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Abstract. Hilbert’s ε-calculus is based on an extension of the language of predicate

logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the

first and second epsilon theorem, play a rôle similar to that which the cut-elimination

theorem plays in sequent calculus. In particular, Herbrand’s Theorem is a consequence

of the epsilon theorems. The paper investigates the epsilon theorems and the complexity

of the elimination procedure underlying their proof, as well as the length of Herbrand

disjunctions of existential theorems obtained by this elimination procedure.
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1. Introduction

Hilbert’s ε-calculus [13, 15] is based on an extension of the language of
predicate logic by a term-forming operator εx. This operator is governed by
the critical axiom

A(t)→ A(εxA(x)) ,

where t is an arbitrary term. Within the ε-calculus, quantifiers become
definable by ∃xA(x)⇔ A(εxA(x)) and ∀xA(x)⇔ A(εx¬A(x)).

The ε-calculus was originally developed in the context of Hilbert’s pro-
gram of consistency proofs. Early work in proof theory (before Gentzen)
concentrated on the ε-calculus and the ε-substitution method and was car-
ried out by Ackermann [1, 2] (see also [18]), von Neumann [23], and Bernays
(see also [24, 25]). The ε-calculus is of independent interest, however, and a
study from a computational and proof-theoretic point of view is worthwhile.

The aim of this paper is to present the central notions of and basic
results about the ε-calculus in a streamlined form and with attention to
questions of proof complexity. This, we hope, will make the ε-calculus more
easily accessible to a broader audience, and will make clearer the merits and
disadvantages of the ε-calculus as a formalization of first-order logic.

One simple example of the merits of the ε-calculus is that by encoding
quantifiers on the term-level, formalizing (informal) proofs is sometimes eas-
ier in the ε-calculus, compared to formalizing proofs in, e.g., sequent calculi.
This is possible as the ε-calculus allows more condensed representation of
proofs than standard sequent- or natural deduction calculus. However, it
should be pointed out that the encoding of quantifiers on the term-level can
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come at a significant cost, as the transformation of quantified formulas may
result in rather complicated term-structures.

Hilbert’s ε-calculus is primarily a classical formalism, and we will restrict
our attention to classical first-order logic. (But see the work of Bell [6, 7],
DeVidi [10], Fitting [12], Mostowski [19] for a complementary view.) Our
study is also motivated by the recent renewed interest in the ε-calculus and
the ε-substitution method, see, e.g., the work of Arai [3, 4], Avigad [5], and
Mints et al., [16, 17]. The ε-calculus also allows the incorporation of choice
construction into logic [8].

Our main focus will be the presentation and analysis of two conservativity
results for the ε-calculus: prove the first and second ε-theorems. Our proofs
of these results are essentially Bernays’s [13], but we are also concerned with
bounds on the length of proofs and the length of Herbrand disjunctions.
Let T denote a finitely axiomatized open theory with axioms P1, . . . , Pt

containing no quantifiers or ε-terms, and let PCε be a usual formulation
of the predicate calculus extended by the ε-operator and its characteristic
axiom. Then the first ε-theorem states that any formula without quanti-
fiers or ε-terms provable in PCε from T is already provable from T in the
quantifier- and ε-free fragment EC of PC (the so-called elementary calcu-
lus of free variables). The second ε-theorem says that any formula without
ε-terms provable in PCε from T is also provable from T in PC, the pure
predicate calculus.

We prove the first ε-theorem in Section 5. An important extension of
the first ε-theorem is the so-called extended first ε-theorem, which yields
one direction of Herbrand’s theorem: if A is an existential formula provable
from T , then there is a disjunction of instances of the matrix of A provable
from T in EC. In fact, we obtain an upper bound on the length of this
disjunction by analyzing the complexity of the procedure used to eliminate
critical formulas from the proof of A (the Herbrand complexity HC(A) of
A); this bound is hyperexponential in the number of quantifier axioms in the
derivation of A. In Section 6 we show that there is also a hyperexponential
lower bound on HC(A), and thus the procedure for generating the Herbrand
disjunction based on Bernays’s proof of the extended first ε-theorem is es-
sentially optimal. In Section 7, we prove the second ε-theorem. Its proof
also contains a proof of the second direction of Herbrand’s theorem, i.e., that
given a (valid) Herbrand disjunction of A, A is provable.

In this paper we only consider the ε-calculus without equality. The case
of the ε-theorems with equality is much more involved than the proofs we
consider here, and cannot be dealt with adequately in the space available. It
raises important and interesting issues for the suitability of formalisms based
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on the epsilon calculus for automated theorem proving. The complexity of
the epsilon theorems in the presence of equality will be the subject of future
work.

2. The Epsilon Calculus: Syntax

The syntax of the epsilon calculus is essentially that of a standard first-order
language. We will, however, frequently pass back and forth between different
calculi formulated in slightly different languages. Let us first dispense with
some pedantry: The language L(EC) of the elementary calculus consists of:
(1) free variables: a, b, c, . . . , (2) bound variables: x, y, z, . . . , (3) constant
and function symbols: f , g, h, . . . with arities ar(f), . . . , (4) predicate sym-
bols: P , Q, R, . . . with arities ar(P ), . . . , and the propositional connectives:
∧, ∨,→, ¬. The language L(PC) of the predicate calculus is L(EC) plus the
quantifiers ∀, ∃. The language L(ECε) of the pure epsilon calculus is L(EC)
plus the epsilon operator ε. The language L(PCε) of the predicate calculus
with epsilon is L(PC) together with ε.

We will distinguish between terms and semi-terms, and between formulas
and semi-formulas. The definitions are:

Definition 1. (Semi)terms, (semi)formulas, and sub-(semi)terms are de-
fined as follows:

1. Any free variable a is a (semi)term. Its only sub-(semi)term is a itself.
It has no immediate sub-(semi)terms.

2. Any bound variable x is a semi-term. It has no sub-terms or immediate
sub-(semi)terms. Its only sub-semiterm is x itself.

3. If f is a function symbol with ar(f) = 0, then f is a (semi)term. Its
only sub-(semi)term is f itself. It has no immediate sub-(semi)terms.

