Ackermann's Substitution Method (remixed) ${ }^{1}$

Georg Moser
University of Innsbruck, Computational Logic
Technikerstraße 21a
A-6020 Innsbruck, Austria

Abstract

We aim at a conceptually clear and technically smooth investigation of Ackermann's substitution method: W. Ackermann (Mathematische Annalen, 117:162-194, 1944). Our analysis provides a direct classification of the provably recursive functions of $\operatorname{PA}(\varepsilon)$, i.e. Peano Arithmetic framed in the ε-calculus.

Key words: Epsilon substitution method, Provably recursive functions. 1991 MSC: 03F30, 03F05, 03F15

1 Introduction

A classification of the provably recursive functions of Peano Arithmetic (PA) in terms of Kreisel's class of ordinal recursive functions was suggested in [1]. This class can in turn be characterised by hierarchies of number-theoretic functions defined by transfinite recursion up-to the ordinal ε_{0}, cf. [2]. Kreisel's solution of the classification problem for the provably recursive function of PA is based on Ackermann's consistency proof of arithmetic [3], framed in Hilbert's ε-calculus.

Hilbert's ε-calculus $[4,5,6]$ is based on an extension of the language of predicate logic by a term-forming operator ε_{x}. This operator is governed by the critical axiom

$$
A(t) \supset A\left(\epsilon_{x} A(x)\right),
$$

where t is an arbitrary term. Within the ε-calculus quantifiers become definable by $\exists x A(x) \Leftrightarrow A\left(\epsilon_{x} A(x)\right)$ and $\forall x A(x) \Leftrightarrow A\left(\epsilon_{x} \neg A(x)\right)$. The expression $\epsilon_{x} A(x)$ is called ε-term.

[^0]When considering arithmetical systems the ε-substitution method [3, 4] provides an analogue to Gentzen's famous extension [7, 8] of his cut-elimination method. Tait [9] describes the substitution method as the general problem of associating with a formal system S, admitting quantifiers, a free-variable system S^{\star} without quantifiers and to give an effective procedure of transforming statements A in (the language of) S into statements A^{\star} in (the language of) S^{\star}. Assume S proves A, then the transform of A is to be an ε-substitution instance A^{\star} of A. It is obtained by replacing ε-terms by terms in the language of S^{\star}. For Peano Arithmetic coached in the ε-calculus, this procedure of eliminating bounded variables from arbitrary proofs, is sufficient to establish consistency (and even 1-consistency). The difficult part is to show that the substitution method terminates.

Let $\mathrm{PA}(\varepsilon)$ denote Peano arithmetic framed in the ε-calculus. Based on Gentzen's work, revealing the role played by transfinite induction up to ε_{0}, Ackermann [3] presented a constructive termination proof of the substitution method for $\mathrm{PA}(\varepsilon)$. As an important achievement he defined functions, ordinal recursive in ε_{0}, that bound the complexity of the transformation procedure. ${ }^{2}$ It is a direct consequence of Ackermann's proof, firstly observed by Kreisel [1], that the provably recursive functions of PA are primitive recursive in some $\prec \epsilon_{0^{-}}$ recursive functions. Thus [3] renders a Π_{2}^{0}-analysis of PA and establishes 1consistency of PA; see also [10].

We analyse Ackermann's solution and in particular the given complexity analysis of the substitution method. In our presentation we follow the original treatment closely. The novelty being that we are able to measure the complexity of the substitution method directly in terms of the fast-growing Hardy hierarchy (see [11]), i.e., functions from the Hardy hierarchy replace the specific ordinal recursive functions-seemingly ad-hoc defined-employed in [3]. Thus we show that any provably recursive function of $\mathrm{PA}(\varepsilon)$ can be elementarily defined in some $\mathrm{H}_{\alpha}, \alpha \prec \varepsilon_{0}$ and therefore the class of provably recursive functions of $\operatorname{PA}(\varepsilon)$ equals the Hardy class \mathcal{H}. The same machinery is applied to characterise the provably recursive functions of a weak arithmetic theory without induction axiom (or rule); here the Hardy hierarchy can be replaced by the slow-growing hierarchy. We have replaced the set-theoretical ordinals employed in Ackermann's proof by (structured) tree-ordinals.

The reader may wonder why we have based our investigation on the originalquite old-treatment of the substitution method; the work by Arai [12, 13], Avigad [10], Buchholz, Mints, and Tupailo [14], Mints [15, 16], and Tait [17, 9] spring to mind as more adequate starting points. However, to our surprise, it turned out that once we understood how to replace Ackermann's original repre-

[^1]sentation and codings of (set-theoretical) ordinals by structured tree-ordinals, the desired results followed quite easily. Thus by changing the employed ordinal notation we can establish the direct characterisation result, but still follow the original presentation closely enough to render a modern presentation of Ackermann's ideas.

In contrast to Gentzen-style proof theory by cut-elimination the substitution method is less dependent on the structure of a given derivation in S. We employ this fact to separate the actual substitution method and the ε-calculus. This allows us to make an abstract assessment of the transformation procedure incorporated in the substitution method apart from the ε-calculus trade. In the next section we define a class of tautologies \mathcal{S} and we re-formulate the problem of the substitution method accordingly. Only after we have studied the behaviour of the transformation procedure with respect to the class \mathcal{S} in some detail, we relate our findings to a suitable axiomatisation of Peano arithmetic in the ε-calculus and thus obtain the main result of this work.

2 The formal system \mathcal{S}

We assume an arbitrary but fixed language \mathcal{L} of arithmetic, such that \mathcal{L} does not contain quantifiers. Instead of including \neg as a logical connective, negation is defined by asserting that atomic formulas $R\left(t_{1}, \ldots, t_{n}\right)$ occur in complementary pairs $\bar{R}\left(t_{1}, \ldots, t_{n}\right)$. Note that $\bar{R}(\ldots):=R(\ldots)$. In this sense the classical double negation law becomes a syntactic equality. Using de Morgan's laws this definition is lifted to the general level.

It is notationally convenient to distinguish between bound (x, y, z, \ldots) and free variables (a, b, c, \ldots), respectively. Bound variables are collected in the set BV, while free variables are collected in the set FV ; we set $\mathcal{V}:=\mathrm{FV} \cup \mathrm{BV}$. Terms in \mathcal{L} are constructed from constants, free variables, and function symbols as usual. Semi-terms are like terms but may also contain bound variables. Formulas are defined with the proviso that only bound variables are allowed to be quantified and only free variables may occur free. Semi-formulas are similar to formulas with the exception that both free and bound variables may occur free in a semi-formula. An expression is either a (semi-)term or a (semi-)formula.

We use the metasymbols f, g, h, \ldots to denote function symbols, while the metasymbols P, Q, R, \ldots vary through predicate symbols. We write $\operatorname{ar}(f)$ $(\operatorname{ar}(P))$ to denote the arity of a function (predicate) symbol $f(P)$. Within this text we are eager to use only the symbols k, l, m, n, p, q as denotations of natural numbers. Deviations from this convention will be clearly marked. We write $[1, n]$ to denote the interval of natural numbers from 1 to n. Occasionally we abbreviate tuples of terms $\left(t_{1}, \ldots, t_{n}\right)$ as \bar{t}. The length of the tuple will
always be clear from the context.
We need not be very specific on atoms, however we assume that in the standardmodel (\mathcal{N})

$$
\left\langle\mathbb{N}, 0, S, \ldots, R_{j}^{\mathbb{N}}, \ldots\right\rangle
$$

they are to be interpreted as elementary relations. ${ }^{3}$ With respect to the specific atomic formulas that we will encounter below, this requirement is met; S denotes the successor function.

A substitution σ-denoted as $\left\{a_{1} \mapsto t_{1}, \ldots, a_{n} \mapsto t_{n}\right\}$-is a mapping from the set of variables to the set of terms such that $\sigma\left(a_{i}\right)=t_{i}$ and $\sigma(a)=a$, for almost all a. Let A be a formula and t_{1}, \ldots, t_{n} terms. If there exists a formula B and n distinct variables a_{1}, \ldots, a_{n} s.t. A is equal to $B\left\{a_{1} \mapsto t_{1}, \ldots, a_{n} \mapsto t_{n}\right\}$ then for each $i \in[1, n]$, the occurrences of t_{i} in A resulting from this replacement are said to be indicated in A. This fact is also expressed (less accurately) in writing B as $B\left(a_{1}, \ldots, a_{n}\right)$ and A as $B\left(t_{1}, \ldots, t_{n}\right)$. We say that a term t is fully indicated in A if every occurrence of t in A can be obtained by such an replacement (from some formula $B, n=1$ and $t=t_{1}$), cf. [8]. It is easy to see how this notion is generalised to arbitrary expressions.

Below we introduce a set of quasi-tautologies, denoted as \mathcal{S}, based on an extensions $\mathcal{L}^{\text {ext }}$ of the language \mathcal{L} by new function symbols f_{1}, \ldots, f_{q} of fixed arity. The arity of a function symbol f is denoted as $\operatorname{ar}(f)$. Each such function symbol f_{i} will be called defined. Before we can define the class of quasi-tautologies \mathcal{S} precisely, we have to introduce specific quantifier-free formulas, which will be present in all studied quasi-tautologies and govern the defined functions symbols.

The definition formulas for $f_{i}, \operatorname{ar}\left(f_{i}\right)=l$, are substitution instances of

$$
\begin{equation*}
A\left(t, s_{1}, \ldots, s_{l}\right) \supset A\left(f_{i}\left(s_{1}, \ldots, s_{l}\right), s_{1}, \ldots, s_{l}\right) \tag{1}
\end{equation*}
$$

where A is quantifier-free. By $A\left(f_{i}(\bar{s}), \bar{s}\right)$ we denote the replacement of the indicated occurrences of t in $A(t, \bar{s})$ by $f_{i}(\bar{s})$. The term t is called critical.

Furthermore we want to express that the defined function symbols fulfil certain minimality constraints. To that avail we consider instances of

$$
\begin{equation*}
A\left(t, s_{1}, \ldots, s_{l}\right) \supset f_{i}\left(s_{1}, \ldots, s_{l}\right) \leq t \tag{2}
\end{equation*}
$$

for each defined f_{i}. This formula is called second definition formula or minimality formula for f_{i}.
${ }^{3}$ A function f is called elementary (in a function g) if f is definable explicitly from $0,1,+, \cdot, \doteq$ (and g), using bounded sum, and product. The elementary functions are collected in the class Elem. A predicate is elementary, if its characteristic function is.

As we want \leq to be interpreted in its usual sense, we need the presence of formulas defining basic relations between terms. Thus we will employ substitution instances of the weak arithmetical axioms given in Table 1.

Table 1
Arithmetical axioms

$$
\begin{array}{llll}
\text { N1. } & \mathrm{S}(s) \neq 0 & \text { N6. } & s \cdot \mathrm{~S}(t)=(s \cdot t)+s \\
\text { N2. } & \mathrm{S}(s)=\mathrm{S}(t) \supset s=t & \text { N7. } & s \nless 0 \\
\text { N3. } & s+0=s & \text { N8. } & s<\mathrm{S}(t) \Leftrightarrow s \leq t \\
\text { N4. } & s+\mathrm{S}(t)=\mathrm{S}(s+t) & & \\
\text { N5. } & s \cdot 0=0 & &
\end{array}
$$

To deal properly with equality, instances of the axioms given in Table 2 have to be considered, together with instances of the following identity formulas

$$
\begin{equation*}
s=t \supset f_{i}\left(u_{1}, \ldots, u_{i-1}, s, u_{i+1}, \ldots, u_{l}\right)=f_{i}\left(u_{1}, \ldots, u_{i-1}, t, u_{i+1}, \ldots, u_{l}\right) . \tag{3}
\end{equation*}
$$

for all defined function symbols f_{i}.
Table 2
Identity axioms

$$
\begin{aligned}
E 1 . & s=s \\
E 2 . & s=t \supset g\left(u_{1}, \ldots, u_{i}, s, u_{i+1}, \ldots, u_{l}\right)=g\left(u_{1}, \ldots, u_{i}, t, u_{i+1}, \ldots, u_{l}\right) \\
& \text { if } g \in \mathcal{L} \text { and } \operatorname{ar}(f)=l \\
E 3 . & s=t \supset R\left(u_{1}, \ldots, u_{i}, s, u_{i+1}, \ldots, u_{l}\right) \supset R\left(u_{1}, \ldots, u_{i}, t, u_{i+1}, \ldots, u_{l}\right) \\
& \text { if } R \in \mathcal{L} \text { and } \operatorname{ar}(R)=l
\end{aligned}
$$

Finally we are in a position to give the definition of the class of quasi-tautologies \mathcal{S}.

