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Abstract. We study the derivational complexity of rewrite systems R
compatible with KBO, if the signature of R is in�nite. We show that the
known bounds on the derivation height are preserved, if R ful�ls some
mild conditions. This allows us to obtain bounds on the derivational
height of non simply terminating TRSs. Furthermore, we re-establish the
2-recursive upper-bound on the derivational complexity of �nite rewrite
systems R compatible with KBO.

1 Introduction

One of the main themes in rewriting is termination. Over the years powerful
methods have been introduced to establish termination of a given term rewriting
system (TRS) R. Earlier research mainly concentrated on inventing suitable
reduction orders�for example simpli�cation orders, see Chapter 6, authored
by Zantema in [1]�capable of proving termination directly. In recent years the
emphasis shifted towards transformation techniques like the dependency pair
method or semantic labelling, see [1]. The dependency pair method is easily
automatable and lies at the heart of many successful termination provers like
TTT [2] or AProVE [3]. Semantic labelling with in�nitely labels was conceived
to be unsuitable for automation. Hence, only the variant with �nitely many
elements was incorporated (for example in AProVE [3] or TORPA [4]). Very
recently this belief was proven wrong. TPA [5] implements semantic labelling with
natural numbers, in combination with recursive path orders (RPOs) e�ciently.
As remarked in [6] a sensible extension of this implementation is the combination
of semantic labelling with Knuth�Bendix orders (KBOs).

In order to assess the power and weaknesses of di�erent termination tech-
niques it is natural to look at the length of derivation sequences, induced by
di�erent techniques. This program has been suggested in [7]. The best known
result is that for �nite rewrite systems, RPOs induce primitive recursive deriva-
tional complexity. This bound is essentially optimal, see [8,9]. Similar optimal
results have been obtained for lexicographic path orders (LPOs) and KBOs.
Weiermann [10] showed that LPOs induce multiply recursive derivational com-
plexity. In [11] Lepper showed that for term rewriting systems (TRSs) compatible
with KBOs, the derivational complexity is bounded by the Ackermann function.



These results not only assess di�erent proof techniques for termination, but
constitute an a priori complexity analysis for term rewriting systems provably
terminating by RPOs, LPOs, or KBOs. The application of termination provers
as basis for the termination analysis of logic or functional programs is currently
a very hot topic. Applicability of an a priori complexity analysis for TRSs in
this direction seems likely.

While the aforementioned program has spawned a number of impressive re-
sults, not much is known about the derivational complexity induced by the de-
pendency pair method or semantic labelling (for �xed base orders, obviously).
We indicate the situation with an example.

Example 1. Consider the TRS (F ,R) [12] consisting of the following rewrite
rules:

f(h(x)) → f(i(x)) h(a) → b

g(i(x)) → g(h(x)) i(a) → b .

It is not di�cult to see that termination of R cannot be established directly
with path orders or KBOs. On the other hand, termination is easily shown via the
dependency pair method or via semantic labelling. For the sake of the argument
we show termination via semantic labelling with KBOs.

We use natural numbers as semantics and as labels. As interpretation for
the function symbols we use aN = bN = gN(n) = fN(n) = 1, iN(n) = n, and
hN(n) = n + 1. The resulting algebra (N, >) is a quasi-model for R. It su�ces
to label the symbol f . We de�ne the labelling function `f : N → N as `f (n) = n.
Replacing

f(h(x)) → f(i(x)) ,

by the in�nitely many rules

fn+1(h(x)) → fn(i(x)) ,

we obtain the labelled TRS, (Flab,Rlab). Further the TRS (Flab,Dec) consists
of all rules

fn+1(x) → fn(x) .

Now we can show termination of R′ := Rlab∪Dec by an instance �kbo of Knuth-
Bendix order (KBO). We set the weight for all occurring function symbols to 1.
Further, the precedence is de�ned as

fn+1 � fn � · · · � f0 � i � h � g � a � b .

It is easy to see that R′ ⊆�kbo. Thus termination of R is guaranteed.
As the rewrite system R′ is in�nite we cannot directly apply the aforemen-

tioned result on the derivational complexity induced by Knuth-Bendix order. A
careful study of [11] reveals that the crucial problem is not that R′ is in�nite,
but that the signature Flab is in�nite, as Lepper's proof makes explicit use of
the �niteness of the signature: To establish an upper-bound on the derivational



complexity of a TRS R, compatible with KBO, an interpretation function I is
de�ned, where the cardinality of the underlying signature is hard-coded into I,
cf. [11].

We study the situation by giving an alternative proof of Lepper's result com-
pare [11]. The outcome of this study is that the assumption of �niteness of the
rewrite system can be weakened. By enforcing conditions that are still weak
enough to treat interesting rewrite systems, we show that for (possibly in�nite)
TRSs R over in�nite signatures, compatible with KBO, the derivation height of
R can be bounded by the Ackermann function. Using an example that stems
from [8] we show that this upper-bound is essentially optimal.

