
Predictive Labeling with Dependency Pairs
using SAT

Adam Koprowski1 and Aart Middeldorp2?

1 Department of Computer Science
Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
2 Institute of Computer Science

University of Innsbruck
6020 Innsbruck, Austria

Abstract. This paper combines predictive labeling with dependency
pairs and reports on its implementation. Our starting point is the method
of proving termination of rewrite systems using semantic labeling with in-
finite models in combination with lexicographic path orders. We replace
semantic labeling with predictive labeling to weaken the quasi-model
constraints and we combine it with dependency pairs (usable rules and
argument filtering) to increase the power of the method. Encoding the re-
sulting search problem as a propositional satisfiability problem and call-
ing a state-of-the-art SAT solver yields a powerful technique for proving
termination automatically.

1 Introduction

Termination is an important topic in term rewriting and over the years many
techniques have been developed for proving termination. Recently the emphasis
in the field is on automation and since 2004 an annual termination competition
is being organized in which automatic termination provers compete on a set of
termination problems.

One of the techniques for proving termination is a transformational method
of semantic labeling due to Zantema [20]. The idea of this method is to give
semantics to function symbols and use the semantics to label the function sym-
bols in order that simpler termination methods become applicable. At first in
automatic termination provers this method was used, if at all, with finite (typi-
cally two elements) model. In [14] the method of automating semantic labeling
over infinite domains has been worked out and implemented in the termination
prover TPA [13]. The approach was to find a quasi-model for the given rewrite
system, transform it to a labeled rewrite system, and apply the recursive path
order using the information in the labels to distinguish different occurrences of
function symbols depending on their context.

The recent development of predictive labeling [11] aims at improving semantic
labeling by weakening the quasi-model constraints—it allows to consider only
? Partially supported by FWF (Austrian Science Fund) project P18763.

usable rules instead of all rules of the rewrite system under consideration when
checking the quasi-model condition and it requires semantics only for the relevant
part of the signature.

The first contribution of this paper is to increase the power of predictive la-
beling with natural numbers by incorporating it in the framework of dependency
pairs [1, 6]. This requires an extension of the theory of predictive labeling which
in [11] was presented for ordinary termination only. Furthermore, since labeling
with natural numbers produces infinite systems over infinite signatures, power-
ful ingredients of the dependency pair method like usable rules with argument
filterings are not directly applicable.

The second contribution is to extend the approach of automatically proving
termination using semantic labeling with natural numbers, as in [14], to incor-
porate the improvement of predictive labeling. This is not completely straight-
forward due to the fact that apart from choosing semantics for function symbols
one now also needs to decide which symbols to label which in turn influences
the set of usable rules. This greatly enlarges the search space.

The third contribution is the presentation of insights used in the implemen-
tation of this approach in TPA. This is the first implementation of the predictive
labeling method ever. It uses the increasingly popular method of encoding the
search problems resulting from an application of a termination technique as
propositional formulas and handing them over to a SAT solver.

The remainder of this paper is organized as follows. In the next section we
recall basic notions and starting points of this paper. In Section 3 we present the
combination of predictive labeling with dependency pairs. Section 4 describes the
SAT encoding of the combination. In Section 5 we present experimental results
and we conclude in Section 6.

2 Preliminaries

We begin by briefly recalling a few basic notions and refer to [2] for further
details on term rewriting. This is followed by a presentation of dependency pairs
in Section 2.1 and semantic and predictive labeling in Section 2.2.

We assume a signature F and a set of variables V and denote by T (F ,V)
the set of terms over F and V. By Fun(t) we denote the set of function symbols
and by Var(t) the set of variables occurring in a term t. The root symbol of a
term t is denoted by root(t). A rewrite rule is a pair (l, r), written l → r, with
l, r ∈ T (F ,V), l /∈ V, and Var(r) ⊆ Var(l). A term rewriting system (TRS for
short) is a set of rewrite rules. Given a TRS R and a function symbol f , the
subset of R consisting of those rules that have f as root of the left-hand side is
denoted by Rf : Rf = {l → r ∈ R | root(l) = f}. The subterm relation on terms
is denoted by E. The rewrite relation →R of a TRS R is defined as follows:
s →R t if there exists a rewrite rule l → r ∈ R, a substitution σ, and a context
C such that s = C[lσ] and t = C[rσ]. A TRS R is called terminating if there is
no infinite reduction t1 →R t2 →R · · · .

2

We write SN for the subset of T (F ,V) consisting of all terminating terms
and T∞ for the set of minimal non-terminating terms, that is, non-terminating
terms all of whose arguments are terminating. For a TRS R and a relation �
we define R� = {s → t ∈ R | s � t}.