Suppose $T \in \mathcal{L}^{\text {ext }}$ is a quasi-tautology which can be written in the form

$$
\begin{equation*}
A_{1} \wedge \cdots \wedge A_{m} \wedge B_{1} \wedge \cdots \wedge B_{n} \supset F \tag{4}
\end{equation*}
$$

such that each A_{i} is an instance of formulas of the form (1)-(3), while each B_{i} is an instance of the axioms given in Table 1 or Table 2. Then T belongs to the class \mathcal{S} and no formula which cannot be defined in this way belongs to \mathcal{S}.

In this abstract setting the substitution method can be reformulated as the following problem.

Can we (effectively) replace the defined function symbols in F by functions $\mathbb{N}^{n} \rightarrow \mathbb{N}$ such that the resulting formula F^{\star} is valid in the standard-model \mathcal{N}.

Firstly assume that only instances of the axioms given in Table 1 or Table 2 are present as assumptions in a tautology $T \in \mathcal{S}$. Then $\mathcal{N} \models B_{i}$ for all $i=1, \ldots, n$ and we obtain $\mathcal{N} \models F$. Hence, to solve the problem it is sufficient to define an assignment Ψ of defined functions such that Ψ transforms each A_{i} to a true arithmetical formula. Moreover it is sufficient to concentrate on those defined function symbols that actually occur in $A_{i}(i=1, \ldots, m)$: Assume these form a proper subset of all occurring defined function symbols in T and we are given an assignment Ψ of functions for this subset: Such an assignment is extended by assigning to all other function symbols the constant function 0 .

The formulas (1)-(3) are called critical axioms. If we need to distinguish between them, then axioms of the form (1) will be called critical axioms of first kind, axioms of form (2) will be called minimality axioms or critical axioms of second kind, and the axioms of form (3) will be called critical identity axioms.

Suppose $T\left(a_{1}, \ldots, a_{k}\right) \in \mathcal{S}$ is arbitrary but fixed and all free variables in T are indicated. Let $\left(n_{1}, \ldots, n_{k}\right)$ be an arbitrary tuple of natural numbers and $n=$ $\max \left\{n_{1}, \ldots, n_{k}\right\}$. In the sequel, we consider the quasi-tautology $T\left(n_{1}, \ldots, n_{k}\right)$. The set of critical axioms A_{i} occurring in T is denoted by \mathcal{C}. W.l.o.g. we denote the set of defined function symbols occurring in \mathcal{C} by

$$
f_{1}, f_{2}, \ldots, f_{q}
$$

and assume that $f_{i}(i=1, \ldots, q)$ always refers to a defined function symbol. Note that during the substitution method n is not changed, as only the evaluation of terms of form $f_{j}(\bar{s})$ may change.

We assume the sequence of function symbols to be ordered in a suitable way. Let f_{i} be governed by a critical axiom of the form

$$
A(r(t), \bar{s}) \supset A\left(r\left(f_{i}(\bar{s})\right), \bar{s}\right) .
$$

If u with leading function symbol f_{j} occurs in $r(a)$, then we assume that f_{j} precedes f_{i} in the chosen order, i.e. $j<i$ holds.

Remark 2.1 At the time being, we cannot decide whether a total order on the defined function symbols exits, fulfilling the requirement. We will see later that this assumption can be met, when we apply the abstract method to $\operatorname{PA}(\varepsilon)$, where the defined function symbols will be replaced by ε-matrices, see Section 6 .

3 Structured Ordinals

We use 'structured' ordinals in the treatment of the substitution method. By a 'structured' countable ordinal, we mean an ordinal with an arbitrary but
fixed fundamental sequence $\left\langle\lambda_{x}\right\rangle_{x \in \mathbb{N}}$ for any limit λ. We follow [11] in our presentation. For proofs of Lemmas and Propositions of this section see [11]. The set Ω of countable tree-ordinals is inductively defined as (i) $0 \in \Omega$, (ii) $\alpha \in \Omega$ implies $\alpha+1:=\alpha \cup\{\alpha\} \in \Omega$, and (iii) $\forall x \in \mathbb{N}\left(\alpha_{x} \in \Omega\right)$ implies $\alpha:=\left\langle a_{x}\right\rangle_{x \in \mathbb{N}} \in \Omega$. We use lower case Greek letters $\alpha, \beta, \gamma, \lambda, \ldots$ to denote tree-ordinals (with the exception of ε and μ). We use the convention that λ always denotes a limit: $\lambda:=\left\langle\lambda_{x}\right\rangle_{x \in \mathbb{N}}$. Alternatively, we write $\lambda=\sup \lambda_{x}$.

The order \prec on tree-ordinals is defined according to the rules (for $\alpha, \lambda \in \Omega$). (i) $\alpha \prec \alpha+1$, and (ii) $\lambda_{m} \prec \lambda$, for all $m \in \mathbb{N}$. Note, that \prec constitutes a partial order. We identify $n \in \mathbb{N}$ with $0+\overbrace{1+\cdots+1}^{n-\text { times } 1}$. We define $\omega_{0}:=\sup \langle x\rangle$; $\omega:=\sup \langle 1+x\rangle$. Clearly ω_{0} and ω are \prec-incomparable.

Let $n \in \mathbb{N}, \alpha, \lambda \in \Omega$. The finite set $\alpha[n]$ of n-predecessors of α is recursively defined. (i) $0[n]:=\emptyset$, (ii) $(\alpha+1)[n]:=\alpha[n] \cup\{\alpha\}$, and (iii) $\lambda[n]:=\lambda_{n}[n]$. The immediate n-predecessor of α, the \prec-maximal element of $\alpha[n]$, if $\alpha[n] \neq \emptyset$, is denoted by $P_{n}(\alpha)$. (If $\alpha[n]=\emptyset$, then $P_{n}(\alpha):=0$.) The set of structured tree-ordinals Ω^{S} consists of all $\alpha \in \Omega$ such that $\forall \lambda \preceq \alpha, x \in \mathbb{N} \lambda_{x} \in \lambda[x+1]$.

Lemma 3.1 For every $\alpha \in \Omega^{S}$ we have (i) $\alpha[0] \subseteq \cdots \subseteq \alpha[n] \subseteq \alpha[n+1] \subseteq \cdots$, (ii) $\beta \prec \alpha$ iff $\beta \in \alpha[n]$ for some $n \in \mathbb{N}$, and (iii) $\beta \in \alpha[n]$ implies $\beta[n] \subset \alpha[n]$.

Addition, multiplication and exponentiation on Ω are defined in the obvious way.

$$
\begin{array}{lll}
\alpha+0:=\alpha & \alpha+(\beta+1):=(\alpha+\beta)+1 & \alpha+\lambda:=\sup \left(\alpha+\lambda_{x}\right), \\
\alpha \cdot 0:=0 & \alpha \cdot(\beta+1):=(\alpha \cdot \beta)+\alpha & \alpha \cdot \lambda:=\sup \left(\alpha \cdot \lambda_{x}\right), \\
\alpha^{0}:=1 & \alpha^{\beta+1}:=\alpha^{\beta} \cdot \alpha & \alpha^{\lambda}:=\sup \left(\alpha^{\lambda_{x}}\right) .
\end{array}
$$

We need to know that these operations are well-defined on (structured) treeordinals. This is accomplished by the following two lemmas.

Lemma 3.2 Let α, β, and $\gamma \in \Omega$. Then $\gamma \in \beta[n]$ implies (i) $\alpha+\gamma \in(\alpha+\beta)[n]$, (ii) $\alpha \cdot \gamma \in(\alpha \cdot \beta)[n]$ if $0 \in \alpha[n]$, and (iii) $\alpha^{\gamma} \in \alpha^{\beta}[n]$ if $1 \in \alpha[n]$.

Lemma 3.3 Let α, β, and $\gamma \in \Omega$. Then $\alpha, \beta \in \Omega^{S}$ implies (i) $\alpha+\beta \in \Omega^{S}$, (ii) $\alpha \cdot \beta \in \Omega^{S}$ if $0 \in \alpha[n]$, and (iii) $\alpha^{\beta} \in \Omega^{S}$ if $1 \in \alpha[n]$.

We usually drop the brackets in $(\alpha+\beta)[n],(\alpha \cdot \beta)[n]$, respectively and write $\alpha+\beta[n], \alpha \cdot \beta[n]$, instead. Clearly $\omega_{0}, \omega \in \Omega^{S}$. Simple applications of the lemmas gives: If $\alpha_{1}, \ldots, \alpha_{r} \in \Omega^{S}$, then $\omega^{\alpha_{1}} \cdot n_{1}+\cdots+\omega^{\alpha_{r}} \cdot n_{r}$ is structured. We obtain that $\omega^{\alpha}[n]$ contains all ordinals of the form

$$
\omega^{\beta_{1}} \cdot m_{1}+\omega^{\beta_{2}} \cdot m_{2}+\cdots+\omega^{\beta_{k}} \cdot m_{k}
$$

such that $\beta_{1} \succ \cdots \succ \beta_{k}$ and $\beta_{i} \in \alpha[n]$, furthermore $m_{i} \leq n$. We define
$\exp _{\alpha}(\beta):=\alpha^{\beta}$ and the n-iterate of that $\left.\exp _{\alpha}^{n}(\beta):=\alpha^{\alpha^{\alpha^{\beta}}}\right\}^{n-\text { times } \alpha}$. We define $\varepsilon_{0}:=\sup \left(1, \omega, \omega^{\omega}, \ldots\right)$; clearly $\varepsilon_{0} \in \Omega^{S}$. Moreover $\alpha \prec\left(\varepsilon_{0}\right)_{n}$ iff α can be written in Cantor normal form $\omega^{\beta_{1}} \cdot m_{1}+\omega^{\beta_{2}} \cdot m_{2}+\cdots+\omega^{\beta_{k}} \cdot m_{k}, \beta_{k} \prec \beta_{k-1} \prec$ $\cdots \prec \beta_{1} \prec\left(\varepsilon_{0}\right)_{n-1}$.

For each unary function f, f^{n} denotes its $n^{t h}$ iterate, defined by $f^{0}(a)=$ $a, f^{n+1}(a)=f\left(f^{n}(a)\right)$. Sometimes we use the operator J to denote the $n^{\text {th }}$ iteration of f. Then $f^{n}(a)$ is written $J(f, n)(a)$.

We define three subrecursive hierarchies of number-theoretic functions. We start with the slow-growing functions

$$
\mathrm{G}_{0}(n):=0 \quad \mathrm{G}_{\alpha}(n):=\mathrm{G}_{P_{n}(\alpha)}(n)+1
$$

The Hardy functions are defined as follows

$$
\mathrm{H}_{0}(n):=n \quad \mathrm{H}_{\alpha}(n):=\mathrm{H}_{P_{n}(\alpha)}(n+1)
$$

Finally we define the fast growing functions.

$$
\mathrm{F}_{0}(n):=n+1 \quad \mathrm{~F}_{\alpha}(n):=\mathrm{F}_{P_{n}(\alpha)}^{n+1}(n)
$$

Lemma 3.4 Let $\alpha \in \Omega^{S}$. Then (i) G_{α} is increasing (strictly increasing if α is infinite), and if $\beta \in \alpha[n]$, then $\mathrm{G}_{\beta}(n)<\mathrm{G}_{\alpha}(n)$. Furthermore (ii) $\mathrm{H}_{\alpha}\left(\mathrm{F}_{\alpha}\right)$ is strictly increasing and if $\beta \in \alpha[n]$, then $\mathrm{H}_{\beta}(n)<\mathrm{H}_{\alpha}(n)\left(\mathrm{F}_{\beta}(n)<\mathrm{F}_{\alpha}(n)\right.$).

Lemma 3.5 For all non-zero $\alpha \in \Omega^{S} \mathrm{G}_{\alpha}(n)<\mathrm{H}_{\alpha}(n)<\mathrm{F}_{\alpha}(n)$.
It is interesting to note that the slow-growing hierarchy $\bigcup_{\alpha<\epsilon_{0}} \mathrm{G}_{\alpha}$ captures the elementary functions. Note that $\mathrm{H}_{\alpha+\beta}=\mathrm{H}_{\alpha} \circ \mathrm{H}_{\beta}$ and $\mathrm{H}_{\omega^{\alpha}}=\mathrm{F}_{\alpha}$.

Below we will only be considered with structured tree-ordinals. Hence, we usually drop the references to Ω^{S} and simply speak of (tree-)ordinals.

4 Ackermann's Substitution Method

In this section we briefly state the termination proof of the ε-substitution method, cf. [3, 4]. We follow the presentation in [3] quite closely.

