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Abstract

We aim at a conceptually clear and technically smooth investigation of Ackermann's
substitution method: W. Ackermann (Mathematische Annalen, 117:162�194, 1944).
Our analysis provides a direct classi�cation of the provably recursive functions of
PA(ε), i.e. Peano Arithmetic framed in the ε-calculus.
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1 Introduction

A classi�cation of the provably recursive functions of Peano Arithmetic (PA)
in terms of Kreisel's class of ordinal recursive functions was suggested in [1].
This class can in turn be characterised by hierarchies of number-theoretic
functions de�ned by trans�nite recursion up-to the ordinal ε0, cf. [2]. Kreisel's
solution of the classi�cation problem for the provably recursive function of
PA is based on Ackermann's consistency proof of arithmetic [3], framed in
Hilbert's ε-calculus.

Hilbert's ε-calculus [4, 5, 6] is based on an extension of the language of pred-
icate logic by a term-forming operator εx. This operator is governed by the
critical axiom

A(t) ⊃ A(εxA(x)) ,

where t is an arbitrary term. Within the ε-calculus quanti�ers become de�n-
able by ∃xA(x) ⇔ A(εxA(x)) and ∀x A(x) ⇔ A(εx¬A(x)). The expression
εxA(x) is called ε-term.
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When considering arithmetical systems the ε-substitution method [3, 4] pro-
vides an analogue to Gentzen's famous extension [7, 8] of his cut-elimination
method. Tait [9] describes the substitution method as the general problem of
associating with a formal system S, admitting quanti�ers, a free-variable sys-
tem S? without quanti�ers and to give an e�ective procedure of transforming
statements A in (the language of) S into statements A? in (the language of)
S?. Assume S proves A, then the transform of A is to be an ε-substitution
instance A? of A. It is obtained by replacing ε-terms by terms in the lan-
guage of S?. For Peano Arithmetic coached in the ε-calculus, this procedure
of eliminating bounded variables from arbitrary proofs, is su�cient to estab-
lish consistency (and even 1-consistency). The di�cult part is to show that
the substitution method terminates.

Let PA(ε) denote Peano arithmetic framed in the ε-calculus. Based on Gentzen's
work, revealing the role played by trans�nite induction up to ε0, Ackermann
[3] presented a constructive termination proof of the substitution method for
PA(ε). As an important achievement he de�ned functions, ordinal recursive
in ε0, that bound the complexity of the transformation procedure. 2 It is a
direct consequence of Ackermann's proof, �rstly observed by Kreisel [1], that
the provably recursive functions of PA are primitive recursive in some ≺ ε0-
recursive functions. Thus [3] renders a Π0

2-analysis of PA and establishes 1-
consistency of PA; see also [10].

We analyse Ackermann's solution and in particular the given complexity anal-
ysis of the substitution method. In our presentation we follow the original
treatment closely. The novelty being that we are able to measure the com-
plexity of the substitution method directly in terms of the fast-growing Hardy
hierarchy (see [11]), i.e., functions from the Hardy hierarchy replace the spe-
ci�c ordinal recursive functions�seemingly ad-hoc de�ned�employed in [3].
Thus we show that any provably recursive function of PA(ε) can be elemen-
tarily de�ned in some Hα, α ≺ ε0 and therefore the class of provably recursive
functions of PA(ε) equals the Hardy class H. The same machinery is applied
to characterise the provably recursive functions of a weak arithmetic theory
without induction axiom (or rule); here the Hardy hierarchy can be replaced
by the slow-growing hierarchy. We have replaced the set-theoretical ordinals
employed in Ackermann's proof by (structured) tree-ordinals.

The reader may wonder why we have based our investigation on the original�
quite old�treatment of the substitution method; the work by Arai [12, 13],
Avigad [10], Buchholz, Mints, and Tupailo [14], Mints [15, 16], and Tait [17, 9]
spring to mind as more adequate starting points. However, to our surprise, it
turned out that once we understood how to replace Ackermann's original repre-

2 By complexity of the substitution method we understand the maximal number of
approximation steps necessary till the �nal substitution is rendered.
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sentation and codings of (set-theoretical) ordinals by structured tree-ordinals,
the desired results followed quite easily. Thus by changing the employed ordi-
nal notation we can establish the direct characterisation result, but still follow
the original presentation closely enough to render a modern presentation of
Ackermann's ideas.

In contrast to Gentzen-style proof theory by cut-elimination the substitution
method is less dependent on the structure of a given derivation in S. We
employ this fact to separate the actual substitution method and the ε-calculus.
This allows us to make an abstract assessment of the transformation procedure
incorporated in the substitution method apart from the ε-calculus trade. In
the next section we de�ne a class of tautologies S and we re-formulate the
problem of the substitution method accordingly. Only after we have studied
the behaviour of the transformation procedure with respect to the class S
in some detail, we relate our �ndings to a suitable axiomatisation of Peano
arithmetic in the ε-calculus and thus obtain the main result of this work.

2 The formal system S

We assume an arbitrary but �xed language L of arithmetic, such that L does
not contain quanti�ers. Instead of including ¬ as a logical connective, negation
is de�ned by asserting that atomic formulas R(t1, . . . , tn) occur in complemen-

tary pairs R(t1, . . . , tn). Note that R(. . .) := R(. . .). In this sense the classical
double negation law becomes a syntactic equality. Using de Morgan's laws this
de�nition is lifted to the general level.

It is notationally convenient to distinguish between bound (x, y, z, . . .) and free
variables (a, b, c, . . .), respectively. Bound variables are collected in the set BV,
while free variables are collected in the set FV; we set V := FV∪BV. Terms in
L are constructed from constants, free variables, and function symbols as usual.
Semi-terms are like terms but may also contain bound variables. Formulas are
de�ned with the proviso that only bound variables are allowed to be quanti�ed
and only free variables may occur free. Semi-formulas are similar to formulas
with the exception that both free and bound variables may occur free in a
semi-formula. An expression is either a (semi-)term or a (semi-)formula.

We use the metasymbols f, g, h, . . . to denote function symbols, while the
metasymbols P,Q,R, . . . vary through predicate symbols. We write ar(f)
(ar(P )) to denote the arity of a function (predicate) symbol f (P ). Within
this text we are eager to use only the symbols k, l,m, n, p, q as denotations of
natural numbers. Deviations from this convention will be clearly marked. We
write [1, n] to denote the interval of natural numbers from 1 to n. Occasion-
ally we abbreviate tuples of terms (t1, . . . , tn) as t. The length of the tuple will
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always be clear from the context.

We need not be very speci�c on atoms, however we assume that in the standard-
model (N )

〈N, 0, S, . . . , RN
j , . . .〉 ,

they are to be interpreted as elementary relations. 3 With respect to the spe-
ci�c atomic formulas that we will encounter below, this requirement is met; S
denotes the successor function.

A substitution σ�denoted as {a1 7→ t1, . . . , an 7→ tn}�is a mapping from the
set of variables to the set of terms such that σ(ai) = ti and σ(a) = a, for almost
all a. Let A be a formula and t1, . . . , tn terms. If there exists a formula B and
n distinct variables a1, . . . , an s.t. A is equal to B{a1 7→ t1, . . . , an 7→ tn} then
for each i ∈ [1, n], the occurrences of ti in A resulting from this replacement
are said to be indicated in A. This fact is also expressed (less accurately) in
writing B as B(a1, . . . , an) and A as B(t1, . . . , tn). We say that a term t is
fully indicated in A if every occurrence of t in A can be obtained by such an
replacement (from some formula B, n = 1 and t = t1), cf. [8]. It is easy to see
how this notion is generalised to arbitrary expressions.

Below we introduce a set of quasi-tautologies, denoted as S, based on an exten-
sions Lext of the language L by new function symbols f1, . . . , fq of �xed arity.
The arity of a function symbol f is denoted as ar(f). Each such function sym-
bol fi will be called de�ned. Before we can de�ne the class of quasi-tautologies
S precisely, we have to introduce speci�c quanti�er-free formulas, which will
be present in all studied quasi-tautologies and govern the de�ned functions
symbols.

The de�nition formulas for fi, ar(fi) = l, are substitution instances of

A(t, s1, . . . , sl) ⊃ A(fi(s1, . . . , sl), s1, . . . , sl) , (1)

where A is quanti�er-free. By A(fi(s), s) we denote the replacement of the
indicated occurrences of t in A(t, s) by fi(s). The term t is called critical.

Furthermore we want to express that the de�ned function symbols ful�l certain
minimality constraints. To that avail we consider instances of

A(t, s1, . . . , sl) ⊃ fi(s1, . . . , sl) ≤ t , (2)

for each de�ned fi. This formula is called second de�nition formula or mini-
mality formula for fi.