Specialised to Example 1, our results provide an upper bound on the deriva-
tion height function with respect toR: For every t ∈ T (F) there exists a constant
c (depending only on t, R′, and �kbo) such that the derivation height dhR(t)
with respect to R is ≤ Ack(cn, 0). As the constant c can be made precise, the
method is capable of automation.

This paper is organised as follows: In Section 2 and 3 some basic facts on
rewriting, set theory and KBOs are recalled. In Section 4 we de�ne an embed-
ding from �kbo into >lex, the lexicographic comparison of sequences of natural
numbers. This embedding renders an alternative description of the derivation
height of a term, based on the partial order >lex. This description is discussed
in Section 5 and linked to the Ackermann function in Section 6. The above men-
tioned central result is contained in Section 7. Moreover in Section 7 we apply our
result to a non simply terminating TRS, whose derivational complexity cannot
be primitive recursively bounded.

2 Preliminaries

We assume familiarity with term rewriting. For further details see [1]. Let V
denote a countably in�nite set of variables and F a signature. We assume that
F contains at least one constant. The set of terms over F and V is denoted as
T (F ,V), while the set of ground terms is written as T (F). The set of variables
occurring in a term t is denoted as Var(t). The set of function symbols occurring
in t is denoted as FS(t). The size of a term t, written as Size(t), is the number
of variables and functions symbols in it. The number of occurrences of a symbol
a ∈ F ∪ V in t is denoted as |t|a. A TRS (F ,R) over T (F ,V) is a set of
rewrite rules. The smallest rewrite relation that contains R is denoted as →R.
The transitive closure of →R is denoted by →+

R, and its transitive and re�exive
closure by→∗

R. A TRS (F ,R) is called terminating if there is no in�nite rewrite
sequence. As usual, we frequently drop the reference to the signature F .

A partial order � is an irre�exive and transitive relation. The converse of �
is written as ≺. A partial order � on a set A is well-founded if there exists no
in�nite descending sequence a1 � a2 � · · · of elements of A. A rewrite relation
that is also a partial order is called rewrite order. A well-founded rewrite order is
called reduction order. A TRS R and a partial order � are compatible if R ⊆�.



We also say that R is compatible with � or vice versa. A TRS R is terminating
i� it is compatible with a reduction order �.

Let (A, >) denote a well-founded weakly monotone F-algebra. (A, >) consists
of a carrier A, interpretations fA for each function symbol in F , and a well-
founded partial order > on A such that every fA is weakly monotone in all
arguments. We de�ne a quasi-order >A: s >A t if for all assignments α : V → A
[α]A(s) > [α]A(t). Here > denotes the re�exive closure of >. The algebra (A, >)
is a quasi-model of a TRS R, if R ⊆>A.

A labelling ` for A consists of a set of labels Lf together with mappings
`f : An → Lf for every f ∈ F , f n-ary. A labelling is called weakly monotone
if all labelling functions `f are weakly monotone in all arguments. The labelled
signature Flab consists of n-ary functions symbols fa for every f ∈ F , a ∈ Lf ,
together with all f ∈ F , such that Lf = ∅. The TRS Dec consists of all rules

fa+1(x1, . . . , xn) → fa(x1, . . . , xn) ,

for all f ∈ F . The xi denote pairwise di�erent variables. Our de�nition of Dec
is motivated by a similar de�nition in [6]. Note that the rewrite relation→∗

Dec is
not changed by this modi�cation of Dec. For every assignment α, we inductively
de�ne a mapping labα : T (F ,V) → T (Flab,V):

labα(t) :=


t if t ∈ V ,

f(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf = ∅ ,
fa(labα(t1), . . . , labα(tn)) otherwise .

The label a in the last case is de�ned as lf ([α]A(t1), . . . , [α]A(tn)). The labelled
TRS Rlab over Flab is de�ned as

{labα(l) → labα(r) | l → r ∈ R and α an assignment} .

Theorem 1 (Zantema [13]). Let R be a TRS, (A, >) a well-founded weakly
monotone quasi-model for R, and ` a weakly monotone labelling for (A, >). Then
R is terminating i� Rlab ∪ Dec is terminating.

The proof of the theorem uses the following lemma.

Lemma 1. Let R be a TRS, (A, >) a quasi-model of R, and ` a weakly mono-
tone labelling for (A, >). If s →R t, then labα(s) →∗

Dec · →Rlab labα(t) for all
assignments α.

We brie�y review a few basic concepts from set-theory in particular ordinals,
see [14]. We write > to denote the well-ordering of ordinals. Any ordinal α 6= 0,
smaller than ε0, can uniquely be represented by its Cantor Normal Form (CNF):

ωα1n1 + . . . ωαknk with α1 > · · · > αk .

