃ Pi(S(xi)), Pi(0)→P (n)

The ai denotes a free eigenvariable.

The next proposition shows that for the results above the restriction
of (tind) to quanti�er-free formulas is necessary. We assume an extension
Tind+ of the system Tind such that in Tind+ term-induction for Σ1-
formulas is admitted.

Proposition 4. Let Π be a proof of S in Tind+. Then no function f ,
independent on the term-structure of S, can exist that bounds the length of
the shortest Herbrand matrix.

Proof. For any unary function symbol f , we de�ne the nth iteration fn by
f0(t) = t; fn+1(t) = f(fn(t)). In Tind+ the sequent S(n)

P (0,0),∀y1∀y2(P (y1, y2) ⊃ P (S(y1), f(y2))→∃x P (n, x) ,

is uniformly derivable, see Table 6 for the interesting proof-fragment. Ev-
ery Herbrand sequent H(n) for �xed n, has to include all implications
P (i, f i(0)) ⊃ P (S(i), f i+1(0)) for arbitrary i; 0 ≤ i ≤ n − 1. (This fol-
lows by the same argument as in the proof of Proposition 2.) Hence the
length of any Herbrand matrix of H(n) will always depend on n. ut

Proposition 5. Assume L is restricted to a monadic language, where at
most unary function symbols and predicate symbols are admitted. Let Π be
a proof of S = (→∃x1, . . . ,∃xnP (x1, . . . , xn)), P quanti�er-free, such that
|Π| = k and it(Π) = l. Then there exists a number N and a Herbrand
disjunction of the form (5) such that
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Table 6. Proof fragment in Tind+

∀y1∀y2P (y1, y2) ⊃ P (S(y1), f(y2)), P (c1, c2)→P (S(c1), f(c2))

∀y1∀y2P (y1, y2) ⊃ P (S(y1), f(y2)), P (c1, c2)→∃xP (S(c1), x)

∀y1∀y2P (y1, y2) ⊃ P (S(y1), f(y2)),∃xP (c1, x)→∃xP (S(c1), x)

∀y1∀y2P (y1, y2) ⊃ P (S(y1), f(y2)),∃xP (0, x)→∃xP (n, x)
(tind)+

1. The length of the `inner' disjunction C1 ∨ · · · ∨ Cm is ≤ k + 1.
2. The length of the `outer' disjunction

∨
i1
· · ·

∨
ip

is ≤ min{l, n}.

3.2. Term-complexities of Herbrand disjunctions

In the previous section we have analysed the logical structure of a Herbrand
disjunction H of a sequent S that satis�es property (P). In this section we
study the term-structure of Herbrand disjunctions.

This study is motivated by Krajicek and Pudlak's analysis of the term-
structure of sequent calculi proofs in [21]. These results imply that we can
assume w.l.o.g that the maximal depth of any term t occurring in a Herbrand
disjunction of a sequent S (provable in LK by Π) is bounded uniformly, i.e.
there exists an elementary function f , such that dp(t) ≤ f(|Π|, size(S)).
We exemplify the general argument on the basis of the system LK: We
show directly (i.e. without reference to the results of [21]) how-to uniformly
bound the term-complexity of a given Herbrand disjunction.

Let S(r) be a sequent with parameters r = r1, . . . , rl

A1, . . . , An→B1, . . . , Bm .

We assume the Ai (i = 1, . . . , n) can be written as ∀yPi(y, r) and the Bi

(i = 1, . . . ,m) as ∃xQi(x, r). As above, we assume the indicated bound
variables are not shared. On the other hand the series of parameter terms
r may be shared among the Ai and Bj . Assume

C1, . . . , Ck→D1, . . . , Dl ,

is an arbitrary Herbrand sequent T of S, where each Ci is an instance of
some Pi(y, r) of the form Pi(t1, . . . , tpi

, r). Similarly the Di have the form
Qi(t1, . . . , tqi

, r).

De�nition 19. Let T be de�ned as above. We de�ne a sequent H

E1, . . . , Ek→F1, . . . , Fl ,

such that the Ei are of the form Pi(ai1, . . . , aipi
, r), similarly the Di have the

form Qi(bi1, . . . , biqi
, r), such that for each i fresh variables a and b are used.

The sequent H is called an abstraction of T . The formulas Pi(a1, . . . , api
, r)

are called abstraction formulas.



Herbrand's Theorem and Term Induction 21

Example 1 (continued). The abstraction H of T can be written as

P (0,0), P (a0, b0) ⊃ P (S(a0), b0), . . . , P (an−1, bn−1) ⊃ P (S(an−1), bn−1),
P (c0, d0) ⊃ P (c0, f(d0)), . . . , P (cm−1, dm−1) ⊃ P (cm−1, f(dm−1))→

→P (n, fm(0)) .

ut

Remark 3. For the time being we do not abstract the parameters r in S.
This however, will become necessary later on.

Note that the length of an abstraction equals the length of T , and for
a given T an abstraction of T is unique up-to renaming of (free) variables.
Therefore, we speak of the abstraction of T . The abstraction H and the
Herbrand sequent T induce an uni�cation problem U : Let

R(u1, . . . , un) R(v1, . . . , vn)

be atomic formulas in H, such that there exist occurrences R1, R2 of the
same subformula R in T , and a substitution δ with R1 = R(u)δ, R2 = R(v)δ.
For each such pair (R(u), R(v)), we add the equations

u1 = v1 · · · un = vn ,

to U . As T itself de�nes a solution to the uni�cation problem U , this uni-
�cation problem is solvable. Employing well-known results from uni�cation
theory6 there exists a most general uni�er σ such that σ solves U . Further-
more, we can �nd a substitution η, such that Hση = T .

Example 1 (continued). The uni�cation problem U induces by H is de�ned
by

a0 = 0, b0 = 0, a1 = S(a0), b0 = b1, . . . , c0 = S(an−1), d0 = bn−1,

c0 = c1, d1 = f(d0), . . . , fm(0) = f(dm−1), cm−1 = n .

ut

It follows by de�nition of U that Hσ is valid i� T is valid. We say
that Hσ is a generalisation of T . Note that for Hσ holds: For any term t,
the maximal term depth of t is grossly bounded by ≤ 2mdp(H), where m
denotes the number of variables in U . This observation is the key step in
giving an upper bound for the term-complexity of Herbrand disjunctions.
As dp(H) ≤ dp(S) the claim follows as soon as we can bound the number
m in the size of S and the length of Π. This is an easy consequence of
Herbrand's Theorem, as long as we can assume that Π is an LK-proof.

6 See e.g. [1] for a survey paper on the theory of uni�cation; we review some
basic concepts in Section 2.1
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We would like to emphasise that the employed proof method is well-
established: Let S = (→∃xP (x1, . . . , xn)), P quanti�er-free. We consider a
disjunction of instances of P (x1, . . . , xn).

P (a11 , . . . , a1n
) ∨ · · · ∨ P (am1 , . . . , amn

) ,

of �xed length m, where the sequences of variables a1, . . . , am are all di�er-
ent. It is well-known that it is decidable whether there exists sequences of
terms t1, . . . , tm such that P (t11 , . . . , t1n)∨ · · · ∨P (tm1 , . . . , tmn) is valid; to
establish this, one proceeds as above, cf. [14,19].

If we alter the assumption such that the given proof Π of S is a proof
in Tind, rather than a proof in LK, we cannot directly apply this proof
method, if we want to bound the term-complexity of the reduct of a Her-
brand disjunction in matrix-form. Due to Lemma 1, the length of the ab-
straction H of the Herbrand sequent T , and hence the number of variables
in H, cannot be uniformly bounded. However, due to Theorem 2, we can
assume that the Herbrand sequent T is in matrix-form, where the length of
the Herbrand matrix of T can uniformly bounded.

This observation will allows us to de�ne a suitable uni�cation problem
U? adapted to the new situation. To this end we use (a variant of) con-
gruence uni�cation which has already been introduced in [10]. Below we
present a modular variant of congruence uni�cation, that can be applied in
a variety of situation.

3.3. Bounding the Depth in Herbrand Disjunctions of matrix-form

De�nition 20. Let e be an expression, i.e. a term, a formula, or a sequent.
Assume e includes m occurrences of numerals; we write e as e(n1, . . . ,nm).
Then the reduct of e is de�ned as e(a1, . . . ,am), where a1, . . . ,am are new
variables from NV. Upto renaming of variables the reduct is unique; we
write e◦ to denote the reduct of e.

De�nition 21. Two expressions s, t are variants if s◦ = t◦ρ, for some re-
naming substitution ρ : NV → NV.

Example 2. Let g and h denote unary (respectively binary) function sym-
bols; k, l,m, n denote natural numbers. Assume s = h(Sn(0), gm(0), Sl(c)),
c ∈ NV. The term t = h(Sl(0), gm(0), Sn(c)) is a variant of s (regardless
whether l equals n or not, while r = h(Sn(0), gk(0), Sl(c)), if k 6= m is not.
ut

Clearly the `variant' relation is an equivalence relation. Let E be a set
of expressions, then we de�ne the reduct of E (denoted E◦) as the set
{e◦ | e ∈ E}. We set dr(e) := dp(e◦) to denote the depth of the reduct of
an expression e. Suppose E is a set, then dr(E) := dp(E◦).

De�nition 22. A congruence uni�cation problem is a pair (U,X) such that
U denotes a standard uni�cation problem (over the set of terms) and X is
a partition of a subset of V. A congruence uni�cation problem (U,X) is
solved by an uni�er σ, if
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1. σ is a standard uni�er of U and
2. σ in addition ful�ls: Let C = 〈a1, . . . , an〉 denotes a variables-class in

X. Then a1σ, . . . , anσ are all variants.

The property 2 is called congruence (uni�cation) property.

Congruence uni�cation has similar properties as standard uni�cation.
This is established by Theorem 3 and Theorem 4, below. The proofs of these
theorems together with a de�nition of a congruence uni�cation procedure
can be found in Appendix C. We conceive the uni�cation problem U as a
set and de�ne dp((U,X)) := dp(U).

Theorem 3. Let (U,X) be a congruence uni�cation problem. Then there ex-
ists a set of most general congruence uni�ers of (U,X) i� (U,X) is solvable.
Let the set of most general solutions of (U,X) be denoted as Sol((U,X)).
Then its reduct (Sol((U,X)))◦ is �nite.

Theorem 4. Let σ ∈ Sol((U,X)). There exists an elementary function
f , s.t. dr((U,X)σ) ≤ f(d, n), where d = dr((U,X))) and n = card({a |
dp(a, U) > 0}), the cardinality of the set {a | dp(a, U) > 0}.

Recall that the set of variables occurring in an expression e is denoted
as V(e). In this section we de�ne the uni�cation problem promised in Sec-
tion 3.2. Let S be a sequent (satisfying property (P)) provable in Tind, and
assume T is a Herbrand sequent of S. Following De�nition 19, we de�ne an
abstraction H of T . As emphasised in Section 3.2, H induces a (standard)
uni�cation problem U

u1 = v1, . . . , un = vn . (6)
It follows from the existence of T that the problem (6) is solvable. Hence
for each pair (ui = vi) exists a common instance wi.

De�nition 23. Let λ be solution for (6). We de�ne a relation ∼ on the
equations in (6) such that (ui = vi) ∼ (uj = vj) i�
1. (ui = vi)λ is a variant of (uj = vj)λ, and
2. there exists a renaming ρ, such that (ui = vi)ρ = (uj = vj).

With respect to a �xed solution λ of (6) the relation ∼ is an equiva-
lence relation. For each class C ∈ U/∼ we choose an equation (u = v) as
representative and write [u = v] to denote C. The set of all these repre-
sentatives is denoted as U?. Let C := [u = v]; we de�ne a partition XC of
the variables occurring in C and to this avail we de�ne an equivalence re-
lation ≈. Assume (u = v), (r = s) ∈ C, such that V(u = v) = {a1, . . . , am}
and V(r = s) = {b1, . . . , bm}. By de�nition of ∼ there exists a renaming
ρ : V(u = v) → V(r = s), we de�ne an equivalence relation ≈: W.l.o.g we
assume that ai = biρ for each i and set a1 ≈ b1, . . . , am ≈ bm. The de�ni-
tion of XC is complete if all equations (r = s) ∈ C have been considered.
X is de�ned as the union of the partitions XC , that is by extending the
equivalence relation ≈ in the natural way..

This completes the de�nition of the congruence uni�cation problem
(U?, X).
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Example 1 (continued). We de�ne the uni�cation problem (U?, X) that is
based on the uni�cation problem U . Then U? is de�ned as follows

a0 = 0, b0 = 0, a1 = S(a0), b0 = b1, d1 = f(d0), . . . ,
. . . , fm(0) = f(dm−1), cm−1 = n .

such that X includes:

〈a0, a1, . . . , an−1, b0, . . . , bn−1, c0, . . . , cm−1, d0〉
〈d1〉, . . . , 〈dm−1〉 .

