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Abstract

The Tyrolean Termination Tool (TTT for short) is a powerful tool for automatically
proving termination of rewrite systems. It incorporates several new refinements of
the dependency pair method that are easy to implement, increase the power of the
method, result in simpler termination proofs, and make the method more efficient.
TTT employs polynomial interpretations with negative coefficients, like x − 1 for a
unary function symbol or x − y for a binary function symbol, which are useful for
extending the class of rewrite systems that can be proved terminating automatically.
Besides a detailed account of these techniques, we describe the convenient web
interface of TTT and provide some implementation details.
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1 Introduction

The dependency pair method (Arts and Giesl [5]) and the monotonic seman-
tic path order (Borralleras, Ferreira, and Rubio [9]) are two powerful methods
which facilitate termination proofs that can be obtained automatically. After
the introduction of these methods, there is a renewed interest in the study of
termination for term rewrite systems. Three important issues which receive a
lot of attention in current research on termination are to make these methods
faster, to improve the methods such that more and more (challenging) rewrite
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systems can be handled, and to extend the methods beyond the realm of ordi-
nary first-order term rewriting. Especially in connection with the dependency
pair method many improvements, extensions, and refinements have been pub-
lished. The dependency pair method forms an important ingredient in several
software tools for proving termination. This paper describes the Tyrolean Ter-
mination Tool (TTT in the sequel), the successor of the Tsukuba Termination
Tool [23]. We explain its web interface, provide implementation details, and
give a detailed account of the new techniques it supports.

In this paper we go back to the foundations of the dependency pair method.
Starting from scratch, we give a systematic account of the method in the
next two sections. Along the way we derive two new refinements—the sub-
term criterion in Section 2 and the usable rule criterion in Section 3—that
are very easy to implement, increase the termination proving power, make
the method much faster, and give rise to shorter termination proofs involving
simpler techniques. In Section 4 we explain how to use polynomial interpre-
tations with negative coefficients for proving termination in connection with
the dependency pair method.

The web interface as well as some implementation details of TTT are described
in Section 5. In Section 6 we report on the many experiments that we per-
formed to test the usefulness of the new techniques. The final section contains
a short comparison with other systems for automatically proving termination
of term rewrite systems.

Parts of this paper appeared in earlier conference proceedings [24,25,27]. New
results are Theorem 23 in Section 3 and Theorem 40 in Section 4.

2 Dependency Pairs and Subterm Criterion

We assume familiarity with the basics of term rewriting [7,37]. We just recall
some basic notation and terminology. The set of terms T (F ,V) constructed
from a signature F and a disjoint set V of variables is abbreviated to T when
no confusion can arise. The set of variables appearing in a term t is denoted
by Var(t). The root symbol of a term t is denoted by root(t). Defined function
symbols are root symbols of left-hand sides of rewrite rules. A substitution is
a mapping σ from variables to terms such that its domain Dom(σ) = {x | x 6=
σ(x)} is finite. We write tσ to denote the result of applying the substitution σ
to the term t. A relation R on terms is closed under substitutions if (sσ, tσ) ∈ R
whenever (s, t) ∈ R, for all substitutions σ. We say that R is closed under
contexts if (u[s]p, u[t]p) ∈ R whenever (s, t) ∈ R, for all terms u and positions
p in u. We use

ǫ
−→ to denote root rewrite steps and

>ǫ
−→ to denote rewrite steps

in which the selected redex occurs below the root. The superterm relation is
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denoted by D and ⊲ denotes its strict part.

We use the following TRS from Dershowitz [12] extended with an associativity
rule for ∨ to illustrate the developments in this and the next section:

1 : ¬¬x → x 4: x ∧ (y ∨ z) → (x ∧ y) ∨ (x ∧ z)

2 : ¬(x ∨ y) → ¬x ∧ ¬y 5: (y ∨ z) ∧ x → (x ∧ y) ∨ (x ∧ z)

3 : ¬(x ∧ y) → ¬x ∨ ¬y 6: (x ∨ y) ∨ z → x ∨ (y ∨ z)

Although this TRS is simply terminating, traditional simplification orders like
the recursive path order, the Knuth-Bendix order, and polynomial interpreta-
tions do not apply. Modern termination tools incorporate many more powerful
techniques, but automatically proving termination of the above TRS remains
a challenge for many tools.