Example 1. We will use the following TRS from [17] (AProVE/rta1.trs in TPDB
[21]) to illustrate various developments throughout this paper:

(1) plus(0, y) → y (5) plus(s(s(x)), y) → s(plus(x, s(y)))
(2) plus(s(0), y) → s(y) (6) plus(x, s(s(y))) → s(plus(s(x), y))
(3) ack(0, y) → s(y) (7) ack(s(x), s(y)) → ack(x, plus(y, ack(s(x), y)))
(4) ack(s(x), 0) → ack(x, s(0))

2.1 Dependency Pairs

The dependency pair method [1] is a powerful approach for proving termination
of TRSs. The dependency pair framework [6] is a modular reformulation and
improvement of this approach. We present a simplified version which is sufficient
for our purposes. For further information on dependency pairs and more detailed
explanations of the concepts introduced below the reader is referred to [1, 6, 7,
12].

Let R be a TRS over a signature F . The set of defined symbols is defined
as DR = {root(l) | l → r ∈ R}. The signature F is extended with symbols f]

for every symbol f ∈ DR, resulting in the signature F]. If t ∈ T (F ,V) with
root(t) defined then t] denotes the term that is obtained from t by replacing
its root symbol with root(t)]. If l → r ∈ R and t E r with root(t) defined then
the rule l] → t] is a dependency pair of R. The set of dependency pairs of R
is denoted by DP(R). A DP problem is a pair of TRSs (P,R). The problem is
said to be finite if there is no infinite sequence t1 →∗

R s1
ε−→P t2 →∗

R s2
ε−→P · · ·

such that all terms t1, t2, . . . are terminating with respect to R. Here ε in ε−→P
denotes that the application of the rule in P takes place at the root position.
The main result underlying the dependency pair approach states that a TRS R
is terminating iff the DP problem (DP(R),R) is finite.

Example 2. For the TRS presented in Example 1 there are six dependency pairs:

(8) ack](s(x), 0) → ack](x, s(0))

(9) plus](s(s(x)), y) → plus](x, s(y))

(10) plus](x, s(s(y))) → plus](s(x), y)

(11) ack](s(x), s(y)) → ack](x, plus(y, ack(s(x), y)))

(12) ack](s(x), s(y)) → plus](y, ack(s(x), y))

(13) ack](s(x), s(y)) → ack](s(x), y)

3

In order to prove finiteness of a DP problem a number of so-called DP proces-
sors have been developed. DP processors are functions that take a DP problem
as input and return a set of DP problems as output. In order to be employed
to prove termination they need to be sound, that is, if all DP problems in a set
returned by a DP processor are finite then the initial DP problem is finite.

Below we shortly introduce three key concepts of the dependency pair method
that are important for our approach: reduction pairs, argument filtering, and
usable rules [1, 7].

A reduction pair (&, >) consists of a preorder & which is closed under con-
texts and substitutions and a well-founded order > which is closed under substi-
tutions such that the inclusion & · > ⊆ > or the inclusion > · & ⊆ > holds. We
say that a reduction pair (&, >) is CE -compatible iff c(x, y) & x and c(x, y) & y,
where c is a new binary function symbol.

An argument filtering is a mapping π that assigns to every n-ary func-
tion symbol f an argument position i ∈ {1, . . . , n} or a (possibly empty) list
[i1, . . . , im] of argument positions with 1 6 i1 < · · · < im 6 n. Every argument
filtering π induces a mapping on terms:

π(t) =


t if t is a variable,
π(ti) if t = f(t1, . . . , tn) and π(f) = i,
f(π(ti1), . . . , π(tim)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , im].

Given a binary relation � and an argument filtering π, we write s �π t iff
π(s) � π(t).

Next we introduce the concept of usable rules modulo argument filtering. Let
(P,R) be a DP problem and π an argument filtering. We define the set of usable
rules for (P,R) modulo π as

Uπ(P,R) =
⋃

s→t∈P
Uπ(t,R)

with Uπ(t,R) = ∅ if t is a variable and

Uπ(t,R) = Rf ∪
⋃

l→r∈Rf

Uπ(r,R \Rf) ∪
⋃

i : π(f)=i∨ i∈π(f)

Uπ(ti,R \Rf)

if t = f(t1, . . . , tn). We illustrate usable rules on our leading example.

Example 3. Consider the TRS R from Example 1 and its dependency pairs P,
as presented in Example 2. Given argument filtering π(ack]) = 1 and π(f) =
[1, . . . , n] for the remaining symbols f ∈ F], where n is the arity of f . Then
applying the above definition yields Uπ(P,R) = {3, 4, 7}.

Theorem 4 (Reduction Pair Processor). Let P and R be (possibly infinite)
TRSs. Let (&, >) be a CE -compatible reduction pair and let π be an argument
filtering. If R is finitely branching, P = P&π ∪ P>π , and Uπ(P,R) ⊆ &π then
the DP processor (P,R) 7→ {(P \ P>π ,R)} is sound. ut

4

In [7] the above theorem is stated and proved for finite TRSs P and R.
In our setting we deal with infinite TRSs obtained by labeling finite TRSs. So
finiteness of R is too restrictive. A careful inspection of the proof in [7] as well
as the proofs of related statements in [12, 18] reveals that it is sufficient that R
is finitely branching. The reason is that then the sets {t | s →∗

R t} of reducts of
terminating terms s are still guaranteed to be finite.