4. If f is a function symbol with ar(f) = n > 0, and t1, . . . , tn are
(semi)terms, then f(t1, . . . , tn) is a (semi)term. Its immediate sub-
semiterms are t1, . . . , tn, and its immediate sub-terms are those among
t1, . . . , tn which are terms, plus the immediate subterms of those
among t1, . . . , tn which are not terms. Its sub-semiterms are f(t1, . . . , tn)
and the sub-semiterms of t1, . . . , tn; its subterms are those of its sub-
semiterms which are terms.

5. If P is a predicate symbol with ar(P ) = n > 0, and t1, . . . , tn are
(semi)terms, then P (t1, . . . , tn) is an (atomic) (semi)formula. Its im-
mediate sub-semiterms are t1, . . . , tn. Its immediate subterms are
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those among t1, . . . , tn which are terms, plus the immediate subterms
of those among t1, . . . , tn which are not terms. Its sub-(semi)terms
are the sub-(semi)terms of t1, . . . , tn.

6. If A and B are (semi)formulas, then ¬A, A∧B, A∨B and A→ B are
(semi)formulas. Its (immediate) sub-(semi)terms are those of A and
B.

7. If A(a) is a (semi)formula containing the free variable a and x is a
bound variable not occurring in A(a), then ∀xA(x) and ∃xA(x) are
(semi)formulas. Its (immediate) sub-(semi)terms are those of A(x).

8. If A(a) is a (semi)formula containing the free variable a and x is a
bound variable not occurring in A(a), then εxA(x) is a (semi)term.
Its sub-(semi)terms are εxA(x) and the sub-(semi)terms of A(x). Its
immediate sub-(semi)terms are those of A(x).

Note that terms and formulas are just semiterm and semiformula which
contain no bound variables without a matching ∀, ∃, or ε. We will call a
semi-term of the form εxA(x) an ε-expression, or, if it is a term, an ε-term.

Note that we do not allow a quantifier or epsilon binding a variable x
to occur in the scope of another quantifier or epsilon which binds the same
variable. In order for some substitutions of terms to result in well-formed
formulas, it will often be necessary to rename bound variables. Conversely,
we cannot assume that all epsilon terms of the same form occurring in a
proof are syntactically identical. Hence we will adopt the conventions that
(a) bound variables must be renamed when substituting terms so as to avoid
clashes of bound variables and (b) we tacitly identify epsilon terms which
differ only by a renaming of bound variables. Thus, if A(a) is a formula
with free variable a, then A(εxA(x)) is a formula obtained from A(a) by
replacing every indicated occurrence of a by an epsilon term resulting from
εxA(x) by renaming each bound variable y occurring in it so as to ensure
that y does not appear in the scope of a quantifier or epsilon in A(a). For
instance, if A(a) ≡ ∃y P (a, y), then εxA(x) ≡ εx∃y P (x, y) contains the
bound variable y, and a literal substitution for a in A(a) would result in
∃y P (εx∃y P (x, y), y) which is not well formed. The variable y must be
renamed thus: ∃y P (εx∃z P (x, z), y).

An instruction to replace every occurrence of an epsilon-term e in a
formula or proof by some other term is to be understood as an instruction
to replace every ε-term equal to e up to renaming of bound variables; e.g.,
“replace εx∃y P (x, y) in the above formula by t” results in ∃y P (t, y). It will
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sometimes be useful to be explicit about substitutions of terms for variables.
We will write A(a) {a ← t} to denote the result of replacing the indicated
occurrences of a in A(a) by t.

3. Axiomatization of the Epsilon Calculus

The set of axioms AxEC(L) of axioms of the elementary calculus for a lan-
guage L consists of all propositional tautologies in the language L. To
obtain the set of axioms AxECε of the pure epsilon calculus we add to
AxEC(L(ECε)) all substitution instances of

A(t)→ A(εxA(x)) . (1)

An axiom of the form (1) is called a critical formula. (Recall the conventions
on renaming of bound variables from Section 2.) We say that the critical
formula belongs to the ε-term εxA(x).

The set AxPC of axioms of the predicate calculus, and the set AxPCε

of the extended predicate calculus consist of AxEC(L(PC)) and AxECε,
respectively, together with all instances of A(t) → ∃xA(x) and ∀xA(x) →
A(t) in the respective language.

Definition 2. A proof in EC (ECε) is a sequence A1, . . . , An of formulas
such that each Ai is either in AxEC (AxECε) or it follows from formulas
preceding it by modus ponens, i.e., there are j, k < i so that Ak ≡ Aj → Ai.

A proof in PC (PCε) is a sequence A1, . . . , An of formulas such that
each Ai is either in AxPC (AxPCε) or follows from formulas preceding it by
modus ponens, or follows from a preceding formula by generalization, i.e.,
there is a j < i so that either Aj ≡ B → C(a) and Ai ≡ B → ∀xC(x) or
Aj ≡ B(a) → C and Ai ≡ ∃xB(x) → C. In the latter case we also require
that the free variable a does not occur in Ai or in any Ak with k > i. Such
a variable a is called an eigenvariable. The restriction guarantees that each
variable is only used as an eigenvariable in a generalization inference at most
once.

A formula A is called provable in EC (ECε, PC, PCε) if there is a proof
in EC (ECeps, PC, PCε, respectively) which has A as its last formula. To
indicate, e.g., that A is provable in ECε by a proof π, we write ECε `π A.

Definition 3. The size sz(π) of a proof π is the number of steps in π. If
π is a proof in ECε or PCε, we define the critical count cc(π) of π as the
number of distinct critical formulas and quantifier axioms in π plus 1.
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4. The Embedding Lemma

The epsilon operator allows the treatment of quantifiers in a quantifier-free
system: using ε terms, it is possible to define ∃x and ∀x as follows:

∃xA(x) ⇔ A(εxA(x))
∀xA(x) ⇔ A(εx¬A(x))

We define a mapping ε of semiformulas and semiterms in L(PCε) to semi-
formulas and semiterms in L(ECε) as follows:

f(t1, . . . , tn)ε = f(tε1, . . . , t
ε
n) P (t1, . . . , tn)ε = P (tε1, . . . , t

ε
n)

xε = x (A→ B)ε = Aε → Bε [εxA(x)]ε = εxA(x)ε

aε = a (A ∨B)ε = Aε ∨Bε (∃xA(x))ε = Aε(εxA(x)ε)
(¬A)ε = ¬Aε (A ∧B)ε = Aε ∧Bε (∀xA(x))ε = Aε(εx¬A(x)ε)