To each well-founded partial order � on a set A we can associate a (set-theoretic)
ordinal, its order type. First we associate an ordinal to each element a of A by



setting otype�(a) := sup{otype�(b) + 1: b ∈ A and b � a}. The order type of
�, denoted by otype(�), is the supremum of otype�(a) + 1 with a ∈ A. For two
partial orders � and �′ on A and A′, respectively, a mapping o : A → A′ embeds
� into �′ if for all p, q ∈ A, p � q implies o(p) �′ o(q). Such a mapping is an
order-isomorphism if it is bijective and the partial orders � and �′ are linear .

3 The Knuth Bendix Orders

A weight function for F is a pair (w, w0) consisting of a function w: F → N
and a minimal weight w0 ∈ N, w0 > 0 such that w(c) ≥ w0 if c is a constant.
A weight function (w, w0) is called admissible for a precedence � if f � g for
all g ∈ F di�erent from f , when f is unary with w(f) = 0. The function
symbol f (if present) is called special. The weight of a term t, denoted as w(t)
is de�ned inductively. Assume t is a variable, then set w(t) := w0, otherwise if
t = g(t1, . . . , tn), we de�ne w(t) := w(g) + w(t1) + · · ·+ w(tn).

The following de�nition of KBO is tailored to our purposes. It is taken
from [11]. We write s = fas′ if s = fa(s′) and the root symbol of s′ is dis-
tinct from the special symbol f . Let � be a precedence. The rank of a function
symbol is de�ned as: rk(f) := max{rk(g)+1 | f � g}. (To assert well-de�nedness
we stipulate max(∅) = 0.)

De�nition 1. Let (w, w0) denote an admissible weight function for F and let �
denote a precedence on F . We write f for the special symbol. The Knuth Bendix
order �kbo2 on T (F ,V) is inductively de�ned as follows: s �kbo2 t if |s|x ≥ |t|x
for all x ∈ V and

1. w(s) > w(t), or
2. w(s) = w(t), s = fas′, t = f bt′, where s′ = g(s1, . . . , sn), t′ = h(t1, . . . , tm),

and one of the following cases holds.
(a) a > b, or
(b) a = b and g � h, or
(c) a = b, g = h, and (s1, . . . , sn) �lex

kbo2
(t1, . . . , tn).

Let �kbo denote the KBO on terms in its usual de�nition, see [1]. The fol-
lowing lemma, taken from [11], states that both orders are interchangeable.

Lemma 2 (Lepper [11]). The orders �kbo and �kbo2 coincide.

In the literature real-valued KBOs and other generalisations of KBOs are
studied as well, cf. [15,16]. However, as established in [17] any TRS shown to
be terminating by a real-valued KBO can be shown to be terminating by a
integer-valued KBO.

4 Exploiting the order-type of KBOs

We write N∗ to denote the set of �nite sequences of natural numbers. Let p ∈ N∗,
we write |p| for the length of p, i.e. the number of positions in the sequence p.



The ith element of the sequence a is denoted as (p)i−1. We write paq to denote
the concatenation of the sequences p and q. The next de�nition is standard but
included here, for sake of completeness.

De�nition 2. We de�ne the lexicographic order on N∗. If p, q ∈ N∗, then p >lex

q if,

� |p| > |q|, or
� |p| = |q| = n and there exists i ∈ [0, n − 1], such that for all j ∈ [0, i − 1]

(p)j = (q)j and (p)i > (q)i.

It is not di�cult to see that otype(>lex) = ωω, moreover in [11] it is shown that
otype(�kbo) = ωω. Hence otype(>lex) = otype(�kbo), a fact we exploit below.
However, to make this work, we have to restrict our attention to signatures F
with bounded arities. The maximal arity of F is denoted as Ar(F).

De�nition 3. Let the signature F and a weight function (w, w0) for F be �xed.
We de�ne an embedding tw : T (F ,V) → N∗. Set b := max{Ar(F), 3}+ 1.

tw(t) :=

{
(w0, a, 0)a0m if t = fax, x ∈ V ,

(w(t), a, rk(g))a tw(t1)a · · ·a tw(tn)a0m if t = fag(t1, . . . , tn) .

The number m is set suitably, so that |tw(t)| = bw(t)+1.

The mapping tw �attens a term t by transforming it into a concatenation of
triples. Each triple holds the weight of the considered subterm r, the number of
leading special symbols and the rank of the �rst non-special function symbol of
r. In this way all the information necessary to compare two terms via �kbo is
expressed as a very simple data structure: a list of natural numbers.

Lemma 3. tw embeds �kbo into >lex: If s �kbo t, then tw(s) >lex tw(t).