The starting idea of the substitution method is to replace the defined function symbols f_{i} by functions of finite support. ${ }^{4}$ When we have assigned functions

[^2]to f_{1}, \ldots, f_{q} we are in a position to evaluate every formula in \mathcal{C} either to a true or false formula in \mathcal{N}. Such an assignment is called a (ε-) substitution. A substitution S is solving, or final if all formulas in \mathcal{C} are rendered true on the basis of S. By definition, every critical identity axiom is evaluated to a true formula. Hence the substitution method needs to be concerned with critical formulas of 1st and 2nd kind, only.

Let G_{0} denote the initial substitution. This substitution instantiates all the f_{1}, \ldots, f_{q} by the default value, the constant function 0 . Suppose we have already constructed a number of substitutions G_{0}, \ldots, G_{i} and G_{i} is not a solving substitution.

Definition 4.1 Let S be a substitution, by recursion on the term structure we define the value $|t|$ of a term $f \in \mathcal{L}^{\text {ext }}$ with respect to S. If $t \in \mathcal{L}$, then $|t| \in \mathbb{N}$ is defined as usual, employing the recursive definitions of the function symbols in Table 1. Otherwise suppose $t=f_{i}\left(s_{1}, \ldots, s_{l}\right)$. Then $|t|:=\phi\left(n_{1}, \ldots, n_{l}\right)$, where ϕ is the function assigned to f_{i} under S and $\left|s_{i}\right|=n_{i}$ for all $i=1, \ldots, l$.

We write $t \hookrightarrow_{S} z$ to denote that the term t evaluates (in \mathcal{N}) to the natural number z with respect to the substitution S. Let $\bar{t}=\left(t_{1}, \ldots, t_{n}\right)$ and $\bar{m}=$ $\left(m_{1}, \ldots, m_{n}\right)$. Then we write $\bar{t} \hookrightarrow_{S} \bar{m}$ as an abbreviation of $t_{i} \hookrightarrow_{S} m_{i}$ for all i.

We define the consecutive substitution G_{i+1} : Let the critical axioms in \mathcal{C} be ordered in some arbitrary way, but fixed. We pick the first critical axiom of 1st kind that is false in \mathcal{N} with respect to G_{i}. Suppose this axiom has the form

$$
\begin{equation*}
A(t, \bar{s}) \supset A\left(f_{p}(\bar{s}), \bar{s}\right) . \tag{5}
\end{equation*}
$$

This critical axioms is called the designated critical axiom of G_{i+1}. If $t \hookrightarrow_{G_{n+1}}$ z, then $A(z, \bar{s})$ is evaluated to true on the basis of the substitution G_{i}. Let \bar{n} be the values of \bar{s}. We consider the sequence of formulas

$$
\begin{equation*}
A(1, \bar{n}), \ldots, A(z, \bar{n}), \tag{6}
\end{equation*}
$$

and evaluate this sequence with respect to G_{i}. Let k be the smallest number such that $A(k, \bar{n})$ holds in \mathcal{N}. Let ϕ denote the function assigned to f_{p} by G_{i}. We define a new function ψ by modifying ϕ as follows. We write $m_{1}, \ldots, m_{l}=$ $n_{1}, \ldots, n_{l}\left(m_{1}, \ldots, m_{l} \neq n_{1}, \ldots, n_{l}\right)$ to abbreviate $\forall i m_{i}=n_{i}\left(\exists i m_{i} \neq n_{i}\right)$.

$$
\psi\left(m_{1}, \ldots, m_{l}\right):= \begin{cases}\phi\left(m_{1}, \ldots, m_{l}\right) & m_{1}, \ldots, m_{l} \neq n_{1}, \ldots, n_{l}, \\ k & m_{1}, \ldots, m_{l}=n_{1}, \ldots, n_{l}\end{cases}
$$

The substitution G_{i+1} is obtained by replacing the assignment of ϕ to f_{p} by ψ. The assignments for $f_{j}, j<p$ are left intact. Assignments to $f_{j}, j>p$ are changed to the default value 0 . The following lemma follows easily from the definitions, see. [3]. As an immediate consequence of this lemma we obtain that
in the process of consecutive constructed substitutions, only critical formulas of 1 st kind can be evaluated to false, under a particular substitution S.

Lemma 4.1 Let f_{p} be a l-ary defined function symbol. Let S denote an arbitrary substitution. The function assigned to f_{p} under the assignment S is denoted by ϕ. Then for all tuples $\bar{n}=n_{1}, \ldots, n_{l}$ either $\phi(\bar{n})=0$, or if $\phi(\bar{n})=z>0$, then $A(z, \bar{n})$ evaluates to true with respect to S, and for all $w<z, A(z, \bar{n})$ evaluates to false.

Note that this lemma is only true when we throw away previously achieved assignments for function symbols $f_{j} j>p$. The lemma fails if this step is omitted. We give a slight reformulation of an example by v. Neumann to explain this, compare [18] and [4], pp. 123-125.

Example 4.1 We write S for the successor and P for the predecessor. Let $n \in \mathbb{N}$ such that $n \geq 1$ and let f denote a unary defined function symbol and g a nullary defined function symbol, such that f is smaller than g in the assumed order on defined function symbols. Further set $A(a, b): \Leftrightarrow a=b$ and $B(a): \Leftrightarrow f(S(a))=0 \supset a=n$. Consider the following formulas.

$$
\begin{align*}
g=g & \supset g=f(g), \tag{7}\\
(f(S(n))=0 \supset n=n) & \supset(f(S(g))=0 \supset g=n), \tag{8}\\
(f(S(P(g))=0 \supset P(g)=n) & \supset g \leq P(g) . \tag{9}
\end{align*}
$$

It is not difficult to see that (7) is the definition formula for f with respect to $A(a, g)$ such that g is the critical term. While (8) is a definition formula for g with respect to $B(n)$ so that n is the critical term. Furthermore (9) denotes a minimality formula with respect to $B(P(g))$, where $P(g)$ is the critical term.

We define a sequence of substitution steps starting with the initial substitution G_{0}. We write ψ and χ for the functions assigned to f and g respectively. By definition, G_{1} sets ψ and χ to the constant function 0 . Hence (7) and (9) evaluate to true, but (8) evaluates to false. The next substitution S_{1} is obtained by setting $\chi:=n$. With respect to G_{1} (8) and (9) evaluate to true, but (7) evaluates to false. Hence to obtain the next substitution S_{2} we have to change the definition of ψ. We set $\psi(n):=n$ and $\psi(a):=0$ for all $a \neq n$ and momentarily assume that χ is not changed. (Contrary to the above definition.)

Now with respect to G_{2} (7) and (8) evaluate to true, but (9) evaluates to false. Indeed on the basis of S_{2} the value n for χ is no longer minimal, as $B(n-1)$ is true, too. Hence in the definition of G_{3} we have to change the value of χ from n to $n-1$. This contradicts Lemma 4.1.

On the other hand, if we apply the presented definition, then G_{2} would set $\chi:=0$. Then (7) and (9) evaluate to true, but (8) evaluates to false and
the just described process can be repeated. It is not difficult to see that the final substitution assigns f the function ψ, s.t. ψ is defined as $\psi(m):=m$ if $m \in[1, n]$ and $\psi(m):=0$ otherwise. The defined function symbol g is assigned 0 .

Definition 4.2 Let S be a substitution different from the initial one. Let i be the maximal such that f_{i} is assigned a function different from the constant function 0 . Then the characteristic number of S is $q-i+1$, or alternatively the characteristic number of S is the position of f_{i} in the reversed order of the sequence f_{1}, \ldots, f_{q}. In the case where S denotes the initial substitution its characteristic number is defined as $q+1$.

The following lemma follows directly from the definitions.
Lemma 4.2 Let $\left(S_{1}, \ldots, S_{n}\right)$ be an arbitrary consecutive sequence of substitutions. If all substitutions S_{2}, \ldots, S_{n} have characteristic number less than m, then the functions assigned to the symbols f_{1}, \ldots, f_{q-m+1} are equal for all S_{1}, \ldots, S_{n}.

Let A_{1}, \ldots, A_{m} be a sequence of formulas and let t_{1}, \ldots, t_{e} be all the terms with a defined function symbol as leading function symbol occurring in this sequence. The sequence $\left(t_{1}, \ldots, t_{e}\right)$ is assumed to be ordered in such a way that all proper subterms of t_{i} occur to the left of t_{i} in the sequence.

Depending on the current substitution S we assign a binary string to the sequence: If t_{i} evaluates to 0 with respect to S, then the $i^{t h}$ entry in the string is 1 , otherwise the $i^{\text {th }}$ entry is 0 . We want to code this string \bar{s} by a natural number $\ulcorner\bar{s}\urcorner$. Although any coding fulfilling some natural restriction might do, the following has nice properties, which we will exploit later on. Let $\bar{s}=s_{1} \cdots s_{e}$ be a $(0-1)$-string, then

$$
\begin{equation*}
\ulcorner\bar{s}\urcorner:=2^{e-1} \cdot s_{1}+\cdots+2^{1} \cdot s_{e-1}+2^{0} \cdot s_{e}, \tag{10}
\end{equation*}
$$

codes \bar{s}. Clearly $0 \leq\ulcorner\bar{s}\urcorner<2^{e}$. The code of the binary string assigned to the sequence $\left(t_{1}, \ldots, t_{e}\right)$ is called the index of the sequence of formulas $\left(A_{1}, \ldots, A_{m}\right)$ (with respect to S). The index of $\left(A_{1}, \ldots, A_{m}\right)$ is denoted as $\operatorname{index}_{S}\left(A_{1}, \ldots, A_{m}\right)$.

In particular two specific sequences of formulas are of interest.
(1) The sequence of all formulas in our given set of critical axioms \mathcal{C}.
(2) Let $A(t, \bar{s}) \supset A\left(f_{p}(\bar{s}), \bar{s}\right)$ be the designated critical axiom of a substitution S under consideration such that $s_{1}, \ldots, s_{l} \hookrightarrow_{S} n_{1}, \ldots, n_{l}$. Then the sequence (6), p. 9 will be the second formula-sequence of specific interest.
W.l.o.g. we can always assume that the number of terms t_{1}, \ldots, t_{e} with a defined function symbol as leading function symbol in \mathcal{C} is not zero. Let p
be a pairing function for the natural numbers with inverses $u, v: p(0,0)=0$; $p(u(a), v(a))=a, u(p(a, b))=a$, and $v(p(a, b))=b$. We use $\langle a, b\rangle$ as an abbreviation for $p(a, b)$. If a is the index with respect to the first formulasequence, and b the index with respect to the second, then we assign the pair $\langle a, b\rangle$ to S. (The initial substitution G_{0} is assigned the index $\langle a, 0\rangle$.) Let S be a substitution. If the pair $\langle a, b\rangle$ is assigned to S, then the (ordinal) index of S, denoted as $\operatorname{OrD}(S)$, is the tree-ordinal $\omega a+b$.

Definition 4.3 For all $i \in[1, q]$, let f_{i} be an arbitrary defined function symbol and let $\phi_{S}^{i}, \phi_{T}^{i}$ be functions assigned to f_{i} under the substitutions S and T. Then T is progressive over S, if for all $\bar{n}=n_{1}, \ldots, n_{l}$
(1) $\phi_{S}^{i}(\bar{n})=0$, or
(2) $\phi_{S}^{i}(\bar{n})=\phi_{T}^{i}(\bar{n})>0$.

Lemma 4.3 Let T be progressive over S and let $\left(A_{1}, \ldots, A_{m}\right)$ be an arbitrary list of formulas. Then either index $x_{T}\left(A_{1}, \ldots, A_{m}\right)<\operatorname{index}_{S}\left(A_{1}, \ldots, A_{m}\right)$ or the evaluations of the terms t_{1}, \ldots, t_{e} with leading function symbol f_{i} in the sequence $\left(A_{1}, \ldots, A_{m}\right)$ are the same under both substitutions.

Theorem 4.1 If G_{l} is progressive over G_{k}, then either $\operatorname{ORD}\left(G_{l}\right) \prec \operatorname{ORD}\left(G_{k}\right)$ or G_{l+1} is progressive over G_{k+1}.

Proof. Let $\left\langle i_{k}, j_{k}\right\rangle,\left\langle i_{l}, j_{l}\right\rangle$ be the index pairs assigned to G_{k}, G_{l}, respectively. Apply Lemma 4.3 with respect to the sequence of formulas in \mathcal{C}. If $i_{k}>i_{l}$, then $\omega i_{k}+j_{k} \succ \omega i_{l}+j_{l}$ and the conclusion of the theorem follows.