Example 4. Consider

∃x(P (x) ∨ ∀y Q(y))ε =
= [P (x) ∨ ∀y Q(y)]ε {x← εx[P (x) ∨ ∀y Q(y)]ε}

[P (x) ∨ ∀y Q(y)]ε = P (x) ∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

)

= P (x) ∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

) {x← εx[P (x) ∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

)]

︸ ︷︷ ︸
e2

}

= P (εx[P (x) ∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

)]

︸ ︷︷ ︸
e2

) ∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

)

Example 5. Consider

[∃x ∃y A(x, y)]ε =
= [∃y A(x, y)]ε {x← εx[∃y A(x, y)]ε}

[∃y A(x, y)]ε = A(x, εyA(x, y)︸ ︷︷ ︸
e′(x)

)

= A(x, εyA(x, y)︸ ︷︷ ︸
e′(x)

){x← εxA(x, εzA(x, z))︸ ︷︷ ︸
e3

}

= A(εxA(x, εzA(x, z))︸ ︷︷ ︸
e3

, εyA(εxA(x, εzA(x, z))︸ ︷︷ ︸
e3

, y)

︸ ︷︷ ︸
e4=e′(e3)

)
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Lemma 6 (Embedding Lemma). If π is a PCε-proof of A then there is an
ECε-proof πε of Aε with sz(πε) ≤ 3 · sz(π) and cc(πε) ≤ cc(π).

Proof. We show that for all proofs π consisting of formulas A1, . . . , An,
there is a proof πε containing Aε

1, . . . , Aε
n (plus perhaps some extra formulas)

of the required size and critical count. We proceed by induction on n. The
case n = 0 is trivial. Suppose the claim holds for the proof consisting of A1,
. . . , An, i.e., there is a proof π∗ containing Aε

1, . . . , Aε
n, and consider the

proof π = A1, . . . , An, A. If A is a propositional tautology, then Aε is also
a propositional tautology. (Note that (·)ε leaves the propositional structure
of A intact.) If A is a critical formula, then Aε is also a critical formula. In
both cases, we can take πε to be π∗ extended by Aε

n.
If A is an instance of a quantifier axiom, its translation Aε either is of

the form
[A(t)→ ∃xA(x)]ε ≡ Aε(tε)→ Aε(εxA(x)ε) ,

which is a critical formula, or is of the form

[∀xA(x)→ A(t)]ε ≡ Aε(εx¬A(x))→ Aε(tε) ,

which is the contrapositive of, and hence provable from, a critical formula.
In the latter case, the size of the resulting proof increases by two additional
steps.

Now suppose A follows by modus ponens from Ai and Aj ≡ Ai → A.
Since π∗ contains Aε

i and Aε
j ≡ Aε

i → Aε, adding Aε to π∗ is also a proof.
If A follows by generalization, i.e., A ≡ B → ∀xC(x) and Ai ≡ B →

C(a) (where a satisfies the conditions on eigenvariables), then by induction
hypothesis the proof π∗ contains Aε

i ≡ Bε → C(a)ε. Replacing a everywhere
in π∗ by εx¬A(x) results in a proof containing

[B → ∀xC(x)]ε ≡ Bε → Aε(εx¬A(x)ε) .

in place of Am
i eps. Similarly, if the last inference derives A ≡ ∃xB(x)→ C

from B(a) → C, by induction hypothesis π∗ contains B(a)ε → Cε, from
which we obtain a proof of Aε by replacing a everywhere by εxB(x).

5. The First Epsilon Theorem

We begin our discussion of the ε-theorems by a detailed proof of the first
ε-theorem. This theorem states that if a formula E without quantifiers or
epsilon is provable in the (extended) ε-calculus, then it is already provable
in the elementary calculus. In other words, the (extended) epsilon calculus
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is conservative over the elementary calculus for elementary formulas. A
relatively simple corollary of the first epsilon theorem is the extended first
ε-theorem, which is a version of Herbrand’s theorem for prenex formulas.
This section is dedicated to proofs of these results. The argument we use is
essentially Bernays’s [13], which gives a procedure by which critical formulas
in proofs of E are eliminated step-wise. We analyze the procedure and
thereby obtain upper bounds on the complexity of the Herbrand disjunction
obtained in the extended first ε-theorem. These bounds are given in terms
of the hyperexponential function 2x

y , defined by 2x
0 = x and 2x

i+1 = 22x
i .

The proof will proceed by induction on the rank and degree of epsilon
expressions occurring in critical formulas in the proof of E. Rank and degree
are two measures of complexity of ε-expressions: Degree applies to ε-terms
only, and measures the depth of nesting of ε-terms. Rank, on the other hand,
measures the complexity of cross-binding of ε-expressions.

Definition 7. The degree of an ε-term is inductively defined as follows:

1. If A(x) contains no ε-subterms, then deg(εxA(x)) = 1.

2. If e1, . . . , en are all immediate ε-subterms of A(x), then

deg(εxA(x)) = max{deg(e1), . . . ,deg(en)}+ 1 .

Definition 8. An ε-expression e is subordinate to εxA(x) if e is a proper
sub-semiterm of A(x) and contains x.

Definition 9. The rank of an ε-expression e is defined as follows:

1. If e contains no subordinate ε-expressions, then rk(e) = 1.

2. If e1, . . . , en are all the ε-expressions subordinate to e, then

rk(e) = max{rk(e1), . . . , rk(en)}+ 1 .

Example 10. First, consider the formula

P (εx[P (x) ∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

)]

︸ ︷︷ ︸
e2

) ∨Q(εy¬Q(y)︸ ︷︷ ︸
e1

) .

Here, e1 is the only immediate ε-subterm of e2 and has no ε-subterms itself,
so deg(e1) = 1 and deg(e2) = 2. Neither e1 nor e2 contains subordinate
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ε-expressions, hence rk(e1) = rk(e2) = 1. In

[∃x∃y A(x, y)]ε = A(εxA(x, εzA(x, z))︸ ︷︷ ︸
e3

, εyA(εxA(x, εzA(x, z))︸ ︷︷ ︸
e3

, y)

︸ ︷︷ ︸
e4

) ,

e3 contains no ε-subterms, but e4 contains e3 as a subterm, so deg(e3) =
1 and deg(e4) = 2. On the other hand, e3 contains the subordinate ε-
expression εzA(x, z), hence rk(e2) = 2. Since y does not occur in the scope
of another ε, e4 contains no subordinate ε-expressions, and rk(e4) = 1.