Proof. The proof follows the pattern of the proof of Lemma 9 in [11].
Firstly, we make sure that the mapping tw is well-de�ned, i.e., we show that

the length restriction can be met. We proceed by induction on t; let t = fat′.
We consider two cases (i) t′ ∈ V or (ii) t′ = g(t1, . . . , tn). Suppose the former:

|(w0, a, 0)| = 3 ≤ bw(t)+1 .

Now suppose case (ii): Let j = rk(g), we obtain

|(w(t), a, j)a tw(t1)a · · ·a tw(tn)| = 3 + bw(t1)+1 + · · ·+ bw(tn)+1

≤ 3 + n · bw(t) ≤ bw(t)+1 .

Secondly, we show the following, slight generalisation of the lemma:

s �kbo t ∧ |tw(s)ar| = |tw(t)ar′| =⇒ tw(s)ar >lex tw(t)ar′ . (1)

To prove (1) we proceed by induction on s �kbo t. Set p = tw(s)ar, q = tw(t)a
r′.



Case w(s) > w(t): By de�nition of the mapping tw, we have: If w(s) > w(t),
then (tw(s))0 > (tw(t))0. Thus p >lex q follows.

Case w(s) = w(t): We only consider the sub-case where s = fag(s1, . . . , sn) and
t = fag(t1, . . . , tn) and there exists i ∈ [1, n] such that s1 = t1, . . . , si−1 = ti−1,
and si �kbo ti. (The other cases are treated as in the case above.) The induction
hypotheses (IH) expresses that if |tw(si)av| = |tw(ti)av′|, then tw(si)av >lex

tw(ti)av′. For j = rk(g), we obtain

p =

w︷ ︸︸ ︷
(w(s), a, j)a tw(s1)a · · ·a tw(si−1)a tw(si)a · · ·a tw(sn)ar ,

q = (w(s), a, j)a tw(s1)a · · ·a tw(si−1)︸ ︷︷ ︸
w

a tw(ti)a · · ·a tw(tn)ar′ .

Due to |p| = |q|, we conclude

|tw(si)a · · ·a tw(sn)ar| = |tw(ti)a · · ·a tw(tn)ar′| .

Hence IH is applicable and we obtain

tw(si)a · · ·a tw(sn)ar >lex tw(ti)a · · ·a tw(tn)ar′ ,

which yields p >lex q. This completes the proof of (1).

Finally, to establish the lemma, we assume s �kbo t. By de�nition either
w(s) > w(t) or w(s) = w(t). In the latter case tw(s) >lex tw(t) follows by (1).
While in the former tw(s) >lex tw(t) follows as w(s) > w(t) implies |tw(s)| >
|tw(t)|. ut

5 Derivation Height of Knuth-Bendix Orders

Let R be a TRS and �kbo a KBO such that �kbo is compatible with R. The
TRS R and the KBO �kbo are �xed for the remainder of the paper. We want to
extract an upper-bound on the length of derivations in R. We recall the central
de�nitions. Note that we can restrict the de�nition to the set ground terms. The
derivation height function dhR (with respect to R on T (F)) is de�ned as follows.

dhR(t) := max({n | ∃(t0, . . . , tn) t = t0 →R t1 →R . . . →R tn}) .

We introduce a couple of measure functions for term and sequence com-
plexities, respectively. The �rst measure sp : T (F ,V) → N bounds the maximal
nesting of special symbols in the term:

sp(t) :=

{
a if t = fax, x ∈ V ,

max({a} ∪ {sp(tj) | j ∈ [1, n]}) if t = fag(t1, . . . , tn) .



The second and third measure rk : T (F ,V) → N and mrk : T (F ,V) → N collect
information on the ranks of non special function symbols occurring:

rk(t) :=

{
0 if t = fax, x ∈ V ,

j if t = fag(t1, . . . , tn) and rk(g) = j ,

mrk(t) :=

{
0 if t = fax, x ∈ V ,

max({j} ∪ {mrk(ti) | i ∈ [1, n]}) if t = fag(t1, . . . , tn), rk(g) = j .

The fourth measure max : N∗ → N considers sequences p and bounds the
maximal number occurring in p:

max(p) := max({(p)i | i ∈ [0, |p| − 1]}) .

It is immediate from the de�nitions that for any term t: sp(t), rk(t),mrk(t) ≤
max(tw(t)). We write r E t to denote the fact that r is a subterm of t.

Lemma 4. If r E t, then max(tw(t)) ≥ max(tw(r)).

We informally argue for the correctness of the lemma. Suppose r is a subterm of
t. Then clearly w(r) ≤ w(t). The maximal occurring nesting of special symbols
in r is smaller (or equal) than in t. And the maximal rank of a symbol in r
is smaller (or equal) than in t. The mapping tw transforms r to a sequence p
whose coe�cients are less than w(t), less than the maximal nesting of special
symbols and less than the maximal rank of non-special function symbol in r .
Hence max(tw(t)) ≥ max(tw(r)) holds.