2.2 Semantic and Predictive Labeling

We start by presenting semantic labeling [20] in the setting of monotone algebras.
Let R be a TRS over signature F and let A = (A, {fA}f∈F , >, &) be a well-
founded weakly monotone F-algebra, that is a quadruple consisting of

– a non-empty carrier set A,
– a set of algebra operations on A that are weakly monotone in all coordi-

nates: fA(a1, . . . , ai, . . . , an) & fA(a1, . . . , b, . . . , an) for all n-ary f ∈ F ,
a1, . . . , an, b ∈ A, and i ∈ {1, . . . , n} with ai & b,

– a well-founded order > on A, and
– a relation & such that > · & ⊆ > or & · > ⊆ >.

A weakly monotone labeling ` for A consists of a set of labels Lf ⊆ A together
with a mapping `f : An → Lf for every n-ary function symbol f ∈ F such that
`f is weakly monotone in all coordinates. The labeled signature Flab consist of
n-ary function symbols fa for every n-ary function symbol f ∈ F and every label
a ∈ Lf together with all function symbols f ∈ F such that Lf = ∅. We extend an
assignment of variables α : V → A to the mapping labα : T (F ,V) → T (Flab,V)
in the following way:

labα(t) =


t if t is a variable,
f(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf = ∅,
fa(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf 6= ∅

where a denotes the label `f ([α]A(t1), . . . , [α]A(tn)). We extend the relation >
on A to >A on T (F ,V) as follows: s >A t if [α]A(s) > [α]A(t) for all vari-
able assignments α; & is similarly extended to &A. We say that A is a quasi-
model for R if R ⊆ &A. We define the TRS Dec to consist of all rewrite rules
fa(x1, . . . , xn) → fb(x1, . . . , xn) with f ∈ F an n-ary function symbol, a, b ∈ Lf

with a > b, and pairwise different variables x1, . . . , xn.
The following is the straightforward generalization of the result for ordinary

termination from [20] to DP problems. The only observation is that interpre-
tations of dependency pair symbols do not contribute to labels so by choosing
them to be the same constant we get the quasi-model constraints for DP rules
for free. We omit the easy proof.

Theorem 5. Let R be a TRS, A a weakly monotone quasi-model for R, and `
a weakly monotone labeling for A. The DP problem (DP(R),R) is finite iff the
DP problem (DP(R)lab,Rlab ∪ Dec) is finite. ut

5

In the remainder of this subsection we recall some definitions pertinent to
predictive labeling that are needed for the developments in the next section. Let
R be a TRS. For function symbols f and g we write f Bdg if there exist a rewrite
rule l → r ∈ R such that f = root(l) and g is a function symbol in Fun(r). Let
` be a labeling and t a term. We define

G`(t) =


∅ if t is a variable,
Fun(t1)∗ ∪ · · · ∪ Fun(tn)∗ if t = f(t1, . . . , tn) and Lf 6= ∅,
G`(t1) ∪ · · · ∪ G`(tn) if t = f(t1, . . . , tn) and Lf = ∅

where F ∗ denotes the set {g | f B∗d g for some f ∈ F}. Furthermore we define

G`(R) =
⋃

l→r∈R

G`(l) ∪ G`(r)

and the set of usable rules for ` is defined as U(`) = {l → r ∈ R | root(l) ∈
G`(R)}. Typically, U(`) is a proper subset of R. The point of predictive labeling
is to replace the condition R ⊆ &A in semantic labeling by the easier to satisfy
condition U(`) ⊆ &A. We illustrate this on an example.

Example 6. Consider the TRS R from Example 1. Suppose Ls 6= ∅ and Lplus =
Lack = ∅. Then applying the above definition gives G`(R) = {plus, s} and
U(`) = {1, 2, 5, 6}.

The weakly monotone algebras A = (A, {fA}f∈F , >, &) used to determine
the labeling and to satisfy the quasi-model constraints in connection with pre-
dictive labeling (i.e., U(`) ⊆ &A), must satisfy the additional property that for
every finite subset X ⊆ A there exists a least upper bound

⊔
X of X in A (with

respect to &). Such algebras are called t-algebras in [11]. The main result of [11]
can now be stated.

Theorem 7. Let R be a finitely branching TRS, A a weakly monotone t-
algebra, and ` a weakly monotone labeling for A such that U(`) ⊆ &A. If
Rlab ∪ Dec is terminating then R is terminating. ut

Due to the restriction to t-algebras, predictive labeling is less powerful than
semantic labeling in theory. However, since the algebras used in current termi-
nation tools are t-algebras, in practice predictive labeling is to be preferred as
it has the clear advantage of weakening the quasi-model condition; instead of all
rules only the usable rules need to be oriented, which brings improvements in
proving power as well as efficiency.

3 Predictive Labeling and Dependency Pairs

The following theorem constitutes the main theoretical result of this paper.