Suppose π is a proof in ECε. If e is an ε-term belonging to a critical
formula A(t) → A(e) of π, then we call e a critical epsilon term of π, and
rk(e) (deg(e)) the rank (the degree) of that critical formula.

Definition 11. The rank rk(π) of π is the maximum rank of its critical
formulas. The degree deg(π, r) of π with respect to rank r is the maximum
degree of its critical ε-terms of rank r. The order o(π, r) of π with respect
to rank r is the number of different critical ε-terms of rank r.

Lemma 12. Let π be a ECε-proof, let r = rk(π) be the maximal rank of
critical formulas in π, and let e be a critical ε-term of π of maximal degree
among the critical ε-terms of rank r.

Suppose that A(t) → A(e) is a critical formula belonging to e and that
B∗ ≡ B(s) → B(εyB(y)) is a critical formula in π belonging to a different
ε-term, and suppose C is the result of replacing e by t in B∗. Then (a)
if rk(B∗) = r, then C and B∗ have the the same critical ε-term εyB(y)
belonging to them, and (b) rk(C) = rk(B∗).

Proof. Suppose e occurs in a critical formula B(s)→ B(εyB(y)) belonging
to a different ε-term εyB(y). We first consider and exclude a preliminary
case. If the indicated occurrences of s (on the left-hand side) or the indicated
occurrences of εyB(y) (on the right-hand side) lie inside e, replacing e by t
would result in a formula which is not of the form of a critical formula. This,
however, can never be the case. For suppose it were, i.e., B(a) is of the form
B′(e′(a)) and either e ≡ e′(s) or e ≡ e′(εyB(y)). If e ≡ e′(s), the left-hand-
side B(s) of the critical formula is of the form B′(e′(s)), and consequently
the right-hand-side is B′(e′(εyB

′(e′(y)))). Conversely, if e ≡ e′(εyB(y)), then
the right-hand-side B(εyB(y)) would be of the form B′(e′(εyB

′(e′(y)))). In
either case we have an ε-term e′(a) which is of the same rank as e, since
e = e′(t′) for some term t′. On the other hand, e′(y) is subordinate to the
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critical ε-term εyB(y) = εyB
′(e′(y)), and so rk(εyB(y)) > rk(e′(y)) = rk(e).

However, e was assumed to be a critical ε-term of maximal rank.
There are then only two ways in which e can occur in a critical formula:

either (i) e occurs only in the indicated occurrences of s but not in B(y) at
all, or (ii) e occurs in B(y) (and perhaps also in s).

Case (i): e occurs only in s, i.e., s ≡ s′(e). Replacing e by t results in
the critical formula C ≡ B(s′(t)) → B(εyB(y)). The new critical formula
C belongs to the same ε-term as the original formula, hence we obtain (a)
rk(C) = rk(B∗) = rk(εyB(y)), and (b) holds trivially.

Case (ii): e occurs in B(y) (and perhaps also in s). In this case, B(y) ≡
B′(y, e) and the critical formula has the form

B′(s, e)→ B′(εyB
′(y, e), e) .

Then the ε-term belonging to this critical formula, e′ ≡ εyB
′(y, e), contains e

as a proper subterm and hence is of higher degree than e. Since e is a critical
ε-term of maximal degree among the critical ε-terms of maximal rank in π,
this implies that rk(e′) < rk(e). Replacing e by t yields the critical formula

C ≡ B′(s′, t)→ B′(εyB
′(y, t), t) ,

belonging to the ε-term εyB
′(y, t). This term has the same rank as e′ and

hence a lower rank than e itself (although it might have a degree higher
than deg(e)). Hence, rk(C) < r.

Lemma 13. Suppose ECε `π E. Let r = rk(π) be the maximal rank of critical
formulas in π, and let e be a critical ε-term of π of maximal degree among
the critical ε-terms of rank r. Then there is a proof πe so that ECε `πe E
with rk(πe) ≤ r, deg(πe, r) ≤ deg(π, r) and o(πe, r) = o(π, r)− 1.

Proof. The ε-expression e is of the form εxA(x), and suppose that A(t1)→
A(e), . . . , A(tn)→ A(e) are all the critical formulas in π belonging to e. For
each of these critical formula A(ti)→ A(e) we obtain a proof πi of A(ti)→ E
as follows:

1. Replace e everywhere in π by ti. Every critical formula A(tj)→ A(e)
belonging to e thus turns into a formula of the form A(t′j)→ A(ti). To
see this, note that e cannot occur in A(x), for otherwise e ≡ εxA(x)
would be a proper subterm of itself, which is impossible.

2. Add A(ti) to the axioms. Now every one of the new formulas A(t′j)→
A(ti) is derivable using modus ponens from the tautology

A(ti)→ (A(t′j)→ A(ti)) ,



The Epsilon Calculus and Herbrand Complexity 11

3. Apply the deduction theorem to obtain πi.

We verify that πi is indeed an ECε-proof with the required properties. In
the construction of πi, we replaced e by ti throughout the proof. Such a
substitution obviously preserves tautologies. An application of Lemma 12
yields that it also turns critical formulas into critical formulas (belonging,
perhaps, to different critical ε-terms), that the substitution does not change
the rank of critical formulas, and that it does not change the critical ε-terms
of maximal rank r at all (in particular, it does not increase the degree of
critical ε-terms of rank r).

We started with critical formulas A(ti)→ A(e), and obtained a proof πi

which does not contain any critical formulas belonging to e. Hence e is
no longer a critical ε-term in πi. The ranks of all other critical formulas
(and the corresponding critical ε-terms) remain unchanged. Thus o(πi, r) =
o(π, r)− 1.

Secondly, we construct a proof π′ of
∧n

i=1 ¬A(ti)→ E as follows:

1. Add
∧
¬A(ti) to the axioms. Now every critical formula A(ti)→ A(e)

belonging to e is provable using the propositional tautology ¬A(ti)→
(A(ti)→ A(e)).

2. Apply the deduction theorem for the propositional calculus to obtain
π′ which contains exactly the same critical formulas as π, except those
belonging to e.

Now combine the proofs πi of A(ti) → E and π′ of
∧

i ¬A(ti) → E to get a
proof πe of E (using case distinction).