Lemma 5. If p = tw(t) and q = tw(fat), then max(p) + a ≥ max(q).

Proof. The proof of the lemma proceeds by a case distinction on t. ut

Lemma 6. We write m ·− n to denote max({m − n, 0}). Assume s �kbo t with
sp(t) ≤ K and (mrk(t) ·− rk(s)) ≤ K. Let σ be a substitution and set p = tw(sσ),
q = tw(tσ). Then p >lex q and max(p) + K ≥ max(q).

Proof. It su�ces to show max(p) + K ≥ max(q) as p >lex q follows from
Lemma 3. We proceed by induction on t; let t = fat′.

Case t′ ∈ V: Set t′ = x. We consider two sub-cases: Either (i) xσ = f by, y ∈ V
or (ii) xσ = f bg(u1, . . . , um). It su�ces to consider sub-case (ii), as sub-case (i)
is treated in a similar way. From s �kbo t, we know that for all y ∈ V, |s|y ≥
|t|y, hence x ∈ Var(s) and xσ E sσ. Let l := rk(g); by Lemma 4 we conclude
max(tw(xσ)) ≤ max(p). I.e. b, l,max(tw(u1)), . . . ,max(tw(um)) ≤ max(p).
We obtain

max(q) = max({w0, a + b, l} ∪ {max(tw(uj)) | i ∈ [1,m]})
≤ max({w(sσ), sp(t) + max(p),max(p)} ∪ {max(p)})
≤ max({w(sσ),max(p) + K} ∪ {max(p)}) = max(p) + K .



Case t′ = g(t1, . . . , tn): Let j = rk(g). By De�nition 1 we obtain s �kbo ti.
Moreover sp(ti) ≤ sp(t) ≤ K and mrk(ti) ≤ mrk(t). Hence for all i: sp(ti) ≤ K
and (mrk(ti) ·−rk(s)) ≤ K holds. Thus IH is applicable: For all i: max(tw(tiσ)) ≤
max(p) + K. By using the assumption (mrk(t) ·− rk(s)) ≤ K we obtain:

max(q) = max({w(tσ), a, j} ∪ {max(tw(tiσ)) | i ∈ [1, n]})
≤ max({w(tσ), sp(t), rk(s) + K} ∪ {max(p) + K})
≤ max({w(sσ), sp(t), rk(sσ) + K} ∪ {max(p) + K})
≤ max({w(sσ),K,max(p) + K} ∪ {max(p) + K}) = max(p) + K .

ut
In the following, we assume that the set

M := {sp(r) | l → r ∈ R} ∪ {(mrk(r) ·− rk(l)) | l → r ∈ R} (2)

is �nite. We set K := max(M) and let K be �xed for the remainder.

Example 2. With respect to the TRS R′ := Rlab ∪ Dec from Example 1, we
have M = {(mrk(r) ·− rk(l)) | l → r ∈ R′}. Note that the signature of R′ doesn't
contain a special symbol.

Clearly M is �nite and it is easy to see that max(M) = 1. Exemplary,
we consider the rule schemata fn+1(h(x)) → fn(i(x)). Note that the rank of
i equals 4, the rank of h is 3, and the rank of fn is given by n + 5. Hence
mrk(fn(i(x))) = n + 5 and rk(fn+1(h(x))) = n + 6. Clearly (n + 5 ·− n + 6) ≤ 1.

Lemma 7. If s →R t, p = tw(s), q = tw(t), then p >lex q and u(max(p),K) ≥
max(q), where u denotes a monotone polynomial such that u(n, m) ≥ 2n + m.

Proof. By de�nition of the rewrite relation there exists a context C, a substi-
tution σ and a rule l → r ∈ R such that s = C[lσ] and t = C[rσ]. We prove
max(q) ≤ u(max(p),K) by induction on C. Note that C can only have the
form (i) C = fa[2] or (ii) C = fag(u1, . . . , C

′[2], . . . , un).

Case C = fa[2]: By Lemma 6 we see max(tw(rσ)) ≤ max(tw(lσ)) + K. Em-
ploying in addition Lemma 5 and Lemma 4, we obtain:

max(q) = max(tw(farσ)) ≤ max(tw(rσ)) + a

≤ max(tw(lσ)) + K + a

≤ max(p) + K + max(p) ≤ u(max(p),K) .

Case C = fag(u1, . . . , C
′[2], . . . , un): As C ′[lσ] →R C ′[rσ], IH is applicable: Let

p′ = tw(C ′[lσ]), q′ = tw(C ′[rσ]). Then max(q′) ≤ u(max(p′),K). For rk(g) = l,
we obtain by application of IH and Lemma 4:

max(q) = max({w(t), a, l} ∪ {max(tw(u1)), . . . ,max(q′), . . . ,max(tw(un))})
≤ max({w(s), a, l} ∪
∪{max(tw(u1)), . . . , u(max(p′),K), . . . ,max(tw(un))})

≤ max({w(s), a, l} ∪ {max(p), u(max(p),K)}) = u(max(p),K) .

ut



We de�ne approximations of the partial order >lex.

p >lex
n q i� p >lex q and u(max(p), n) ≥ max(q) ,

where u is de�ned as in Lemma 7. Now Lemma 6 can be concisely expressed as
follows, for K as above.