3 A function f is called elementary (in a function g) if f is de�nable explicitly from
0, 1,+, ·, ·− (and g), using bounded sum, and product. The elementary functions are
collected in the class Elem. A predicate is elementary, if its characteristic function
is.
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As we want ≤ to be interpreted in its usual sense, we need the presence of
formulas de�ning basic relations between terms. Thus we will employ substi-
tution instances of the weak arithmetical axioms given in Table 1.

Table 1
Arithmetical axioms

N1. S(s) 6= 0 N6. s · S(t) = (s · t) + s

N2. S(s) = S(t) ⊃ s = t N7. s 6< 0
N3. s + 0 = s N8. s < S(t) ⇔ s ≤ t

N4. s + S(t) = S(s + t)
N5. s · 0 = 0

To deal properly with equality, instances of the axioms given in Table 2 have
to be considered, together with instances of the following identity formulas

s = t ⊃ fi(u1, . . . , ui−1, s, ui+1, . . . , ul) = fi(u1, . . . , ui−1, t, ui+1, . . . , ul) . (3)

for all de�ned function symbols fi.

Table 2
Identity axioms

E1. s = s

E2. s = t ⊃ g(u1, . . . , ui, s, ui+1, . . . , ul) = g(u1, . . . , ui, t, ui+1, . . . , ul)
if g ∈ L and ar(f) = l

E3. s = t ⊃ R(u1, . . . , ui, s, ui+1, . . . , ul) ⊃ R(u1, . . . , ui, t, ui+1, . . . , ul)
if R ∈ L and ar(R) = l

Finally we are in a position to give the de�nition of the class of quasi-tautologies
S.

Suppose T ∈ Lext is a quasi-tautology which can be written in the form

A1 ∧ · · · ∧ Am ∧B1 ∧ · · · ∧Bn ⊃ F , (4)

such that each Ai is an instance of formulas of the form (1)�(3), while each
Bi is an instance of the axioms given in Table 1 or Table 2. Then T belongs
to the class S and no formula which cannot be de�ned in this way belongs to
S.

In this abstract setting the substitution method can be reformulated as the
following problem.

Can we (e�ectively) replace the de�ned function symbols in F by functions
Nn → N such that the resulting formula F ? is valid in the standard-model
N .
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Firstly assume that only instances of the axioms given in Table 1 or Table 2 are
present as assumptions in a tautology T ∈ S. Then N |= Bi for all i = 1, . . . , n
and we obtain N |= F . Hence, to solve the problem it is su�cient to de�ne an
assignment Ψ of de�ned functions such that Ψ transforms each Ai to a true
arithmetical formula. Moreover it is su�cient to concentrate on those de�ned
function symbols that actually occur in Ai (i = 1, . . . ,m): Assume these form
a proper subset of all occurring de�ned function symbols in T and we are given
an assignment Ψ of functions for this subset: Such an assignment is extended
by assigning to all other function symbols the constant function 0.

The formulas (1)�(3) are called critical axioms. If we need to distinguish be-
tween them, then axioms of the form (1) will be called critical axioms of �rst
kind, axioms of form (2) will be called minimality axioms or critical axioms of
second kind, and the axioms of form (3) will be called critical identity axioms.

Suppose T (a1, . . . , ak) ∈ S is arbitrary but �xed and all free variables in T are
indicated. Let (n1, . . . , nk) be an arbitrary tuple of natural numbers and n =
max{n1, . . . , nk}. In the sequel, we consider the quasi-tautology T (n1, . . . , nk).
The set of critical axioms Ai occurring in T is denoted by C. W.l.o.g. we denote
the set of de�ned function symbols occurring in C by

f1, f2, . . . , fq ,

and assume that fi (i = 1, . . . , q) always refers to a de�ned function sym-
bol. Note that during the substitution method n is not changed, as only the
evaluation of terms of form fj(s) may change.

We assume the sequence of function symbols to be ordered in a suitable way.
Let fi be governed by a critical axiom of the form

A(r(t), s) ⊃ A(r(fi(s)), s) .

If u with leading function symbol fj occurs in r(a), then we assume that fj

precedes fi in the chosen order, i.e. j < i holds.

Remark 2.1 At the time being, we cannot decide whether a total order on
the de�ned function symbols exits, ful�lling the requirement. We will see later
that this assumption can be met, when we apply the abstract method to PA(ε),
where the de�ned function symbols will be replaced by ε-matrices, see Section 6.

3 Structured Ordinals

We use `structured' ordinals in the treatment of the substitution method. By
a `structured' countable ordinal, we mean an ordinal with an arbitrary but
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�xed fundamental sequence 〈λx〉x∈N for any limit λ. We follow [11] in our
presentation. For proofs of Lemmas and Propositions of this section see [11].
The set Ω of countable tree-ordinals is inductively de�ned as (i) 0 ∈ Ω, (ii)
α ∈ Ω implies α + 1 := α ∪ {α} ∈ Ω, and (iii) ∀x ∈ N (αx ∈ Ω) implies
α := 〈ax〉x∈N ∈ Ω. We use lower case Greek letters α, β, γ, λ, . . . to denote
tree-ordinals (with the exception of ε and µ). We use the convention that λ
always denotes a limit: λ := 〈λx〉x∈N. Alternatively, we write λ = supλx.

The order ≺ on tree-ordinals is de�ned according to the rules (for α, λ ∈ Ω).
(i) α ≺ α + 1, and (ii) λm ≺ λ, for all m ∈ N. Note, that ≺ constitutes a

partial order. We identify n ∈ N with 0 +

n−times 1︷ ︸︸ ︷
1 + · · ·+ 1. We de�ne ω0 := sup〈x〉;

ω := sup〈1 + x〉. Clearly ω0 and ω are ≺-incomparable.

Let n ∈ N, α, λ ∈ Ω. The �nite set α[n] of n-predecessors of α is recursively
de�ned. (i) 0[n] := ∅, (ii) (α+ 1)[n] := α[n]∪{α}, and (iii) λ[n] := λn[n]. The
immediate n-predecessor of α, the ≺-maximal element of α[n], if α[n] 6= ∅,
is denoted by Pn(α). (If α[n] = ∅, then Pn(α) := 0.) The set of structured
tree-ordinals ΩS consists of all α ∈ Ω such that ∀λ � α, x ∈ N λx ∈ λ[x+ 1].

Lemma 3.1 For every α ∈ ΩS we have (i) α[0] ⊆ · · · ⊆ α[n] ⊆ α[n+1] ⊆ · · · ,
(ii) β ≺ α i� β ∈ α[n] for some n ∈ N, and (iii) β ∈ α[n] implies β[n] ⊂ α[n].

Addition, multiplication and exponentiation on Ω are de�ned in the obvious
way.

α+ 0 := α α + (β + 1) := (α+ β) + 1 α+ λ := sup(α+ λx) ,

α · 0 := 0 α · (β + 1) := (α · β) + α α · λ := sup(α · λx) ,

α0 := 1 αβ+1 := αβ · α αλ := sup(αλx) .

We need to know that these operations are well-de�ned on (structured) tree-
ordinals. This is accomplished by the following two lemmas.

Lemma 3.2 Let α, β, and γ ∈ Ω. Then γ ∈ β[n] implies (i) α+γ ∈ (α+β)[n],
(ii) α · γ ∈ (α · β)[n] if 0 ∈ α[n], and (iii) αγ ∈ αβ[n] if 1 ∈ α[n].

Lemma 3.3 Let α, β, and γ ∈ Ω. Then α, β ∈ ΩS implies (i) α + β ∈ ΩS,
(ii) α · β ∈ ΩS if 0 ∈ α[n], and (iii) αβ ∈ ΩS if 1 ∈ α[n].

We usually drop the brackets in (α + β)[n], (α · β)[n], respectively and write
α+β[n], α·β[n], instead. Clearly ω0, ω ∈ ΩS. Simple applications of the lemmas
gives: If α1, . . . , αr ∈ ΩS, then ωα1 ·n1 + · · ·+ωαr ·nr is structured. We obtain
that ωα[n] contains all ordinals of the form

ωβ1 ·m1 + ωβ2 ·m2 + · · ·+ ωβk ·mk ,

such that β1 � · · · � βk and βi ∈ α[n], furthermore mi ≤ n. We de�ne
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expα(β) := αβ and the n-iterate of that expn
α(β) := α..