6

Theorem 8. Let R and P ⊆ DP(R) be TRSs. Let A be a weakly monotone
t-algebra and ` a weakly monotone labeling for A such that U(`) ⊆ &A. If R is
finitely branching then the DP processor (P,R) 7→ {(Plab,Rlab ∪Dec)} is sound.

Before presenting a proof sketch, we make some clarifying remarks. The con-
dition P ⊆ DP(R) ensures that the root symbols of the rules in P are dependency
pair symbols that occur nowhere else. This implies that we do not have to worry
about the semantics of the rules P and thus U(`) will be a subset of R. Never-
theless, dependency pair symbols in P can be labeled and this may influence the
usable rules. It follows that the definition of U(`) given in the preceding section
has to be slightly modified: U(`) = {l → r ∈ R | root(l) ∈ G`(P ∪R)}. The Dec
rules are computed for all labeled symbols in F], where F is the signature of R.

Proof (sketch). Suppose the DP processor (P,R) 7→ {(Plab,Rlab ∪ Dec)} is not
sound. So the DP problem (Plab,Rlab∪Dec) is finite whereas (P,R) is not. Hence
there exists an infinite sequence

t1 →∗
R u1

ε−→P t2 →∗
R u2

ε−→P · · ·

such that the terms t1, t2, . . . are terminating with respect to R. Let α be an
arbitrary assignment. We recall the following definitions from [11].

– Let t ∈ SN . The interpretation [α]∗A(t) is inductively defined as follows:

[α]∗A(t) =


α(t) if t is a variable,
fA([α]∗A(t1), . . . , [α]∗A(tn)) if t = f(t1, . . . , tn) and f ∈ G`,⊔
{[α]∗A(u) | t →+

R u} if t = f(t1, . . . , tn) and f /∈ G`.

– Let t ∈ SN ∪T∞. The labeled term lab∗α(t) is inductively defined as follows:

lab∗α(t) =


t if t is a variable,
f(lab∗α(t1), . . . , lab∗α(tn)) if Lf = ∅,
fa(lab∗α(t1), . . . , lab∗α(tn)) if Lf 6= ∅

where a = `f ([α]∗A(t1), . . . , [α]∗A(tn)).
– Given a substitution σ such that σ(x) ∈ SN for all variables x, the assign-

ment α∗σ is defined as [α]∗A ◦ σ and the substitution σlab∗α as lab∗α ◦ σ.

We will apply lab∗α(·) to the terms in the above sequence. Fix i > 1. Repeated
application of Lemma 17 in [11] yields lab∗α(ti) →∗

Rlab∪Dec lab∗α(ui). We have
ui = lσ and ti+1 = rσ for some l → r ∈ P. We use Lemma 15 in [11] to obtain

lab∗α(lσ) →∗
Dec labα∗σ (l)σlab∗α .

Since labα∗σ (l) → labα∗σ (r) ∈ Plab, labα∗σ (l)σlab∗α

ε−→Plab
labα∗σ

(r)σlab∗α . A variation
of Lemma 16 in [11] gives labα∗σ (r)σlab∗α = lab∗α(rσ). Putting things together

7

yields lab∗α(ti) →∗
Rlab∪Dec ·

ε−→Plab
lab∗α(ti+1). Hence, the above infinite sequence

is transformed into

lab∗α(t1) →∗
Rlab∪Dec ·

ε−→Plab
lab∗α(t2) →∗

Rlab∪Dec ·
ε−→Plab

· · ·

If we can show that the terms lab∗α(t1), lab∗α(t2), · · · are terminating with respect
to Rlab ∪ Dec then the DP problem (Plab,Rlab ∪Dec) is not finite, providing the
desired contradiction. Suppose lab∗α(ti) for some i admits an infinite reduction
with respect to Rlab ∪ Dec. Because Dec is a terminating TRS, there must be
infinitely many Rlab-steps in this sequence. If we remove all labels, the Dec-steps
disappear and the Rlab-steps are turned into R-steps. It follows that ti is not
terminating with respect to R. This completes the proof. ut

4 SAT Encoding

We start this section by giving an outline of the main steps of our termination
proving procedure. Afterwards we explain which parts are encoded in SAT and
how this is actually achieved.

1. First the dependency pairs of R are computed. Then the strongly connected
components (SCCs) in an over-approximation of the dependency graph of R
are determined.

2. In the next step the subterm criterion [12] is applied in connection with the
recursive SCC algorithm [10]. The purpose of this step is to quickly remove
components which do not pose a challenge for the termination proof.

3. At this point we deal with a number of problems of the form (P,R) where
P is a set of dependency pairs of the original TRS R. Both P and R are
finite systems over a finite signature. Each of these problems is subjected to
the following steps.

4. Predictive labeling (Theorem 8) transforms (P,R) into (Plab,Rlab ∪ Dec).
This new problem generally consists of infinite systems over infinite signa-
tures.