Proposition 1. If s →R t, then tw(s) >lex
K tw(t).

In the spirit of the de�nition of derivation height, we de�ne a family of
functions Ahn : N → N:

Ahn(p) := max({m | ∃(p0, . . . , pm) p = p0 >lex
n p1 >lex

n · · · >lex
n pm}) .

The following proposition is an easy consequence of the de�nitions and Propo-
sition 1.

Theorem 2. Let (F ,R) be a TRS, compatible with KBO. Assume the set M :=
{sp(r) | l → r ∈ R}∪{(mrk(r) ·− rk(l)) | l → r ∈ R} is �nite and the arities in of
the symbols in F are bounded; set K := max(M). Then dhR(t) ≤ AhK(tw(t)).

In the next section we show that Ahn is bounded by the Ackermann function
Ack. Thus providing the sought upper-bound on the derivation height of R.

6 Bounding the growth of Ahn

Instead of directly relating the functions Ahn to the Ackermann function, we
make use of the fast-growing Hardy functions, cf. [18]. The Hardy functions
form a hierarchy of unary functions Hα : N → N indexed by ordinals. We will
only be interested in a small part of this hierarchy, namely in the set of functions
{Hα | α < ωω}.

De�nition 4. We de�ne the embedding o : N∗ → ωω as follows:

o(p) := ω`−1(p)0 + . . . ω(p)`−2 + (p)`−1 ,

where ` = |p|.

The next lemma follows directly from the de�nitions.

Lemma 8. If p >lex q, then o(p) > o(q).

We associate with every α < ωω in CNF an ordinal αn, where n ∈ N. The
sequence (αn)n is called fundamental sequence of α. (For the connection between
rewriting and fundamental sequences see e.g. [19].)

αn :=


0 if α = 0 ,

β if α = β + 1 ,

β + ωγ+1 · (k − 1) + ωγ · (n + 1) if α = β + ωγ+1 · k .



Based on the de�nition of αn, we de�ne Hα : N → N, for α < ωω by trans�nite
induction on α:

H0(n) := n Hα(n) := Hαn(n + 1) .

Let >(n) denote the transitive closure of (.)n, i.e. α >(n) β i� αn >(n) β or αn =
β. Suppose α, β < ωω. Let α = ωα1n1 + . . . ωαknk and β = ωβ1m1 + . . . ωβlml.
Recall that any ordinal α 6= 0 can be uniquely written in CNF, hence we can
assume that α1 > · · · > αk and β1 > · · · > βl. Furthermore by our assumption
that α, β < ωω, we have αi, βj ∈ N. We write NF(α, β) if αk ≥ β1.

Before we proceed in our estimation of the functions Ahn, we state some
simple facts that help us to calculate with the function Hα.

Lemma 9. 1. If α >(n) β, then α >(n+1) β + 1 or α = β + 1.
2. If α >(n) β and n ≥ m, then Hα(n) > Hβ(m).
3. If n > m, then Hα(n) > Hα(m).
4. If NF(α, β), then Hα+β(n) = Hα ◦ Hβ(n); ◦ denotes function composition.

We relate the Hardy functions with the Ackermann function. The stated
upper-bound is a gross one, but a more careful estimation is not necessary here.

Lemma 10. For n ≥ 1: Hωn(m) ≤ Ack(2n, m).

Proof. We recall the de�nition of the Ackermann function:

Ack(0,m) = m + 1
Ack(n + 1, 0) = Ack(n, 1)

Ack(n + 1,m + 1) = Ack(n, Ack(n + 1,m))

In the following we sometimes denote the Ackermann function as a unary func-
tion, indexed by its �rst argument: Ack(n, m) = Ackn(m). To prove the lemma,
we proceed by induction on the lexicographic comparison of n and m. We only
present the case, where n and m are greater than 0. As preparation note that
m + 1 ≤ Hωn(m) holds for any n and Ack2

n(m + 1) ≤ Ackn+1(m + 1) holds for
any n, m.