None of the proofs πi, π′ contain critical formulas belonging to e, and
no critical formulas of rank r other than those in π. Thus rk(πe) ≤ r,
deg(πe, r) ≤ deg(π, r), and o(πe, r) = o(π, r)− 1 hold.

Theorem 14 (First Epsilon Theorem). If E is a formula without bound
variables (no quantifiers, no epsilons) and PCε ` E then EC ` E.

Proof. First, use the embedding lemma to obtain π so that ECε `π A. The
theorem then follows from the preceding lemma by induction on r = rk(π)
and d = o(π, r). If r = 0, there are no critical formulas, so there is nothing
to prove. If r > 0, then d-fold application of the lemma results in a proof π′

of rank < r.

Theorem 15 (Extended First Epsilon Theorem). Suppose E(e1, . . . , em) is
a quantifier-free formula containing only the ε-terms s1, . . . , sm, and

ECε `π E(s1, . . . , sm) ,
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then there are ε-free terms tij (1 ≤ i ≤ n, 1 ≤ j ≤ m) such that

EC `
n∨

i=1

E(ti1, . . . , t
i
m)

where n ≤ 23·cc(π)
2·cc(π).

Corollary 16 (Herbrand’s Theorem). If ∃x1 . . .∃xmE(x1, . . . , xm) is a
purely existential formula containing only the bound variables x1, . . . , xm,
and

PCε `π ∃x1 . . .∃xmE(x1, . . . , xm) ,

then there are ε-free terms tij (1 ≤ i ≤ n, 1 ≤ j ≤ m) such that

EC `
n∨

i=1

E(ti1, . . . , t
i
m)

where n ≤ 23·cc(π)
2·cc(π).

Proof. Immediate from Theorem 15 using the Embedding Lemma.

The rest of this section is devoted to the proof of of Theorem 15. First,
some additional notation.

Definition 17. Suppose π is a proof in ECε. The width wdπ(e) of π with
respect to e is the number of different critical formulas in π belonging to an
ε-term e. The width wd(π, r) of π with respect to rank r is given by

wd(π, r) = max{wdπ(e) | e of rank r occurs in π}+ 1 .

Definition 18. Let E(a1, . . . , am) be a formula in L(EC) without bound
variables, and let s1, . . . , sm be terms in L(ECε). An ∨-expansion (of
E ≡ E(s1, . . . , sm)) is a finite disjunction

E′ ≡ E1 ∨ · · · ∨ El ,

where each Ei ≡ E(si
1, . . . , s

i
m) for terms si

j (1 ≤ i ≤ l, 1 ≤ j ≤ m). We call
l the length len(E′, E) of the expansion.

Proposition 19. Suppose A′ is an ∨-expansion of A and A′′ an ∨-expansion
of A′. Then A′′ is also an ∨-expansion of A, and len(A′′, A) ≤ len(A′′, A′) ·
len(A′, A).
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Proof. Obvious.

Lemma 20. Let E(a1, . . . , am) be a formula in L(EC) without bound vari-
ables, let s1, . . . , sm be terms in L(ECε), and let π be an ECε-proof of
E(s1, . . . , sm) with r = rk(π). Let e be a critical ε-term of π of maximal
degree among the critical ε-terms of maximal rank r. Let n = wdπ(e) be
the number of critical formulas belonging to e. Then there are terms si

j

(0 ≤ i ≤ n + 1, 1 ≤ j ≤ m) and a proof πe with end formula

E(s1
1, . . . , s

1
m) ∨ · · · ∨ E(sn+1

1 , . . . , sn+1
m ) ,

so that rk(πe) ≤ r, deg(πe, r) ≤ deg(π, r), and o(πe, r) = o(π, r)−1. Further-
more cc(πe) ≤ cc(π) · (n + 1) and wd(πe, r) ≤ wd(π, r) · (n + 1) ≤ wd(π, r)2.

Proof. We adapt the construction of πi in Lemma 13. The only difference
to the previous construction is that when replacing e by ti throughout π,
the end-formula E(s1, . . . , sm) may change. However, e can only occur in
s1, . . . , sm since E(a1, . . . , am) contains no bound variables and hence no
ε-terms. For each critical formula A(ti) → A(e) we obtain a proof πi of
A(ti)→ E(si

1, . . . , s
i
m). The construction of π′ as before yields a proof of

n∧
i=1

¬A(ti)→ E(sn+1
1 , . . . , sn+1

m ) ,

if we take sn+1
j = sj . Then, since obviously for each i

E(si
1, . . . , s

i
m)→

n+1∨
i=1

E(si
1, . . . , s

i
m) ,

is provable, we obtain a proof πe of
∨n+1

i=1 E(si
1, . . . , s

i
m) with the desired

properties. Observe that the length of the ∨-expansion
∨

E(si
1, . . . , s

i
m) is

n + 1 = wdπ(e) + 1 ≤ wd(π, r).
It remains to verify the bounds on cc(πe) and wd(πe, r). By Lemma 12,

replacing e by ti to obtain πi does not introduce new critical ε-terms of
rank r. (Critical formulas belonging to ε-terms of rk(e) may be altered, but
the corresponding critical ε-terms remain the same.) New critical ε-terms
can only appear at a rank < rk(e), and if they do, their rank is equal to
the rank of a some critical ε-term already in π. The total number of critical
formulas in πi is at most that of π less the number n of critical formulas
belonging to e, i.e., cc(πi) ≤ cc(π)−n. Moreover, obviously cc(π′) ≤ cc(π)−n
holds.
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When we combine the n+1 proofs πi and π′ to obtain πe, the worst case
is that every critical formula in πi has been changed. Thus cc(πe) ≤ (cc(π)−
n)(n + 1) ≤ cc(π)(n + 1). Now looking more closely at the critical formulas
of rank r in πi, we see that whenever case (i) in the proof of Lemma 12
applies, a critical formula belonging to some ε-term e′ of rank r in π turns
into a potentially new critical formula in πi also belonging to e′. However,
these are the only new critical formulas belonging to e′. Hence, there may be
up to wdπ(e′) · (n + 1) different critical formulas belonging to e′ in πe. Thus
wd(πe, r) ≤ wd(π, r)·(n+1), which is ≤ wd(π, r)2 since n+1 = wdπ(e)+1 ≤
wd(π, r).

We now iterate the elimination of ε-terms of highest rank and estimate
the critical count of the proof resulting from the elimination of all ε-terms
of rank rk(e).