If $i_{k}=i_{l}$, then according to the previous lemma the evaluation of the terms in \mathcal{C} is the same, hence the designated critical axiom

$$
\left.A(t, \bar{s}) \supset A\left(f_{p}(\bar{s}), \bar{s}\right)\right),
$$

is the same for the substitutions G_{k} and G_{l}. (Here the assumed order on the critical axioms in \mathcal{C} is needed.)

Suppose $t \hookrightarrow_{G_{k}} z$ (i.e., $t \hookrightarrow_{G_{l}} z$) and $\bar{s} \hookrightarrow_{G_{k}} \bar{n}$. By assumption, the formulasequence (6) is the same for G_{k} and G_{l}. Applying the lemma again: Either $j_{k}>$ j_{l}, or the evaluations of the terms in this sequence is equal. Then the smallest k such that $A(k, \bar{n})$ evaluates to true is the same for G_{k}, G_{l}. Hence $\phi_{G_{k}}(\bar{n})=$ $\phi_{G_{l}}(\bar{n})$. The progressivity of G_{l+1} over G_{k+1} follows from the assumption that G_{l} is progressive over G_{k}.

We need some further definitions: A 1-sequence of substitutions is simply a substitution. Let $\left(S_{1}, \ldots, S_{n}\right)$ be an arbitrary consecutive sequence of substitutions, $n \geq 1$. If the characteristic numbers of S_{1}, S_{n+1} are greater than or equal to m and the characteristic numbers of the substitutions S_{2}, \ldots, S_{n} are
strictly smaller than m, then $\left(S_{1}, \ldots, S_{n}\right)$ constitutes an m-sequence. (If S_{n} is the last substitution in the maximal sequence of substitutions, we drop the condition for S_{n+1}.)

By definition, the sequence of all possible substitutions is a $q+1$-sequence. This sequences is called the maximal or total sequence. The following lemma is proven by induction on m.

Lemma 4.4 Let R be an m-sequence $\left(S_{1}, \ldots, S_{n}\right)$. Then either all the characteristic numbers of $S_{2}, S_{3}, \ldots, S_{n}$ are less than $m-1$. In this case R constitutes also an $(m-1)$-sequence. Otherwise R decomposes into sub-sequences T_{1}, \ldots, T_{r}, where the T_{i} are $(m-1)$-sequences meeting the condition: If S_{21}, S_{31}, $\ldots, S_{r 1}$ denote the first substitutions in $T_{2}, T_{3}, \ldots T_{r}$ respectively, then the characteristic numbers of $S_{21}, \ldots, S_{r 1}$ are $m-1$ respectively.

The (ordinal) index of an m-sequence, $m>1$, is defined inductively: Let $\left(S_{1}, \ldots, S_{n}\right)$ be substitutions constituting the m-sequence. Using Lemma 4.4 we find $(m-1)$-sequences T_{1}, \ldots, T_{r} that built the m-sequence. Assume for all $i \in[1, r]$ the indices of T_{i} are denoted as α_{i}. Then the (ordinal) index of S_{1}, \ldots, S_{p} is defined as $\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{r}}$.

Theorem 4.2 Let $\left(S_{1}, \ldots, S_{k}\right)$ and $\left(S_{k+1}, \ldots, S_{k+l}\right)$ denote the substitutions in two consecutive m-sequences, such that the characteristic number of S_{k+1} equals m. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k+l}$ be the indices of the substitutions $S_{1}, S_{2}, \ldots, S_{k+l}$ respectively. Then there exists $i \in[1, l]$, such that $\alpha_{k+i} \prec \alpha_{i}$ and $\alpha_{k+j}=\alpha_{j}$, for all $j \in[1, i-1]$.

Proof. First we show that S_{k+1} is progressive over S_{1}. We only prove the case where $k>1$, the other case is similar, but simpler Lemma 4.2 implies that all the S_{2}, \ldots, S_{k} change only the assignments for f_{j}, where $j>q-m+1$. As S_{1}, and S_{k+1} have characteristic number greater than or equal to m, this implies S_{k+1} changes the assignment to f_{q-m+1} and resets the previous assignments to $f_{q-m+2}, f_{q-m+3}, \ldots, f_{q}$. Using Lemma 4.1 we see that this is only possible by changing a default value. Hence S_{k+1} is progressive over S_{1}.

Now we are in a position to apply Theorem 4.1: Either $\alpha_{k+1} \prec \alpha_{1}$ or conclude that $\alpha_{k+1}=\alpha_{2}$ and S_{k+2} is progressive over S_{2}. If $\alpha_{k+1} \prec \alpha_{1}$ then we are done. Otherwise the result that S_{k+2} is progressive over S_{2} serves as the assumption for another application of Theorem 4.1, etc.

It remains to prove that there exists an $i \in[1, l]$ such that $\alpha_{k+i} \prec \alpha_{i}$. We concentrate on the case when $k=l$. Let $\alpha_{k}=\alpha_{k+l}$ and suppose S_{k+l+1} is progressive over S_{k+1}. It follows from $\alpha_{k}=\alpha_{k+l}$ and the proof of Theorem 4.1 that the designated critical axiom $A(t, \bar{s}) \supset A\left(f_{p}(\bar{s}), \bar{s}\right)$ is the same for S_{k+1}, S_{k+l+1}. Suppose $\bar{s} \hookrightarrow_{S_{k}} \bar{n}$ By definition, S_{k+1} assigned a function ϕ to f_{p} such that $\phi\left(n_{1}, \ldots, n_{l}\right)=u>0$. Suppose S_{k+l+1} assigns ψ to f_{p} s.t.
$\psi\left(n_{1}, \ldots, n_{l}\right)=v>0$. Note that $u \neq v$, as otherwise $A\left(f_{p}(\bar{s}), \bar{s}\right)$ is true under S_{k+l+1}. By the assumption the tuple \bar{s} evaluates to \bar{n} independently of the substitution S_{k+1}, S_{k+l+1}.

The characteristic number of S_{k+1} is equal to m which implies $p \leq q-m+1$. However, the characteristic number of the substitutions S_{k+2}, \ldots, S_{k+l} are less than m. Therefore none of this substitutions S_{k+i} can change the assignment to f_{p}. Hence S_{k+l+1} changes the assignment for f_{p} from ϕ to ψ such that $\phi\left(n_{1}, \ldots, n_{l}\right)=u$ and $\psi\left(n_{1}, \ldots, n_{l}\right)=v$ and $u \neq v$. (Note that v cannot equal u as otherwise the designated critical axioms would be true in S_{k+l}.) This contradicts Lemma 4.1.

The substitutions S_{i}, S_{k+i} are the designated substitutions with respect to. the m-sequences $\left(S_{1}, \ldots, S_{k}\right)$ and (S_{k+1}, \ldots, S_{k+l}). All substitutions $S_{j}, S_{k+j} ; 1<$ $j \leq i$ have pairwise the same characteristic number. This observation provides the basis for the next lemma.

Lemma 4.5 Let $\left(S_{1}, \ldots, S_{k}\right)$ and $\left(S_{k+1}, \ldots, S_{k+l}\right)$ be consecutive m-sequences s.t. the characteristic number of S_{k+1} equals m. Let S_{i}, S_{k+i} denote the designated substitutions. For $s \in[1, m]$, let $\left(\beta_{1}, \ldots, \beta_{r}\right)$ and $\left(\beta_{r+1}, \ldots, \beta_{r+z}\right)$ denote the indices of the consecutive s-sequences in $\left(S_{1}, \ldots, S_{k}\right)$ and $\left(S_{k+1}, \ldots, S_{k+l}\right)$. If S_{i} occurs in the s-sequences with index β_{t}, then S_{k+i} occurs in the s-sequence with index β_{r+t}. Moreover $\beta_{1}=\beta_{r+1}, \beta_{2}=\beta_{r+2}, \ldots, \beta_{t-1}=\beta_{r+t-1}$.

Theorem 4.3 Let $\left(S_{1}, \ldots, S_{k}\right)$ and $\left(S_{k+1}, \ldots, S_{k+l}\right)$ be substitutions in two consecutive m-sequences such that the characteristic number of S_{k+1} equals m. For $s \in[1, m]$, let $\left(\beta_{1}, \ldots, \beta_{r}\right)$ and $\left(\beta_{r+1}, \ldots, \beta_{r+z}\right)$ be the indices of included s sequences. Then there exists $t \in[1, r]$ such that $\beta_{r+t} \prec \beta_{t}$ and $\beta_{1}=\beta_{r+1}, \beta_{2}=$ $\beta_{r+2}, \ldots, \beta_{t-1}=\beta_{r+t-1}$.

Proof. By induction on $s \leq m$. The case $s=1$ is contained in Theorem 4.2.
Let $\left(\beta_{1}, \ldots, \beta_{r}\right)$ and $\left(\beta_{r+1}, \ldots, \beta_{r+z}\right)$ be the indices of the $(s+1)$-sequences included in the two given m-sequences. Let S_{i}, S_{k+i} denote the distinguished substitutions with respect to $\left(S_{1}, \ldots, S_{k}\right)$ and $\left(S_{k+1}, \ldots, S_{k+l}\right)$. By Lemma 4.5 there exists $t \in[1, r]$ such that if S_{i} occurs in the $(s+1)$-sequence R_{t} coded by β_{t}, then S_{k+i} occurs in the $(s+1)$-sequence R_{r+t} coded by β_{r+t}.

Using Lemma 4.4 we conclude that R_{t} and R_{r+t} are built up from s-sequences $\left(V_{1}, \ldots, V_{u}\right),\left(W_{1}, \ldots, W_{w}\right)$ with indices $\left(\gamma_{1}, \ldots, \gamma_{u}\right),\left(\delta_{1}, \ldots, \delta_{w}\right)$, respectively. Applying Lemma 4.5 for s on these s-sequences we conclude that the number of s-sequences preceding V_{1} in $\left(S_{1}, \ldots, S_{k}\right)$ equals the number of s-sequences preceding W_{1} in $\left(S_{k+1}, \ldots, S_{k+l}\right)$. Furthermore the respective indices are pairwise the same.

We apply IH for s. Hence there exists $v \in[1, u]$ such that

$$
\begin{equation*}
\delta_{v} \prec \gamma_{v} \quad \text { and } \quad \delta_{j}=\gamma_{j} \quad \text { for all } j \in[1, v-1] . \tag{11}
\end{equation*}
$$

We apply the theorem-setting $m=s$-successively for the pairs $\left(V_{1}, V_{2}\right)$, $\left(V_{2}, V_{3}\right), \ldots,\left(V_{u-1}, V_{u}\right)$ and $\left(W_{1}, W_{2}\right),\left(W_{2}, W_{3}\right), \ldots,\left(W_{w-1}, W_{w}\right)$. This yields

$$
\begin{equation*}
\delta_{w} \prec \delta_{w-1} \prec \cdots \prec \delta_{1} \quad \gamma_{u} \prec \gamma_{u-1} \prec \cdots \prec \gamma_{1} . \tag{12}
\end{equation*}
$$

Putting (11) and (12) together we obtain, using $1 \in \omega[n]$ for arbitrary n.

$$
\begin{aligned}
\beta_{r+t} & =\omega^{\delta_{1}}+\cdots+\omega^{\delta_{v-1}}+\omega^{\delta_{v}}+\cdots+\omega^{\delta_{w}} \\
& \prec \omega^{\gamma_{1}}+\cdots++\omega^{\gamma_{v-1}}+\omega^{\gamma_{v}} \preceq \beta_{t} .
\end{aligned}
$$

Hence the theorem follows.
Corollary 4.1 The substitution method terminates.
Corollary 4.2 Let $T \in \mathcal{S}$ be a tautology of the form (4) represented as

$$
A_{1} \wedge \cdots \wedge A_{m} \wedge B_{1} \wedge \cdots \wedge B_{n} \supset F\left(f_{1}, \ldots, f_{q}\right)
$$

containing the defined function symbols f_{1}, \ldots, f_{q}. Then there exists a formula F^{\star}, quantifier-free, that is free of the defined function symbols f_{1}, \ldots, f_{q} such that $\mathcal{N} \equiv F^{\star}$.

5 Extraction of Bounds

Suppose the technical assumption on the order of the defined symbols f_{1}, \ldots, f_{q} can be met. Then any tautology of form (4) in \mathcal{S} can be transformed to a true arithmetical formula F^{\star}, free of defined function symbols. However, at the moment we only know that some functions of finite support ϕ_{i} are assigned to the f_{i}. This motivates the question whether we can describe these functions ϕ_{i} more precisely.

We define a subset of structural tree-ordinals $\Omega^{I} \subset \Omega^{S}$. Let $\alpha \in \Omega^{S}$ be given, then $\alpha \in \Omega^{I}$, if either
(1) $\alpha=\omega a+b$, where α denotes the ordinal index of a substitution, or
(2) $\alpha=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{r}}$, where α denotes the ordinal index of an m-sequence.