Hωn+1(m + 1) = Hωn(m+2)(m + 2)
≤ Hωn(m+2)+ωn(m + 1) Lemma 9(3,4)

= H2
ωnHωn(m+1)(m + 1) Lemma 9(4)

= H2
ωnHωn+1(m)

≤ Ack2
2nAck2(n+1)(m) IH

≤ Ack2n+1Ack2(n+1)(m)
= Ack(2(n + 1),m + 1) .

ut



Lemma 11. Assume u(m,n) ≤ 2m + n and set ` = |p|. For all n ∈ N:

Ahn(p) ≤ Hω2·o(p)(u(max(p), n) + 1) < Hω4+`(max(p) + n) . (3)

Proof. To prove the �rst half of (3) , we make use of the following fact:

p >lex q ∧ n ≥ max(q) =⇒ o(p) >(n) o(q) . (4)

To prove (4), one proceeds by induction on >lex and uses that the embedding
o : N∗ → ωω is essentially an order-isomorphism. We omit the details.

By de�nition, we have Ahn(p) = max({Ahn(q) + 1 | p >lex
n q}). Hence it

su�ces to prove

p >lex q∧u(max(p), n) ≥ max(q) =⇒ Ahn(q) < Hω2·o(p)(u(max(p), n)+1) (5)

We �x p ful�lling the assumptions in (5); let α = o(p), β = o(q), v = u(max(q), n).
We use (4) to obtain α >(v) β. We proceed by induction on p.

Consider the case αv = β. As p >lex q, we can employ IH to conclude
Ahn(q) ≤ Hω2·o(q)(u(max(q), n)+1). It is not di�cult to see that for any p ∈ N∗
and n ∈ N, 4max(p) + 2n + 1 ≤ Hω2(u(max(p), n)). In sum, we obtain:

Ahn(q) ≤ Hω2·o(q)(u(max(q), n) + 1)
≤ Hω2·αv

(u(u(max(p), n), n) + 1) max(q) ≤ u(max(p), n)
≤ Hω2·αv

(4max(p) + 2n + 1) De�nition of u

≤ Hω2·αv
Hω2(u(max(p), n))

= Hω2·(αv+1)(u(max(p), n)) Lemma 9(4)

< Hω2·(αv+1)(u(max(p), n) + 1) Lemma 9(3)

≤ Hω2·α(u(max(p), n) + 1) Lemma 9(2)

The application of Lemma 9(2) in the last step is feasible as by de�nition α >(v)

αv. An application of Lemma 9(1) yields αv +1 ≤(v+1) α. From which we deduce
ω2 · (αv + 1) ≤(v+1) ω2 · α.

Secondly, consider the case αv >(v) β. In this case the proof follows the
pattern of the above proof, but an additional application of Lemma 9(4) is
required. This completes the proof of(5).

To prove the second part of (3), we proceed as follows: The fact that ω` > o(p)
is immediate from the de�nitions. Induction on p reveals that even ω` >(max(p))

o(p) holds. Thus in conjunction with the �rst part of (3), we obtain:

Ahn(p) ≤ Hω2·o(p)(u(max(p), n) + 1) ≤ Hω2+`(u(max(p), n) + 1)
≤ Hω4+`(max(p) + n) .

The last step follows as 2max(p) + n + 1 ≤ Hω2(max(p) + n). ut

As a consequence of Lemma 10 and 11, we obtain the following proposition.

Theorem 3. For all n ≥ 1: If ` = |p|, then Ahn(p) ≤ Ack(2` + 8,max(p) + n).



7 Derivation height of TRSs over in�nite signatures

compatible with KBOs

Based on Theorem 2 and 3 we obtain that the derivation height of t ∈ T (F) is
bounded in the Ackermann function.

Theorem 4. Let (F ,R) be a TRS, compatible with KBO. Assume the set M :=
{sp(r) | l → r ∈ R}∪{(mrk(r) ·−rk(l)) | l → r ∈ R} is �nite and the arities of the
symbols in F are bounded; set K := max(M). Then dhR(t) ≤ Ack(O(|tw(t)|) +
max(tw(t)) + K, 0).

Proof. We set u(n, m) = 2n + m and keep the polynomial u �xed for the
remainder. Let p = tw(t) and ` = |p|. Due to Theorem 2 we conclude that
dhR(t) ≤ AhK(p). It is easy to see that Ack(n, m) ≤ Ack(n + m, 0). Using this
fact and Theorem 3 we obtain: AhK(p) ≤ Ack(O(`),max(p)+K) ≤ Ack(O(`)+
max(p) + K, 0). Thus the theorem follows. ut

For �xed t ∈ T (F) we can bound the argument of the Ackermann function
in the above theorem in terms of the size of t. We de�ne

rmax := mrk(t) wmax := max({w(u) | u ∈ FS(t) ∪ Var(t)} .

Lemma 12. For t ∈ T (F), let rmax, wmax be as above. Let b := max{Ar(F), 3}+
1, and set n := Size(t). Then w(t) ≤ wmax · n, sp(t) ≤ n, mrk(t) ≤ rmax. Hence
|tw(t)| ≤ bwmax(n)·n+1 and max(tw(t)) ≤ wmax(n) · n + rmax.