5. Next we apply the reduction pair processor with argument filtering (The-
orem 4). In our implementation this step is specialized by taking LPO as
the underlying reduction order. In order to make progress, there must be at
least one rule in P with the property that all its labeled versions in Plab are
strictly decreasing.

6. In the next step we return to the problem (P,R) and remove those rules from
P that were identified in the preceding step. Then we repeat the algorithm
on the resulting problem from step 2 onward.

We illustrate this procedure on an example.

Example 9. We continue with our leading example. The estimated dependency
graph has two SCCs: {(8), (11), (13)} and {(9), (10)}. The former is taken care
of by two applications of the subterm criterion, first with projection π(ack]) = 1

8

and then with π(ack]) = 2. So in step 3 the problem (P,R) with P = {(9), (10)}
and R = {(1), . . . , (7)} remains. We will label function symbol plus], so G`(P ∪
R) = {s} and thus U`(R) = ∅. Taking the successor function as semantics for
s together with the labeling function `plus](x, y) = x + y produces in step 4 the
DP problem (Plab,Rlab ∪ Dec) with Plab consisting of the rules

plus]
i+j+2(s(s(x)), y) → plus]

i+j+1(x, s(y))

plus]
i+j+2(x, s(s(y))) → plus]

i+j+1(s(x), y)

for all i, j > 0, Rlab = R, and Dec = {plus]
i(x, y) → plus]

j(x, y) | i > j > 0}. The
DP problem (Plab,Rlab∪Dec) is taken care of in step 5 by the argument filtering
π(plus]

i) = [] for all i in combination with the well-founded LPO precedence
plus]

i � plus]
j whenever i > j. Note that the rules in Rlab are ignored as they are

not usable. Since all rules in Plab are strictly decreasing, there is nothing left to
do in step 6.

We use SAT for steps 4 and 5 of our algorithm. The starting point of our
encoding is the approach to semantic labeling with natural numbers and LPO
from [14] and the encoding of specific instances of Theorem 4 in [3, 19]. The main
challenges are the encoding of

– the search for interpretations fA and labeling functions `f ,
– the choice of function symbols to be labeled and the corresponding compu-

tation of usable rules,
– the induced quasi-model constraints,
– the precedence constraints over the infinite signature of the labeled system,

and
– the finite branching condition in Theorem 4.

For the first problem, we adopt the SAT encoding of matrix interpretations [5].
To address the second problem we introduce a new propositional variable Lf

for every function symbol f that will indicate whether Lf 6= ∅. Given those
variables we need to compute the set of usable rules for predictive labeling ac-
cording to the definitions at the end of Section 2.2. To this end we introduce
propositional variables Uf for every defined symbol f of R indicating whether
the rewrite rules defining f are usable. For a DP problem (P,R) the encoding
of usable rules is expressed as:

ωUR(P,R) =
∧

f∈F]

(
Lf =⇒

∧
g∈∆f (P,R)∗

Ug

)
where

∆f (P,R) =
⋃

l→r∈P∪R

{g ∈ Fun(t) | root(t) = f and t E l or t E r}.

9

Now the encoding of quasi-model constraints can easily be expressed as

ωQM(R) =
∧

f∈DR

(
Uf =⇒

∧
l→r∈Rf

p[l]A &A [r]Aq
)
.

Here p. . .q converts inequalities into formulas. For that we need to be able to
compute term interpretations in the algebra A and compare them by &A. To
that end we can use any technique following the weakly monotone algebra ap-
proach from Section 2.2, like polynomial interpretations [15] or matrix interpre-
tations [5]. In our implementation we use matrix interpretations with dimensions
1 (which correspond to linear polynomial interpretations) and 2. The reader is
referred to [5] for details on how the corresponding constraints can be encoded.
We note that both polynomial and matrix interpretations give t-algebras, which
is required for the soundness of predictive labeling (Theorem 8).

Note that we encode quasi-model constraints for R but not for P. The reason
is that every DP problem (P,R) encountered during the execution of our algo-
rithm has the property that the root symbols of the left- and right-hand sides
of rules in P are dependency pair symbols, which do not occur elsewhere in the
problem. Hence they are not part of G`(P ∪ R) and consequently no rule from
P is usable.

The next question is how to restrict the spectrum of possible precedence
relations for infinite labeled TRSs in such a way that they have finite represen-
tation, can be searched for easily, and ensuring their well-foundedness is feasible.
With every (unlabeled) function symbol f we associate a pair of natural numbers
(fL, fSL), the level and sublevel of f . Such an assignment induces a precedence
�Flab

on labeled function symbols in the following way. Firstly, no matter what
the labels are, if the level of f is greater than the level of g then f �Flab

g. If
two symbols have the same level but the label of f is greater (with respect to
>A) than that of g then again f �Flab

g. Finally, if the levels and labels of f
and g are equal but the sublevel of f is bigger than the sublevel of g then again
f �Flab

g. Note that �Flab
is well-founded since it is obtained as the lexicographic

comparison of three well-founded orders.
The straightforward encoding of the (strict) precedence comparisons is pre-

sented below. For the computation of labels and their comparison with >A and
&A we may use any approach following the weakly monotone algebra framework.

pfi �Flab
gjq = pfL >N gLq ∨

(
pfL =N gLq ∧ Lf ∧ Lg ∧

(
pi >A jq ∨

(pi &A jq ∧ pfSL >N gSLq)
))

pfi �Flab
fjq = Lf ∧ pi >A jq

The use of sublevels allows us to represent more precedences on the signatures of
infinite labeled TRSs, which increases the termination proving power with only
a small reduction in efficiency.