.α
β

}n−times α. We de�ne
ε0 := sup(1, ω, ωω, . . .); clearly ε0 ∈ ΩS. Moreover α ≺ (ε0)n i� α can be
written in Cantor normal form ωβ1 ·m1 +ωβ2 ·m2 + · · ·+ωβk ·mk, βk ≺ βk−1 ≺
· · · ≺ β1 ≺ (ε0)n−1.

For each unary function f , fn denotes its nth iterate, de�ned by f 0(a) =
a, fn+1(a) = f(fn(a)). Sometimes we use the operator J to denote the nth

iteration of f . Then fn(a) is written J(f, n)(a).

We de�ne three subrecursive hierarchies of number-theoretic functions. We
start with the slow-growing functions

G0(n) := 0 Gα(n) := GPn(α)(n) + 1 .

The Hardy functions are de�ned as follows

H0(n) := n Hα(n) := HPn(α)(n+ 1) .

Finally we de�ne the fast growing functions.

F0(n) := n+ 1 Fα(n) := Fn+1
Pn(α)(n) .

Lemma 3.4 Let α ∈ ΩS. Then (i) Gα is increasing (strictly increasing if α
is in�nite), and if β ∈ α[n], then Gβ(n) < Gα(n). Furthermore (ii) Hα (Fα)
is strictly increasing and if β ∈ α[n], then Hβ(n) < Hα(n) (Fβ(n) < Fα(n)).

Lemma 3.5 For all non-zero α ∈ ΩS Gα(n) < Hα(n) < Fα(n).

It is interesting to note that the slow-growing hierarchy
⋃

α<ε0 Gα captures the
elementary functions. Note that Hα+β = Hα ◦ Hβ and Hωα = Fα.

Below we will only be considered with structured tree-ordinals. Hence, we
usually drop the references to ΩS and simply speak of (tree-)ordinals.

4 Ackermann's Substitution Method

In this section we brie�y state the termination proof of the ε-substitution
method, cf. [3, 4]. We follow the presentation in [3] quite closely.

The starting idea of the substitution method is to replace the de�ned function
symbols fi by functions of �nite support. 4 When we have assigned functions

4 A function φ : Nn → N is of �nite support if φ(n1, . . . , nl) is non-zero only for
�nitely many arguments n1, . . . , nl.
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to f1, . . . , fq we are in a position to evaluate every formula in C either to a
true or false formula in N . Such an assignment is called a (ε-)substitution. A
substitution S is solving, or �nal if all formulas in C are rendered true on the
basis of S. By de�nition, every critical identity axiom is evaluated to a true
formula. Hence the substitution method needs to be concerned with critical
formulas of 1st and 2nd kind, only.

Let G0 denote the initial substitution. This substitution instantiates all the
f1, . . . , fq by the default value, the constant function 0. Suppose we have al-
ready constructed a number of substitutions G0, . . . , Gi and Gi is not a solving
substitution.

De�nition 4.1 Let S be a substitution, by recursion on the term structure we
de�ne the value |t| of a term f ∈ Lext with respect to S. If t ∈ L, then |t| ∈ N is
de�ned as usual, employing the recursive de�nitions of the function symbols in
Table 1. Otherwise suppose t = fi(s1, . . . , sl). Then |t| := φ(n1, . . . , nl), where
φ is the function assigned to fi under S and |si| = ni for all i = 1, . . . , l.

We write t ↪→S z to denote that the term t evaluates (in N ) to the natural
number z with respect to the substitution S. Let t = (t1, . . . , tn) and m =
(m1, . . . ,mn). Then we write t ↪→S m as an abbreviation of ti ↪→S mi for all
i.

We de�ne the consecutive substitution Gi+1: Let the critical axioms in C be
ordered in some arbitrary way, but �xed. We pick the �rst critical axiom of
1st kind that is false in N with respect to Gi. Suppose this axiom has the
form

A(t, s) ⊃ A(fp(s), s) . (5)

This critical axioms is called the designated critical axiom of Gi+1. If t ↪→Gn+1

z, then A(z, s) is evaluated to true on the basis of the substitution Gi. Let n
be the values of s. We consider the sequence of formulas

A(1, n), . . . , A(z, n) , (6)

and evaluate this sequence with respect to Gi. Let k be the smallest number
such that A(k, n) holds in N . Let φ denote the function assigned to fp by Gi.
We de�ne a new function ψ by modifying φ as follows. We write m1, . . . ,ml =
n1, . . . , nl (m1, . . . ,ml 6= n1, . . . , nl) to abbreviate ∀i mi = ni (∃i mi 6= ni).

ψ(m1, . . . ,ml) :=

φ(m1, . . . ,ml) m1, . . . ,ml 6= n1, . . . , nl ,

k m1, . . . ,ml = n1, . . . , nl .

The substitution Gi+1 is obtained by replacing the assignment of φ to fp by
ψ. The assignments for fj, j < p are left intact. Assignments to fj, j > p are
changed to the default value 0. The following lemma follows easily from the
de�nitions, see. [3]. As an immediate consequence of this lemma we obtain that
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in the process of consecutive constructed substitutions, only critical formulas
of 1st kind can be evaluated to false, under a particular substitution S.

Lemma 4.1 Let fp be a l-ary de�ned function symbol. Let S denote an ar-
bitrary substitution. The function assigned to fp under the assignment S is
denoted by φ. Then for all tuples n = n1, . . . , nl either φ(n) = 0, or if
φ(n) = z > 0, then A(z, n) evaluates to true with respect to S, and for all
w < z, A(z, n) evaluates to false.

Note that this lemma is only true when we throw away previously achieved
assignments for function symbols fj j > p. The lemma fails if this step is
omitted. We give a slight reformulation of an example by v. Neumann to
explain this, compare [18] and [4], pp. 123�125.

Example 4.1 We write S for the successor and P for the predecessor. Let
n ∈ N such that n ≥ 1 and let f denote a unary de�ned function symbol
and g a nullary de�ned function symbol, such that f is smaller than g in the
assumed order on de�ned function symbols. Further set A(a, b) :⇔ a = b and
B(a) :⇔ f(S(a)) = 0 ⊃ a = n. Consider the following formulas.

g = g ⊃ g = f(g) , (7)

(f(S(n)) = 0 ⊃ n = n) ⊃ (f(S(g)) = 0 ⊃ g = n) , (8)

(f(S(P (g)) = 0 ⊃ P (g) = n) ⊃ g ≤ P (g) . (9)

It is not di�cult to see that (7) is the de�nition formula for f with respect to
A(a, g) such that g is the critical term. While (8) is a de�nition formula for g
with respect to B(n) so that n is the critical term. Furthermore (9) denotes a
minimality formula with respect to B(P (g)), where P (g) is the critical term.

We de�ne a sequence of substitution steps starting with the initial substitution
G0. We write ψ and χ for the functions assigned to f and g respectively.
By de�nition, G1 sets ψ and χ to the constant function 0. Hence (7) and
(9) evaluate to true, but (8) evaluates to false. The next substitution S1 is
obtained by setting χ := n. With respect to G1 (8) and (9) evaluate to true,
but (7) evaluates to false. Hence to obtain the next substitution S2 we have to
change the de�nition of ψ. We set ψ(n) := n and ψ(a) := 0 for all a 6= n and
momentarily assume that χ is not changed. (Contrary to the above de�nition.)

Now with respect to G2 (7) and (8) evaluate to true, but (9) evaluates to false.
Indeed on the basis of S2 the value n for χ is no longer minimal, as B(n− 1)
is true, too. Hence in the de�nition of G3 we have to change the value of χ
from n to n− 1. This contradicts Lemma 4.1.

On the other hand, if we apply the presented de�nition, then G2 would set
χ := 0. Then (7) and (9) evaluate to true, but (8) evaluates to false and
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the just described process can be repeated. It is not di�cult to see that the
�nal substitution assigns f the function ψ, s.t. ψ is de�ned as ψ(m) := m if
m ∈ [1, n] and ψ(m) := 0 otherwise. The de�ned function symbol g is assigned
0.

De�nition 4.2 Let S be a substitution di�erent from the initial one. Let i
be the maximal such that fi is assigned a function di�erent from the constant
function 0. Then the characteristic number of S is q − i + 1, or alternatively
the characteristic number of S is the position of fi in the reversed order of
the sequence f1, . . . , fq. In the case where S denotes the initial substitution its
characteristic number is de�ned as q + 1.

The following lemma follows directly from the de�nitions.

Lemma 4.2 Let (S1, . . . , Sn) be an arbitrary consecutive sequence of substi-
tutions. If all substitutions S2, . . . , Sn have characteristic number less than
m, then the functions assigned to the symbols f1, . . . , fq−m+1 are equal for all
S1, . . . , Sn.