Set

σ1 :={a0 7→ 0, . . . , an−1 7→ n− 1,

b0 7→ 0, . . . , bn−1 7→ 0,

c0 7→ n, . . . , cm−1 7→ n,

d0 7→ 0, . . . , dm−1 7→ fm−1(0)}
σ2 :={a0 7→ 0, a1 7→ 1, . . . , an−1 7→ 1,

b0 7→ 0, b1 7→ 0, b2 7→ 2, . . . , bn−1 7→ Sn−1(0),
c0 7→ n, . . . , cm−1 7→ n,

d0 7→ 0, . . . , dm−1 7→ fm−1(0)} .

Both σ1 and σ2 are solutions to (U?, X). ut

The following lemmas show that (U?, X) is well-de�ned. The assertions
follow easily from the de�nitions.

Lemma 3. Let U denote the standard uni�cation problem (6). Suppose
(U?, X) is de�ned as above and is solvable with σ, then for each equation
(ui = vi) ∈ [u = v] ⊆ U , (u = v)σ is a variant of (ui = vi)σ.

Lemma 4. Let U and (U?, X) be de�ned as above. Assume U and (U?, X)
are solvable; suppose the most general congruence uni�er solving (U?, X) is
denoted as σ. Then there exists an instance λ of σ such that λ solves the
standard uni�cation problem U and λ is a solution to (U?, X). Moreover,
if S includes all instances of σ ∈ Sol((U?, X)) ful�lling these requirements,
then max{dr(eλ)|λ ∈ S} = dr(eσ), for an arbitrary expression e.

De�nition 24. Suppose T , T ′ denote Herbrand sequents in matrix-form of
a provable sequent S with respect to the matrix

C1, . . . , Cn→D1, . . . , Dm C ′
1, . . . , C

′
n→D′

1, . . . , D
′
m respectively ,

ful�lling the requirements of Theorem 2.
The Herbrand sequent T ′ is said to be more general than T , if there

exists a substitution σ : FV ∪NV → T with C ′
iσ = Ci for all i = 1, . . . , n

and D′
iσ = Di for all i = 1, . . . ,m.
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The following proposition is a direct consequence of the completeness of
congruence uni�cation procedure, cf. Theorem 3 and Lemma 4.

Proposition 6. Let S(r) = (Γ (r)→∆(r)) be provable in Tind and sup-
pose T denotes a Herbrand sequent of S in matrix-form, ful�lling the re-
quirements of Theorem 2. Then there exists a Herbrand sequent T ′ of S in
matrix-form, ful�lling the requirements of Theorem 2, such that T ′ is more
general than T .

Theorem 5. Let Π be a proof of S(r) = (Γ (r)→∆(r)), such that |Π| = k
and it(Π) = l and the series r denotes parameters in S. Let T denote a
Herbrand sequent in matrix-form of S such that the Herbrand matrix M of
T has the form

C1, . . . , Cn→D1, . . . , Dm ,

where each Ci(r) can be written as Pi(a1, . . . ,api , r) (Pi quanti�er-free) and
each Di(r) can be written as Qi(a1, . . . ,aqi , r) (Qi quanti�er-free); a ∈ NV.
Then T ful�ls

1. For each quanti�er-free formula P in Γ there exists an Ci, P = Ci and
similarly for each quanti�er-free P ∈ ∆ exists Di, P = Di.

2. |M| ≤ k + 1 and max({pi | i = 1, . . . , n} ∪ {qi | i = 1, . . . ,m}) ≤ l.
3. There exists an elementary function f , such that dr(M) ≤ f(c, s, d),

where c = |M|, s = size(S(c)) (ci ∈ FV) and d = dp(S(c)).

Proof. We employ Theorem 2 to conclude the existence of a Herbrand se-
quent in matrix-form T ful�lling properties (1)�(2). Now we construct an
abstraction H of the Herbrand sequent T together with the induced uni�-
cation problem U . Then we construct the congruence uni�cation problem,
entailed by U as above. This uni�cation problem is denoted as (U?, X).

Suppose M denotes the Herbrand matrix T . Then it is not di�cult to
argue, that card(X) and thus card({a | dp(a, U?) > 0}) depends only on
|M| and the number of argument positions in S(c) ( ≤ size(S(c))). Hence,
card(X) can be elementary bounded in |M| and size(S(c)).

Employing Theorem 3 there exists a most general solution σ to (U?, X).
Furthermore, due to Theorem 4 there exists exists an elementary function g,
such that dr((U?, X)σ) ≤ g(e, n), where e = dr((U?, X)) and n = card({a |
dp(a, U) > 0}). Due to the just given argument this implies the existence
of an elementary function h, such that

dr((U?, X)σ) ≤ h(dr((U?, X)), c, s) .

To observe the stated term bound it su�ces to realise that dr((U?, X))) ≤
size(S(c)).

By Lemma 4 there exists an instantiation σ′ of σ that solves U . We may
assume that σ′ is a ground substitution, otherwise we replace all variables in
rg(σ′) by 0. Finally, using σ′ we de�ne a Herbrand sequent of matrix-form
T ′ ful�lling properties (1)�(3). ut
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The following corollary is (by now) an easy consequence of the theorem.

Corollary 3. Let Π be an (almost cut-free) proof of S =→∃xP (x1, . . . , xn),
P quanti�er-free, such that |Π| = k and it(Pi) = l. Then there exists a
number N and a Herbrand disjunction of the form

N∨
i1=0

· · ·
N∨

ip=0

C1(i1, . . . , ip) ∨ · · · ∨ Cm(i1, . . . , ip) ,

where each Ci(i1, . . . , ip) is an instance of P (x1, . . . , xn), furthermore the
following holds.

1. The length of the `inner' disjunction C1 ∨ · · · ∨ Cm is ≤ k + 1.
2. The length of the `outer' disjunction

∨
i1
· · ·

∨
ip

is ≤ l.
3. The depth of the reduct of the `inner' disjunction C1 ∨ · · · ∨ Cm is ≤

f(k, s, d), for some elementary function f , where s = size(S(c)) (ci ∈
FV ) and d = dp(S(c)).

4. Herbrand's Theorem reversed

Let ∃xP (x1, . . . , xn), P quanti�er-free, be a Σ1-formula, provable (by an
almost cut-free proof) in Tind. Due to Theorem 2 we conclude the existence
of a disjunction

N∨
i1=0

· · ·
N∨

ip=0

C1(i1, . . . , ip) ∨ · · · ∨ Cm(i1, . . . , ip) , (7)

where each Cj(i1, . . . , ip) is an instances of P (x1, . . . , xn). In this section
we study a reversion of Herbrand's Theorem: Given a valid disjunction of
the above form, there exists a proof in Tind of the existential statement
∃x1, . . . ,∃xnP (x1, . . . , xn).

We call disjunctions D(n) with a single parameter n of form (7) uniform
if the length m of the matrix C1(i1, . . . , ip)∨ · · · ∨Cm(i1, . . . , ip) is indepen-
dent on n. If for any n there exists an N such that an uniform disjunction
D(n) is valid, we say that D(n) is uniformly valid. Given uniform Herbrand
disjunctions, we construct uniform proofs, i.e. proofs whose length are in-
dependent on the parameter occurring. The construction presented only
works, if we admit some mild restrictions on the form of H(n), see below.
We start with some general re�ections.

4.1. Re�ections on Herbrand disjunctions

As basis for the reversion of Herbrand's theorem investigated, we study the
validity problem for disjunctions of the special form (7). Let D be a valid
disjunction of the above form. The next proposition shows that the presence
of two `outer' disjunctions in D is already su�cient to reduce the problem
to the general halting problem.
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Proposition 7. For any r.e. set X we can de�ne a disjunction

N(n)∨
i=0

N(n)∨
j=0

C(i, j,n) ,

which is valid for some N(n), (depending on n) i� n ∈ X.

Proof. We assume acquaintance with the theory of 2-register machines,
compare [11]. Our proof is closely related to the proof of Theorem 2.1.15,
p. 28 [11]. Let M be some arbitrary 2-register machine with instructions
Ii; i = 0, . . . , k; where k is the total number of instructions. We denote the
con�gurations of the machine M by triples 〈i,m, n〉. Our �rst step is to give
a particular encoding of a machine M through a disjunction of form (5).

For each state i we assert binary predicate symbols Ki. The set of in-
structions Ii is represented by a conjunctions of implications, denoted by
STEPM (a, b). It su�ces to describe the implications for each Ii. Assume Ii

is an adding instruction 〈i, r, j〉: at state i add 1 to register r and goto state
j. If r = 1 this is represented by the implication Ki(c, b) ⊃ Kj(S(c), b). If
r = 2 then the representation is similar. Now assume Ii is a subtracting
instruction 〈i, r, j, k〉: at state i subtract 1 from register r if this r is non-
empty and goto state k; otherwise goto j. We denote this case-distinction
(for case r = 1) by Ki(S(c), b) ⊃ Kk(c, b) and Ki(0, b) ⊃ Kj(0, b), the other
case being similar.

In the second step, we specialise M to a register machine that enumerates
the (r.e.) set X: If n ∈ X, M started on input (n, 0) terminates with output
(1, 0). The termination of M is equivalent to the fact that

K0(n,0) ∧
N∧
i

N∧
j

STEPM (i, j,n) ⊃ K1(1,0) ,

is valid for some N . The above implication can be transformed into the form
of the disjunction stated in the proposition. ut

Hence, we restrict our attention to disjunctions of form (7) with only
one `outer' disjunction. Furthermore, we introduce mild restrictions on the
interplay between parameters and other numerals occurring in the disjunc-
tion. To denote that N depends on the parameters n, we write N(n) instead
of N (as we have already done, above). Recall that a valid disjunction H
that can be written in the form

N(n)∨
i=0

C1(i,n) ∨ · · · ∨ Cm(i,n) , (8)

for some N(n) is called a Herbrand disjunction in matrix-form cf. De�ni-
tion 18. Its Herbrand matrix can be written as

C1(a,n) ∨ · · · ∨ Cm(a,n) , (9)
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for some variable a ∈ NV. Let D be a disjunction of the form (8). In an
abuse of notation we refer to the disjunction (9) as matrix of D, even if D
is not valid (for some N(n)).

Convention. In the following we will only be concerned with disjunctions
of form (8) with a single parameter. The argument below is su�ciently gen-
eral to be easily extended to the case for an arbitrary number of parameters.

De�nition 25. Let D be a disjunction of the form (8), let M denote its
matrix. Furthermore, D contains at most one parameter n. Assume that
for any occurrence of an atomic formula A in M the variable a and the
parameter n do not both occur in A. Then D is called simple.

Example 1 (continued). Let D(n) denote the simple uniform disjunction
de�ned on page 18. We indicate the occurring parameter n. Then D(n)
becomes

n∨
i=0

(
C(i,0,n) ∨ · · · ∨ C(i, fm−1(0),n)

)
,

where C(i, t,n) equals

¬P (0,0) ∨ (P (i, t) ∧ ¬P (S(i), t)) ∨ (P (n, t) ∧ ¬P (n, f(t))) ∨ P (n, fm(0)) .

Clearly the disjunction D(n) is valid for all n. ut

We de�ne the language L(mon) as a restriction of L such that only
nullary and unary predicate symbols occur in L(mon).

Lemma 5. Let D(n) be a simple uniform disjunction of the form

N(n)∨
i=0

C1(i,n) ∨ · · · ∨ Cm(i,n) .

Then there exists a uniform disjunction E(n) ∈ L(mon) in matrix form

N(n)∨
i=0

E1(i,n) ∨ · · · ∨ Ek(i,n) ,

such that D(n) is uniformly valid i� E(n) is uniformly valid.

Proof. Let M(a,n) denote the matrix

C1(a,n) ∨ · · · ∨ Cm(a,n) ,

of D(n), where a ∈ NV. Let P be an atomic subformula of M . By de�nition
either the variable a or the parameter n can occur in P .

We de�ne a transformation of D(n) into a formula in L(mon). We write
c to denote either a or n. Let P (c) be an atomic subformula of M . Let Q
be a new, at most unary predicate constant. We replace P by Q(c). This
construction is repeated for all atomic formulas in M(a,n) and the resulting
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matrix is denoted as M ′(a,n). Hence, any atomic formula in M ′ is either a
nullary predicate symbol Q or of the form Q′(c), and M ′ has the form

C ′
1(a,n) ∨ · · · ∨ C ′

m(a,n) .