A natural question is how this setting for precedences compares to the one
from [14]. It is easy to observe that every precedence in our setting has a coun-
terpart in the setting of [14]. The converse is also true. More precisely, for every

10

well-founded precedence �Flab
from [14] there exists a precedence �′Flab

in our
setting (well-founded by definition), such that �Flab

⊆ �′Flab
. So the expressive

power of the two approaches is the same.
The last challenge that we address is the requirement of Theorem 4 that

the TRS Rlab is finitely branching. For the type of infinite but well structured,
parameterized TRSs obtained by labeling finite TRSs this is easy to check. The
only source of violation may be a parameterized (labeled) rule where a single
labeled instance of a left-hand sides has infinitely many corresponding labeled
right-hand sides. In the case of weakly monotone polynomial interpretations this
means that a variable must be present in some labels in the right-hand side but
not in any label in the corresponding left-hand side. So we define

ωFB(R) =
∧

l→r∈R

∧
x∈Var(r)

(
Φx(r) =⇒ Φx(l)

)
with

Φx(t) =
∨

f(t1,...,tn)Et

Lf ∧ a > 0

Here a is the coefficient of x when (symbolically) computing the label of f in
f(t1, . . . , tn). So Φx(t) evaluates to true when the variable x occurs in some label
in term t. Thus ωFB(R) expresses that if the value of x is used for obtaining
the label of a function symbol occurring in r then this must also be true for a
function symbol occurring in l, for every rule l → r ∈ R and every variable x
occurring in r.

When using matrix interpretations instead of polynomial interpretations we
obtain a similar formula ωFB(R), only now variables are interpreted as finite
vectors of natural numbers. So in addition to x we must also propagate the
position in the vector on which the label depends. We omit the straightforward
details.

Combining all ingredients gives us now the final formula for executing steps
4 and 5 of our termination procedure simultaneously:

ωUR(P,R) ∧ ωQM(R) ∧ ωFB(R) ∧ ωLAB(P,R) ∧ ωLPO(P,R)

Some clarifying remarks are in order.
The subformula ωLAB(P,R) takes care of computing the labels for all occur-

rences of all function symbols. (Since the choice of which symbols will be actually
labeled is left to the SAT solver, the calculation of labels needs to be encoded for
all symbols.) This is very similar to the encoding of the algebra computations
in ωQM(R) and actually we can share most of the code.

The subformula ωLPO(P,R) is the encoding of the specialization of Theo-
rem 8 to LPO. We adopt the encoding given in [3] but since we deal with infinite
systems we use as basic building blocks the precedence comparisons sketched on
page 10. We compute usable rules with respect to original (unlabeled) system
and assume that all labeled versions of a usable unlabeled rule are usable. This
gives a correct over-approximation of the usable rules of the labeled TRS.

11

One thing that seems to be missing in the above formula is the treatment of
the rules in Dec. Indeed they are not part of the formula in any way and that
is because in the present setting they can be ignored. Regardless of the argu-
ment filtering and the precedence (within the constraints of the level/sublevel
encoding), the rules in Dec are all (weakly) oriented, do not contribute to the
computation of usable rules, and cannot make the system infinitely branching.

The above formula is given to a SAT solver. Three things can happen as a
result:

– the SAT solver returns a satisfying assignment, which is translated back to
obtain concrete parameters required to execute steps 4 and 5 of our algo-
rithm, or

– the SAT solver returns “unsatisfiable”, in which case we know that our ap-
proach is not applicable, or

– the SAT solver runs out of time or other resources, in which case we give up
without being able to conclude anything.

5 Experimental Results

We implemented the technique described in the preceding section in the termi-
nation prover TPA, using the MiniSat SAT solver [4]. In this section we evaluate
our method on a number of examples from the Termination Problem Database
(TPDB, see [21]). All experiments involving TPA were performed on a machine
equipped with an Intel r XeonTM 2.80 GHz processor. Experimental data for
other termination tools are taken from the respective publications (due to the
difficulty of obtaining those tools in the configuration required for our experi-
ments).

A very natural benchmark for our approach would be the comparison with
results from [14]. Unfortunately the substantial difference in the approach to se-
mantic labeling with natural numbers makes any decent comparison difficult. We
are convinced however that the direct approach from [14] would be absolutely
infeasible for exploring the much larger search space resulting from using arbi-
trary interpretations with bounded coefficients instead of only a small number
of predefined interpretations.