Proof. The proof proceeds by induction on t. ut

Corollary 1. Let (F ,R) be a TRS, compatible with a KBO �kbo. Assume the
set {sp(r) | l → r ∈ R} ∪ {(mrk(r) ·− rk(l)) | l → r ∈ R} is �nite and the arites
of the symbols in F are bounded. Then for t ∈ T (F), there exists a constant
c�depending on t, (F ,R), and �kbo�such that dhR(t) ≤ Ack(cn, 0).

Proof. The corollary is a direct consequence of Theorem 4 and Lemma 12. ut

Remark 1. Note that it is not straight-forward to apply Theorem 4 to classify
the derivational complexity of R, over in�nite signature, compatible with KBO.
This is only possible in the (unlikely) case that for every term t the maximal
rank mrk(t) and the weight w(t) of t can be bounded uniformly, i.e. independent
of the size of t.

We apply Corollary 1 to the motivating example introduced in Section 1.

Example 3. Recall the de�nition of R and R′ := Rlab ∪ Dec from Example 1
and 2 respectively. Let s ∈ T (Flab) be �xed and set n := Size(s).

Clearly the arities of the symbols in Flab are bounded. In Example 2 we
indicated that the set M = {(mrk(r) ·− rk(l)) | l → r ∈ R′} is �nite. Hence,
Corollary 1 is applicable to conclude the existence of c ∈ N with dhR′(s) ≤
Ack(cn, 0). In order to bound the derivation height of R, we employ Lemma 1



to observe that for all t ∈ T (F): dhR(t) ≤ dhR′(labα(t)), for arbitrary α. As
Size(t) = Size(labα(t)) the above calculation yields

dhR(t) ≤ dhR′(labα(t)) ≤ Ack(cn, 0) .

Note that c depends only on t, R′ and the KBO �kbo employed.

The main motivation of this work was to provide an alternative proof of Lep-
per's result that the derivational complexity of any �nite TRS, compatible with
KBO, is bounded by the Ackermann function, see [11]. We recall the de�nition
of the derivational complexity :

dcR(n) := max({dhR(t) | Size(t) ≤ n}) .

Corollary 2. Let (F ,R) be a TRS, compatible with KBO, such that F is �nite.
Then dhR(n) ≤ Ack(2O(n), 0).

Proof. As F is �nite, the K = max({(mrk(r) ·− rk(l)) | l → r ∈ R′}) and Ar(F)
are obviously well-de�ned. Theorem 4 yields that dhR(t) ≤ Ack(O(|tw(t)|) +
max(tw(t)) + K, 0). Again due to the �niteness of F , for any t ∈ T (F), mrk(t)
and w(t) can be estimated independent of t. A similar argument calculation as in
Lemma 12 thus yields dhR(t) ≤ Ack(2O(Size(t)), 0). Hence the result follows. ut

Remark 2. Note that if we compare the above corollary to Corollary 19 in [11], we
see that Lepper could even show that dcR(n) ≤ Ack(O(n), 0). On the other hand,
as already remarked above, Lepper's result is not admissible if the signature is
in�nite.

In concluding, we want to stress that the method is also applicable to obtain
bounds on the derivational height of non simply terminating TRSs, a feature
only shared by Hofbauer's approach to utilise context-dependent interpretations,
cf. [20].

Example 4. Consider the TRS consisting of the following rules:

f(x) ◦ (y ◦ z) → x ◦ (f2(y) ◦ z) a(a(x)) → a(b(a(x)))
f(x) ◦ (y ◦ (z ◦ w)) → x ◦ (z ◦ (y ◦ w))
f(x) → x

Let us call this TRS R in the following. Due to the rule a(a(x)) → a(b(a(x))),
R is not simply terminating. And due to the three rules, presented on the left,
the derivational complexity of R cannot be bounded by a primitive recursive
function, compare [8].

Termination can be shown by semantic labelling, where the natural numbers
are used as semantics and as labels. The interpretations aN(n) = n + 1, bN(n) =
max({0, n−1}), fN(n) = n, and m◦N n = m+n give rise to a quasi-model. Using
the labelling function `a(n) = n, termination of R′ := Rlab ∪Dec can be shown
by an instance �kbo of KBO with weight function (w, 1): w(◦) = w(f) = 0,



w(b) = 1, and w(an) = n and precedence: f � ◦ � . . . an+1 � an � · · · � a0 � b.
The symbol f is special. Clearly the arities of the symbols in Flab are bounded.
Further, it is not di�cult to see that the set M = {sp(r) | l → r ∈ R′} ∪
{(mrk(r) ·− rk(l)) | l → r ∈ R′} is �nite and K := max(M) = 2.

Proceeding as in Example 3, we see that for each t ∈ T (F), there exists a
constant c (depending on t, R′ and �kbo) such that dhR(t) ≤ Ack(cn, 0).
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