The transformation of the matrix is su�cient to yield a transformation of
D(n) into a disjunction

N(n)∨
i=0

C ′
1(i,n) ∨ · · · ∨ C ′

m(i,n) . (10)

To establish the properties of the lemma, we extend (10) by equivalences
between atomic subformulas of M ′. Replace the parameter n uniformly by
b in M(a,n), where b ∈ NV. The result is denoted as M(a,b). Consider
any pair (P,Q) of atomic formulas

P = R(t1, . . . , tn) Q = R(s1, . . . , sn) ,

in M(a,b), such that P,Q are uni�able with a m.g.u. σ, where in the range
of σ only numerals or terms of the form Sk(a), k ≥ 0 are present. Let the
transforms of P and Q (in the above sense) be denoted as P ′, Q′, respec-
tively. De�ne the equivalence

P ′σ ↔ Q′σ .

and including it into the set of equivalences A. Note that the only vari-
ables from NV occurring in P ′σ ↔ Q′σ, are a,b; we write A as A(a,b),
respectively. This step is repeated for each pair (P,Q) in M(a,b). Finally,
specialise the set of equivalences A(a,b) for each parameter n, by replacing
b uniformly by n if b has not already been instantiated by σ. The result is
written as A(a). To obtain the uniform disjunction E(n) in matrix form

N(n)∨
i=0

E1(i,n) ∨ · · · ∨ Ek(i,n) ,

we rewrite the disjunction
∨N(n)

i=0 (
∧

A(i) ⊃ M ′(i,n)) suitable. (
∧

A(i) de-
notes the conjunction of the equivalences in A(i).)

It remains to verify:

D(n) is uniformly valid i� E(n) is uniformly valid .

Assume, �rstly, D(n) is uniformly valid, �x n. To make sure that E(n) is
uniformly valid it su�ces to make sure that any identity of subformulas in
D(n) is re�ected in E(n). This is achieved by the set of equivalences A(n).
Now assume E(n) is uniformly valid. It is easy to see how the reversion
of the above given transformation is de�ned, such that any equivalence
P ′σ ↔ Q′σ in A(n) gives rise to identical atomic formulas Pσ,Qσ in the
matrix M(a,n) of D(n). Thus the lemma follows. ut
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Example 1 (continued). Let D(n) be de�ned as above. We apply Lemma 5
to transform D(n) to a simple disjunction over nullary and unary predi-
cate symbols. It is not di�cult to argue that the resulting formula can be
represented as follows.

n∨
i=0

(C0(i,n) ∨ · · · ∨ Cm−1(i,n)) ,

where Cj(i,n) equals

¬Q0(0) ∨ (Qfj(0)(i) ∧ ¬Qfj(0)(S(i)))∨
∨(Qfj(0)(n) ∧ ¬Qfj+1(0)(n)) ∨Qfm(0)(n) ,

and the Qt for t ∈ {0, f(0), . . . , fm(0)} denote newly introduced unary
predicate constants; the new disjunction is again denoted as D(n). ut

Let D be a simple disjunction, as de�ned above. Due to the lemma we can
restrict our attention to simple disjunctions with nullary or unary predicate
symbols, only. Sometimes we write C(i,n) for the `inner' disjunction of D

C1(i,n) ∨ · · · ∨ Cm(i,n) .

The next proposition states that the validity problem for simple disjunct
remains decidable.

Proposition 8. Assume a simple disjunction D(n) of form as above. It is
decidable whether for all n there exists an N such that D(n) is valid.

Proof. Let I denote a �rst-order structure such that quanti�ers in I are
to be interpreted over the set of numerals. Then we can reduce the meta-
statement:

�For all n there exists an N such that
∨N

i C(i,n) is valid.�

to

�For all I de�ned as above I |= ∀y∃xC(x, y) holds.�

and vice versa. Replace the introduced monadic predicate constants by
monadic predicate variables Z1,Z2, . . . Now the meta-statement can be for-
malised as ∀Zi∀y∃xE(x, y). This is a sentence of the monadic second-order
theory of (ω, succ). This theory is, employing Büchi's Theorem, decidable.
For a proof of Büchi's Theorem see [11] pp. 316�323. Hence the validity
problem is decidable. ut

Remark 4. As a corollary to the Proposition we see that the query, whether
a disjunction

∨N
i C1(i) ∨ · · · ∨ Cm(i) is valid for some N , is decidable, too.

Remark 5. The presented decidability result for simple disjunctions does
not answer the question whether Proposition 8 holds if we drop the (mild)
restriction stated in De�nition 25. However, we were not able to answer this
problem satisfactorily.
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Due to Proposition 8 we can e�ectively decide whether a simple dis-
junction is valid, i.e. represents a Herbrand disjunction (of matrix-form).
We proceed with our proof of the reversion of Herbrand's theorem. We
sketch the proof plan. We introduce the language L(∀). In L(∀) we replace
the `usual' �rst-order quanti�ers ∀,∃ by quanti�er on numerals ∀ and ∃,
respectively. (For a formal de�nition see below.) Let C denote a suitable de-
�ned class of Herbrand disjunction (in matrix-form). It is possible to de�ne
a (partial) interpretation of L in L(∀), i.e. it is possible to de�ne a class
of L(∀)-formulas C⊕, such that any valid formula H ∈ C, corresponds to a
valid formula H⊕ ∈ C⊕. We de�ne an auxiliary system TL, which will be
complete for C⊕. Furthermore, we de�ne a (partial) interpretation of L(∀)
in L. We employ this interpretation to show how a proof in TL can be
embedded into Tind.

The employed transformations will be such that the �nal proof is almost
cut-free (see De�nition 16). Moreover, uniform Herbrand disjunctions give
rise to uniform proofs. This will establish the stated reversion of Herbrand's
Theorem.

We cannot prove the stated reversion of Herbrand's theorem, if we con-
sider uniformly valid disjunctions D(n) with more than one `big' disjunct.
Assume we have that for any n, there exists N(n), such that the Herbrand
disjunction

N(n)∨
i=0

N(n)∨
j=0

C(i, j,n) ,

is valid, where C(i, j,n) denotes a disjunction with parameter n. Now as-
sume to the contrary that this su�ces to establish uniform Tind proofs of
∃i∃jC(i, j,n) for all n.

Let We be a r.e. set with index e; we can apply Proposition 7. Let e ∈ X
be �xed, then there exists a formula Ce, such that there exists N with∨N

i=0

∨N
j=0 Ce(i, j,n) valid i� We(n) holds. Note that Ce is uniform in n and

that Ce only contains the function symbols 0, S. Let T denote the extension
of Peano Arithmetic, formalised as in [24], such that identity axioms and
induction schema apply also to the predicates in Ce. From [24] and [9] we
conclude for any formula A (over the language of T) the following fact.

∃k∀nT `k A(n) ↔ T ` ∀xA(x) . (11)

By assumption and use of (11), We = IN implies

T ` ∀x∃i∃jCe(i, j, x) .

On the other hand We 6= IN implies the existence of some n such that for
all K,

∨K
i=0

∨K
j=0 Ce(i, j,n) is not valid, hence

T 6` ∀x∃i∃jCe(i, j, x) ,

as T 6` ∃i∃jCe(i, j,n). As a consequence, we obtain {e | We = IN} is r.e., a
contradiction.
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4.2. The formal system TL

In this section we de�ne the auxiliary formal system TL. The de�nition of
TL, employs ideas from [22]. The system is based on the language L(∀). The
novel feature of L(∀) is the presence of a numeral quanti�ers ∀ and ∃. Due
to Lemma 5, we can assume that all predicate constants in L(∀) are either
nullary or monadic. Furthermore, the only function symbols occurring in
L(∀) are 0 and S. We include truth constants >,⊥ in L(∀) and we restrict
the logical symbols of L(∀) to ¬, ∧, and ∀. The symbols ∨, ⊃ and ∃ are
de�ned in the obvious way. Formulas in L(∀) are de�ned as above.

Let I denote a �rst-order structure. Let A be an arbitrary formula in
L(∀). Let vI : L(∀) → {true, false} denote the evaluation function of I.
With respect to the function and predicate constants, as well as the propo-
sitional junctors, vI is de�ned as usual; however the interpretation of the
quanti�ers is altered. We only consider the case of a numeral universal quan-
ti�er ∀:

vI(∀xA(x)) = true ⇐⇒ vI(A(n)) = true

for all n .

De�nition 26. We inductively de�ne an operation ()(+1) : L(∀) → L(∀).

1. Consider an atomic formula A = B(n). Then set A(+1) equal to B(S(n)).
2. Consider A = ¬B. Then A(+1) := ¬B(+1).
3. Consider A = (B ∧ C). Then A(+1) := B(+1) ∧ C(+1).
4. Consider A = ∀xB(Sk(x)). Then A(+1) := ∀xB(+1)(Sk+1(x)).

The de�nition of the operator (+1) is canonical extended to multisets of
formulas, and sequents, respectively.

Example 3. Consider the formula A(n) = ∃x(Q1(n)∧Q2(x)). Then A(n)(+1)

becomes ∃x (Q1(S(n)) ∧ ¬Q2(S(x))). ut

We axiomatise TL as a sequent calculus. The axioms, propositional and
structural rules of TL are the axioms, propositional and structural rules, re-
spectively of Tind, cf. Section 2.2. The remaining rules of TL are presented
in Table 7.

Note that the rules ∀ : left and ∀ : right are not analytic, i.e. the subfor-
mula property is violated. It is not di�cult to see that the given rules �t
into the intended semantics, hence are correct.

4.3. Embedding L(mon) in L(∀)

Note that due to Lemma 5 we can restrict our attention to simple disjunc-
tions H(n) with nullary or unary predicate symbols only.

Remark 6. Note that the construction presented below also works if H if
free of parameters. However, in this case, the resulting proof will be free
of (tind)-inference. Thus the presented method is superseded by the usual
reversion of Herbrand's theorem for pure logic. cf. [28].
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Table 7. The formal system TL

∀ : left:
A(m), ∀xA(Sm+1(x)), Γ →∆

∀xA(Sm(x)), Γ →∆

∀ : right:
Γ →∆, A(m) Γ →∆, ∀xA(Sm+1(x))

Γ →∆, ∀xA(Sm(x))

(nex):
Γ →∆

Γ (+1)→∆(+1)

(ind):
A(c), Λ→A(S(c)) A(n), Θ→B(n)

A(n), Λ, Θ→∀xB(x)

where the sequent formulas in Λ, Θ can be written as ∀xC(x) and the
principal formulas of the inference A, B are quanti�er-free.

De�nition 27. Let L− denote a restriction of L(mon) where all quanti�er
symbols have been removed. We de�ne an interpretation ()⊕ : L− → L(∀).
Let A be a formula in L−. Suppose A can be written as

N(n)∨
i=1

C1(i,n) ∨ · · · ∨ Cm(i,n) .

Then A⊕ := ∃x(C(x,n)), where C(x,n) abbreviates C1(i,n)∨· · ·∨Cm(i,n).

Example 4 (continued). Let D(n) be de�ned as on page 30. Then D(n)⊕

becomes
∃x (C0(x,n) ∨ · · · ∨ Cm−1(x,n)) ,

where Cj(x,n) equals

¬Q0(0) ∨ (Qfj(0)(x) ∧ ¬Qfj(0)(S(x)))∨
∨(Qfj(0)(n) ∧ ¬Qfj+1(0)(n)) ∨Qfm(0)(n) .

ut

De�nition 28. Let C be the set of simple uniform Herbrand disjunctions
H(n) (in matrix-form) of form

N(n)∨
i=0

C1(i,n) ∨ · · · ∨ Cm(i,n) ,

with one parameter n. I.e. for each n, there exists N(n), such that H(n) is
valid.

We assume that for any n, there exists an N(n), such that H(n) is
valid. Let I be an arbitrary structure of L(∀). Then by de�nition we have
the following:
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For all n there exists an N such that
∨N

i=1 C(i,n) is valid ⇒
For all n there exists an m such that vI(C(m,n)) = true ⇐⇒
For all n vI(∃xC(x,n)) = true ⇐⇒
vI(∀y ∃xC(x,y)) = true .

As I was arbitrary, we can conclude that for all structures I of L(∀)
I |= ∀y ∃xC(x,y) holds.

Example 4 (continued). Using the fact that D(n) is valid for all n. We can
rephrase D(n) in L(∀) as

∀y ∃x (C0(x,y) ∨ · · · ∨ Cm−1(x,y)) ,

where Cj(x,n) equals

¬Q0(0) ∨ (Qfj(0)(x) ∧ ¬Qfj(0)(S(x)))∨
∨(Qfj(0)(y) ∧ ¬Qfj+1(0)(y)) ∨Qfm(0)(y) .

ut

De�nition 29. Let C⊕ be de�ned as the class of formulas

∀y ∃xC(x,y) , (12)

representing in L(∀) the simple disjunctions in C.