We call $\alpha \in \Omega^{I}$ sequence coding, or alternatively say that α codes a sequence. Let $\alpha \in \Omega^{I}$ due to case 2 , such that α can be written as $\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{r}}$. Then each α_{i} codes a sequence and $\alpha_{1} \succ \cdots \succ \alpha_{r}$; this follows from the results of Section 4.

We define a function $\mathrm{C}: \Omega \rightarrow \mathbb{N}$ as follows. Assume $\alpha \in \Omega^{I}$, then

$$
\mathrm{C}(\alpha):= \begin{cases}1 & \text { if } \alpha \in \Omega^{I} \text { due to Case } 1 \text { above } \\ \mathrm{C}\left(\alpha_{1}\right)+\cdots+\mathrm{C}\left(\alpha_{r}\right) & \text { if } \alpha=\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{r}} \text { and Case } 2 \text { holds } .\end{cases}
$$

Otherwise, if $\alpha \notin \Omega^{I}$, then $\mathrm{C}(\alpha):=0$.
If α codes an m-sequence R then $\mathrm{C}(\alpha)$ measures the number of substitutions included in the sequence R. Note that C is not a norm in the sense of [19]. It violates the criteria $\forall \alpha \forall n \operatorname{Card}(\{\beta \prec \alpha: \mathrm{C}(\beta) \leq n\}) \prec \omega$.

Let S denote a substitution in the total sequence of substitutions G_{0}, \ldots, G_{i}, G_{i+1}, \ldots Suppose the value of a term $f_{j}(\bar{s})(j=1, \ldots, q)$ under S is m. By our assumptions on \mathcal{L} the value of any closed term in \mathcal{C} can be bounded by an increasing elementary function $g(m)$. Recall that the set of critical axioms \mathcal{C} is based on the tautology $T\left(n_{1}, \ldots, n_{k}\right)$, with $n:=\max \left\{n_{1}, \ldots, n_{k}\right\}$. It follows by an easy induction that the value of any term $t \in \mathcal{C}$ with respect to G_{i} is less than or equal to $g^{i+1}(n)$.

Recall the definition of the binary string assigned to the sequence (6) with respect to a substitution G_{i} on page 11. Moreover recall the employed coding (10) of this string and the definition of the index of (6). If t denotes the critical term, then the length of the sequence (6) employed in the definition of G_{i} equals z, where $t \hookrightarrow_{G_{i-1}} z$. Suppose e denotes the number of terms of the form $f_{j}(\bar{s})$ in \mathcal{C}. Then the index with respect to (6) is smaller than $2^{J(g, i)(n) \cdot e}$.

Recall that during the substitution method n is not changed, only the evaluation of terms of form $f_{j}(\bar{s})$ may change. Let $h(a, b)$-parameterised in g-be a primitive recursive function, strictly increasing in both arguments, such that

$$
h(a, b) \geq \max \left\{q+1,2 a+b+1, g^{a}(b), 2^{J(g, a)(b) \cdot e}\right\} .
$$

The position of some substitution S in the total sequence $G_{0}, \ldots, G_{i}, G_{i+1}, \ldots$ is defined as the number i, s.t. $S=G_{i}$.

Theorem 5.1 Let S_{k} and S_{l} be substitutions. Let p denote the position of S_{l}. If S_{l} is progressive over S_{k}, then either $\operatorname{OrD}\left(S_{l}\right) \in \operatorname{ORD}\left(S_{k}\right)[h(p, n)]$ or S_{l+1} is progressive over S_{k+1}.

Proof. Using Theorem 4.1, we conclude that either S_{l+1} is progressive over S_{k+1} or $\operatorname{OrD}\left(S_{l}\right) \prec \operatorname{OrD}\left(S_{k}\right)$ holds. In the latter case, it remains to establish $\operatorname{Ord}\left(S_{l}\right) \in \operatorname{OrD}\left(S_{k}\right)[h(p, n)]$. We assume the notation of the proof of Theorem 4.1.

Let $\operatorname{OrD}\left(S_{k}\right)=\omega \cdot i_{k}+j_{k}$ and $\operatorname{OrD}\left(S_{l}\right)=\omega \cdot i_{l}+j_{l}$. Either (i) $i_{k}>i_{l}$ or (ii) $i_{k}=i_{l}$ and $j_{k}>j_{l}$, holds. Suppose $i_{k}>i_{l}$; It suffice to show $\omega \cdot i_{l}+j_{l} \in \omega \cdot i_{k}[h(p, n)]$.

Suppose $f_{p}(\bar{s}) \hookrightarrow_{S_{l}} z$. Using the above observations we see that $z \leq g^{p+1}(n)$ holds and therefore $j_{l} \leq h(p, n)$. Now the claim follows as

$$
\omega \cdot i_{l}+j_{l} \in \omega \cdot\left(i_{k}-1\right)+h(p, n)+1[h(p, n)]=\omega \cdot i_{k}[h(p, n)] .
$$

On the other hand suppose $i_{k}=i_{l}$ and $j_{k}>j_{l}$. Then the theorem follows from the definition of an n-predecessors, see Section 3

We fix some notation: Let $\left(S_{1}, \ldots, S_{k}\right)$ and $\left(S_{k+1}, \ldots, S_{k+l}\right)$ be two consecutive m-sequences such that the characteristic number of S_{k+1} equals m. Suppose σ and ρ denotes the ordinal coding the first and second m-sequence. Furthermore we denote the position of S_{1} by $a \in \mathbb{N}, a \geq 0$ and set $p:=a+\mathrm{C}(\sigma)$.

Theorem 5.2 Let $\left(S_{1}, \ldots, S_{k}\right),\left(S_{k+1}, \ldots, S_{k+l}\right)$ be consecutive m-sequences as defined above. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k+l}$ denote the indices of $S_{1}, \ldots, S_{k}, S_{k+1}$, \ldots, S_{k+l}, respectively. Then there exists $i \in[1, k]$, such that $\alpha_{k+i} \in \alpha_{i}[h(p, n)]$ and $\alpha_{k+j}=\alpha_{j}$ for all $j \in[1, i-1]$.

Proof. By Theorem 4.2, we conclude the existence of an i such that $\alpha_{k+i} \prec \alpha_{i}$. It is sufficient to show $\alpha_{k+i} \in \alpha_{i}[h(p, n)]$. We proceed by case-distinction: CASE $i=1$. By definition $\mathrm{C}(\sigma)$ equals the number of substitutions included in $\left(S_{1}, \ldots, S_{k}\right)$. Hence the position of S_{k+1} equals $a+\mathrm{C}(\sigma)$ which equals p. Applying Theorem 5.1, we obtain $\alpha_{k+1} \in \alpha_{1}[h(p, n)]$.

CASE $i>1$. Let S_{i}, S_{k+i} denote the designated substitutions of the two m sequences. It follows from Lemma 4.3 that the evaluation for terms $f_{l}(\bar{s})$, $l=1, \ldots, q$ is equal for all pairs $\left(S_{j}, S_{k+j}\right), 1 \leq j<i$. Hence, if $A(t, \bar{s}) \supset$ $A\left(f_{p}(\bar{s}), \bar{s}\right)$ be the designated critical axiom of S_{i} and S_{k+i}, then the value $|t|$ of t under S_{i-1} (and more importantly with respect to S_{k+i-1}) is bounded by $g^{a+i}(n)$, and hence the second component of the index of S_{k+i} is less than $h(p, n)$. Applying similar reasoning as in Theorem 5.1 the result follows.

We make use of a parameterised Hardy function:

$$
\mathrm{H}[g]_{0}(n):=n \quad \mathrm{H}[g]_{\alpha}(n):=\mathrm{H}[g]_{P_{n}(\alpha)}(g(n)) .
$$

Note that if $g(n) \leq \mathrm{H}_{\alpha}(n)$, for some $\alpha \prec \epsilon_{0}$, then $\mathrm{H}[g]_{\beta}(n) \leq \mathrm{H}_{\alpha \cdot \beta}(n)$. (This follows by an easy induction on β.) Below we make use of the parameterised Hardy functions only with respect to the specific function $h(a, a)$.

Theorem 5.3 Let $\left(S_{1}, \ldots, S_{k}\right)$, $\left(S_{k+1}, \ldots, S_{k+l}\right)$ be consecutive m-sequences, defined as above. For $s \in[1, m]$, let $\left(\alpha_{1}, \ldots, \alpha_{r}\right)$ and $\left(\alpha_{r+1}, \ldots, \alpha_{r+z}\right)$ denote the indices of the s-sequences included. Then there exists a $t \in[1, r]$ such that $\alpha_{r+t} \in \alpha_{t}\left[\mathrm{H}[h]_{\alpha t}^{s}(p+n)\right]$ and $\alpha_{r+j}=\alpha_{j}$ for all $j \in[1, t-1]$.

Proof. For brevity, we write H_{α} instead of $\mathrm{H}[h]_{\alpha}$. Using Theorem 4.3 we conclude, for any s, the existence of a t such that $\alpha_{r+t} \prec \alpha_{t}$. It suffices to show
$\alpha_{r+t} \in \alpha_{t}\left[\mathrm{H}_{\alpha_{t}}^{s}(p+n)\right]$. The Theorem is proven by simultaneous induction on $s ; s \leq m$ together with the following claim:

Claim 1 Let $\left(T_{1}, \ldots, T_{p}\right),\left(T_{p+1}, \ldots, T_{p+q}\right)$ be two consecutive s-sequences, such that the characteristic number of T_{p+1} equals s. Assume $\lambda(\mu)$ denotes the ordinal coding the first (second) s-sequence. Then $a+\mathrm{C}(\lambda)+\mathrm{C}(\mu)+n \leq$ $\mathrm{H}_{\lambda}^{s}(a+\mathrm{C}(\lambda)+n)$.

Base. By Theorem 5.2, we conclude, for some $t \in[1, r]: \alpha_{r+t} \in \alpha_{t}[h(p, n)]$ and $\alpha_{r+j}=\alpha_{j}$ for all $j \in[1, t-1]$. This entails $\alpha_{r+t} \in \alpha_{t}\left[\mathrm{H}_{\alpha_{t}}(p+n)\right]$ as $\alpha_{t} \neq 0$ and $h(p, n) \leq h(p+n, p+n)=\mathrm{H}_{1}(p+n) \leq \mathrm{H}_{\alpha_{t}}(p+n)$. Now consider the claim with respect to $s=1$. Let T_{1}, T_{2} denote two consecutive 1 -sequences, with indices λ, μ, respectively. By definition $\mathrm{C}(\lambda)=\mathrm{C}(\mu)=1$. We can apply the theorem for $s=m=1$ to the pair $\left(T_{1}, T_{2}\right)$ to conclude $\mu \in \lambda\left[\mathrm{H}_{\lambda}(a+\mathrm{C}(\lambda)+n)\right]$; therefore $\lambda \neq 0$. Hence $a+\mathrm{C}(\lambda)+\mathrm{C}(\mu)+n \leq h(a+\mathrm{C}(\lambda)+n, n) \leq \mathrm{H}_{\lambda}(a+\mathrm{C}(\lambda)+n)$.