We begin by evaluating two basic ingredients of our implementation, matrix
interpretations and LPO with argument filtering (both without semantic or pre-
dictive labeling), against reference implementations: [5] for the former and [3] for
the latter. Both implementations use more or less the same setup: dependency
pairs with usable rules and subterm criterion. The results in Table 1 are based on
version 2.0 of the TPDB, more precisely on the 773 TRSs from the termination
category of this database. The columns “yes”, “time”, and “timeout” indicate
the number of successful termination proofs, the total time (in seconds) spent
on the TRSs in the problem set and the number of timeouts that occurred. We
used a 60 seconds time limit.

The experiments for matrix interpretations use 2 × 2 matrices, 2 bits for
the matrix entries, and 3 bits to represent the values of intermediate results.

12

Table 1. Comparison to other tools.

technique tool yes time timeout

matrix interpretations
Jambox 505 N/A N/A

TPA 498 3541 30

LPO
AProVE 380 193 0

TPA 372 191 0

Table 2. Experiments with TPA on TPDB version 3.2.

60 seconds timeout 10 minutes timeout

technique yes time timeout yes time timeout

1×1

SL 440 1178 2 440 1351 0

PL 456 1193 2 456 1316 0

PL′ 426 752 1 426 893 0

2×2

SL 503 6905 51 506 24577 30

PL 527 6906 53 532 25582 32

PL′ 522 5211 33 524 11328 8

The slightly lower score of TPA compared to Jambox is probably due to a more
sophisticated approximation of the dependency graph in the latter. No timing
information is given in [5] but the authors write “[...] we took the time limit of
1 minute [...] this time was hardly ever consumed [...] average computation time
for all proofs is around 1 second”. This suggests that our implementation is far
from optimal. Indeed, we did not invest much time in optimizing the encoding.
This seems to be a good starting point for improving the results for predictive
labeling presented below.

The slightly higher score of AProVE in the LPO experiments is likely due to
a different graph approximation algorithm. The execution speeds are almost the
same but one needs to keep in mind that the results were obtained on different
machines and hence cannot be compared directly.

Table 2 summarizes the experiments performed with TPA on the 864 TRSs
in version 3.2 of the TPDB. All experiments were performed with time limits
of 60 seconds and 10 minutes. The first group of results is based on seman-
tic/predictive labeling with matrix interpretations of dimension 1 (equivalent to
linear polynomials) used for both interpretations and labels:

– SL means semantic labeling (Theorem 5) where all symbols are labeled and
all rules are considered for the quasi-model requirement,

– PL stands for predictive labeling and corresponds to the approach described
in this paper,

– PL′ is a variant with a simple heuristic for the choice of labeled symbols;
instead of leaving this decision to SAT all dependency pair symbols are
labeled and only them.

13

A first observation is that predictive labeling is more powerful than semantic
labeling—it proves termination of an additional 16 TRSs—without incurring
any significant increase in execution speed. The heuristic brings a considerable
speedup at the expense of termination proving power.

For the second group of results we use the same methods as for the first group
but now 2× 2 matrices are used for interpretations and labels. Again predictive
labeling performs better than semantic labeling. It is interesting to observe that
the price in termination proving power of the heuristic is much less than for
dimension 1. This can be intuitively explained by the more powerful algebraic
structure used for the labeling functions, which makes it possible to put more
information in the labels and hence counter the reduced flexibility in the choice
of function symbols to label. A similar line of reasoning could lead to the belief
that in this case it is also easier to satisfy quasi-model constraints and thereby
diminishing the improvement of predictive labeling but the difference of 26 TRSs
between SL and PL proves this hypothesis wrong.

It is worth noting that even for the slowest variant (PL with matrices of
dimension 2 × 2) the average time for successful proof is around 3 seconds.
Moreover, there are three TRSs which can be proved terminating using this
method but not with any tool that participated in the 2006 Termination Com-
petition: Ex26 Luc03b Z, Ex49 GM04 FR, and ExSec11 1 Luc02a GM from the
TRCSR subcollection.

6 Conclusion and Further Research

In this paper we extended the theory of predictive labeling to a dependency pair
setting and we presented the ideas behind the SAT based implementation of this
technique in the termination prover TPA. Experimental results confirm the fea-
sibility of our approach. Our technique extends the earlier TPA implementation
of semantic labeling with infinite quasi-models described in [14] in several ways:

– the quasi-model restriction is relaxed by using predictive labeling,
– the integration with dependency pairs makes the approach more powerful,
– the SAT encoding enables the use of unrestricted polynomial and matrix

interpretations for function symbols, whereas in [14] the interpretations were
restricted to a small predefined set in order not to blow up the search space.

There is however one extension in [14] that we fail to cover here and that is
the possibility of using min and max as interpretations for binary symbols. This
feature really adds power to the whole approach, allowing for instance to easily
prove termination of the TRS SUBST [9]. The approach in [14] is to allow at most
one binary function symbol to be interpreted as min or max, and to perform a
case analysis on all occurrences of that symbol in combination with rule splitting.
This approach seems to be difficult to incorporate in our new setting as the whole
search procedure is encoded as a SAT problem and we have no way of knowing
for which symbols min or max will be chosen and hence cannot do this case
analysis and rule splitting in advance. We leave this issue as future work.