To prove the reversion of Herbrand's theorem, we have to establish com-
pleteness of TL. As alluded to on page 31 it su�ces to establish complete-
ness of TL for C⊕. To simplify the completeness proof we make use of the
following (technical) lemma.

Lemma 6. Let ∀y ∃xC(x,y) ∈ C⊕. Then there are formulas A(i1,...,il)

P1i1∧∀xP2i2(x)∧· · ·∧∀xPqiq
(x)) ⊃ (∀y(Pq+1iq+1(y)∨· · ·∨Pnil

(y)) (13)

where the Pij
are quanti�er-free and contain the indicated variables only; q

depends on the particular choice of indices (i1, . . . , il) and there exits p such
that the conjunction

p∧
i1=1

· · ·
p∧

iq=1

A(i1,...,il) , (14)

is (in TL) provable equivalent to ∀y ∃xC(x,y).

Proof. Recall that C(x,y) abbreviates the disjunction

C1(x,y) ∨ · · · ∨ Cm(x,y) .

In the �rst step, we transform this disjunction into its disjunctive normal
form D1∨· · ·∨Dn and distribute the existential quanti�er over ∨. Let ∃xDi

have the form

∃x(A1 ∧A2(x) ∧ · · · ∧Aa(x) ∧B1(y) ∧ · · · ∧Bb(y)) ,
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where A1 does not contain bound variables. Then the existential quanti�er
is moved directly in front of the conjunction A2(x)∧· · ·∧Aa(x). For the rest
of the construction in each Di the existential part ∃x(A2(x)∧ · · · ∧Aa(x))
is treated as an atomic statement.

As second step the altered disjunction is transformed into conjunctive
normal form and ∀ is distributed over ∧. We obtain a conjunction

∀yE1 ∧ · · · ∧ ∀yEp ,

which is clearly equivalent to ∀y ∃xC(x,y). Now consider ∀yEi for arbi-
trary i. It is easy to see that this formula can only have the form

∀y(F1 ∨ F2 ∨ · · · ∨ Fq ∨Gq+1(y) ∨ · · · ∨Gn(y)) ,

for some q0 (1 ≤ q0 ≤ n). The Fi either have the form ∃x(A1(x)∧· · ·∧Aa(x))
or are quanti�er-free. Finally, the quanti�er ∀ is moved inward in front of
Gq0+1(y) ∨ · · · ∨ Gn(y). To obtain the form described in the lemma, set q
appropriately and rewrite disjunctions as implications. ut

Due to Lemma 6 for each element of C⊕ there exists an equivalent con-
junction F of the form (14). To simplify notation, we �x a tuple of numbers
(i1, . . . , il) and q and concentrate in the sequel on a single conjunct of F

(P1 ∧ ∀xP2(x) ∧ · · · ∧ ∀xPq(x)) ⊃ (∀y(Pq+1(y) ∨ · · · ∨ Pl(y)) ,

To prove completeness for C⊕ we need only consider sequents of the form
above. At this point in our argumentation we only state the crucial theorem,
the proof of it can be found in Appendix D. Set G(y) := (Pq+1(y) ∨ · · · ∨
Pl(y)). Note that G(y) 6= Pj for any j = 1, . . . , q. Let Π be a proof in Tind.
Recall the de�nition of it(Π), cf. De�nition 17. We extend this de�nition in
the obvious way to TL-proofs. Furthermore, we need the following technical
de�nition to express the assertions of the following theorem precisely.

De�nition 30. Let a sequent (Γ,Λ→∆, Θ) be given; Γ and ∆ quanti�er-
free. Then the sequent is said to satisfy property (Q), if

1. Θ = ∀yG(y),∀yG(S(y)).
2. For all A ∈ Λ, A is either of form ∀xPi(x) or of form ∀xPi(S(x));

i ∈ {1, . . . , q}.
3. If ∀xPi(x) occurs in Λ, then (∀xPi(S(x))) ∈ Λ, holds, and vice versa.
4. No formula of form ∀yG(y) occurs (as a subformula) in Λ.

Theorem 6. Let S be the sequent

P1,∀xP2(x), . . . ,∀xPq(x))→∀yG(y) , (15)

representing a conjunct of the form above. Assume S is valid. Then the
following holds.

1. There exists an almost cut-free proof Π of S in TL, such that it(Π) ≤ 1.
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2. Let Q denote an (if any) (ind)-rule application in Π. Assume Γ →∆
occurs below Q in Π. Then Γ→∆ satis�es property (Q).

Remark 7. We hint at a one crucial fact of the given completeness proof.
Let Π be as in the theorem and suppose Q denotes an (ind) rule applica-
tion in Π. It follows from the completeness proof that the principal formu-
las of Q are disjunctions of (quanti�er-free) instances of the formulas P1,
∀xP2(x),. . . , ∀xPq(x)). For further details kindly see Appendix D.

Let us summarise the results: Assume a formula F ∈ C⊕ can be written
as ∀y ∃xC(x,y). By assumption this formula is valid in all structures I
of L(∀). Due to Lemma 6, ∀y ∃xC(x,y) is equivalent to a formula (14)
whose conjuncts are all of the form (15). Due to Theorem 6, ∀y ∃xC(x,y)
is provable inTL. Thus we have established completeness ofTL with respect
to the class C⊕.

4.4. Embedding L(∀) in L(mon)

We proceed with the proof of the reversion of Herbrand's theorem. We de�ne
an interpretation ()	(·) of L(∀) in L(mon).

De�nition 31. Let F ∈ L(∀); let n be �xed. We de�ne an interpretation

()	(n) : L(∀) → L(mon) inductively on subformulas A of F .

1. Consider A is quanti�er-free, then set A	(n) = A.
2. Consider A = (¬B). Then A	(n) := ¬B	(n).
3. Consider A = (B ∧ C). Then A	(n) := (B	(n) ∧ C	(n)). Similarly for

the other binary junctors.
4. Consider A = (∀zB(Sm(z))) for m arbitrary. Assume A occurs nega-

tively in F . Then A	(n) := ∀zB	(n)(Sm(z)).
5. Consider A = (∀zB(Sm(z))) for m arbitrary. Assume A occurs posi-

tively in F . Then A	(n) := B	(n)(Sm(n)).

The de�nition of the interpretation 	(n) is canonical extended to multisets
of formulas, and sequents, respectively.

Lemma 7. 1. Let Γ (n)→∆(n), Γ,∆ quanti�er-free be a provable sequent
in LK. Assume n is fully indicated in Γ , and ∆. Then Γ (a)→∆(a) is
provable in Tind, where a is some new free variable.

2. Let A(k1, . . . ,kp),∀xB1(x), . . . ,∀xBq(x) → C(l1, . . . , lr) be a provable
sequent in LK, such that A, the Bi, and C are quanti�er-free and all
occurring numerals are fully indicated. Then

A(S(k1), . . . , S(kp)),∀xB1(S(x)), . . . ,∀xBq(S(x))→C(S(l1), . . . , S(lr)) ,

is provable too.

Proof. The fact (1) is trivial; fact (2) follows directly from (1) and Gentzen's
mid-sequent theorem.
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Lemma 8. Let S be of the form (15). Let Ψ be an almost cut-free TL-
proof of S, admitting at most one (ind)-inference Q, such that the sequents
occurring in Ψ below Q ful�l property (Q). Then there exists m such that
for all n ≥ m, there exist proofs Π(n) in Tind of

P1,∀xP2(x), . . . ,∀xPq(x)→G(n) ,

such that the Π(n) are almost cut-free proofs that admit exactly one (tind)
rule, each. Furthermore, for all n ≥ m the proofs Π(n) have equal length
bounded by O(|Ψ|).

Proof. It turns out that the obtained proofs Π(n) share the same logical
structure. Hence the Π(n) (for all n ≥ m) are called essentially equal.

The proof proceeds by induction on |Ψ|: Let S be an arbitrary sequent.
We show that when Ψ proves S in TL, such that Ψ ful�ls the properties
expressed, then there exist essential equal Tind-proofs Π(n) of S	(n) ful�ll-
ing the properties stated. It is then easy to see that the endsequent of these
proofs has the form stated in the lemma. We only treat some interesting
cases.

Step: |Ψ| > 1. We proceed by case-distinction on the form of the last
rule Q in Ψ .

� Assume Q is a ∀-right rule.

Σ→Ω,C(k) Σ→Ω,∀yC(Sk+1(y))

Σ→Ω,∀yC(Sk(y))

By (i.h.) exists a number m0 and essentially equal proofs of Σ	(n) →
Ω	(n), C(Sk+1(n)) for n ≥ m0. Thus there exist (essentially equal)
proofs of sequents Σ	(n) → Ω	(n), C(Sk(n)) for n ≥ m0 + 1. Setting
m = m0 + 1, the assertion follows.

� Let Q be an (ind)-rule. W.l.o.g we assume Q has the following form,
where the sequent formulas in Λ can be written as ∀xC(x).

A(c), Λ→A(S(c)) A(0)→C(0)
A(0), Λ→∀yC(y)

By (i.h.) we conclude the existence of essentially equal proofs Ψ ′
1(n) of

A(c), Λ	(n) →A(S(c)), n ≥ m, for some m, and a proof Ψ ′
2 of A(0)→

C(0), respectively. It is not di�cult to see that that these proofs do not
admit any (tind)-rules. Thus the sequent A(0)→C(0) is a theorem of
LK. Exploiting Lemma 7, A(b)→ C(b) (b a free variable) is provable,
too. Therefore, the following is a correct proof-fragment in Tind.

A(c), Λ	(n)→A(S(c))

A(0), Λ	(n)→A(n) A(n)→C(n)

A(0), Λ	(n)→C(n)

This proof fragment is applicable for each parameter n and the assertion
follows.
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� Assume Q is a (nex)-rule. We consider two cases (i) the single (ind)-rule
occurs below Q; (ii) it occurs above. Firstly we consider (i): Assume Q
has the form

Ψ0

Γ, Λ→∆, Θ

Γ (+1), Λ(+1)→∆(+1), Θ(+1)

where Λ, Θ may contain formulas of the form ∀zA(z).
As (ind) occurs below Q it is safe to assume that Θ is empty. (This
follows by an easy induction on |Ψ0| and the assumptions on Ψ .) By
(i.h.) exists an m and for n ≥ m we have essentially equal Tind-proofs
Π(n) of (Γ,Λ→∆, Θ)	(n). W.l.o.g. assume that Γ	(n) = A(k1, . . . ,kp),
Λ	(n) = ∀xB1(x), . . . ,∀xBq(x), and ∆	(n) = B(l1, . . . , lr), such that all
occurring numerals are fully indicated; we rewrite the upper sequent as

A(k1, . . . ,kp),∀xB1(x), . . . ,∀xBq(x)→C(l1, . . . , lr) .

It follows by Lemma 7 that

A(S(k1), . . . , S(kp),∀xB1(S(x)), . . . ,∀xBq(S(x))→C(S(l1), . . . , S(lr))

is derivable. The latter sequent equals (Γ (+1), Λ(+1)→∆(+1))
	(n)

.
Now we consider (ii): We assume the premise of Q can be written as

A,∀xB(x)→∀yC(y),∀yC(S(y)) . (16)

This form is su�ciently general, such that the proof of the general case
follows from our treatment below. Accordingly, the translation of the
premise of Q has the form

A,∀xB(x)→C(n), C(S(n)) .

By (i.h.) this translation of the upper sequent of Q is provable by (es-
sentially equal) proofs Π0(n) (n ≥ m, for some m). We assume the
induction formula in Π0(n) is denoted as D(n). Hence there exists a
(tind)-inference in Π0(n) of the form

D(c), Λ,∀xB(x)→D(S(c))
D(0), Λ,∀xB(x)→D(n)

(R)

where the sequent formulas in Λ can be written as ∀xC(x). This to-
gether with Lemma 7 implies that D(S(c)), Λ′,∀xB(S(x))→D(S2(c), is
derivable, Λ′ suitably de�ned. Hence we may replace R by the following
inference.

D(S(c)), Λ′,∀xB(S(x))→Θ,D(S2(c))
D(S(0)), Λ′,∀xB(S(x))→Θ,D(S(n))

It remains to show that all inferences between R and the end-sequent of
Π0(n) are valid. This is shown by induction on the length of the path
from R to the end-sequent. ut
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The next lemma follow by utilising the pattern of the proof of Lemma 8.
We omit the proof.

Lemma 9. Assume the assertions of Lemma 8 hold, such that essentially
equal, almost cut-free Tind-proofs Π(n) of

P1,∀xP2(x), . . . ,∀xPq(x)→G(n) ,

exists for n ≥ m, m. If m > 0, then for k ∈ {0, . . . ,m − 1} there exists
almost cut-free proofs Φ(k) with |Φ(k)| ≤ O(|Ψ|) of

P1,∀xP2(x), . . . ,∀xPq(x)→G(k) .