STEP. Let $\left(\alpha_{1}, \ldots, \alpha_{r}\right),\left(\alpha_{r+1}, \ldots, \alpha_{r+z}\right)$ denote the indices of the $(s+1)$ sequences such that α_{t} and $\alpha_{(r+t)}$ code the $(s+1)$-sequences that include the designated substitutions S_{k}, S_{k+i}. Let $\alpha_{r}=\omega^{\gamma_{1}}+\cdots+\omega^{\gamma_{u}}$ and $\alpha_{r+t}=$ $\omega^{\delta_{1}}+\cdots+\omega^{\delta_{w}}$. By induction hypothesis (IH) for s, there exists $v \in[1, w]$ s.t. $\delta_{v} \in \gamma_{v}\left[\mathrm{H}_{\gamma_{v}}^{s}(p+n)\right]$. We show

$$
\begin{equation*}
\delta_{v}, \ldots, \delta_{w} \in \gamma_{v}\left[\mathrm{H}_{\alpha_{t}}^{s+1}(p+n)\right] . \tag{13}
\end{equation*}
$$

Assume (13) and set $z:=\mathrm{H}_{\alpha_{t}}^{s+1}(p+n)$. Using Lemma 3.2 we conclude that $\omega^{\delta_{v}}+\cdots+\omega^{\delta_{w}} \in \omega^{\gamma_{v}}[z]$. Using Lemma 3.2 again we obtain

$$
\begin{aligned}
\alpha_{r+t} & =\omega^{\delta_{1}}+\cdots+\omega^{\delta_{v}}+\cdots+\omega^{\delta_{w}} \\
& \in \omega^{\gamma_{1}}+\cdots+\omega^{\gamma_{v}}[z] \\
& \subseteq \omega^{\gamma_{1}}+\cdots+\omega^{\gamma_{u}}[z]=\alpha_{t}[z] .
\end{aligned}
$$

To show (13), we assume that $v<w$; otherwise it holds trivially. Let $a^{(v+j)}$ denote the position of the first substitution in the s-sequence coded by $\delta_{(v+j)}$, for $j \in[0, w-v]$. Repeated application of the theorem for $m=s$ with respect to the pairs $\left(\delta_{v}, \delta_{v+1}\right),\left(\delta_{v+1}, \delta_{v+2}\right), \ldots,\left(\delta_{w-1}, \delta_{w}\right)$ yields:

$$
\begin{gathered}
\delta_{w} \in \delta_{w-1}\left[\mathrm{H}_{\delta_{w-1}}^{s}\left(a^{(w)}+n\right)\right], \\
\vdots \\
\delta_{v+1} \in \delta_{v}\left[\mathrm{H}_{\delta_{v}}^{s}\left(a^{(v+1)}+n\right)\right] .
\end{gathered}
$$

Let $j \in[1, w-v]$ and consider $\left(\delta_{v+j}, \delta_{v+j-1}\right)$. Set $b:=a+\mathrm{C}\left(\alpha_{1}\right)+\cdots+$ $\mathrm{C}\left(\alpha_{r}\right)+\mathrm{C}\left(\alpha_{r+1}\right)+\cdots+\mathrm{C}\left(\alpha_{r+t-1}\right)+\mathrm{C}\left(\delta_{1}\right)+\cdots+\mathrm{C}\left(\delta_{v-1}\right)$. By application of IH on Claim 1 for s-sequences we have for all $j \in[0, w-v-2]$:

$$
a^{(v+j+2)}+n \leq \mathrm{H}_{\delta_{v+j}}^{s}\left(a^{(v+j+1)}+n\right) .
$$

Repeated application of this inequality for $j \in[0, w-v-2]$ yields:

$$
\mathrm{H}_{\delta_{w-1}}^{s}\left(a^{(w)}+n\right) \leq \mathrm{H}_{\delta_{w-1}}^{s}\left(\cdots\left(\mathrm{H}_{\delta_{v}}^{s}\left(b+\mathrm{C}\left(\delta_{v}\right)+n\right)\right) \cdots\right) .
$$

Hence, we obtain for all $j \in[0, w-v-1]$:

$$
\delta_{v+j+1} \in \delta_{v+j}\left[\mathrm{H}_{\delta_{v+j}}^{s}\left(\cdots\left(\mathrm{H}_{\delta_{v}}^{s}\left(b+\mathrm{C}\left(\delta_{v}\right)+n\right)\right) \cdots\right)\right] .
$$

Using Lemma 3.4, Lemma 3.5 and $s+1 \leq q+1 \leq h(0,0)$:

$$
\begin{aligned}
\mathrm{H}_{\delta_{w-1}}^{s}\left(\cdots\left(\mathrm{H}_{\delta_{v}}^{s}\left(b+\mathrm{C}\left(\delta_{v}\right)+n\right)\right) \cdots\right) & <\mathrm{H}_{\omega^{\delta}(w-1)}^{s}\left(\cdots\left(\mathrm{H}_{\omega^{\delta_{v}}}^{s}\left(b+\mathrm{C}\left(\delta_{v}\right)+n\right)\right) \cdots\right) \\
& \leq \mathrm{H}_{\omega^{\delta}(w-1)+1}\left(\cdots\left(\mathrm{H}_{\omega^{\delta_{v}}}^{s}\left(b+\mathrm{C}\left(\delta_{v}\right)+n\right)\right) \cdots\right) \\
& \leq \mathrm{H}_{\omega^{\delta}(w-2)}^{s+1}\left(\cdots\left(\mathrm{H}_{\omega^{\delta_{v}}}^{s}\left(b+\mathrm{C}\left(\delta_{v}\right)+n\right)\right) \cdots\right) \\
& \leq \mathrm{H}_{\omega^{\delta_{v}}}^{s+1}\left(b+\mathrm{C}\left(\delta_{v}\right)+n\right) .
\end{aligned}
$$

Employing $\delta_{v} \in \gamma_{v}\left[\mathrm{H}_{\gamma_{v}}^{s}(a+\mathrm{C}(\sigma)+n)\right]$, together with $c+\mathrm{C}(\alpha) \leq \mathrm{H}_{\alpha}(c)$ for $\alpha \neq 0$ and arbitrary c, and $b+n \leq 2 a+n \leq h(a, n)$, we obtain:

$$
\begin{aligned}
\mathrm{H}_{\omega^{\delta_{v}}}^{s+1}\left(b+\mathrm{C}\left(\delta_{v}\right)+n\right) & \leq \mathrm{H}_{\omega^{\delta_{v}}}^{s+2}(b+n) \leq \mathrm{H}_{\omega^{\delta_{v}}}^{s+2}(h(a+\mathrm{C}(\sigma), n)) \\
& \leq \mathrm{H}_{\omega^{\delta v}+1}(h(a+\mathrm{C}(\sigma), n)) \\
& \leq \mathrm{H}_{\omega^{\delta v}}\left(\mathrm{H}_{\omega^{\gamma} v}^{s}(a+\mathrm{C}(\sigma)+n)\right) \\
& \leq \mathrm{H}_{\omega^{\prime v}}^{s+1}(a+\mathrm{C}(\sigma)+n) \\
& \leq \mathrm{H}_{\alpha_{t}}^{s+1}(p+n) .
\end{aligned}
$$

On the other hand, we have:

$$
\mathrm{H}_{\delta_{v}}^{s}(a+\mathrm{C}(\sigma)+n) \leq \mathrm{H}_{\omega \gamma_{v}}^{s+1}(p+n) \leq \mathrm{H}_{\alpha_{t}}^{s+1}(p+n) .
$$

This completes the proof of (13). The step case of Claim 1 follows by a generalisation of the base case, exploiting essentially the same sequence of inequalities as in the step case for the Theorem.

The maximal sequence of substitutions is a $(q+1)$-sequence. Suppose $\alpha=$ $\omega^{\alpha_{1}}+\cdots+\omega^{\alpha_{r}}$ codes this sequence. From the proof of Theorem 5.3 we obtain:

$$
\mathrm{C}\left(\alpha_{1}\right)+\cdots+\mathrm{C}\left(\alpha_{r}\right) \leq \mathrm{H}[h]_{\omega^{\alpha_{1}+1}}(n) .
$$

This suffices to bound the value of a substitution instance for a defined function symbol f_{i} elementary in $\mathrm{H}_{\omega^{\alpha_{1}+1}}(n)$. To estimate α_{1} we set

$$
\bar{\omega}_{m}:=\exp _{\omega}^{m-1}\left(\omega \cdot\left(2^{e}+1\right)\right) .
$$

(Recall that e denotes the number of terms $f_{j}(\bar{s})$ in \mathcal{C}.)
Lemma 5.1 Suppose α codes an m-sequence S_{1}, \ldots, S_{k}. Let p denote the position of S_{k} in the maximal sequence R. Then $\alpha \in \bar{\omega}_{m}\left[H_{\bar{\omega}_{m}}^{m}(p+n)\right]$.

Proof. By induction on m using Theorem 5.1 and Theorem 5.3.
Theorem 5.4 Let $\left(n_{1}, \ldots, n_{k}\right)$ be an arbitrary tuple of natural numbers and $n=\max \left\{n_{1}, \ldots, n_{k}\right\}$. Let $T\left(n_{1}, \ldots, n_{k}\right) \in \mathcal{S}$ be a closed tautology of the form (4) represented as

$$
A_{1} \wedge \cdots \wedge A_{m} \wedge B_{1} \wedge \cdots \wedge B_{n} \supset F\left(f_{1}, \ldots, f_{q}\right)
$$

containing defined function symbols f_{1}, \ldots, f_{q} only. Define

$$
\gamma= \begin{cases}\omega^{\omega} & \text { if } q=1 \\ \omega_{q-1}\left(\omega^{2}\right) & \text { otherwise } .\end{cases}
$$

Then there exists a quantifier-free formula F^{\star}, free of defined function symbols which is true in \mathcal{N} such that the function ϕ_{i} substituted for f_{i} is elementary in $\mathrm{H}_{\gamma}(\max \{d, n\})$, where d depends on T only.

Proof. It suffices to show that each ϕ_{i} is elementary in $\mathrm{H}_{\gamma}(\max \{d, n\})$, where d depends on T only. During the proof we give sufficient criteria to fix this constant. We need some new ideas to establish the stated bound. We assume $q>1$; the case $q=1$ is similar, but simpler. By Theorem 5.3 we have for all $i \in[1, r-1]$:

$$
\alpha_{i+1} \in \alpha_{i}\left[\mathrm{H}[h]_{\alpha_{1}}^{q \cdot i}\left(\mathrm{C}\left(\alpha_{1}\right)+n\right)\right] \subseteq \alpha_{1}\left[\mathrm{H}[h]_{\alpha_{1}}^{q \cdot i}\left(\mathrm{C}\left(\alpha_{1}\right)+n\right)\right] .
$$

The first goal is to find a suitable bound for $\mathrm{H}[h]_{\alpha_{1}}^{q \cdot i}\left(\mathrm{C}\left(\alpha_{1}\right)+n\right)$.

$$
\begin{aligned}
\mathrm{H}[h]_{\alpha_{1}}^{q \cdot i}\left(\mathrm{C}\left(\alpha_{1}\right)+n\right) & \leq \mathrm{H}[h]_{\alpha_{1}}^{q \cdot i}\left(\mathrm{H}[h]_{\alpha_{1}}(n)\right) \\
& \leq \mathrm{H}[h]_{\alpha_{1}}^{q \cdot i}\left(\mathrm{H}[h]_{\alpha_{1}}\left(\mathrm{H}[h]_{\omega_{q}}^{q}(n)\right)\right)
\end{aligned}
$$

By Lemma 5.1 this yields

$$
\begin{aligned}
& \mathrm{H}[h]_{\alpha_{1}}^{q \cdot i}\left(\mathrm{C}\left(\alpha_{1}\right)+n\right) \leq \mathrm{H}[h]_{\omega_{q}}^{q \cdot i}\left(\mathrm{H}[h]_{\bar{\omega}_{q}}\left(\mathrm{H}[h]_{\bar{\omega}_{q}}^{q}(n)\right)\right) \\
& \leq \mathrm{H}[h]_{\omega_{q}}^{q \cdot(i+2)}(n) \text {. }
\end{aligned}
$$

We estimate $\mathrm{H}[h]_{\bar{\omega}_{q}}^{q}(n)$: As h is primitive recursive, $h(n, n) \leq \mathrm{H}_{\omega^{l}}(\max \{d, n\})$ for some numbers l and d. (Essentially $l=3$ suffices, if we make sure that d is greater than e, q and the maximal depth of terms in T.) Using $q>1$ and $d \geq l, q$, we see $h(n, n) \leq \mathrm{H}_{\bar{\omega}_{q}}(\max \{d, n\})$. We obtain:

$$
\begin{aligned}
\mathrm{H}[h] \frac{q}{\bar{\omega}_{q}}(\max \{d, n\}) & \leq \mathrm{H}_{\bar{\omega}_{q} \bar{\omega}_{q}}^{q}(\max \{d, n\}) \\
& \leq \mathrm{H}_{\bar{\omega}_{q}^{2} \omega}(\max \{d, n\}) \\
& \leq \mathrm{H}_{\bar{\omega}_{q}^{3}}^{3}(\max \{d, n\}) .
\end{aligned}
$$

For the second inequality we employ $\omega \in \bar{\omega}_{q}[\max \{d, n\}]$.

We set $\delta:=\bar{\omega}_{q}^{3}$ and obtain $\mathrm{H}[h]_{\bar{\omega}_{q}}^{q}(n) \leq \mathrm{H}_{\delta}(\max \{d, n\})$, which implies $\alpha_{1} \in$ $\bar{\omega}_{q}\left[\mathrm{H}_{\delta}(\max \{d, n\})\right]$. Further, we obtain for each $i \in[1, r-1]$:

$$
\begin{equation*}
\mathrm{H}[h]_{\alpha_{1}}^{q \cdot i}\left(\mathrm{C}\left(\alpha_{1}\right)+n\right) \leq \mathrm{H}_{\delta}^{i+2}(\max \{d, n\}) . \tag{14}
\end{equation*}
$$

We establish an upper bound for r, using the following lemma.
Lemma 5.2 Suppose $f(n) \geq n+1$. Let μ_{x} denote the least number operator. Then

$$
\mathrm{H}[f]_{\alpha}(n) \geq \mu_{k}\left(P_{f^{k}(n)} P_{f^{k-1}(n)} \cdots P_{n}(\alpha)=0\right) .
$$

Proof. One proves $\mathrm{H}[f]_{\alpha}(n)-n \geq \mu_{k}\left(P_{f^{k}(n)} P_{f^{k-1}(n)} \cdots P_{n}(\alpha)=0\right)$ by induction on α.