Let A1, . . . , Am be a sequence of formulas and let t1, . . . , te be all the terms
with a de�ned function symbol as leading function symbol occurring in this
sequence. The sequence (t1, . . . , te) is assumed to be ordered in such a way
that all proper subterms of ti occur to the left of ti in the sequence.

Depending on the current substitution S we assign a binary string to the
sequence: If ti evaluates to 0 with respect to S, then the ith entry in the
string is 1, otherwise the ith entry is 0. We want to code this string s̄ by a
natural number ps̄q. Although any coding ful�lling some natural restriction
might do, the following has nice properties, which we will exploit later on. Let
s̄ = s1 · · · se be a (0− 1)-string, then

ps̄q := 2e−1 · s1 + · · ·+ 21 · se−1 + 20 · se , (10)

codes s̄. Clearly 0 ≤ ps̄q < 2e. The code of the binary string assigned
to the sequence (t1, . . . , te) is called the index of the sequence of formulas
(A1, . . . , Am) (with respect to S). The index of (A1, . . . , Am) is denoted as
indexS(A1, . . . , Am).

In particular two speci�c sequences of formulas are of interest.

(1) The sequence of all formulas in our given set of critical axioms C.
(2) Let A(t, s) ⊃ A(fp(s), s) be the designated critical axiom of a substitu-

tion S under consideration such that s1, . . . , sl ↪→S n1, . . . , nl. Then the
sequence (6), p. 9 will be the second formula-sequence of speci�c interest.

W.l.o.g. we can always assume that the number of terms t1, . . . , te with a
de�ned function symbol as leading function symbol in C is not zero. Let p
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be a pairing function for the natural numbers with inverses u, v: p(0, 0) = 0;
p(u(a), v(a)) = a, u(p(a, b)) = a, and v(p(a, b)) = b. We use 〈a, b〉 as an
abbreviation for p(a, b). If a is the index with respect to the �rst formula-
sequence, and b the index with respect to the second, then we assign the pair
〈a, b〉 to S. (The initial substitution G0 is assigned the index 〈a, 0〉.) Let S be
a substitution. If the pair 〈a, b〉 is assigned to S, then the (ordinal) index of
S, denoted as Ord(S), is the tree-ordinal ωa+ b.

De�nition 4.3 For all i ∈ [1, q], let fi be an arbitrary de�ned function symbol
and let φi

S, φ
i
T be functions assigned to fi under the substitutions S and T .

Then T is progressive over S, if for all n = n1, . . . , nl

(1) φi
S(n) = 0, or

(2) φi
S(n) = φi

T (n) > 0.

Lemma 4.3 Let T be progressive over S and let (A1, . . . , Am) be an arbitrary
list of formulas. Then either indexT (A1, . . . , Am) < indexS(A1, . . . , Am) or
the evaluations of the terms t1, . . . , te with leading function symbol fi in the
sequence (A1, . . . , Am) are the same under both substitutions.

Theorem 4.1 If Gl is progressive over Gk, then either Ord(Gl) ≺ Ord(Gk)
or Gl+1 is progressive over Gk+1.

Proof. Let 〈ik, jk〉, 〈il, jl〉 be the index pairs assigned to Gk, Gl, respectively.
Apply Lemma 4.3 with respect to the sequence of formulas in C. If ik > il,
then ωik + jk � ωil + jl and the conclusion of the theorem follows.

If ik = il, then according to the previous lemma the evaluation of the terms
in C is the same, hence the designated critical axiom

A(t, s) ⊃ A(fp(s), s)) ,

is the same for the substitutions Gk and Gl. (Here the assumed order on the
critical axioms in C is needed.)

Suppose t ↪→Gk
z (i.e., t ↪→Gl

z) and s ↪→Gk
n. By assumption, the formula-

sequence (6) is the same for Gk and Gl. Applying the lemma again: Either jk >
jl, or the evaluations of the terms in this sequence is equal. Then the smallest
k such that A(k, n) evaluates to true is the same for Gk, Gl. Hence φGk

(n) =
φGl

(n). The progressivity of Gl+1 over Gk+1 follows from the assumption that
Gl is progressive over Gk. 2

We need some further de�nitions: A 1-sequence of substitutions is simply a
substitution. Let (S1, . . . , Sn) be an arbitrary consecutive sequence of substi-
tutions, n ≥ 1. If the characteristic numbers of S1, Sn+1 are greater than or
equal to m and the characteristic numbers of the substitutions S2, . . . , Sn are
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strictly smaller than m, then (S1, . . . , Sn) constitutes an m-sequence. (If Sn is
the last substitution in the maximal sequence of substitutions, we drop the
condition for Sn+1.)

By de�nition, the sequence of all possible substitutions is a q + 1-sequence.
This sequences is called the maximal or total sequence. The following lemma
is proven by induction on m.

Lemma 4.4 Let R be an m-sequence (S1, . . . , Sn). Then either all the char-
acteristic numbers of S2, S3, . . . , Sn are less than m − 1. In this case R con-
stitutes also an (m− 1)-sequence. Otherwise R decomposes into sub-sequences
T1, . . . , Tr, where the Ti are (m−1)-sequences meeting the condition: If S21,S31,
. . . ,Sr1 denote the �rst substitutions in T2, T3, . . . Tr respectively, then the char-
acteristic numbers of S21, . . . , Sr1 are m− 1 respectively.

The (ordinal) index of an m-sequence, m > 1, is de�ned inductively: Let
(S1, . . . , Sn) be substitutions constituting the m-sequence. Using Lemma 4.4
we �nd (m − 1)-sequences T1, . . . , Tr that built the m-sequence. Assume for
all i ∈ [1, r] the indices of Ti are denoted as αi. Then the (ordinal) index of
S1, . . . , Sp is de�ned as ωα1 + · · ·+ ωαr .

Theorem 4.2 Let (S1, . . . , Sk) and (Sk+1, . . . , Sk+l) denote the substitutions
in two consecutive m-sequences, such that the characteristic number of Sk+1

equals m. Let α1, α2, . . . , αk+l be the indices of the substitutions S1, S2, . . . , Sk+l

respectively. Then there exists i ∈ [1, l], such that αk+i ≺ αi and αk+j = αj,
for all j ∈ [1, i− 1].

Proof. First we show that Sk+1 is progressive over S1. We only prove the case
where k > 1, the other case is similar, but simpler Lemma 4.2 implies that all
the S2, . . . , Sk change only the assignments for fj, where j > q−m+1. As S1,
and Sk+1 have characteristic number greater than or equal to m, this implies
Sk+1 changes the assignment to fq−m+1 and resets the previous assignments
to fq−m+2, fq−m+3, . . . , fq. Using Lemma 4.1 we see that this is only possible
by changing a default value. Hence Sk+1 is progressive over S1.

Now we are in a position to apply Theorem 4.1: Either αk+1 ≺ α1 or conclude
that αk+1 = α2 and Sk+2 is progressive over S2. If αk+1 ≺ α1 then we are done.
Otherwise the result that Sk+2 is progressive over S2 serves as the assumption
for another application of Theorem 4.1, etc.

It remains to prove that there exists an i ∈ [1, l] such that αk+i ≺ αi. We
concentrate on the case when k = l. Let αk = αk+l and suppose Sk+l+1

is progressive over Sk+1. It follows from αk = αk+l and the proof of Theo-
rem 4.1 that the designated critical axiom A(t, s) ⊃ A(fp(s), s) is the same
for Sk+1, Sk+l+1. Suppose s ↪→Sk

n By de�nition, Sk+1 assigned a function φ
to fp such that φ(n1, . . . , nl) = u > 0. Suppose Sk+l+1 assigns ψ to fp s.t.
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ψ(n1, . . . , nl) = v > 0. Note that u 6= v, as otherwise A(fp(s), s) is true under
Sk+l+1. By the assumption the tuple s evaluates to n independently of the
substitution Sk+1, Sk+l+1.

The characteristic number of Sk+1 is equal to m which implies p ≤ q−m+ 1.
However, the characteristic number of the substitutions Sk+2, . . . , Sk+l are less
than m. Therefore none of this substitutions Sk+i can change the assignment
to fp. Hence Sk+l+1 changes the assignment for fp from φ to ψ such that
φ(n1, . . . , nl) = u and ψ(n1, . . . , nl) = v and u 6= v. (Note that v cannot equal
u as otherwise the designated critical axioms would be true in Sk+l.) This
contradicts Lemma 4.1. 2

The substitutions Si, Sk+i are the designated substitutions with respect to. the
m-sequences (S1, . . . , Sk) and (Sk+1, . . . , Sk+l). All substitutions Sj, Sk+j; 1 <
j ≤ i have pairwise the same characteristic number. This observation provides
the basis for the next lemma.