Lemma 21. Let E(a1, . . . , am) be a formula in L(EC) without bound vari-
ables, and let s1, . . . , sm be terms in L(ECε). Suppose π is an ECε-proof
of E(s1, . . . , sm). Then there exists a proof σ of an ∨-expansion E′ of
E(s1, . . . , sm), so that rk(σ) < rk(π). Furthermore,

cc(σ) ≤ 222·cc(π)
and len(E′, E(s1, . . . , sm)) ≤ 222·cc(π)

.

Proof. Suppose d = o(π, r) and let e1, . . . , ed be all critical ε-terms of
rank r in π. (We assume the sequence e1,. . . ,ed is ordered so that the degree
never increases.) Let k = cc(π) and r = rk(π). As observed in the preceding
proof, an application of Lemma 20 cannot increase the number of critical
ε-terms of maximal rank. Thus let σ0 = π and σj = σj−1

ej for j > 0. We thus
obtain σ = σd by d-fold iteration of Lemma 20. Let E0 ≡ E(s1, . . . , sm).
By construction, the critical ε-terms of rank r in σj are ej , . . . , ed and
the end-formula Ej of σj is an ∨-expansion of E ≡ E(s1, . . . , sm); we set
E′ ≡ Ed.

By induction on j we prove:

wd(σj , r) ≤ k2j
,

cc(σj) ≤ k · k
Pj−1

l=0 2l
,

len(Ej , E) ≤ k
Pj−1

l=0 2l
.

For j = 0, we have wd(σ0, r) = wd(π, r) ≤ k, cc(σ0) = cc(π) = k and
len(E0, E(s1, . . . , sm)) = 1, by definition.
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Now assume that σj obeys the stated bounds, we prove that σj+1 does
as well. Apply Lemma 20 to eliminate the ε-term ej+1. This yields a proof
σj+1 of Ej+1. By Lemma 20 and the induction hypothesis we have:

wd(σj+1, r) ≤ wd(σj , r)2 ≤ (k2j
)2 = k2j+1

,

cc(σj+1) ≤ (k · k
Pj−1

l=0 2l
) · k2j

= k · k
Pj

l=0 2l
, and

len(Ej+1, E) ≤ (k
Pj−1

l=0 2l
) · k2j

= k
Pj

l=0 2l
.

since wdσj (ej+1) + 1 ≤ wd(σj , r) ≤ k2j
. Thus the claim follows and we

obtain

cc(σ) ≤ k · k
Pd−1

l=0 2l
= k · k2d−1 = k2d

and len(E′, E) ≤ k
Pd−1

l=0 2l
= k2d−1 .

The order d = o(π, r) is the number of critical ε-terms of rank r, and hence
≤ k. It follows that cc(σ) ≤ k2d ≤ 222k

and len(E′, E) ≤ k2d−1 ≤ 222k
.

Proof of Extended First Epsilon Theorem 15. Consider a proof π
of E(s1, . . . , sm), where s1, . . . , sm are terms containing ε’s and E(a1, . . . , am)
contains no bound variables. Let k = cc(π) and p be the number of different
ranks of critical ε-terms in π, i.e., p = |{r : wd(π, r) 6= 1}|. The number p
is the number of times we have to apply Lemma 21 to eliminate all critical
formulas from π. (Note that by the proof of Lemma 20 each elimination
step can only decrease the number of different ranks.) Although obviously
p ≤ rk(π) we also have p ≤ k, so the number of times Lemma 21 must be
applied is independent of rk(π).

Now let π0 = π and πj+1 be the proof σ constructed in Lemma 21
starting with πj . Note that the end-formula of each πj is an ∨-expansions
of E. If we write Ej for the end-formula of πj , then Ep is the required
Herbrand disjunction

n∨
i=1

E(ti1, . . . , t
i
m) . (2)

To establish a bound on the length n of (2), we apply Lemma 21 (p − 1)
times. This yields the following bounds:

cc(πp−1) ≤ 22k+(p−1)
2(p−1) and len(Ep−1, E) ≤ 22k+(p−1)

2(p−1) .
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Another application of Lemma 21 yields that

n ≤ len(Ep, Ep−1) · len(Ep−1, E)

≤ (222·cc(πp−1)
) · len(Ep−1, E)

≤ 22
2(2

2k+(r−1)
2(r−1)

)

· 22k+(p−1)
2(p−1)

≤ 22
2
2k+p
2(p−1)

= 22k+p
2p ≤ 23k

2k .

As a last step, we remove the remaining (non-critical) ε-terms from the
proof by replacing outermost ε-terms by free variables. Clearly, this cannot
increase the length n of (2).

6. Lower Bounds on Herbrand Disjunctions

As noted in the proof of Theorem 15, the bound on the length of the Her-
brand disjunction depends only on the critical count of the initial proof. This
is in contrast to the bound we would obtain by the more standard approach
of cut-elimination and the mid-sequent theorem which depends on the length
and cut complexity of the original proof (see, e.g., [9, 22]). In the case of the
ε-calculus, the result concerns the relation between the critical count of a
proof of ∃xE(x) in ECε and the length of a Herbrand disjunction

∨
E(ti). In

the case of the sequent calculus and cut-elimination the result concerns the
relation between the length and cut complexity of a proof with cut, and the
length of a cut-free proof, which in turn determines the length of a Herbrand
disjunction obtained via the mid-sequent theorem. In both cases, the rela-
tionship is hyperexponential. Statman [21] and Orevkov [20] showed that
this bound is not just an artefact of the particular cut-elimination proce-
dure considered, but that proofs with cut essentially have hyper-exponential
speedup over cut-free proofs. The question may then be raised whether the
same holds true of the ε-calculus, i.e., whether the bound on the length of
Herbrand disjunctions obtained in the first ε-theorem is tight. Although we
do not have a result quite as optimal as Orevkov’s in this regard, it can be
shown that every ε-elimination procedure that yields Herbrand disjunctions
must by hyperexponential.

We sketch the proof of such a lower bound theorem for the length of
Herbrand disjunctions. Recall that the Herbrand complexity HC(E) of a for-
mula E ≡ ∃x1 . . .∃xnE′(x1, . . . , xn) is the length of the shortest ∨-expansion
of E′(x1, . . . , xn).