By the above lemma and (14), we obtain:

$$
\begin{aligned}
r & \leq \mu_{k}\left(P_{\mathrm{H}_{\delta}^{k+2}(\max \{d, n\})} \cdots P_{\mathrm{H}_{\delta}^{2}(\max \{d, n\})}\left(\alpha_{1}\right)=0\right) \\
& \leq \mathrm{H}\left[\mathrm{H}_{\delta}\right]_{\alpha_{1}}\left(\mathrm{H}_{\delta}^{2}(\max \{d, n\})\right) .
\end{aligned}
$$

Furthermore

$$
\begin{aligned}
\mathrm{H}\left[\mathrm{H}_{\delta}\right]_{\alpha_{1}}\left(\mathrm{H}_{\delta}^{2}(\max \{d, n\})\right) & =\mathrm{H}_{\delta \alpha_{1}}\left(\mathrm{H}_{\delta}^{2}(\max \{d, n\})\right) \leq \mathrm{H}_{\delta \bar{\omega}_{q}}\left(\mathrm{H}_{\delta}^{2}(\max \{d, n\})\right) \\
& \leq \mathrm{H}_{\bar{\omega}_{q}^{4}+\bar{\omega}_{q}^{3} \omega}(\max \{d, n\}) .
\end{aligned}
$$

Summing up, we set $d \geq\left(2^{e}+1\right)^{4}$ and observe

$$
\begin{aligned}
\mathrm{C}\left(\alpha_{1}\right)+\cdots+\mathrm{C}\left(\alpha_{r}\right) & \leq \mathrm{H}[h]_{\alpha_{1}}^{q(r-1)}\left(\mathrm{C}\left(\alpha_{1}\right)+n\right) \\
& \leq \mathrm{H}_{\delta}^{r+1}(\max \{d, n\}) \\
& \leq \mathrm{H}_{\delta \omega} \mathrm{H}_{\bar{\omega}_{q}^{4}+\bar{\omega}_{q}^{2} \omega}(\max \{d, n\}) \\
& \leq \mathrm{H}_{\bar{\omega}_{q}^{4}+\bar{\omega}_{q}^{4}-\bar{\omega}_{q}^{3} \omega}(\max \{d, n\}) \\
& \leq \mathrm{H}_{\omega_{q}\left(\omega^{2}\right)}(\max \{d, n\})=\mathrm{H}_{\gamma}(\max \{d, n\}) .
\end{aligned}
$$

Hence, the complexity of the Substitution Method is bounded by H_{γ}. We conclude, by similar considerations, that the value of a substitution instance for any defined function symbol is bounded by

$$
\mathrm{H}_{\omega_{q-1}\left(\omega^{2}\right)}(\max \{d, n\}) .
$$

Finally we set $w:=\mathrm{H}_{\gamma}(\max \{d, n\})$. By definition of the substitution method, we obtain

$$
\phi_{i}\left(n_{1}, \ldots, n_{l}\right)=\mu_{x \leq w} A\left(n_{1}, \ldots, n_{l}, x\right),
$$

for some elementary relation A. As bounded minimisation is elementary, ϕ_{i} is elementary in H_{γ}.

Theorem 5.4 solves the problem (\star) posed in Section 1. It is easy to see that the employed machinery can be used also for a 'weaker' set of tautologies. We define a strict subset $\mathcal{S}^{\prime} \subset \mathcal{S}$ in a similar fashion as the set of tautologies \mathcal{S}. However no reverence is made to a critical axiom of 2 nd kind. This change allows us to alter the definition of substitution step.

The initial substitution S_{0} assigns to all function symbols f_{1}, \ldots, f_{q} the constant function 0 . Suppose i substitutions have already be constructed. Let the critical axioms in \mathcal{C} be ordered in some arbitrary way. The first critical axiom

$$
A(t, \bar{s}) \supset A\left(f_{p}(\bar{s}), \bar{s}\right),
$$

having truth value false is picked. Suppose $t \hookrightarrow_{G_{i}} z$, hence $A(z, \bar{s})$ is true in \mathcal{N}. The definition of the function ψ replacing the old instantiation ϕ for f_{p} becomes

$$
\psi\left(m_{1}, \ldots, m_{l}\right)= \begin{cases}\phi\left(m_{1}, \ldots, m_{l}\right) & m_{1}, \ldots, m_{l} \neq n_{1}, \ldots, n_{l} \\ z & m_{1}, \ldots, m_{l}=n_{1}, \ldots, n_{l}\end{cases}
$$

where $\bar{s} \hookrightarrow_{G_{i}} \bar{n}$.
The whole purpose of the index with respect to the sequence of formulas (6) is to control the respective part in the definition of substitution. Hence this index is not necessary, as no critical axioms of 2nd kind are present. This implies that the ordinal assigned to an arbitrary substitution is a natural number less than 2^{e}, where e is the maximum number of terms $f_{i}\left(s_{1}, \ldots, s_{l}\right)$ in \mathcal{C}. Based on this observation we can change the appropriate definitions and prove the key theorems for the restriction set of tautologies \mathcal{S}^{\prime}.

Theorem 5.5 Let $T\left(n_{1}, \ldots, n_{k}\right) \in \mathcal{S}^{\prime}$ be a closed tautology of the form

$$
A_{1} \wedge \cdots \wedge A_{m} \wedge B_{1} \wedge \cdots \wedge B_{n} \supset F\left(f_{1}, \ldots, f_{q}\right)
$$

containing defined function symbols f_{1}, \ldots, f_{q}.
Then there exists a quantifier-free formula F^{\star}, free of defined function symbols true in \mathcal{N} such that the functions ϕ_{i} substituted for f_{i} are elementary in $J\left(g, \mathrm{G}_{\gamma}(1)\right)(n), \gamma<\epsilon_{0}$ and $n=\max \left\{n_{1}, \ldots, n_{k}\right\}$.

6 Peano Arithmetic coached in the ε-calculus

In this section the formal system $\operatorname{PA}(\varepsilon)$ is defined. The formalisation is chosen in such a form that the results of Section 4 and Section 5 can immediately be applied for $\mathrm{PA}(\varepsilon)$. In Section 7 we give an embedding of PA , into $\mathrm{PA}(\varepsilon)$. Our
formalisation of Hilbert's ε-calculus and thus the axiomatisation of number theory is based on a Tait-style calculus.

Hilbert's ε-calculus centres around an extension of the basic first-order language \mathcal{L} by the ε-symbol. We extend the definition of terms to include ε-terms. The extended language is called $\mathcal{L}(\varepsilon)$.

If $A(a)$ is a formula, not containing the bounded variable x, then the ε-term $\epsilon_{x} A(x)$ is a term. If on the other hand x does occur at positions p_{1}, \ldots, p_{k} in $A(a)$, we obtain a variant A^{\prime} by replacing x at p_{i} for all $i \in[1, k]$ by some other distinct bound variable y not already occurring in A. The variant A^{\prime} is then used to form the ε-term $\epsilon_{x} A^{\prime}(x)$. If $\epsilon_{y} A(y)$ is obtained from the expression $\epsilon_{x} A(x)$ by changing bound variables, as just described, then we call this change admissible. Two expressions are called congruent if one can be obtained from the other by a sequence of admissible changes of bound variables. Congruent expressions are considered to be equal.

A term $\epsilon_{x} A(x)$ is an ε-matrix-or simply a matrix-if all terms occurring in A are free variables each of which occurs exactly once. Clearly no expression in $A(x)$ containing x can be a term. We denote ε-matrices as $\epsilon_{x} A\left(x ; a_{1}, \ldots, a_{k}\right)$ with the understanding that only the variables a_{1}, \ldots, a_{k} occur and these are fully indicated. ε-matrices that differ only in the indicated tuples of variables are considered to be equal. Let E be some expression; a matrix $\epsilon_{x} A\left(x ; a_{1}, \ldots, a_{k}\right)$ is said to occur in E if there exists a list of terms or semi-terms s_{1}, \ldots, s_{k} such that $\epsilon_{x} A\left(x ; s_{1}, \ldots, s_{k}\right)$ occurs in E. The rank of a matrix $e($ written $\operatorname{rank}(e))$ is defined inductively: If no matrix occurs inside e then $\operatorname{rank}(e):=1$. Assume we already assigned ranks r_{1}, \ldots, r_{l} to the l matrices occurring in e. Then $\operatorname{rank}(e):=\max \left\{r_{1}, \ldots, r_{l}\right\}+1$.

Corresponding to each term $\epsilon_{x} A(x)$ there exists a unique matrix e : The matrix e is obtained by first replacing all maximal subterms occurring in $\epsilon_{x} A(x)$ by new free variables. In this newly obtained term we replace distinct occurrences of the same variable by different variables. The rank of an ε-term, written as $\operatorname{rank}\left(\epsilon_{x} A(x)\right)$, is the rank of its matrix.

Example 6.1 Suppose f, g denote binary function symbols; $a, b, x, y \in \mathcal{V}$. The rank of the ε-terms $\epsilon_{x}\left\{\epsilon_{y}\left(f(x, y)=\epsilon_{z}(g(x, z)=a)\right)=b\right\}$ and $\epsilon_{x}\left\{\epsilon_{y}(f(x, y)=\right.$ $\left.\left.\epsilon_{z}(g(y, z)=a)\right)=b\right\}$ is 2 and 3, respectively. The given ϵ-terms constitute their one ϵ-matrices.

Note that the rank of $\epsilon_{x} A(x)$ can be lower than the rank of one of its subterms, i.e., the term depth of an ϵ-term is not necessary a bound for the rank, see $[3,4,20]$ for further examples.

Based on the language $\mathcal{L}(\varepsilon)$, we define $\mathrm{PA}(\varepsilon)$ as a Tait-style sequent calculus.

A sequent is a line of the form

$$
\vdash A_{1}, \ldots, A_{n},
$$

where each A_{i} is a formula. We conceive the line A_{1}, \ldots, A_{n} as a set of formulas. The logical axioms of $\operatorname{PA}(\varepsilon)$ have the form $\vdash \neg A, A$ and

$$
\begin{equation*}
\vdash \neg A(t), A\left(\epsilon_{x} A(x)\right), \tag{15}
\end{equation*}
$$

where t is an arbitrary term (over $\mathcal{L}(\varepsilon)$). The identity axioms are defined by suitable reformulation of the identity axioms in Table 2, together with instances of the following axiom of ε-identity:

$$
\begin{equation*}
\vdash b \neq c, \epsilon_{x} A\left(x ; a_{1}, \ldots, b, \ldots, a_{l}\right)=\epsilon_{x} A\left(x ; a_{1}, \ldots, c, \ldots, a_{l}\right), \tag{16}
\end{equation*}
$$

where $\epsilon_{x} A\left(x ; a_{1}, \ldots, a_{l}\right)$ denotes a representative of an ε-matrix of arity l. The logical rules and structural rules of $\operatorname{PA}(\varepsilon)$ are Tait-style formulations of the usual rules of the propositional fragment of predicate logic, see e.g. [21]. As non-logical axioms we employ (sequent reformulations of) the weak arithmetical axioms of Table 1 together with an axiom of induction. To formalise induction, the non-logical axiom

$$
\begin{equation*}
\vdash \neg A(t), \epsilon_{x} A(x) \leq t \quad \text { (Min) } \tag{17}
\end{equation*}
$$

is included, where A is an arbitrary formula in $\mathcal{L}(\varepsilon)$. This completes the definition of $\operatorname{PA}(\varepsilon)$. Within $\operatorname{PA}(\varepsilon)$ quantifiers become definable: $\exists x A(x): \Leftrightarrow$ $A\left(\epsilon_{x} A(x)\right)$ and $\forall x A(x): \Leftrightarrow A\left(\epsilon_{x} \neg A(x)\right)$, compare [20].

Let Π be a derivation in $\mathrm{PA}(\varepsilon)$ of $\vdash A$ and suppose e_{1}, \ldots, e_{q} denote the ε-matrices of the ε-terms occurring in Π; let this sequence be fixed. The set of critical axioms \mathcal{C} includes all critical axioms of the form (15) and (17). (We have already seen in Section 4 that the axioms of ε-identity need not be considered.) It is easy to see that the set of critical axioms \mathcal{C} defined for a given proof in $\mathrm{PA}(\varepsilon)$ is a specialisation of the set of critical axioms of the system \mathcal{S}. Moreover it is clear that any proof Π in $\mathrm{PA}(\varepsilon)$, yields a tautology T which has the form studied in Section 4 and Section 5 . The role played by the defined function symbols f_{1}, \ldots, f_{q} is taken up by the ε-matrices e_{1}, \ldots, e_{q}.