Lemma 4.5 Let (S1, . . . , Sk) and (Sk+1, . . . , Sk+l) be consecutive m-sequences
s.t. the characteristic number of Sk+1 equals m. Let Si, Sk+i denote the desig-
nated substitutions. For s ∈ [1,m], let (β1, . . . , βr) and (βr+1, . . . , βr+z) denote
the indices of the consecutive s-sequences in (S1, . . . , Sk) and (Sk+1, . . . , Sk+l).
If Si occurs in the s-sequences with index βt, then Sk+i occurs in the s-sequence
with index βr+t. Moreover β1 = βr+1, β2 = βr+2, . . . , βt−1 = βr+t−1.

Theorem 4.3 Let (S1, . . . , Sk) and (Sk+1, . . . , Sk+l) be substitutions in two
consecutive m-sequences such that the characteristic number of Sk+1 equals m.
For s ∈ [1,m], let (β1, . . . , βr) and (βr+1, . . . , βr+z) be the indices of included s-
sequences. Then there exists t ∈ [1, r] such that βr+t ≺ βt and β1 = βr+1, β2 =
βr+2, . . . , βt−1 = βr+t−1.

Proof. By induction on s ≤ m. The case s = 1 is contained in Theorem 4.2.

Let (β1, . . . , βr) and (βr+1, . . . , βr+z) be the indices of the (s + 1)-sequences
included in the two given m-sequences. Let Si, Sk+i denote the distinguished
substitutions with respect to (S1, . . . , Sk) and (Sk+1, . . . , Sk+l). By Lemma 4.5
there exists t ∈ [1, r] such that if Si occurs in the (s + 1)-sequence Rt coded
by βt, then Sk+i occurs in the (s+ 1)-sequence Rr+t coded by βr+t.

Using Lemma 4.4 we conclude that Rt and Rr+t are built up from s-sequences
(V1, . . . , Vu), (W1, . . . ,Ww) with indices (γ1, . . . , γu), (δ1, . . . , δw), respectively.
Applying Lemma 4.5 for s on these s-sequences we conclude that the number
of s-sequences preceding V1 in (S1, . . . , Sk) equals the number of s-sequences
preceding W1 in (Sk+1, . . . , Sk+l). Furthermore the respective indices are pair-
wise the same.
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We apply IH for s. Hence there exists v ∈ [1, u] such that

δv ≺ γv and δj = γj for all j ∈ [1, v − 1] . (11)

We apply the theorem�setting m = s�successively for the pairs (V1, V2),
(V2, V3), . . . , (Vu−1, Vu) and (W1,W2), (W2,W3), . . . , (Ww−1,Ww). This yields

δw ≺ δw−1 ≺ · · · ≺ δ1 γu ≺ γu−1 ≺ · · · ≺ γ1 . (12)

Putting (11) and (12) together we obtain, using 1 ∈ ω[n] for arbitrary n.

βr+t = ωδ1 + · · ·+ ωδv−1 + ωδv + · · ·+ ωδw

≺ ωγ1 + · · ·+ +ωγv−1 + ωγv � βt .

Hence the theorem follows. 2

Corollary 4.1 The substitution method terminates.

Corollary 4.2 Let T ∈ S be a tautology of the form (4) represented as

A1 ∧ · · · ∧ Am ∧B1 ∧ · · · ∧Bn ⊃ F (f1, . . . , fq) ,

containing the de�ned function symbols f1, . . . , fq. Then there exists a formula
F ?, quanti�er-free, that is free of the de�ned function symbols f1, . . . , fq such
that N |= F ?.

5 Extraction of Bounds

Suppose the technical assumption on the order of the de�ned symbols f1, . . . , fq

can be met. Then any tautology of form (4) in S can be transformed to a true
arithmetical formula F ?, free of de�ned function symbols. However, at the
moment we only know that some functions of �nite support φi are assigned to
the fi. This motivates the question whether we can describe these functions
φi more precisely.

We de�ne a subset of structural tree-ordinals ΩI ⊂ ΩS. Let α ∈ ΩS be given,
then α ∈ ΩI , if either

(1) α = ωa+ b, where α denotes the ordinal index of a substitution, or
(2) α = ωα1 + · · ·+ωαr , where α denotes the ordinal index of an m-sequence.

We call α ∈ ΩI sequence coding, or alternatively say that α codes a sequence.
Let α ∈ ΩI due to case 2, such that α can be written as ωα1 + · · ·+ωαr . Then
each αi codes a sequence and α1 � · · · � αr; this follows from the results of
Section 4.
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We de�ne a function C: Ω → N as follows. Assume α ∈ ΩI , then

C(α) :=

1 if α ∈ ΩI due to Case 1 above ,

C(α1) + · · ·+ C(αr) if α = ωα1 + · · ·+ ωαr and Case 2 holds .

Otherwise, if α 6∈ ΩI , then C(α) := 0.

If α codes an m-sequence R then C(α) measures the number of substitutions
included in the sequence R. Note that C is not a norm in the sense of [19]. It
violates the criteria ∀α∀n Card({β ≺ α : C(β) ≤ n}) ≺ ω.

Let S denote a substitution in the total sequence of substitutions G0,. . . ,Gi,
Gi+1,. . . Suppose the value of a term fj(s) (j = 1, . . . , q) under S is m. By our
assumptions on L the value of any closed term in C can be bounded by an
increasing elementary function g(m). Recall that the set of critical axioms C
is based on the tautology T (n1, . . . , nk), with n := max{n1, . . . , nk}. It follows
by an easy induction that the value of any term t ∈ C with respect to Gi is
less than or equal to gi+1(n).

Recall the de�nition of the binary string assigned to the sequence (6) with
respect to a substitution Gi on page 11. Moreover recall the employed cod-
ing (10) of this string and the de�nition of the index of (6). If t denotes the
critical term, then the length of the sequence (6) employed in the de�nition of
Gi equals z, where t ↪→Gi−1

z. Suppose e denotes the number of terms of the
form fj(s) in C. Then the index with respect to (6) is smaller than 2J(g,i)(n)·e.

Recall that during the substitution method n is not changed, only the evalua-
tion of terms of form fj(s) may change. Let h(a, b)�parameterised in g�be a
primitive recursive function, strictly increasing in both arguments, such that

h(a, b) ≥ max
{
q + 1, 2a+ b+ 1, ga(b), 2J(g,a)(b)·e

}
.

The position of some substitution S in the total sequence G0, . . . , Gi, Gi+1, . . .
is de�ned as the number i, s.t. S = Gi.

Theorem 5.1 Let Sk and Sl be substitutions. Let p denote the position of Sl.
If Sl is progressive over Sk, then either Ord(Sl) ∈ Ord(Sk) [h(p, n)] or Sl+1

is progressive over Sk+1.

Proof. Using Theorem 4.1, we conclude that either Sl+1 is progressive over
Sk+1 or Ord(Sl) ≺ Ord(Sk) holds. In the latter case, it remains to estab-
lish Ord(Sl) ∈ Ord(Sk) [h(p, n)]. We assume the notation of the proof of
Theorem 4.1.

LetOrd(Sk) = ω·ik+jk andOrd(Sl) = ω·il+jl. Either (i) ik > il or (ii) ik = il
and jk > jl, holds. Suppose ik > il; It su�ce to show ω · il + jl ∈ ω · ik [h(p, n)].
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Suppose fp(s) ↪→Sl
z. Using the above observations we see that z ≤ gp+1(n)

holds and therefore jl ≤ h(p, n). Now the claim follows as

ω · il + jl ∈ ω · (ik − 1) + h(p, n) + 1 [h(p, n)] = ω · ik [h(p, n)] .

On the other hand suppose ik = il and jk > jl. Then the theorem follows from
the de�nition of an n-predecessors, see Section 3 2

We �x some notation: Let (S1, . . . , Sk) and (Sk+1, . . . , Sk+l) be two consecutive
m-sequences such that the characteristic number of Sk+1 equals m. Suppose σ
and ρ denotes the ordinal coding the �rst and secondm-sequence. Furthermore
we denote the position of S1 by a ∈ N, a ≥ 0 and set p := a+ C(σ).

Theorem 5.2 Let (S1, . . . , Sk), (Sk+1, . . . , Sk+l) be consecutive m-sequences
as de�ned above. Let α1, α2, . . . , αk+l denote the indices of S1, . . . , Sk, Sk+1,
. . . , Sk+l, respectively. Then there exists i ∈ [1, k], such that αk+i ∈ αi [h(p, n)]
and αk+j = αj for all j ∈ [1, i− 1].