14

An important theoretical question is whether the finite branching condition
in Theorem 4 is essential. Disabling the ωFB(R) conjunct in our encoding allows
to “prove” the termination of two more TRSs from the TPDB. One of these
TRSs is presented below.

Example 10. Consider the following TRS (Thiemann/factorial1.trs) computing
the factorial function:

plus(0, x) → x plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0 times(s(x), y) → plus(y, times(p(s(x)), y))

p(s(0)) → 0 p(s(s(x))) → s(p(s(x)))
fac(0, x) → x fac(s(x), y) → fac(p(s(x)), times(s(x), y))

factorial(x) → fac(x, s(0))

There are ten dependency pairs and the estimated dependency graph contains
four single node SCCs. Only one of them, consisting of the dependency pair

fac](s(x), y) → fac](p(s(x)), times(s(x), y))

is problematic. It could be solved using matrices of dimension 2 by labeling s
and p, but it is essential that the interpretation of plus depends on its second
argument. Then the label of the root symbol of the right-hand side of the rule
plus(s(x), y) → s(plus(p(s(x)), y)) depends on the assignment to y whereas in the
left-hand side there is only one labeled s symbol with x as its argument so its
label is necessarily independent of the value of y. This makes Rlab non-finitely
branching and hence the termination proof is out of reach with our approach.

At the end of Section 2.1 we already remarked that the proof of Theorem 4
relies on the finite branching condition. The key idea in the proof goes back
to a modularity result for termination of Gramlich [8], in which the same finite
branching condition is required. By using a much more complicated construction,
Ohlebusch [16] showed that the finite branching condition in the modularity
result is not essential. It is worthwhile to investigate whether the proof technique
in [16] can be used to generalize Theorem 4.

Needless to say, it is not a single technique but rather a careful combina-
tion of techniques that makes a successful termination tool. Hence the effect of
combining our approach with other techniques should be investigated.

Acknowledgments

We are grateful to Hans Zantema for helpful discussions. The comments of the
referees improved the presentation.

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS,
236:133–178, 2000.

15

2. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

3. M. Codish, P. Schneider-Kamp, V. Lagoon, R. Thiemann, and J. Giesl. SAT
solving for argument filterings. In Proc. 13th LPAR, volume 4246 of LNAI, pages
30–44, 2006.

4. N. Eén and N Sörensson. An extensible SAT-solver. In Proc. 6th SAT, volume
2919 of LNCS, pages 502–518, 2003.

5. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. In Proc. 3rd IJCAR, volume 4130 of LNAI, pages
574–588, 2006.

6. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. 11th LPAR,
volume 3452 of LNCS, pages 301–331, 2005.

7. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and im-
proving dependency pairs. JAR, 37(3):155–203, 2006.

8. B. Gramlich. Generalized sufficient conditions for modular termination of rewrit-
ing. AAECC, 5:131–158, 1994.

9. T. Hardin and A. Laville. Proof of termination of the rewriting system SUBST on
CCL. TCS, 46(2–3):305–312, 1986.

10. N. Hirokawa and A. Middeldorp. Automating the dependency pair method. In-
formation and Computation, 199(1,2):172–199, 2005.

11. N. Hirokawa and A. Middeldorp. Predictive labeling. In Proc. 17th RTA, volume
4098 of LNCS, pages 313–327, 2006.

12. N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and fea-
tures. Information and Computation, 205(4):474–511, 2007.

13. A. Koprowski. TPA: Termination proved automatically. In Proc. 17th RTA, volume
4098 of LNCS, pages 257–266, 2006.

14. A. Koprowski and H. Zantema. Automation of recursive path ordering for infinite
labelled rewrite systems. In Proc. 3rd IJCAR, volume 4130 of LNAI, pages 332–
346, 2006.

15. D. Lankford. On proving term rewrite systems are noetherian. Technical Report
MTP-3, Louisiana Technical University, Ruston, LA, USA, 1979.

16. E. Ohlebusch. On the modularity of termination of term rewriting systems. TCS,
136(2):333–360, 1994.

17. R. Thiemann and J. Giesl. The size-change principle and dependency pairs for
termination of term rewriting. AAECC, 16(4):229–270, 2005.

18. X. Urbain. Modular & incremental automated termination proofs. JAR, 32:315–
355, 2004.

19. H. Zankl, N. Hirokawa, and A. Middeldorp. Constraints for argument filterings.
In Proc. 33rd SOFSEM, volume 4362 of LNCS, pages 579–590, 2007.

20. H. Zantema. Termination of term rewriting by semantic labelling. Fundamenta
Informaticae, 24:89–105, 1995.

21. Termination problem data base, version 3.2, 2006. www.lri.fr/~marche/tpdb.

16