The above two lemmas dealt only with the case that the TL-proof Ψ
admitted at most one (ind)-inference. The following theorem weakens this
assumption such that all occurring (ind)-inference in Ψ have to occur in
parallel.

Theorem 7. Assume S is de�ned as above. Assume Ψ is an almost cut-free
proof of S such that it(Ψ) ≤ 1. Then for all n ≥ m, there exist (essentially
equal) proofs Π(n) (|Π(n)| ≤ O(|Ψ|)) in Tind of

P1,∀xP2(x), . . . ,∀xPq(x)→G(n) .

Furthermore, for k ∈ {0, . . . ,m − 1} there exists proofs Σ(k) (|Σ(k)| ≤
O(|Ψ|)) of

P1,∀xP2(x), . . . ,∀xPq(x)→G(k) .

The proofs Π(n) and Σ(k) are almost cut-free and it(Π(n)), it(Σ(k)) ≤ 1.

Proof. The proof is by main induction on the number of (ind)-inferences in
Ψ and side induction on |Π|. ut

Suppose ∀ y ∃ xC(x,y) ∈ C⊕. Then this denotes the representative of a
simple Herbrand disjunction H(n), so that H(n) valid for all n. We calculate
∀ y ∃xC(x,y)

	(n)
:

(∀ y ∃xC(x,y))
	(n) ≡ ∃xC(x,n) ≡ ∃x(C1(x,n) ∨ · · · ∨ Cm(x,n)) .

Theorem 8. Given a simple Herbrand disjunction over L(mon), valid for
every n

N∨
i=1

C1(i,n) ∨ · · · ∨ Cm(i,n) .

Then there exists k and almost cut-free proofs Π(n), with |Π(n)| ≤ k for
all n of

∃xC1(x,n) ∨ · · · ∨ Cm(x,n) ,

such that it(Π(n)) ≤ 1.
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Proof. We use the notation of Lemma 6. An application of Lemma 6 yields
that any formula ∀y ∃xC(x,y) in L(∀) can be represented as conjunction
of implications of the form A(i1,...,il):

P1i1 ∧ ∀xP2i2(x) ∧ · · · ∧ ∀xPqiq
(x)) ⊃ ∀yG(y) . (17)

By assumption A(i1,...,il) is valid in L(∀). By De�nition 31 its transform for
any n into L(mon) has the form

P1i1 ∧ ∀xP2i2(x) ∧ · · · ∧ ∀xPqiq
(x) ⊃ G(n) . (18)

Due to Theorem 6 and Theorem 7 the latter is provable in Tind by uniform
proofs Π(n) for any number n. It remains to combining, for �xed n, the
Tind-proofs of the conjuncts in the obvious way. A �nal application of
Lemma 6 (in the reversed direction) yields the theorem. ut

Remark 8. If follows from the proof of Lemma 8 that the logical form of
sequent-formulas in the TL-proof Ψ is kept in the embedding. Hence, let Q
denote a (tind)-rule in one of the proofs Π(n). Then note that the principal
formulas of Q are disjunctions of (quanti�er-free) instances of the formulas
P1i1 , ∀xP2i2(x), . . . , ∀xPqiq

(x).

Corollary 4. Given a simple Herbrand disjunction over L, valid for every
n

N∨
i=1

C1(i,n) ∨ · · · ∨ Cm(i,n) ,

Then there exists k and almost cut-free proofs Π(n), with |Π(n)| ≤ k for
all n of

∃x(C1(x,n) ∨ · · · ∨ Cm(x,n)) ,

such that it(Π(n)) ≤ 1, and vice versa.

Proof. Direction ⇒: It remains to utilise Lemma 5 in both directions to
see that the result of the theorem holds equally well for an unrestricted
language.

Direction ⇐: This is a re-statement of Theorem 2. ut

5. Conclusion

In Gentzen's second consistency proof of PA, in fact generalisations of term-
induction rules are employed in the cut-elimination process. To make this
precise we refer to the presentation of Gentzen's proof in [28], using for
brevity the notation employed there. For each induction rule (ind) in the
end-piece of the active proof.

Γ,A(c)→A(S(c)),∆
Γ, A(0)→A(v),∆
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we can assume that v is closed and can therefore be evaluated to a numeral
n. An inessential cut is introduced such that (ind) is transformed to the
following rule.

Γ,A(c)→A(S(c)),∆
Γ,A(0)→A(n),∆

Now this inferences is replaced by n cuts to reduce the ordinal assigned.
Further research will provide insight into the structure of the Herbrand

disjunctions associated with proofs of existential statements from universal
statements employing full successor induction. In the light of Proposition 4
and Proposition 11 in Appendix B, together with its extensions to arbitrary
terms, the structure will exhibit iterations of more complex terms than
successors and will be based on suitable atomic instances of identity schemes
of the form t = Sn(0) ⊃ A(t) ⊃ A(Sn(0)).

Note that term induction need not be restricted to the form of gen-
eration of terms as used for successor induction. It can be generalised to
arbitrary constructor-style [13] term induction. Furthermore, it is easy to
check that the main results presented in this paper remain valid when suit-
ably reformulated to deal with this extension, cf. [23]. With respect to the
later, further work will be dedicated towards applications of our results in
the area of inductive theorem proving, see e.g. [12,29,13] and in the area of
automated analysis of proofs, cf. [6,5,7].
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Appendix

A. From almost cut-free proofs to general proofs

Let Π be an almost cut-free proof of a sequent S satisfying property (P).
In Section 3 we established a characterisation on the possible shape of the
Herbrand disjunctions of S. We have already seen how to deal with the
restriction on the form of the endsequent S, cf. Proposition 1. In this section
we will show that the characterisation of the Herbrand disjunction of S,
given previously, does not depend on the fact that Π is almost cut-free.

To this avail, we prove a suitable variant of Parikh's Theorem, cf. [24,
15].

Proposition 9. If a sequent S has a proof (in Tind) of length k then there
exists a proof Π of S, |Π| = k, so that the maximal logical depth of the
formulas in Π is bounded by some elementary function f(c, k), where c =
ld(S).

Before we give the formal proof, we state the main ideas. Let A be for-
mula, depending on (the atomic subformulas of) A we de�ne a propositional
term language including function constants f¬, f∀, f∃, f∧, and f∨; individ-
ual constants k1, k2, . . . , kn, associated to atomic (semi-)formulas in A, and
free (propositional) variables p1, p2, . . . We refer to this language as P(A).
Let B1, . . . , Bn denote the atomic (semi-)formulas of A. Then, to simplify
reading, the constants of P(A) are sometimes denotes as kB1 , . . . , kBn

. Sim-
ilar we de�ne the propositional term language P(Π). If A or Π are obvious
from context we drop the reference. Furthermore, we introduce a nullary
predicate >.

For a given formula F (in Π) we denote its representation in P(Π) by
F ?. The idea of the proof is to de�ne a uni�cation problem U over P(Π).
The equations in U will re�ect the subformula relation between principal
and auxiliary formula(s) in Π. This is straight-forward for the propositional
inferences. However, as the subformula of QxA(x), Q ∈ {∀,∃} is unequal
A(x), some care is necessary in the de�nition of the uni�cation problem
with respect to quanti�er rules. A similar problem appears with respect to
(tind)-rules.

In principle it is possible to use the usual uni�cation procedure to carry
on with the proof. See [25] for an argument in this direction. However,
we will employ congruence uni�cation as de�ned in Section 3.2. The term-
structure of Π is more clearly preserved when re�ecting the subformula
relations, when using congruence uni�cation than it would be with stan-
dard uni�cation. It is simple to adjust congruence uni�cation to the present
purpose. It su�ces to replace the de�nition of the `variant' relation by the
following `formula variants' relations, compare De�nition 23.

De�nition 32. Two (semi-)formulas are term variants if their logical struc-
ture coincides, i.e. if they can be transformed into each other through re-
placements of terms.
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Clearly the `term variant' relation is an equivalence relation. It is easy
to see how this equivalence relation on (semi-)formulas is adapted to an
equivalence relation on terms in P. Based on De�nition 32, congruence
uni�cation as de�ned in Section 3.2 is transformed to congruence uni�cation
on P. It is not di�cult to argue that all lemmas remain true if the notions are
relativised appropriately; in particular Proposition 4 remains correct. Note
that due to the di�erent `variant' relation the meaning of dr(.) is changed,
i.e. dr((U,X)) now denotes the maximal logical complexity of the formulas
represented in U .

We allow substitution to be applied to sequent proofs: Let Π be a proof,
and σ be a substitution such that dom(σ) ⊂ V(Π). Then Πσ denotes the
proof Π ′ obtained from Π by uniformly replacing every formula A in Π by
Aσ. To make this de�nition independent on the choice of σ, we assume that
Πσ := Π, if dom(σ) ∩V(Π) = ∅. It remains to prove the proposition.

Proof (of Proposition 9). For a given proof Φ, we de�ne a rooted tree T
whose vertices are terms in P(Φ): Replace all atomic sequent-formulas A
in Φ by their associated constants kA in P. Furthermore, all occurrences of
sequent-formulas A are replaced by di�erent propositional variables. Sup-
pose the propositional variable pi replaces the sequent-formula A, then the
former is written as pA.

By induction on the length of Φ we de�ne a congruence uni�cation prob-
lem (U,X) over P. We proceed by case analysis on the last inference rule
Q in Π concentrating on the case (tind). The other cases are treated simi-
larly and for initial sequent pA1 → pA2 , add pA1 = pA2 to U . (This step is
redundant, if the initial sequent is atomic.) Assume Q has the form

Π0

A(c), Γ→∆, A(S(c))
A(0), Γ→∆, A(n)

We distinguish two sub-cases: In the case where A is atomic, set (U,X)
equal to the previously constructed uni�cation problem 〈U0, X0〉. Otherwise
extend X0 by the tuple 〈pA(0), pA(c), pA(S(c)), pA(n)〉 and set U equal to U0.
With respect to (the propositional variables associated to) the side formulas
in Γ,∆, add the corresponding equations to (U,X).

Finally, for all sequent formulas A in the end-sequent Γ → ∆ we add
the equations pA = A? to U , where A? denotes the representation of A in
P. As Π de�nes a solution to (U,X) the constructed uni�cation problem
is solvable. Now we apply Theorem 4 (relativised to P). We assume the
notation of the proposition. There exists a most general congruence uni�er
σ such that dr(Uσ) ≤ 2nd, where d = dr((U,X))) and n = card({a |
dp(a, U) > 0}). By construction of (U,X) we have dr((U,X)) ≤ ld(S) and
it is not di�cult to argue that n ≤ 2k, k = |Φ|.

To obtain Π we apply σ to T , denoting the result as Tσ. Furthermore,
all non-instantiated propositional variables are replaced by >. Clearly this
structure is not yet a proof in Tind as it is de�ned over P(Φ). However, it
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is easy to see how an inverse mapping ρ : P(Φ) → L is de�ned. Applying ρ
to Tσ we obtain Π. ut

The systemTind admits cut-elimination. However, we have to keep trace
of the positions of the (tind)-inferences. To apply the results of Section 3
the maximal number of iterations of (tind)-inferences in the �nally obtained
almost cut-free proof has to be bounded. We de�ne

2y
0 := y 2y

x+1 := 22y
x .

The cut-degree ρ(Π) of a proof Π is de�ned by induction. Let Πi, i = 1, 2
be direct subproofs of Π. Assume the last inference rule in Π is a Cut
with cut-formula A. Let ρ(Π) := max(ld(A), ρ(Π1), ρ(Π2)). Otherwise let
ρ(Π) := max(ρ(Π1), ρ(Π2)).

Proposition 10. Let Π be a proof in Tind; k := |Π|, i := it(Π). Then we
can transform Π to a proof Φ of the same end-sequent S such that Φ admits
propositional cuts only. Moreover |Φ| < 2k

2ρ(Π) and it(Π ′) ≤ 2i
ρ(Π)−1.

The �rst step is to transform Π to a proof in which initial sequents are
atomic. In [4] an explicit proof transformation to this avail is presented.
Moreover an exponential bound on the length of the transformed proof is
given. Using the same idea�suitable adapted for our formal system LK�we
obtain the following proposition.

Lemma 10. Let Π be an proof in Tind with length k, such that d denotes
the maximal logical complexity of an initial sequent in Π. Then there exists
a Tind-proof Π ′ such that all initial sequents in Π ′ are atomic and |Π ′| ≤
23d · k.

Proof. The proof almost exactly follows the proof in [4]. Note that our
bound is di�erent from the one established in [4]; this mainly due to the
fact that the notion of logical complexity employed here is di�erent. ut

To show the admissibility of cut-reduction it su�ces to investigate a
variant of the Reduction Lemma. The theorem then follows by induction on
the cut-degree as usual.