Definition 6.1 We assume the following order on the e_{1}, \ldots, e_{q}. Matrices of lower rank precede those of higher rank. It follows that e_{j} cannot occur in e_{i} for $i<j$. We make the additional assumption that if e_{j} is contained in the sequence, all matrices occurring in e_{j} are included in the sequence as well.

It is easy to see that this order meets the technical assumption employed above on the order of the defined symbols f_{1}, \ldots, f_{q}.

A function f is provably recursive in $\mathrm{PA}(\varepsilon)$, if there exists a primitive recursive predicate P and a primitive recursion function g such that $\mathrm{PA}(\varepsilon) \vdash$
$\forall y_{1} \cdots \forall y_{k} \exists x P\left(y_{1}, \ldots, y_{k}, x\right)$ and f satisfies

$$
f\left(n_{1}, \ldots, n_{k}\right)=g\left(\mu_{x} P\left(n_{1}, \ldots, n_{k}, x\right)\right)
$$

where μ_{x} denotes the least number operator. For each $\alpha \prec \varepsilon_{0}$, let the Hardy class \mathcal{H} be the smallest class of functions containing $0, S$, all H_{α}, all projection functions $I_{n, i}\left(a_{1}, \ldots, a_{n}\right)=a_{i}$, and closed under primitive recursion and composition.

Corollary 6.1 \mathcal{H} is the class of all provably recursive functions in $\operatorname{PA}(\varepsilon)$.
Proof. We will not give a full proof but restrict our attention to show that the class of provably recursive functions of $\operatorname{PA}(\varepsilon)$ is contained in \mathcal{H}. The other inclusion follows by the standard argumentation, cf. [8], employing the embedding of PA into $\operatorname{PA}(\varepsilon)$, shown in the next section. Making use of Theorem 5.4 we obtain a characterisation of the provably recursive functions in $\operatorname{PA}(\varepsilon)$. Let f be a function provably recursive in $\mathrm{PA}(\varepsilon)$ with proof Π. Then we can characterise f constructively. In the notations of Theorem 5.4.

$$
f\left(n_{1}, \ldots, n_{k}\right)=\mu_{x \leq H\left(n_{1}, \ldots, n_{k}\right)} P\left(n_{1}, \ldots, n_{k}, x\right),
$$

where $H\left(a_{1}, \ldots, a_{k}\right)$ abbreviates $\mathrm{H}_{\gamma}\left(\max \left\{d, a_{1}, \ldots, a_{k}\right\}\right)$, where $\gamma<\epsilon_{0}$ and d depends on Π only.

7 Embedding Peano Arithmetic into PA(ε)

We formalise PA in the form of a Tait-style sequent calculus. The language of PA is denoted as $\mathcal{L}(\mathrm{PA})$. The logical axioms of PA have the form $\vdash \neg A, A$. The identity axioms are given through a reformulation of the axioms in Table 2, while the logical rules and structural rules of PA are the usual rules of predicate logic, formulated in a Tait-style calculus, cf. [21].

This completes the definition of the logical system. To formalise Peano Arithmetic completely, it suffices to add induction, and sequent formulations of the weak arithmetical axioms in Table 1. Instead of the usual mathematical induction principle we include an equivalent principle of order induction.

$$
\frac{\vdash \Gamma, \neg \forall y(y<a \supset A(y)), A(a)}{\vdash \Gamma, A(t)} \quad \text { (Ind) }
$$

where $a \in \mathcal{V}$ does not occur free in Γ and t is an arbitrary term. It remains to establish the embedding of usual PA into $\operatorname{PA}(\varepsilon)$. For any formula A in $\mathcal{L}(\mathrm{PA})$,
we define a formula A^{+}in $\mathcal{L}(\varepsilon)$:

$$
\begin{aligned}
A^{+} & :=A \quad \text { if } A \text { is an atomic formula }, \\
(A \odot B)^{+} & :=A^{+} \odot B^{+} \text {for } \odot \in\{\wedge, \vee\}, \\
(\exists x A(x))^{+} & :=A^{+}\left(\epsilon_{x} A^{+}(x)\right], \\
(\forall x A(x))^{+} & :=A^{+}\left(\epsilon_{x} \neg A^{+}(x)\right) .
\end{aligned}
$$

Using the translation A^{+}we are able to show
Theorem 7.1 (1) If $\mathrm{PA} \vdash A$, then $\mathrm{PA}(\varepsilon) \vdash A^{+}$
(2) If $\mathrm{PA} \vdash A$, such that A is a closed formula, then there exists a $\operatorname{PA}(\varepsilon)-$ derivation Π^{+}of A^{+}such that $\operatorname{var}\left(\Pi^{+}\right)=\emptyset$.

Proof. See [9] for a proof.
Finally we obtain the following result as a corollary of Theorem 7.1 and Corollary 6.1. This theorem has first been proved in [22], see also [8].

Corollary $7.1 \mathcal{H}$ is the class of all provably recursive functions in PA.

8 Conclusion and Further Work

Through the gained direct characterisation of the class of provably recursive functions of $\operatorname{PA}(\varepsilon)$, we can extract the content of proofs of purely existential formulas. Let $\exists \bar{x} A(\bar{c}, \bar{x})$ be a closed Σ_{1}-formula. Suppose $\operatorname{PA}(\varepsilon)$ proves $\exists \bar{x} A(\bar{c}, \bar{x}))^{+}$with a derivation Π. The results of Section 5 allow us to pindown, depending on information gathered from Π, numbers n_{1}, \ldots, n_{l} such that $A(\bar{c}, \bar{n})$ is true in the standard-model \mathcal{N}.

The difference from usual Gentzen-style proof theory is that we need not consider the whole proof Π. It suffices to consider the set of critical axioms \mathcal{C} occurring in Π. Following Ackermann's approach it seems natural to count the number of employed ε-matrices to measure the length of the proof Π. However, a close look at the results of Sections 4 and 5 shows that we can employ the following definition. We write $\Pi \vdash A$ to denote derivability of A (with a proof Π) in $\operatorname{PA}(\varepsilon)$.

Definition 8.1 The length of Π such that $\Pi \vdash A$ is defined as the maximal rank of ε-matrices r in Π. We write $\Pi \vdash_{r} A$.

This becomes possible, if we suitably change the definition of the characteristic number:

Definition 8.2 Let S be a substitution different from the initial one, and let r denote the maximal rank of an ϵ-matrix occurring in \mathcal{C}. Suppose l is maximal such that $l=\operatorname{rank}\left(e_{i}\right)$ and e_{i} denotes an ϵ-matrix that is assigned a function different from the constant function 0 under S. Then the characteristic number of S is $r+1-l$. In the case where S denotes the initial substitution its characteristic number is defined as $r+1$.

Although the definition of a characteristic number is central, all results of Sections 4 and 5 remain valid, when reformulated appropriately. We say a formula $A \in \mathcal{L}(\varepsilon)$ is true at n, if there exists an ε-substitution instance A^{\star} of A such that all substitution instances of ε-terms occurring in A are bounded by n. In summary we obtain the following proposition.

Proposition 8.1 (Bounding Lemma) Let $\exists \bar{x} A(\bar{c}, \bar{x})$ be a closed Σ_{1}-formula. Suppose $\Pi \vdash_{r}(\exists \bar{x} A(\bar{c}, \bar{x}))^{+}$. Then we have $(\exists \bar{x} A(\bar{c}, \bar{x}))^{+}$is true at $\mathrm{H}_{\gamma}(n)$, for n large enough, where

$$
\gamma= \begin{cases}\omega^{\omega} & \text { if } r=1 \\ \omega_{r-1}\left(\omega^{2}\right) & \text { otherwise } .\end{cases}
$$

An open problem is to relate our characterisation result of the provably recursive functions to the one obtained by Tait in [17, 9] and to Avigad [10]. As already mentioned the substitution method has recently received renewed attention. In particular, in [12] Arai observed a specific feature of Ackermann's proof. The construction used to prove the 1-consistency of $\mathrm{PA}(\varepsilon)$ can be employed to define an ordinal notation system. It turns out that this notation system has been reinvented much later by K. Schütte and S. Simpson for an investigation on independence results [23]. This is of interest as the latter can be shown to be equivalent to the algebraically motivated notation system introduced by Beklemishev [24].

Acknowledgements This paper grew out of a master project at the University of Leeds and I cordially thank Stan Wainer for his guidance during my time in Leeds. Moreover I would like to thank Toshiyasu Arai and Grigori Mints for comments on an earlier draft of this paper and useful discussions.

References

[1] G. Kreisel, Interpretation of non-finitist proofs I,II, J. Symbolic Logic 16,17 (1952) 241-267,43-58.
[2] S. S. Wainer, Ordinal Recursion, and a refinement of the extended Grzegorczyk hierarchy, J. Symbolic Logic (1972) 281-292.
[3] W. Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie, Math. Annalen 117 (1940) 162-194.
[4] D. Hilbert, P. Bernays, Grundlagen der Mathematik II, Springer Verlag, Second Edition, 1970.
[5] A. Leisenring, Mathematical Logic and Hilbert's ϵ-symbol, MacDonald Technical and Scientific, London, 1969.
[6] J. Avigad, R. Zach, The Epsilon Calculus, in: E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2002 Edition), 2002, http://plato.stanford.edu/archives/sum2002/entries/ epsilon-calculus/.
[7] G. Gentzen, Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie, Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften 4.
[8] G. Takeuti, Proof Theory, 2nd Edition, North-Holland, Amsterdam, 1987.
[9] W. W. Tait, The Substitution Method, J. Symbolic Logic 30 (2) (1965) 175-192.
[10] J. Avigad, Update procedures and the 1-consistency of arithmetic, Math. Logic Quarterly 48 (2002) 3-13.
[11] M. Fairtlough, S. S. Wainer, Hierarchies of provably recursive functions, in: S. R. Buss (Ed.), Handbook of Proof Theory, Elsevier Science, 1998, pp. 149-207.
[12] T. Arai, Epsilon substitution method for theories of jump hierarchies, Archive for Mathematical Logic 41 (2002) 123-153.
[13] T. Arai, Epsilon substitution method for $I D_{1}\left(\Pi_{1}^{0} \vee \Sigma_{1}^{0}\right)$, Annals of Pure and Applied Logic (2003) 163-208.
[14] W. Buchholz, G. Mints, S. Tupailo, Epsilon substitution method for elementary analysis, Archive for Mathematical Logic 35(2) (1996) 103-130.
[15] G. Mints, Hilbert's substitution method and Gentzen-type systems, in: Proc. of $9^{\text {th }}$ Int. Congress of Logic, Method. and Philos. of Sci., Uppsala, Sweden, 1994.
[16] G. Mints, A termination proof for epsilon substitution using partial derivations, Theoretical Computer Science (2003) 187-213.
[17] W. W. Tait, Functionals defined by transfinite recursion, J. Symbolic Logic 30 (2) (1965) 155-174.
[18] J. v. Neumann, Zur Hilbertschen Beweistheorie, Math Zeitschrift (1927) 1-46.
[19] W. Buchholz, A. Cichon, A. Weiermann, A uniform approach to fundamental sequences and hierarchies, Math. Logic Quarterly 40 (1994) 273-286.
[20] G. Moser, R. Zach, The Complexity of the Epsilon theorems, Studia Logica. To appear.
[21] H. Schwichtenberg, Some applications of cut-elimination, in: J. Barwise (Ed.), Handbook of Mathematical Logic, North Holland, $5^{\text {th }}$ edition, 1989, pp. 867-897.
[22] S. S. Wainer, A classification of the ordinal recursive functions, Archive
for Mathematical Logic 13 (1970) 136-153.
[23] K. Schütte, S. Simpson, Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen, Archive for Mathematical Logic (1985) 75-89.
[24] L. Beklemishev, Provability algebras and proof-theoretic ordinals - part I, Annals of Pure and Applied Logic 128 (2004) 103-124.

[^0]: Email address: georg.moser@uibk.ac.at (Georg Moser).
 ${ }^{1}$ Work partially supported by Marie Curie grant no. HPMF-CT-2002-015777.

[^1]: ${ }^{2}$ By complexity of the substitution method we understand the maximal number of approximation steps necessary till the final substitution is rendered.

[^2]: finitely many arguments n_{1}, \ldots, n_{l}.