Theorem 22. There is a sequence of formulas Ek so that



The Epsilon Calculus and Herbrand Complexity 17

1. for each k, there is a ECε-proof πk of Ek with cc(πk) ≤ c · k (for some
constant c), but

2. HC(Ek) ≥ 21
k.

We follow the presentation of Orevkov’s Theorem in [22, §6.11]. (Stat-
man’s result requires equality, but Orevkov’s does not.) Consider a language
including a unary constant 0, a unary function symbol S and a ternary re-
lation R, whose meaning is fixed by the following axioms:

Hyp1 ≡ ∀xR(x, 0, S(x)) ,
Hyp2 ≡ ∀y∀x∀z∀z1(R(y, x, z) ∧R(z, x, z1)→ R(y, S(x), z1)) .

Further, we define

Ck ≡ ∃zk . . .∃z0(R(0, 0, zk) ∧R(0, zk, zk−1) ∧ · · · ∧R(0, z1, z0)) .

R(n, m, k) expresses that n + 2m = k, and Ck expresses that 21
k is defined.

Ek is the (purely existential) prefix form of Hyp1 ∧Hyp2 → Ck.

Lemma 23. For every k, ECε `πk
Ek, where cc(πk) = ck.

Proof. Ek is provable in the sequent calculus (alternatively, in natural de-
duction) using proofs (with cut) of length linear in k, see [22]. Proofs in
the sequent calculus and in natural deduction can be translated into proofs
in ECε with linear increase in proof length. Moreover, as in the embed-
ding lemma, only weak quantifier inferences (∃I, ∀E) increase the number of
critical formulas in the resulting ECε-proof. (We omit the details.)

This establishes part (1) of the theorem. Orevkov’s result concerns proof
lengths; we have to adapt the proof to Herbrand complexity. In order to sim-
plify the presentation, we will consider Herbrand sequents of Hyp1,Hyp2 ⇒
Ck instead of Herbrand disjunctions, i.e., valid sequents of the form Γ1,Γ2 ⇒
∆ where each formula in Γ1 is a substitution instance of R(x, 0, S(x)),
each formula in Γ2 is a substitution instance of R(y, x, z) ∧ R(z, x, z1) →
R(y, S(x), z1), and each formula in ∆ one of R(0, 0, zk) ∧ R(0, zk, zk−1) ∧
· · · ∧ R(0, z1, z0). Then obviously max{|Γ1|, |Γ2|, |∆|} ≤ HC(Ek). In the
following, n̄ abbreviates Sn(0), and Ψ = {Hyp1,Hyp2}.

Lemma 24. Suppose Ψ⇒ R(n̄, m̄, l̄) is valid. Then l = n + 2m and for each
Herbrand sequent T ≡ (Γ1,Γ2 ⇒ R(n̄, m̄, l̄)) of Ψ⇒ R(n̄, m̄, l̄), we have

{R(̄i, 0, S(̄i)) : n ≤ i < n + 2m} ⊆ Γ1 .

In particular, |Γ1| ≥ 2m.
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Proof. If m = 0, then clearly the only possibility is l = n + 1. Then any
Herbrand sequent of Ψ⇒ R(n̄, 0, S(n̄)) can be written as R(n̄, 0, S(n̄)),Γ′ ⇒
R(n̄, 0, S(n̄)) and satisfies the conditions.

Suppose the result is established for m, and consider the case for m + 1.
Let Γ1,Γ2 ⇒ R(n̄, S(m̄), l̄) be any Herbrand sequent of Ψ ⇒ R(n̄, S(m̄), l̄)
with Γ1 the instances corresponding to Hyp1 and Γ2 those corresponding
to Hyp2. As R(n̄, S(m̄), l̄) cannot follow from instances of R(x, 0, S(x))
alone, Γ2 is nonempty and must contain a formula of the form

R(n̄, m̄, k̄) ∧R(k̄, m̄, l̄)→ R(n̄, S(m̄), l̄) ,

such that T1 ≡ (Γ1,Γ2 ⇒ R(n̄, m̄, k̄)) and T2 ≡ (Γ1,Γ2 ⇒ R(k̄, m̄, l̄)) are
both valid. That means that T1 is a Herbrand sequent of Ψ ⇒ R(n̄, m̄, k̄)
and T2 one of Ψ ⇒ R(k̄, m̄, l̄). The induction hypothesis applies, and it
follows that k = n + 2m and l = k + 2m, thus l = n + 2m+1. Further, Γ1

must contain

{R(̄i, 0, S(̄i)) : n ≤ i < n + 2m} ∪ {R(̄i, 0, S(̄i)) : n + 2m ≤ i < n + 2m+1} ,

and the lemma follows.

Lemma 25. Let S be a sequent of the form Ψ ⇒ ∃z̄ A(z̄). Then every
minimal Herbrand sequent of S is of the form Γ⇒ ∆ with |∆| = 1.

Proof. We use of the terminology and results of Chapter XI of [11]. Sup-
pose that T ≡ Γ⇒ ∆ is a Herbrand sequent of S with ∆ = A(t̄1), . . . , A(t̄n).
Each formula in Γ is Horn. Thus the term model IΓ is a free model of
Γ (Corollary 2.5 of [11]). Since Γ ⇒ ∆ is valid and IΓ |= Γ, IΓ |=
A(t̄1) ∨ . . . ∨ A(t̄n). Then there is an i so that IΓ |= A(t̄i). But IΓ is
free. Hence, every model of Γ is also a model of A(ti) and Γ ⇒ A(ti) is a
Herbrand sequent of S.

Lemma 26. If T ≡ (Γ1,Γ2 ⇒ ∆) is a minimal Herbrand sequent of Ψ⇒ Ck,
then |Γ1| ≥ 21

k.

Proof. By Lemma 25, T is of the form

Γ,Γ2 ⇒ R(0, 0, nk) ∧R(0, nk, nk−1) ∧ · · · ∧R(0, n1, n0) . (3)

where n0, . . . , nk are numerals. (Note that by substituting 0 for free
variables, terms in a Herbrand sequent may always be brought into that
form). As (3) is valid, each of the sequents Γ1,Γ2 ⇒ R(0, 0, nk), . . . ,
Γ1,Γ2 ⇒ R(0, n1, n0) is valid as well. Applying Lemma 24 (k − 1)-times,
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we see that n1 = 21
k−1. Since Γ1,Γ2 ⇒ R(0, n1, n0) is a Herbrand sequent

of Ψ ⇒ R(0, n1, n0), Γ1 contains the instances of Hyp1 given in Lemma 24,
and n0 = 2n1 = 21

k. Hence, |Γ| ≥ 21
k.