Lemma 11. Let Π1,Π2 be derivations of Γ1→∆1, A; A,Γ2→∆2, respec-
tively such that ρ(Πi) ≤ ld(A). Then we can �nd a proof Π? of Γ1, Γ2 →
∆1,∆2 and |Π| < (|Π1| + |Π2| + 1)2 such that ρ(Π) < ld(A). Moreover
it(Π) ≤ it(Π1) + it(Π2).

Proof. The proof follows by taking the pattern from the proof of the corre-
sponding lemma in [14]. ut

As a corollary to Proposition 9 and 10 we conclude that Theorem 2 and
Theorem 5 remain valid if the (implicit) reference to almost cut-free proofs
is dropped. However, it is necessary to recalculate the stated bounds.
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Let Π0 be an arbitrary proof in Tind of an arbitrary sequent S. Let k
denote the length of Π0 and c the maximal complexity of sequent formulas
in the endsequent S. Furthermore, assume l := it(Π0). Due to Proposition 1
we conclude the existence of a sequent S′ ful�lling property (P), equivalent
to S, and derivable by a proof Π1, such that |Π1| ≤ O(k) =: k′ holds. Note
that the complexity of formulas in Π1 cannot increase through this step.

Let c := ld(S). Applying Proposition 9 we can transform Π1 to a proof
Π2 of S′ such that the complexity of the sequent formulas in Π2 is bounded
by 22k′

c, while |Π1| = |Π2|. Set d := 22k′
c. Now, applying Lemma 10 we

transform Π2 to a proof Π3 featuring only atomic initial sequents, such
that |Π3| ≤ 23d · k′. Furthermore, the complexity of formulas in Π3 cannot
increase. Finally applying Proposition 10 we conclude the existence of an
almost cut-free proof Π of S′. The length of Π is

≤ 223d·k′

22k′+1c
,

where k′ = e·k for some constant e. On the other hand the maximal number
of iterated (tind)-inferences is

≤ 2l
22k′c−1

.

Thus it is easy to see that the bounds stated in Theorem 2 and Theorem 5
remain correct in general setting if `elementary' is replaced by `primitive
recursive'.

Theorem 9. Let Π be a proof of S = (→ ∃xP (x1, . . . , xn), P quanti�er-
free, such that |Π| = k and it(Pi) = l. Then there exists a number N and a
Herbrand disjunction of the form

N∨
i1=0

· · ·
N∨

ip=0

C1(i1, . . . , ip) ∨ · · · ∨ Cm(i1, . . . , ip) ,

where each Ci(i1, . . . , ip) is an instance of P (x1, . . . , xn) such that all nu-
merals in this instance are fully indicated, furthermore

1. The length of the `inner' disjunction C1 ∨ · · · ∨Cm is bounded primitive
recursively in k and ld(S).

2. The length of the `outer' disjunction
∨

i1
· · ·

∨
ip

is bounded primitive

recursively in k and the cut-degree of Π. (The degree of Π can in turn
be bounded elementarily in k and ld(S).)

3. The depth of the reduct of the `inner' disjunction C1 ∨ · · · ∨ Cm is ≤
f(k, s, d), for some primitive recursive function f , where s = size(S(c))
(ci ∈ FV ) and d = dp(S(c)).

We conclude the section with the observation that we cannot prevent
the fact that cut-reduction increases the number of iterations of (tind)-
inferences. This follows from Proposition 3.



46 Matthias Baaz, Georg Moser

B. Term induction and its strength to manipulate terms

The purpose of this section is to assess the possibilities in the manipulation
of terms in Tind, in contrast to theories where the `full' induction scheme
is present. The results in this section are obtained as applications to our
result on the term-complexities in Herbrand disjunctions of matrix-form,
cf. Corollary 3.

Recall that a sequent S(n) is called uniformly derivable in k-steps�
denoted `k S�if there exists uniform proofs Π(n) of S(n), such that
|Π(n)| ≤ k for all n. We employ Yukami's trick [30]. (For a detailed analysis
of Yukami's trick see [3].)

Theorem 10 (cf. [30]). Using two instances of the following scheme of
identity

t = 0 ⊃ g(t) = g(0) , (19)

we can uniformly derive 0k :=

k times 0︷ ︸︸ ︷
0 + (0 + · · · (0 + 0)) = 0, from (i) 0 + 0 = 0,

(ii) ∀x, y, z x = y ∧ y = z ⊃ x = z, and (iii) ∀x, y x + y = y ⊃ x = 0.

Proof. The following equalities can be derived if we employ 2 instances of
(19) together with additional instances of the transitivity axiom (ii) and
axiom (i).

0n +

A︷ ︸︸ ︷
(0n−1 + · · ·+ (02 + 0)) =

0n−1 + (0n−2 + · · ·+ (0 + 0)) =
0n−1 + (0n−2 + · · ·+ (02 + 0))︸ ︷︷ ︸

A

Hence we have derived 0n + A = A; we employ axiom (iii) to obtain the
desired result. ut

Proposition 11. Using full induction we can derive (19) uniformly from
(i) ∀x S(x) 6= 0 and (ii) ∀x x = x.

This follows from the formal proof given in Table 8 together with a cut
with the sequent → 0 = 0 ⊃ g(0) = g(0), which is derivable by axiom (ii).
However, in Tind we obtain the following:

Proposition 12. Assume ∀x 0+x = x and suitable instances of the identity-
axioms are present in Γ then

∃k∀nTind `k Γ→A(0n) i� Tind ` Γ→∀xA(x)

Proof. Let S(n) denote Γ → A(0n). We alter the abstraction procedure
described in Section 3.3. Instead of leaving the parameter t unchanged, it is
replaced by a new free variables c. Apart from this change the de�nition of
the congruence uni�cation problem (U?, X) follows the pattern on page 20
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Table 8. The restricted identity scheme

→S(c) 6= 0

S(c) 6= 0→S(c) 6= 0

S(c) 6= 0, c = 0 ⊃ g(c) = g(0)→S(c) = 0 ⊃ g(S(c)) = g(0)

a = 0 ⊃ g(c) = g(0)→S(c) = 0 ⊃ g(S(c)) = g(0)

0 = 0 ⊃ g(0) = g(0)→ t = 0 ⊃ g(t) = g(0)

�. It is not di�cult to argue that the results of Lemma 4, Proposition 6 and
Theorem 5 are still valid.

Given short proofs of S(n) for all n, we apply Theorem 9 to conclude the

existence of a term t(a) =

h times 0︷ ︸︸ ︷
(0 + (· · · (0 + a) . . .)); a some free variable such

that there exists a Herbrand sequent T (t(a)) of S(t(a)). Using the validity of
T (t(a)) we �nd a proof of S(t(a)) in the LK, hence Tind ` Γ→∀xA(t(a)).
Applying the axiom ∀x 0 + x = x and suitable identity axioms the result
follows. ut

Other properties of full induction, like fast addition and fast compare,
prevail for Tind, cf. [26].

Proposition 13. Assume (i) ∀x, y x = y ⊃ S(x) = S(y), (ii) ∀x x+0 = x,
(iii) ∀x, y x + S(y) = S(x + y), and (iv) ∀x, y, z x = y ∧ y = z ⊃ x = z are
present in Γ . Then then there exists a k so that

Tind `k Γ→ l + m = n ,

i� n = l + m, for all l, n,m.

Proof. We use term induction to prove l+m = n uniformly for all n = l+m.
We argue informally in Tind. The base case follows using ∀x x + 0 = x;
as we obtain ∀x x + 0 = x → l + 0 = l in 2 steps. For the step case:
l + c = Sl(c)→ l + S(c) = Sl(S(c)), we use the axioms (i), (iii), (iv) for
a uniform proof. The result follows by a single application of (tind) and a
�nal cut inference with (ii)→ l + 0 = l. ut

Remark 9. We can achieve a (logically) equivalent result by assuming an
extension of Tind such that the sequents → P (a, 0, a) and P (a, b, c) →
P (a, S(b), S(c)) are (uniformly) provable, compare [24]. Then we see more
clearly that identity schema applied in the above proof and the presence of
a function symbol for addition are inessential for the argument.

Proposition 14. Assume Γ includes the axioms (i)�(iv) from above, to-
gether with ∀x S(x) 6= 0 and ∀xy S(x) = S(y) ⊃ x = y. Then there exists a
k, such that

Tind `k Γ→m 6= n ,

i� m 6= n, for all m,n.
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Proof. Using (tind) (on the second operand n) ∀x S(x) 6= 0, and ∀x, y S(x) =
S(y) ⊃ x = y we can prove the sequent m + n = n→m = 0 in a �xed
number of steps for all m,n. (The base case is trivial, and the step case
m + c = c ⊃ m = 0→m + S(c) = S(c) ⊃ m = 0 follows by elementary
transformations from S(m + c) = S(c)→m + c = c.)

The proposition then follows from contraposition, another application
of ∀xS(x) 6= 0 together with Proposition 13. ut

Consider the following property KC:

∃k∀n(T `k A(n)) ↔ T ` ∀xA(x) ,

for some formal system T. This property is sometimes called Kreisel's con-
jecture. KC holds for �nitely axiomatised number-theories T strong enough
to prove ∀x(x = 0∨x = S(0)∨ · · · ∨x = Sm−1(0)∨∃y(x = Sm(y))), that is

LK `k Γ→A(n) ↔ LK ` Γ→∀xA(x) ,

where Γ includes all axioms of T.
The latter result does not hold for Tind. Suppose T is a weak �nitely ax-

iomatised number-theory admitting the above requirement, but not strong
enough to prove induction. We consider the proof in Table 3; let S(n) de-
note the endsequent. Hence we have Tind `5 S(n) for all n and thus the left
hand side holds. Clearly the sequent ∀x(P (x) ⊃ P (S(x))), P (0)→∀xP (x)
is not derivable in T, hence in the above formulation KC doesn't hold for
Tind.

It is an interesting corollary of our results on Herbrand disjunctions
that this property becomes true, if we replace the numerals Sn(0) in the
formulation of the property by 1n, where

1n :=

n times 1︷ ︸︸ ︷
1 + (1 + · · · (1 + 1)) .

The following proposition follows similarly as Proposition 12.

Proposition 15. Assume that Γ contains axioms su�ciently strong to de-
rive in Tind.

Γ→∀x(x = 1∨ x = 12 ∨ x = 13 · · · ∨ x = 1n ∨∃y x =

n + 1 times 1︷ ︸︸ ︷
(1 + (· · · (1 + y) . . .))) .

Then ∃k∀n Tind `k Γ→A(1n) i� Tind ` Γ→∀xA(x)

A standard disprove of Kreisel's conjecture (within an arbitrary system
T) would be to show that fast multiplication, i.e. uniform derivability of
multiplication in some �xed number of steps for all numerals, is possible:
Assume the uniform derivability of multiplication and take polynomials p, q
in + and × such that A(n) de�ned by ∃xp(x,n) = q(x,n) is true for all
n ∈ IN, but ∀xA(x) is not provable in T, cf. [8].

This motivates the question whether it is possible to give uniform proofs
for multiplication in Tind. However, we can establish the following negative
result.
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Theorem 11. No formula M(n,m, l) can exist such that there exists k and

Tind `k M(n,m, l) ,

i� l = n ·m, for all n, m, l.

We will not prove this theorem, a complete presentation of the argument
is given in [23]. Let a sequent S, satisfying property (P) with parameters
c1, . . . , cn be given. Then the set of term-tuples (m1, . . . ,mn) such that
S(m1, . . . ,mn) is provable in Tind with some partial proof description Σ
(e.g. its proof skeleton) is called solution set of S (relative to Σ). The key
idea is to characterise the solution sets X(Σ, S) based on a suitable partial
proof description Σ and an endsequent S.

C. Congruence Uni�cation

Recall the de�nition of a congruence uni�cation problem, (U,X), cf. Def-
inition 22. As the partition X induces an (uniquely de�ned) equivalence
relation ≈ it is convenient to denote the partition X through the relation
≈. Hence De�nition 22.2 can be alternatively stated as the property: If
a ≈ b, then aσ and bσ are variants. In the course of (congruence) uni�ca-
tion it may become necessary to extend the previous existing partition X;
we write X ⊕ 〈a, b〉 (or alternatively X ⊕ a ≈ b) to indicate the extension
of X by the pair 〈a, b〉. Let s = s1, . . . , sn and t = t1, . . . , tn; we write s = t
to denote s1 = t1, . . . , sn = tn. If a = a1, . . . , an and b = b1, . . . , bn, then
we write a ≈ b to denote a1 ≈ b1, . . . , an ≈ bn. If no confusion can arise, we
sometimes drop the `congruence' and simply speak of an uni�cation prob-
lem.