Proof. By Theorem 4.2, we conclude the existence of an i such that αk+i ≺ αi.
It is su�cient to show αk+i ∈ αi [h(p, n)]. We proceed by case-distinction:
Case i = 1. By de�nition C(σ) equals the number of substitutions included
in (S1, . . . , Sk). Hence the position of Sk+1 equals a + C(σ) which equals p.
Applying Theorem 5.1, we obtain αk+1 ∈ α1[h(p, n)].

Case i > 1. Let Si, Sk+i denote the designated substitutions of the two m-
sequences. It follows from Lemma 4.3 that the evaluation for terms fl(s),
l = 1, . . . , q is equal for all pairs (Sj, Sk+j), 1 ≤ j < i. Hence, if A(t, s) ⊃
A(fp(s), s) be the designated critical axiom of Si and Sk+i, then the value |t|
of t under Si−1 (and more importantly with respect to Sk+i−1) is bounded
by ga+i(n), and hence the second component of the index of Sk+i is less than
h(p, n). Applying similar reasoning as in Theorem 5.1 the result follows. 2

We make use of a parameterised Hardy function:

H[g]0(n) := n H[g]α(n) := H[g]Pn(α)(g(n)) .

Note that if g(n) ≤ Hα(n), for some α ≺ ε0, then H[g]β(n) ≤ Hα·β(n). (This
follows by an easy induction on β.) Below we make use of the parameterised
Hardy functions only with respect to the speci�c function h(a, a).

Theorem 5.3 Let (S1, . . . , Sk), (Sk+1, . . . , Sk+l) be consecutive m-sequences,
de�ned as above. For s ∈ [1,m], let (α1, . . . , αr) and (αr+1, . . . , αr+z) denote
the indices of the s-sequences included. Then there exists a t ∈ [1, r] such that
αr+t ∈ αt [H[h]sαt

(p+ n)] and αr+j = αj for all j ∈ [1, t− 1].

Proof. For brevity, we write Hα instead of H[h]α. Using Theorem 4.3 we con-
clude, for any s, the existence of a t such that αr+t ≺ αt. It su�ces to show
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αr+t ∈ αt [Hs
αt

(p + n)]. The Theorem is proven by simultaneous induction on
s; s ≤ m together with the following claim:

Claim 1 Let (T1, . . . , Tp), (Tp+1, . . . , Tp+q) be two consecutive s-sequences,
such that the characteristic number of Tp+1 equals s. Assume λ (µ) denotes
the ordinal coding the �rst (second) s-sequence. Then a+ C(λ) + C(µ) + n ≤
Hs

λ(a+ C(λ) + n).

Base. By Theorem 5.2, we conclude, for some t ∈ [1, r]: αr+t ∈ αt [h(p, n)] and
αr+j = αj for all j ∈ [1, t−1]. This entails αr+t ∈ αt [Hαt(p+n)] as αt 6= 0 and
h(p, n) ≤ h(p+n, p+n) = H1(p+n) ≤ Hαt(p+n). Now consider the claim with
respect to s = 1. Let T1, T2 denote two consecutive 1-sequences, with indices λ,
µ, respectively. By de�nition C(λ) = C(µ) = 1. We can apply the theorem for
s = m = 1 to the pair (T1, T2) to conclude µ ∈ λ [Hλ(a+ C(λ) +n)]; therefore
λ 6= 0. Hence a+ C(λ) + C(µ) + n ≤ h(a+ C(λ) + n, n) ≤ Hλ(a+ C(λ) + n).

Step. Let (α1, . . . , αr), (αr+1, . . . , αr+z) denote the indices of the (s + 1)-
sequences such that αt and α(r+t) code the (s + 1)-sequences that include
the designated substitutions Sk, Sk+i. Let αr = ωγ1 + · · · + ωγu and αr+t =
ωδ1 + · · ·+ ωδw . By induction hypothesis (IH) for s, there exists v ∈ [1, w] s.t.
δv ∈ γv [Hs

γv
(p+ n)]. We show

δv, . . . , δw ∈ γv [Hs+1
αt

(p+ n)] . (13)

Assume (13) and set z := Hs+1
αt

(p + n). Using Lemma 3.2 we conclude that
ωδv + · · ·+ ωδw ∈ ωγv [z]. Using Lemma 3.2 again we obtain

αr+t = ωδ1 + · · ·+ ωδv + · · ·+ ωδw

∈ ωγ1 + · · ·+ ωγv [z]

⊆ ωγ1 + · · ·+ ωγu [z] = αt [z] .

To show (13), we assume that v < w; otherwise it holds trivially. Let a(v+j)

denote the position of the �rst substitution in the s-sequence coded by δ(v+j),
for j ∈ [0, w− v]. Repeated application of the theorem for m = s with respect
to the pairs (δv, δv+1), (δv+1, δv+2), . . ., (δw−1, δw) yields:

δw ∈ δw−1 [Hs
δw−1

(a(w) + n)] ,

...

δv+1 ∈ δv [Hs
δv

(a(v+1) + n)] .

Let j ∈ [1, w − v] and consider (δv+j, δv+j−1). Set b := a + C(α1) + · · · +
C(αr) + C(αr+1) + · · ·+ C(αr+t−1) + C(δ1) + · · ·+ C(δv−1). By application of
IH on Claim 1 for s-sequences we have for all j ∈ [0, w − v − 2]:

a(v+j+2) + n ≤ Hs
δv+j

(a(v+j+1) + n) .
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Repeated application of this inequality for j ∈ [0, w − v − 2] yields:

Hs
δw−1

(a(w) + n) ≤ Hs
δw−1

(· · · (Hs
δv

(b+ C(δv) + n)) · · · ) .

Hence, we obtain for all j ∈ [0, w − v − 1]:

δv+j+1 ∈ δv+j [Hs
δv+j

(· · · (Hs
δv

(b+ C(δv) + n)) · · · )] .

Using Lemma 3.4, Lemma 3.5 and s+ 1 ≤ q + 1 ≤ h(0, 0):

Hs
δw−1

(· · · (Hs
δv

(b+ C(δv) + n)) · · · ) < Hs

ω
δ(w−1)

(· · · (Hs
ωδv (b+ C(δv) + n)) · · · )

≤ H
ω

δ(w−1)+1(· · · (Hs
ωδv (b+ C(δv) + n)) · · · )

≤ Hs+1

ω
δ(w−2)

(· · · (Hs
ωδv (b+ C(δv) + n)) · · · )

≤ Hs+1
ωδv (b+ C(δv) + n) .

Employing δv ∈ γv [Hs
γv

(a + C(σ) + n)], together with c + C(α) ≤ Hα(c) for
α 6= 0 and arbitrary c, and b+ n ≤ 2a+ n ≤ h(a, n), we obtain:

Hs+1
ωδv (b+ C(δv) + n) ≤ Hs+2

ωδv (b+ n) ≤ Hs+2
ωδv (h(a+ C(σ), n))

≤ Hωδv+1(h(a+ C(σ), n))

≤ Hωδv+1(Hs
ωγv (a+ C(σ) + n))

≤ Hs+1
ωγv (a+ C(σ) + n)

≤ Hs+1
αt

(p+ n) .

On the other hand, we have:

Hs
δv

(a+ C(σ) + n) ≤ Hs+1
ωγv (p+ n) ≤ Hs+1

αt
(p+ n) .

This completes the proof of (13). The step case of Claim 1 follows by a general-
isation of the base case, exploiting essentially the same sequence of inequalities
as in the step case for the Theorem. 2

The maximal sequence of substitutions is a (q + 1)-sequence. Suppose α =
ωα1 + · · ·+ωαr codes this sequence. From the proof of Theorem 5.3 we obtain:

C(α1) + · · ·+ C(αr) ≤ H[h]ωα1+1(n) .

This su�ces to bound the value of a substitution instance for a de�ned function
symbol fi elementary in Hωα1+1(n). To estimate α1 we set

ωm := expm−1
ω (ω · (2e + 1)) .

(Recall that e denotes the number of terms fj(s) in C.)

Lemma 5.1 Suppose α codes an m-sequence S1, . . . , Sk. Let p denote the po-
sition of Sk in the maximal sequence R. Then α ∈ ωm [Hm

ωm
(p+ n)].
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Proof. By induction on m using Theorem 5.1 and Theorem 5.3. 2

Theorem 5.4 Let (n1, . . . , nk) be an arbitrary tuple of natural numbers and
n = max{n1, . . . , nk}. Let T (n1, . . . , nk) ∈ S be a closed tautology of the
form (4) represented as

A1 ∧ · · · ∧ Am ∧B1 ∧ · · · ∧Bn ⊃ F (f1, . . . , fq) ,

containing de�ned function symbols f1, . . . , fq only. De�ne

γ =

ωω if q = 1

ωq−1(ω
2) otherwise .