7. The Second Epsilon Theorem

The Second Epsilon Theorem is a generalization of the first. It states that
a formula without ε-terms provable in the extended predicate calculus is al-
ready provable in the predicate calculus (without ε-terms). Its proof utilizes
no additional methods specific to the ε-calculus beyond those of the first
ε-theorem.

Definition 27. Suppose A = Q1x1 . . .Qnxn B(x1, . . . , xn) is a prenex for-
mula. Let z1, . . . , zl be all the ∀-quantified variables among x1, . . . , xn, and
let y1, . . . , ym be all the ∃-quantified ones. If f1, . . . , fl are new function
symbols, then the Herbrand normal form AH of A is

∃y1 . . .∃ym C(y1, . . . , ym, t1, . . . , tl) ,

where tj = fj(y1, . . . , ym).

Lemma 28. Suppose PCε ` A. Then PCε ` AH .

Proof. Standard.

Theorem 29 (Second Epsilon Theorem). If A is a formula of L(PC) and
PCε ` A, then PC ` A.

Proof. For simplicity, we give the proof for prenex formula A with a sim-
ple quantifier structure. The general results follows similarly. Assume A
has the form ∃x∀y∃zB(x, y, z) with B(x, y, z) quantifier-free and only the
indicated variables occur in A. We apply Lemma 28 to obtain a proof of
∃x∃z B(x, f(x), z). The extended first ε-theorem now yields that there are
ε-free terms ri, si so that

EC `
∨
i

B(ri, f(ri), si) . (4)

The idea is now to replace the f(ri) by new free variables ai and obtain
from (4), that ∨

i

B(r′i, ai, s
′
i) ,
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is deducible in EC. Then the original prenex formula A can be obtained if
we employ suitable quantifier-shifting rules (deducible in PC).

Let f(r1), . . . , f(rp) denote terms occurring in the disjunction (4). Let
pi be the number of occurrences of f in f(ri). We may assume that the
disjunction is arranged so that that the sequence f(r1), . . . , f(rp) is ordered
such that pi ≤ pi+1. Now let a1, . . . , ap be new free variables. Replace each
occurrence of f(ri) which does not occur as a subterm of another f(ri′) by
ai. Then (4) becomes ∨

i

B(r′i, ai, s
′
i) , (5)

Observe that r′i does not contain aj for j ≥ i. For if r′i contained aj , then
ri must contain f(rj), and pj < pi. But we assumed that the disjunctions
were ordered so that the sequence of pi was non-decreasing.

It is easy to see that (5) is also a tautology, since pairs of equal atomic
formulas remain pairs of equal atomic formulas. Thus from (5) we obtain
that ∨

i

∃zB(r′i, ai, z) , (6)

by existentially generalizing on the terms s′i. Now consider the last disjunct
in (6). By the preceding observation, ap does not occur in any other disjunct,
or in r′p. Hence, in PC, we may deduce from

p−1∨
i=1

∃z B(r′i, ai, z) ∨ ∃z B(r′p, ap, z) ,

the formula
p−1∨
i=1

∃z B(r′i, ai, z) ∨ ∀y∃z B(r′p, y, z) .

Iterating these steps we eventually obtain a proof of A in PC. Thus the
second ε-theorem follows based on the assumption that A is provable in
PCε.

8. Conclusion and Further Work

The above proofs of the first and second ε-theorem were formulated for
theorems of PCε. However, as indicated in the introduction, the theorems
remain valid in the presence of open (quantifier- and ε-free) theories.

Corollary 30. Let Ax be a set of formulas without bound variables.
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1. Let E be a formula without bound variables (no quantifiers, no ep-
silons). If Ax ` E in PCε, then Ax ` E in EC,

2. Let ∃xE(x) be a purely existential formula. If Ax ` ∃xE(x) in PCε,
then Ax `

∨
i E(ti1, . . . , tin) for some ε-free terms tij in EC

3. If E is an ε-free formula and Ax ` E in PCε, then Ax ` E in PC.

The discussion of the ε-calculus given here is only a first step toward
a more comprehensive investigation of Hilbert’s ε-calculus. The gap in the
upper and lower bound for the Herbrand complexity of theorems of ECε

suggests that a stricter analysis or a refinement of the elimination procedure
for the first ε-theorem is possible. A more interesting and pressing question,
however, is the analysis of ε-elimination procedures for the ε-calculus with
equality. The addition of equality to the ε-calculus is not as straightforward
as it is in the predicate calculus, and the first ε-theorem is significantly more
complicated if equality is present than when it is not. It remains a topic for
future work.

In the introduction we claimed that encoding of quantifiers on the term
level using the ε-operator may allow for a more condensed representation
of proofs. Let us briefly sketch the reason for this. Since modus ponens is
the only inference rule in ECε, a formula Aε is provable in ECε iff there is a
tautology of the form∧

i,j

(Bi(tj)→ Bi(εxBi(x)))→ Aε , (7)

Thus it suffices to find the critical formulas Bi(tj) → Bi(εxBi(x)), i.e., the
substitutions involved in the proof of A, such that (7) is a tautology. This
suggests that the formalization of proofs is simpler in the ε-calculus or at
least that proofs in the ε-calculus can be represented more succinctly.

As pointed out above, the bound on the length of the Herbrand disjunc-
tions obtained using the first ε-theorem depends only on the critical count of
the initial proof. (If equality is present, however, the maximal rank of critical
formulas will also play a role.) In other systems, such as the sequent calculus,
the number of critical formulas corresponds to the number of weak quantifier
inferences. Standard methods for obtaining bounds on Herbrand disjunc-
tions ordinarily do not yield a bound only in the number of weak quantifier
inferences. Consequently, the result obtained above is of independent inter-
est. The change of input parameters is especially significant when considered
in conjunction with the above remarks on formalizability. Standard methods
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usually only yield specific information about Herbrand disjunctions—such as
their length—if a complete formal proof is available. Within the ε-calculus,
we may weaken this assumption, as provability witnessed by a tautology
of form (7) suffices. This fact was successfully employed by Kreisel in his
“unwinding” of the proof of Littlewood’s theorem [14].
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