To de�ne the uni�cation procedure for congruence uni�cation, we employ
the usual rule-set for standard uni�cation, cf. [1] and extend this set of
rules by a Partition rule. The only changes needed in the de�nition of the
standard uni�cation rules, are that we mark considered equations instead of
deleting them and variable renamings are applied to the partition X, too.
The purpose of the partition rule is to assert that the congruence uni�cation
property, cf. De�nition 2 is ful�lled.

To simplify the de�nition of the uni�cation rule Partition we extend the
de�nition of `variant', cf. De�nition 21 as the earlier given de�nition is too
restrictive to obtain a suitable uni�cation step.

De�nition 33. Two expressions s, t are extended variants if s◦ = t◦ρ, for
some renaming substitution ρ : V → V.

De�nition 34. The congruence uni�cation procedure is de�ned as the ex-
tension of the rule-set for standard uni�cation by the rule Partition, as
de�ned in Table 9.

We indicate why the second case in Partition is essential: Consider the
trivial example ({a = c}, 〈a, b〉) such that a, b, c ∈ V. This example shows
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Table 9. Partition

Consider an equation a = s, such that s ≡ f(s1, . . . , sn), f a function
symbol and the pair a ≈ b is unmarked.

(a = s ∧ U, a ≈ b⊕X) −→ (a = s ∧ b = t ∧ U, a ≈ b⊕ a ≈ b⊕X) ,

where a, b ∈ V, a 6∈ V(s) and s and t are extended variants. Further,
s can be written as e(a1, . . . , ak) and t = e′(b1, . . . , bk), respectively; a =

a1, . . . , ak, b = b1, . . . , bk. The pair a ≈ b is marked.

Consider an unmarked pair a ≈ b, such that no equation a = t nor b = t
for some term t, t 6∈ V exists in U .

(U, a ≈ b⊕X) −→ (a = n ∧ b = m ∧ U, a ≈ b⊕X) ,

where a ∈ V. The pair a ≈ b is marked.

that the procedure would not be complete. The only possible uni�cation
steps would be Application resulting in (∅, 〈b, c〉); i.e. an empty uni�cation
problem together with the partition 〈b, c〉. Then the uni�cation is trivially
solved by the empty substitution, but property 22.2 is not ful�lled.

Remark 10. Let (U,X) be a congruence uni�cation problem. Note that due
to De�nition 21 a term s has in�nitely many variants t. Hence (U,X) in prin-
ciple has in�nitely many solution. This is re�ected in the non-deterministic
nature of the rule Partition.

Congruence uni�cation has similar properties as standard uni�cation.
We restate the central propositions.

Theorem 3. Let (U,X) be a congruence uni�cation problem. Then there
exists a (not necessarily �nite) set of most general congruence uni�ers of
(U,X) i� (U,X) is solvable. Let the set of most general solutions of (U,X)
be denoted as Sol((U,X)). Then its reduct (Sol((U,X)))◦ is �nite.

Proof. The proof of correctness proceeds by induction on the number of
applications of standard uni�cation rules an the rule Partition, cf. Table 9.
To establish completeness on proceeds as follows. Let (U,X) be a solvable
congruence uni�cation problem. Given a particular solution δ to (U,X), one
shows how to obtain a more general solution through the procedure de�ned.
These proofs are standard. ut
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Let e be an expression; recall the de�nition of dr(e), on page 22; (U0, X0)
be a congruence uni�cation problem with solution σ and {a1, . . . , an} de-
notes the set of variables in U0. In the remainder of this section we prove the
existence of an elementary function f , such that dr((U0, X0)σ) ≤ f(d, n),
where d = dr((U0, X0)). We denote the uni�cation problem after some appli-
cations of the standard uni�cation rules and the rules in Table 9 as (U,X).
The property will follow, if we prove that any uni�cation step on (U,X)
can only increase the term depth, if at the same time one of the variables in
{a1, . . . , an} is eliminated. An obstacle in the proof is that through Partition
steps new variables c with dp(c, U) > 1 are introduced. Variables introduced
in Partition steps�thus not present in (U0, X0)�are called auxiliary vari-
ables. We gather some observations on auxiliary variables; these are easily
proven by induction on the number of uni�cation steps.

Lemma 12. Let e be an expression, we write occ(e, U) to denote the number
of distinct occurrences of e in U . Let c ∈ X be a auxiliary variable. Then
either there either exists an equation (c = t) ∈ U or occ(c, U) = 1.

The property implies that an auxiliary variable c, s.t. occ(c, U) > 1 can
always be eliminated by the Application rule. Let t be a term. If for any
auxiliary variable c ∈ V(t), we have occ(c, U) = 1, then t is called almost
free of auxiliary variables.

Lemma 13. For any c ∈ X, c auxiliary, there exists an equation (d = t) ∈
U such that t is almost free of auxiliary variables and c ≈ d holds.

De�nition 35. Let (U,X) be a de�ned as above. We assume (U,X) is solv-
able; let t ∈ U . A term v ∈ U is called principal term of t, if v is almost free
of auxiliary variables and if for any solution σ of (U,X), vσ is a variant of
tσ.

Lemma 14. Let (U,X) be a de�ned as above. We assume (U,X) is solvable;
assume c is an auxiliary variable. Let t(c) be a term in U such that t(c) 6≡ c.
Then either occ(c, U) = 1, or it holds that

1. There exists a principal term v of t(c).
2. Let v be a principal term of t(c); let p be the position, such that t(c)/p =

c. If (c = r) ∈ U holds, then v/p is a principal term of r and there exists
a substitution ζ, such that rζ = v/p.

Now we are in the position to prove the main result of this section.

Theorem 4. Let σ ∈ Sol((U,X)). There exists an elementary function f ,
such that dr(Uσ) ≤ f(d, n), where d = dr(U)) and n = card({a | dp(a, U) >
0}).

Proof. Assume the current uni�cation problem is denoted as (U,X), and the
initial one by (U0, X0). Let {a1, . . . , an} denote the set {a ∈ V | dp(a, U0) >
0}. To prove the lemma, we show that dr(Uσ) ≤ 2ndr(U).
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The proof is by induction on the number of uni�cation steps. Consider
an arbitrary uni�cation step Q applied to (U,X). Let (U ′, X ′) denote the
congruence uni�cation problem after Q is applied. Obviously dr(U ′) > dr(U)
can only be true, if Q is the rule Application

(a = t ∧ U,X) −→ (a = t ∧ U{a 7→ t}, X) ,

where a ∈ V. We have to verify that an Application step can only increase
the term depth i� a ≡ ai; ai ∈ {a1, . . . , an}. We consider only the critical
case where a is an auxiliary variable. We assume occ(a, U) > 1. As a corol-
lary to Lemma 14 we see that dr(U ′) = dr(U). Let g(a) ∈ U . There are two
cases, either g(a) = Sk(a) and t is a numeral, then

dr(g(a){a 7→ t}) ≤ dr(U) ,

follows trivially. Otherwise, due to Lemma 14.2, there exists a term v, v free
of auxiliary variables, such that if p denotes the position of a in g(a), then
v/p is principal term of t. Hence, dp(a, g(a)) + dr(t) ≤ dr(v). This in turn
implies

dr(g(a){a 7→ t}) ≤ dp(a, g(a)) + dr(t) ≤ dr(U) .

Thus the assertion follows. ut

Remark 11. To establish the lemma, we have given an exponential upper
bound. Admittingly this bound is not optimal. However, for the results
presented it is not necessary to establish an optimal term bound, but to es-
tablish a uniform bound on the increase of term depth through (congruence)
uni�cation.

D. Completeness for the generation of induction

In the completeness proof we follow Kröger completeness proof of the tem-
poral logic TL [22]. Kröger applies Schütte's method cf. [27,28].

The �rst step is to construct a reduction tree for an arbitrary sequent
S in TL by reading backwards the propositional rules of Tind together
with the ∀ : left and ∀ : right rules. It may happen that a reduced sequent
formula gives rise to a new sequent formula, which is a term variant of the
original one. Then no further reduction is allowed. At this stage one is not
concerned with the rule (nex).

The reduction tree (Red(S),≤Red(S), L) of a sequent S is a labelled tree
whose labels are sequents. We denote the reduction tree by Red(S). The
root of Red(S) is labelled by S.

Proposition 16. Let S be a sequent.

1. If S is provable, then every sequent L(u), u ∈ Red(S) is provable.
2. If S is unprovable, then there is a path P (in Red(S)), such that for all

u ∈ P , L(u) is unprovable.
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Proof. The proof proceeds as the proof of the related Proposition 8.13
in [28], page 54. ut

A leaf u ∈ Red(S) is called open if no formula A occurs on both sides
in L(u); L(u) is called an open sequent. It follows by the above proposition
that for any unprovable sequent S, its reduction tree Red(S) contains at
least one open sequent.

Example 4. Let S in L(∀) be de�ned as

P (0),∀x(P (x) ⊃ P (S(x)))→∀yP (y) ,

Set Γ = P (0),∀x(P (x) ⊃ P (S(x))) and ∆ = ∀yP (y). The (signi�cant
part of the) reduction tree Red(S) of sequent S is given in Table 10. Only
one of the three leaves is open, the sequent V :

P (0), P (S(0)), P (0) ⊃ P (S(0)),∀x(P (x) ⊃ P (S(x)),

∀x(P (S(x)) ⊃ P (S2(x)))→∀yP (y),∀yP (S(y) .

ut

Table 10. The reduction tree for S

Γ →P (0)

B, C, Γ →∆, A, P (0) P (S(0)), B, C, Γ →∆, A

P (0) ⊃ P (S(0)), ∀xP (S(x)) ⊃ P (S2(x)), Γ →∆, A

Γ →∆, ∀yP (S(y))

Γ →∆

such that A := ∀yP (S(y)), B := P (0) ⊃ P (S(0)), C := ∀xP (S(x)) ⊃
P (S2(x)). Finally V = P (S(0)), B, C, Γ →∆, A.

De�nition 36. We inductively de�ne an operation ()(−1) : L(∀) → L(∀).

1. Consider an atomic formula A that can be written as B(S(n)), such
that S(n) is fully indicated in A. Then A(−1) := B(n). If A cannot be
represented in the indicated form, then A(−1) is unde�ned.

2. Consider A = ¬B. Then A(−1) := ¬B(−1).
3. Consider A = (B ∧ C). Then A(−1) := B(−1) ∧ C(−1). Similarly for all

other binary junctors.
4. Consider A = ∀xB(Sk+1(x)). Then A(−1) := ∀xB(−1)(Sk(x)).

Let Γ be a multiset of sequent formulas. Let σ(Γ ) denote the multiset

{A(−1) | A ∈ Γ and A(−1) is de�ned} .
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For a sequent S = (Γ →∆), σ(S) is de�ned as σ(Γ )→σ(∆); if both σ(Γ )
and σ(∆) are empty, then σ(S) is the empty sequent. Let Ŝ denote the
standard interpretation of S, cf. Section 2.2; we de�ne σ(Ŝ) := σ̂(S). If
σ(S) is the empty sequent → , then σ(Ŝ) = ⊥.

Example 4 (continued). Let V de�ned as above. Then σ(V ) becomes

P (0),∀x(P (x) ⊃ P (S(x)))→∀yP (y) ,

which happens to be the same formula as the original sequent S. ut

De�nition 37. Let T be an open sequent of some (unprovable) sequent S.
We de�ne a labelled tree (Succ(T ),≤Succ(T ), L) inductively:

1. Let ˜Succ(T ) denote the root of Succ(T ). Then L( ˜Succ(T )) := T .
2. Assume inductively that Succ(T ) has been constructed till node u; as-

sume L(u) = (Σ→Λ) = R. Construct Red(σ(Σ)→σ(Λ)), the reduction
tree of σ(R). Assume it has n open leaves with labels R1, . . . , Rn. Then
we de�ne an extension of Succ(T ) by adding nodes v1, . . . , vn as imme-
diate successors of u. L(vi) is set equal to Ri.

The labelled tree Succ(T ) is called successor tree of T .

Let S be an unprovable sequent with open sequents T1, . . . , Tn. Let
Succ(Ti) denote the successor trees of the Ti. We can assume that the
Succ(Ti) are mutually exclusive. We de�ne a labelled forest Succ(S) =
(Succ(T1), . . . ,Succ(Tn) as the structure

(
⋃

Succ(Ti),
⋃

≤Succ(Ti),
⋃

Li) .

Note that Succ(S) is only well-de�ned, if there exists at least one open
sequent in the reduction tree Red(S). We call Succ(S) the successor forest
of S.

Example 4 (continued). Let S and V be de�ned as above. Then the succes-
sor forest of S is actually a tree, consisting of a single branch, see Table 11.
Each box can be thought of as representation of Red(V ) in Table 10. ut

De�nition 38. Let S be a sequent, and let u, v ∈ Succ(S). If v is the
immediate successor of u in Succ(S) (in the tree-order), then L(v) is called
successor of L(u).