Then there exists a quanti�er-free formula F ?, free of de�ned function symbols
which is true in N such that the function φi substituted for fi is elementary
in Hγ(max{d, n}), where d depends on T only.

Proof. It su�ces to show that each φi is elementary in Hγ(max{d, n}), where
d depends on T only. During the proof we give su�cient criteria to �x this
constant. We need some new ideas to establish the stated bound. We assume
q > 1; the case q = 1 is similar, but simpler. By Theorem 5.3 we have for all
i ∈ [1, r − 1]:

αi+1 ∈ αi [H[h]q·iα1
(C(α1) + n)] ⊆ α1 [H[h]q·iα1

(C(α1) + n)] .

The �rst goal is to �nd a suitable bound for H[h]q·iα1
(C(α1) + n).

H[h]q·iα1
(C(α1) + n) ≤ H[h]q·iα1

(H[h]α1(n))

≤ H[h]q·iα1
(H[h]α1(H[h]qωq

(n)))

By Lemma 5.1 this yields

H[h]q·iα1
(C(α1) + n) ≤ H[h]q·iωq

(H[h]ωq(H[h]qωq
(n)))

≤ H[h]
q·(i+2)
ωq

(n) .

We estimate H[h]qωq
(n): As h is primitive recursive, h(n, n) ≤ Hωl(max{d, n})

for some numbers l and d. (Essentially l = 3 su�ces, if we make sure that d
is greater than e,q and the maximal depth of terms in T .) Using q > 1 and
d ≥ l, q, we see h(n, n) ≤ Hωq(max{d, n}). We obtain:

H[h]qωq
(max{d, n}) ≤ Hq

ωqωq
(max{d, n})

≤ Hω2
qω(max{d, n})

≤ Hω3
q
(max{d, n}) .

For the second inequality we employ ω ∈ ωq[max{d, n}].
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We set δ := ω3
q and obtain H[h]qωq

(n) ≤ Hδ(max{d, n}), which implies α1 ∈
ωq [Hδ(max{d, n})]. Further, we obtain for each i ∈ [1, r − 1]:

H[h]q·iα1
(C(α1) + n) ≤ Hi+2

δ (max{d, n}) . (14)

We establish an upper bound for r, using the following lemma.

Lemma 5.2 Suppose f(n) ≥ n+ 1. Let µx denote the least number operator.
Then

H[f ]α(n) ≥ µk(Pfk(n)Pfk−1(n) · · ·Pn(α) = 0) .

Proof. One proves H[f ]α(n)−n ≥ µk(Pfk(n)Pfk−1(n) · · ·Pn(α) = 0) by induction
on α. 2

By the above lemma and (14), we obtain:

r ≤ µk(PHk+2
δ

(max{d,n}) · · ·PH2
δ
(max{d,n})(α1) = 0)

≤ H[Hδ]α1(H
2
δ(max{d, n})) .

Furthermore

H[Hδ]α1(H
2
δ(max{d, n})) = Hδα1(H

2
δ(max{d, n})) ≤ Hδωq(H

2
δ(max{d, n}))

≤ Hω4
q+ω3

qω(max{d, n}) .

Summing up, we set d ≥ (2e + 1)4 and observe

C(α1) + · · ·+ C(αr) ≤ H[h]q(r−1)
α1

(C(α1) + n)

≤ Hr+1
δ (max{d, n})

≤ HδωHω4
q+ω2

qω(max{d, n})
≤ Hω4

q+ω4
q+ω3

qω(max{d, n})
≤ Hωq(ω2)(max{d, n}) = Hγ(max{d, n}) .

Hence, the complexity of the Substitution Method is bounded by Hγ. We
conclude, by similar considerations, that the value of a substitution instance
for any de�ned function symbol is bounded by

Hωq−1(ω2)(max{d, n}) .

Finally we set w := Hγ(max{d, n}). By de�nition of the substitution method,
we obtain

φi(n1, . . . , nl) = µx≤wA(n1, . . . , nl, x) ,

for some elementary relation A. As bounded minimisation is elementary, φi is
elementary in Hγ. 2
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Theorem 5.4 solves the problem (?) posed in Section 1. It is easy to see that
the employed machinery can be used also for a `weaker' set of tautologies. We
de�ne a strict subset S ′ ⊂ S in a similar fashion as the set of tautologies S.
However no reverence is made to a critical axiom of 2nd kind. This change
allows us to alter the de�nition of substitution step.

The initial substitution S0 assigns to all function symbols f1, . . . , fq the con-
stant function 0. Suppose i substitutions have already be constructed. Let the
critical axioms in C be ordered in some arbitrary way. The �rst critical axiom

A(t, s) ⊃ A(fp(s), s) ,

having truth value false is picked. Suppose t ↪→Gi
z, hence A(z, s) is true in

N . The de�nition of the function ψ replacing the old instantiation φ for fp

becomes

ψ(m1, . . . ,ml) =

φ(m1, . . . ,ml) m1, . . . ,ml 6= n1, . . . , nl ,

z m1, . . . ,ml = n1, . . . , nl ,

where s ↪→Gi
n.

The whole purpose of the index with respect to the sequence of formulas (6) is
to control the respective part in the de�nition of substitution. Hence this index
is not necessary, as no critical axioms of 2nd kind are present. This implies
that the ordinal assigned to an arbitrary substitution is a natural number less
than 2e, where e is the maximum number of terms fi(s1, . . . , sl) in C. Based
on this observation we can change the appropriate de�nitions and prove the
key theorems for the restriction set of tautologies S ′.

Theorem 5.5 Let T (n1, . . . , nk) ∈ S ′ be a closed tautology of the form

A1 ∧ · · · ∧ Am ∧B1 ∧ · · · ∧Bn ⊃ F (f1, . . . , fq) ,

containing de�ned function symbols f1, . . . , fq.

Then there exists a quanti�er-free formula F ?, free of de�ned function sym-
bols true in N such that the functions φi substituted for fi are elementary in
J(g,Gγ(1))(n), γ < ε0 and n = max{n1, . . . , nk}.

6 Peano Arithmetic coached in the ε-calculus

In this section the formal system PA(ε) is de�ned. The formalisation is chosen
in such a form that the results of Section 4 and Section 5 can immediately be
applied for PA(ε). In Section 7 we give an embedding of PA, into PA(ε). Our
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formalisation of Hilbert's ε-calculus and thus the axiomatisation of number
theory is based on a Tait-style calculus.

Hilbert's ε-calculus centres around an extension of the basic �rst-order lan-
guage L by the ε-symbol. We extend the de�nition of terms to include ε-terms.
The extended language is called L(ε).

If A(a) is a formula, not containing the bounded variable x, then the ε-term
εxA(x) is a term. If on the other hand x does occur at positions p1, . . . , pk in
A(a), we obtain a variant A′ by replacing x at pi for all i ∈ [1, k] by some
other distinct bound variable y not already occurring in A. The variant A′ is
then used to form the ε-term εxA

′(x). If εyA(y) is obtained from the expression
εxA(x) by changing bound variables, as just described, then we call this change
admissible. Two expressions are called congruent if one can be obtained from
the other by a sequence of admissible changes of bound variables. Congruent
expressions are considered to be equal.

A term εxA(x) is an ε-matrix�or simply a matrix�if all terms occurring in A
are free variables each of which occurs exactly once. Clearly no expression in
A(x) containing x can be a term. We denote ε-matrices as εxA(x; a1, . . . , ak)
with the understanding that only the variables a1, . . . , ak occur and these are
fully indicated. ε-matrices that di�er only in the indicated tuples of variables
are considered to be equal. LetE be some expression; a matrix εxA(x; a1, . . . , ak)
is said to occur in E if there exists a list of terms or semi-terms s1,. . .,sk such
that εxA(x; s1, . . . , sk) occurs in E. The rank of a matrix e (written rank(e))
is de�ned inductively: If no matrix occurs inside e then rank(e) := 1. Assume
we already assigned ranks r1, . . . , rl to the l matrices occurring in e. Then
rank(e) := max{r1, . . . , rl}+ 1.

Corresponding to each term εxA(x) there exists a unique matrix e: The matrix
e is obtained by �rst replacing all maximal subterms occurring in εxA(x) by
new free variables. In this newly obtained term we replace distinct occurrences
of the same variable by di�erent variables. The rank of an ε-term, written as
rank(εxA(x)), is the rank of its matrix.

Example 6.1 Suppose f, g denote binary function symbols; a, b, x, y ∈ V. The
rank of the ε-terms εx{εy(f(x, y) = εz(g(x, z) = a)) = b} and εx{εy(f(x, y) =
εz(g(y, z) = a)) = b} is 2 and 3, respectively. The given ε-terms constitute
their one ε-matrices.

Note that the rank of εxA(x) can be lower than the rank of one of its sub-
terms, i.e., the term depth of an ε-term is not necessary a bound for the rank,
see [3, 4, 20] for further examples.

Based on the language L(ε), we de�ne PA(ε) as a Tait-style sequent calculus.
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A sequent is a line of the form

` A1, . . . , An ,

where each Ai is a formula. We conceive the line A1, . . . , An as a set of formulas.
The logical axioms of PA(ε) have the form ` ¬A,A and

` ¬A(t), A(εxA(x)) , (15)

where t is an arbitrary term (over L(ε)). The identity axioms are de�ned
by suitable reformulation of the identity axioms in Table 2, together with
instances of the following axiom of ε-identity:

` b 6= c, εxA(x; a1, . . . , b, . . . , al) = εxA(x; a1, . . . , c, . . . , al) , (16)

where εxA(x; a1, . . . , al) denotes a representative of an ε-matrix of arity l.
The logical rules and structural rules of PA(ε) are Tait-style formulations of
the usual rules of the propositional fragment of predicate logic, see e.g. [21].
As non-logical axioms we employ (sequent reformulations of) the weak arith-
metical axioms of Table 1 together with an axiom of induction. To formalise
induction, the non-logical axiom

` ¬A(t), εxA(x) ≤ t (Min) , (17)

is included, where A is an arbitrary formula in L(ε). This completes the
de�nition of PA(ε). Within PA(ε) quanti�ers become de�nable: ∃xA(x) :⇔
A(εxA(x)) and ∀xA(x) :⇔ A(εx¬A(x)), compare [20].

Let Π be a derivation in PA(ε) of ` A and suppose e1, . . . , eq denote the
ε-matrices of the ε-terms occurring in Π; let this sequence be �xed. The set
of critical axioms C includes all critical axioms of the form (15) and (17).
(We have already seen in Section 4 that the axioms of ε-identity need not
be considered.) It is easy to see that the set of critical axioms C de�ned for
a given proof in PA(ε) is a specialisation of the set of critical axioms of the
system S. Moreover it is clear that any proof Π in PA(ε), yields a tautology T
which has the form studied in Section 4 and Section 5. The role played by the
de�ned function symbols f1, . . . , fq is taken up by the ε-matrices e1, . . . , eq.

De�nition 6.1 We assume the following order on the e1, . . . , eq. Matrices of
lower rank precede those of higher rank. It follows that ej cannot occur in ei

for i < j. We make the additional assumption that if ej is contained in the
sequence, all matrices occurring in ej are included in the sequence as well.

It is easy to see that this order meets the technical assumption employed above
on the order of the de�ned symbols f1, . . . , fq.

A function f is provably recursive in PA(ε), if there exists a primitive re-
cursive predicate P and a primitive recursion function g such that PA(ε) `
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∀y1 · · · ∀yk∃xP (y1, . . . , yk, x) and f satis�es

f(n1, . . . , nk) = g(µxP (n1, . . . , nk, x)) ,

where µx denotes the least number operator. For each α ≺ ε0, let the Hardy
class H be the smallest class of functions containing 0, S, all Hα, all projec-
tion functions In,i(a1, . . . , an) = ai, and closed under primitive recursion and
composition.

Corollary 6.1 H is the class of all provably recursive functions in PA(ε).

Proof. We will not give a full proof but restrict our attention to show that
the class of provably recursive functions of PA(ε) is contained in H. The other
inclusion follows by the standard argumentation, cf. [8], employing the embed-
ding of PA into PA(ε), shown in the next section. Making use of Theorem 5.4
we obtain a characterisation of the provably recursive functions in PA(ε). Let
f be a function provably recursive in PA(ε) with proof Π. Then we can char-
acterise f constructively. In the notations of Theorem 5.4.

f(n1, . . . , nk) = µx≤H(n1,...,nk)P (n1, . . . , nk, x) ,

where H(a1, . . . , ak) abbreviates Hγ(max{d, a1, . . . , ak}), where γ < ε0 and d
depends on Π only. 2

7 Embedding Peano Arithmetic into PA(ε)

We formalise PA in the form of a Tait-style sequent calculus. The language of
PA is denoted as L(PA). The logical axioms of PA have the form ` ¬A,A. The
identity axioms are given through a reformulation of the axioms in Table 2,
while the logical rules and structural rules of PA are the usual rules of predicate
logic, formulated in a Tait-style calculus, cf. [21].

This completes the de�nition of the logical system. To formalise Peano Arith-
metic completely, it su�ces to add induction, and sequent formulations of
the weak arithmetical axioms in Table 1. Instead of the usual mathematical
induction principle we include an equivalent principle of order induction.

` Γ,¬∀y(y < a ⊃ A(y)), A(a)

` Γ, A(t)
(Ind) ,

where a ∈ V does not occur free in Γ and t is an arbitrary term. It remains to
establish the embedding of usual PA into PA(ε). For any formula A in L(PA),
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we de�ne a formula A+ in L(ε):

A+ := A if A is an atomic formula ,

(A�B)+ := A+ �B+ for � ∈ {∧,∨} ,
(∃x A(x))+ := A+(εxA

+(x)] ,

(∀x A(x))+ := A+(εx¬A+(x)) .

Using the translation A+ we are able to show

Theorem 7.1 (1) If PA ` A, then PA(ε) ` A+

(2) If PA ` A, such that A is a closed formula, then there exists a PA(ε)-
derivation Π+ of A+ such that var(Π+) = ∅.

Proof. See [9] for a proof. 2

Finally we obtain the following result as a corollary of Theorem 7.1 and Corol-
lary 6.1. This theorem has �rst been proved in [22], see also [8].

Corollary 7.1 H is the class of all provably recursive functions in PA.

8 Conclusion and Further Work

Through the gained direct characterisation of the class of provably recursive
functions of PA(ε), we can extract the content of proofs of purely existen-
tial formulas. Let ∃xA(c, x) be a closed Σ1-formula. Suppose PA(ε) proves
∃xA(c, x))+ with a derivation Π. The results of Section 5 allow us to pin-
down, depending on information gathered from Π, numbers n1, . . . , nl such
that A(c, n) is true in the standard-model N .

The di�erence from usual Gentzen-style proof theory is that we need not
consider the whole proof Π. It su�ces to consider the set of critical axioms C
occurring in Π. Following Ackermann's approach it seems natural to count the
number of employed ε-matrices to measure the length of the proof Π. However,
a close look at the results of Sections 4 and 5 shows that we can employ the
following de�nition. We write Π ` A to denote derivability of A (with a proof
Π) in PA(ε).

De�nition 8.1 The length of Π such that Π ` A is de�ned as the maximal
rank of ε-matrices r in Π. We write Π `r A.

This becomes possible, if we suitably change the de�nition of the characteristic
number :
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De�nition 8.2 Let S be a substitution di�erent from the initial one, and let r
denote the maximal rank of an ε-matrix occurring in C. Suppose l is maximal
such that l = rank(ei) and ei denotes an ε-matrix that is assigned a function
di�erent from the constant function 0 under S. Then the characteristic number
of S is r + 1 − l. In the case where S denotes the initial substitution its
characteristic number is de�ned as r + 1.

Although the de�nition of a characteristic number is central, all results of
Sections 4 and 5 remain valid, when reformulated appropriately. We say a
formula A ∈ L(ε) is true at n, if there exists an ε-substitution instance A? of
A such that all substitution instances of ε-terms occurring in A are bounded
by n. In summary we obtain the following proposition.

Proposition 8.1 (Bounding Lemma) Let ∃xA(c, x) be a closed Σ1-formula.
Suppose Π `r (∃xA(c, x))+. Then we have (∃xA(c, x))+ is true at Hγ(n), for
n large enough, where

γ =

ωω if r = 1

ωr−1(ω
2) otherwise .

An open problem is to relate our characterisation result of the provably re-
cursive functions to the one obtained by Tait in [17, 9] and to Avigad [10].
As already mentioned the substitution method has recently received renewed
attention. In particular, in [12] Arai observed a speci�c feature of Ackermann's
proof. The construction used to prove the 1-consistency of PA(ε) can be em-
ployed to de�ne an ordinal notation system. It turns out that this notation
system has been reinvented much later by K. Schütte and S. Simpson for an
investigation on independence results [23]. This is of interest as the latter
can be shown to be equivalent to the algebraically motivated notation system
introduced by Beklemishev [24].
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