Lemma 15. Only �nitely many di�erent sequents T1, . . . , Tn occur as labels
in Succ(S).

Proof. In the following we write Succ instead of Succ(S). Furthermore,
we will denote the reduction tree of S�Red(S)�as Red. We show that
the number of di�erent labels in Succ is �nite. The construction of Succ
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Table 11. The successor forest for S

V

V

V

V

is based on the sequent calculus TL. The only rules that produce new for-
mulas that are not subformulas of S are ∀-left and ∀-right. In the reduction
tree of S, occurrences of ∀zA(z) in the succedent may be extended by an
occurrence of ∀zA(S(z)) (in the succedent), and occurrences of ∀zA(z) in
the antecedent can be extended by ∀zA(S(z)) (in the antecedent). Note
that by de�nition of the reduction-tree no further reduction on ∀zA(S(z))
is possible.

Let u be a node in Succ with label T . Assume ∀zA(S(z)) occurs in T .
By de�nition the successors of T are the open nodes in Red(σ(T )). Hence
the occurrence of ∀zA(S(z)) in T causes another occurrence of ∀zA(z) in
Red(σ(T )). However no formula of the form ∀zA(Sm(z)), m > 1 can occur
in Red(σ(T )).

Proceeding inductively, we see that together with subformulas of S,
Succ may contain formulas of the form ∀zA(S(z)), if ∀zA(z) is a sub-
formula of S. As only �nitely many subformulas of S exists, the number of
di�erent nodes is �nite, too. ut

Recall that it su�ces to prove completeness for sequents of the form (13),
cf. page 34. We �x a tuple of numbers (i1, . . . , il) and q. We rename the
indices and concentrate in the sequel on the following sequent S.

P1,∀xP2(x), . . . ,∀xPq(x))→∀y(Pq0+1(y) ∨ · · · ∨ Pl(y) . (20)

We abbreviate the formula in the succedent as ∀yG(y). As no confusion can
arise we will not necessarily distinguish between nodes in labelled trees and
the respective labels. Hence, instead of �let u ∈ Succ(S) and L(u) = T �
we will shortly write �let T ∈ Succ�. Recall property (Q), de�ned above,
cf. De�nition 30, page 35.

Lemma 16. Let S be of the form (20). Then for any sequent T ∈ Succ(S),
T satis�es property (Q).
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Proof. By induction on the construction of Succ. ut

Lemma 17. Assume T ∈ Succ(S). Let T1, . . . , Tn denote immediate suc-
cessors of T . Assume T has the form

Γ,Λ→∆, ∀yG(y),∀yG(S(y)) ,

where Γ , ∆ are quanti�er-free. Assume the Ti can be written as

Γi, Λi→∆i,∀yG(y),∀yG(S(y)) ,

with Γi,∆i quanti�er-free. Let Pi = (
∧

Γi ⊃
∨

∆i). Then

P1
(+1), . . . , Pn

(+1), Γ, Λ→∆ ,

is (cut-free) provable in TL.

Proof. Fix i ∈ {1, . . . , n}. By iterated application of ∧-right (Γi →
∧

Γi)
becomes derivable. Dually (

∨
∆i→∆i) is derivable. Hence∧

Γi ⊃
∨

∆i, Γi→∆i,∀yG(y),∀yG(S(y)) ,

is derivable. As i was arbitrary, this holds for all i ∈ {1, . . . , n}. Taking the
structure of Red(T ) as pattern

P1, . . . , Pn, Γ ′, Λ′→∆′ ,

is derivable. A further application of (nex), together with suitable weaken-
ings, then yields

P1
(+1), . . . , Pn

(+1), Γ, Λ→∆, ∀yG(y),∀yG(S(y)) . (21)

Note that (21) is cut-free provable. To prove the lemma we �x a proof of
(21), denoted as Π. Let (T (Π),≤T , L) denote the tree-representation of Π.
T (Π) is transformed to a labelled tree (T ?,≤T , L?). For every u ∈ T (Π), if
L(u) = (Σ→Ω), then set L?(u) = (Σ→Ω?), where Ω? is obtained from Ω
by removing all occurrences of ∀yG(Sm(x)), m arbitrary.

Claim. The sequent-tree T ? is a proof in TL.

The claim is shown by induction on the length of Π. The base cases
follows as property (Q), prevents the critical case of an initial axiom of
form ∀yG(Sm(x))→∀yG(Sm(x)). Assume |Π| > 1: We proceed by a case-
distinction on the last inference rule Q applied in Π. Recall that Π is cut-
free. We will only present the case where Q is a ∀-right rule.

Σ→Ω,G(m) Σ→Ω, ∀yG(Sm+1(y))
Σ→Ω,∀yG(Sm(x))

By (i.h.) Σ → Ω?, G(m) and Σ → Ω? are derivable. The latter is equal
to Σ → (Ω,∀yG(Sm(x))?. The assertion follows, if we remove Q and the
sub-proof above Σ→Ω?, G(m) from T ?. Thus the claim is established. ut
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Lemma 18. Let T ∈ Succ(S). Assume ∀ zA(z) occurs in the succedent of
T and for all T ′ ∈ Succ(T ), A(0) occurs only in the antecedent of T ′. Then
T is provable.

Proof. Due to Lemma 16, we can assume that ∀ zA(z) = ∀yG(y), where G
as de�ned above. Hence, T can be written as Γ,Λ→∆, ∀yG(y),∀yG(S(y))
where Γ,∆ are quanti�er-free. Let T1, . . . , Tn be the sequents in Succ(T ).
(Due to Lemma 15 we know that n exists). Again by Lemma 16, the Ti can
be written as

Γi, Λi→∆i,∀yG(y),∀yG(S(y)) ,

where Γi, ∆i are quanti�er-free. Set Ai :⇔ ¬(
∧

Γi ⊃
∨

∆i).
Fix i ∈ {1, . . . , n}. Let Ti1 , . . . , Tik

denote the immediate successors of
Ti. Note that by assumption Γij

6= ∅ for all j ∈ {1, . . . , k}. Lemma 17 is
applicable and for all i ∈ {1, . . . , n}

¬Ai1
(+1), . . . ,¬Aik

(+1), Γi, Λi→∆i ,

is provable (cut-free). Thus ¬Ai1
(+1), . . . ,¬Aik

(+1), Λi →
∧

Γi ⊃
∨

∆i is
derivable and by contraposition and the fact ¬Ai ↔ (

∧
Γi ⊃

∨
∆i) we

conclude:
Ai, Λi→Ai1

(+1), . . . , Aik

(+1) .

In the last step, we exploit that ¬(A(+1)) = (¬A)(+1), for A arbitrary. Set
Λ = Λ1, . . . , Λn. In summary

A1 ∨ · · · ∨An, Λ→A1
(+1) ∨ · · · ∨An

(+1) ,

holds. By assumption G(0) is in Γi for all i. Hence ¬(
∧

Γi ⊃ (
∨

∆i))→G(0)
holds for all i. Therefore

A1 ∨ · · · ∨An→G(0) .

As all premises of (ind) are derivable

A1 ∨ · · · ∨An, Λ→∀yG(y) ,

is a theorem of TL. Note that for some i it holds that Ai ↔ ¬(
∧

Γ ⊃
∨

∆).
Hence Γ →∆, A1 ∨ · · · ∨ An is a theorem. Using a cut (on a quanti�er-free
formula) together with weakenings one derives

Γ,Λ→∀yG(y),∀yG(S(y)) .

It follows from Lemma 16 that the Λi denote multisets of sequent for-
mulas of the form ∀xPj(x), and ∀xPj(S(x)), such that j ∈ {1, . . . , q0}. We
claim that Λi ⊂ Λ for every i. Assume otherwise, then there exists an i and
j so that ∀xPj(x) occurs in Λi but only ∀xPj(S(x)) ∈ Λ, contradicting
Lemma 16. This holds for all Λi. Hence

⋃
Λi ⊂ Λ and we have established

an almost cut-free TL-proof of

Γ,Λ→∀yG(y),∀yG(S(y)) .

ut
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Note that the proof of the lemma tells us more than the mere fact that
T is provable: T is provable by a single application of (ind) such that the
principal formulas of this rule applications are disjunctions of quanti�er-free
Ai, that stem from the quanti�er-free part of the sequents in Succ(T ). We
express this property by the following de�nition.

De�nition 39. Let T ∈ Succ(S). Assume ∀ zA(z) occurs in the succedent
of T and for all T ′ ∈ Succ(T ), A(0) occurs only in the antecedent of T ′.
Then T is said to be provable by a single loop.

A path in Succ is a sequence (L(u0), L(u1), L(u2), . . .) of sequents such that
L(u0) is an open sequent in the reduction-tree of S and for every i L(ui+1) is
an immediate successor of L(ui). A path terminates in a node v, if L(v) = T
does not have a successors, or if ∀ zA(z) occurs in the succedent of L(v) and
for all T ′ ∈ Succ(T ), A(0) occurs only in the antecedent of T ′. A path is
closed if it terminates (in some node).

To show completeness we show that for any unprovable sequent S, there
exists a (partial) structure I such that I falsi�es S. Each non-terminating
path (T0, T1, T2, . . .) de�nes a partial evaluation vI : It su�ces to de�ne vI
on sequent formulas in

⋃
Ti. We consider only atomic formulas in

⋃
i Ti.

� Assume P (0) is an atomic formula in Tn = (Γ →∆). If P (0) ∈ Γ , then
set vI(P (n)) = true. If otherwise P (0) ∈ ∆, then set vI(P (n)) = false.

� For all atomic formulas A ∈
⋃

Ti, which are not yet de�ned, set vI(A) =
false.

The evaluation function vI is well-de�ned: If there exists i, such that
P (0) occurs in the antecedent and in the succedent of Ti, then the path
(T0, T1, . . .) would be terminating. This evaluation on atomic formulas is
lifted to the level of arbitrary formulas in the usual way. It remains to verify
that I falsi�es S. To be able to prove this, we need the following Lemma.

Lemma 19. Let S and I be de�ned as above, and assume S is unprovable.
Let (T0, T1, . . .) denote an open path in Succ. Then for T0 = (Γ→∆) holds:
If A ∈ Γ , then vI(A) = true. If A ∈ ∆, then vI(A) = false.

Proof. We prove the lemma by induction on the logical complexity of A ∈
T0. We consider the interesting case only.

� Assume A can be written as ∀zB(z). Let A be a sequent formula oc-
curring in the antecedent of T0. Hence B(0) and ∀zB(S(z)) occur in
the antecedent of T0, too. Hence ∀zB(z) occurs in the antecedent of T1.
Iterating the argument yields that vI(B(n)) = true, for all n. Hence
vI(∀zB(z)) = true. On the other hand assume A ∈ ∆. We have to
show that there exists an n, such that vI(B(n)) = false. This is pos-
sible in two cases: Either B(0) occurs in the succedent of Tn or B(0)
doesn't occur in Tn at all. Thus we have to exclude the case that for
all i, i ≥ 0, B(0) occurs in the antecedents of Ti, only. However, if this
would be the case, then the path (T0, T1, T2, . . .) would terminate in T0;
thus by Lemma 18 by provable. ut
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Proposition 17. For any unprovable sequent S of the form (20), there ex-
ists a path (T0, T1, T2, . . .) in Succ(S) such that this path de�nes uniquely
a counter-model I of S.

We have established the proof of Theorem 6, restated here in a slightly
stronger form.

Theorem 6. Let S be the sequent

P1i1 ,∀xP2i2(x), . . . ,∀xPqiq
(x)→∀y(Pq+1iq+1(y) ∨ · · · ∨ Plil

(y))

representing a conjunct of the form (13), page 34. Assume S is valid. Then
the following holds.

1. There exists an almost cut-free proof Π of S in TL, such that it(Π) ≤ 1.
2. Let Q denote the occurrence (if any) of an (ind)-rule in Π. Assume

Γ→∆ occurs below Q in Π. Then Γ→∆ satis�es property (Q).
3. Suppose Γ →∆ denotes the lower-sequent of Q. Then Γ →∆ is proven

by a single loop.

Proof. Let S be de�ned as in the proposition. Assume S is unprovable. Due
to the theorem this implies the existence of a structure I that falsi�es S.
Contradiction. Hence S is provable in TL by a almost cut-free proof Π.
Hence its standard interpretation Ŝ is provable. By de�nition of S, Ŝ is of
the form of the formula (15). This establishes a). Similarly b) follows from
the construction of Π. Moreover, the proof of Lemma 18 veri�es that any
lower-sequent of a (ind)-rule application is provable by a single loop. This
establishes c). ut
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