Let us start with some easy observations. If a TRS R is not terminating then
there must be a minimal non-terminating term, minimal in the sense that
all its proper subterms are terminating. Let us denote the set of all minimal
non-terminating terms by T∞. The following lemma is implicit in the proof of
Theorem 6 in [5].

Lemma 1 For every term t ∈ T∞ there exist a rewrite rule l → r, a substitu-
tion σ, and a non-variable subterm u of r such that t

>ǫ
−→∗ lσ

ǫ
−→ rσ D uσ and

uσ ∈ T∞.

PROOF. Let A be an infinite rewrite sequence starting at t. Since all proper
subterms of t are terminating, A must contain a root rewrite step. By con-
sidering the first root rewrite step in A it follows that there exist a rewrite
rule l → r and a substitution σ such that A starts with t

>ǫ
−→∗ lσ

ǫ
−→ rσ.

Write l = f(l1, . . . , ln). Since the rewrite steps in t →∗ lσ take place below
the root, t = f(t1, . . . , tn) and ti →

∗ liσ for all 1 6 i 6 n. By assumption the
arguments t1, . . . , tn of t are terminating. Hence so are the terms l1σ, . . . , lnσ.
It follows that σ(x) is terminating for every x ∈ Var(r) ⊆ Var(l). As rσ is
non-terminating it has a subterm t′ ∈ T∞. Because non-terminating terms
cannot occur in the substitution part, there must be a non-variable subterm
u of r such that t′ = uσ. 2

Observe that the term lσ in Lemma 1 belongs to T∞ as well. Since all argu-
ments of lσ are terminating, uσ cannot be a proper subterm of lσ. Moreover,
since the root symbols of t and l are identical, every term in T∞ has a defined
root symbol.

If we were to define a new TRS R′ consisting of all rewrite rules l → u for
which there exist a rewrite rule l → r ∈ R and a subterm u of r with defined
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function symbol, then the sequence in the conclusion of Lemma 1 should be
of the form

>ǫ
−→∗

R ·
ǫ
−→R′ . The idea is now to get rid of the position constraints

by marking the root symbols of the terms in the rewrite rules of R′.

Definition 2 Let R be a TRS over a signature F . Let F ♯ denote the union of
F and {f ♯ | f is a defined symbol of R} where f ♯ is a fresh function symbol
with the same arity as f . We call these new symbols dependency pair symbols.
Given a term t = f(t1, . . . , tn) ∈ T (F ,V) with f a defined symbol, we write t♯

for the term f ♯(t1, . . . , tn). For any subset T ⊆ T consisting of terms with a
defined root symbol, we denote the set {t♯ | t ∈ T} by T ♯. If l → r ∈ R and u
is a subterm of r with defined root symbol such that u is not a proper subterm
of l then the rewrite rule l♯ → u♯ is called a dependency pair of R. The set of
all dependency pairs of R is denoted by DP(R).

The idea of excluding dependency pairs l♯ → u♯ where u is a proper subterm
of l is due to Dershowitz [13]. Although dependency pair symbols are defined
symbols of DP(R), they are not defined symbols of the original TRS R. In
the following, defined symbols always refer to the original TRS R.

Example 3 The example at the beginning of this section admits the following
14 dependency pairs:

7: ¬♯(x ∨ y) → ¬x ∧♯ ¬y 14: x ∧♯ (y ∨ z) → x ∧♯ y

8: ¬♯(x ∨ y) → ¬♯x 15: x ∧♯ (y ∨ z) → x ∧♯ z

9: ¬♯(x ∨ y) → ¬♯y 16: (y ∨ z) ∧♯ x → (x ∧ y) ∨♯ (x ∧ z)

10 : ¬♯(x ∧ y) → ¬x ∨♯ ¬y 17: (y ∨ z) ∧♯ x → x ∧♯ y

11: ¬♯(x ∧ y) → ¬♯x 18: (y ∨ z) ∧♯ x → x ∧♯ z

12: ¬♯(x ∧ y) → ¬♯y 19: (x ∨ y) ∨♯ z → x ∨♯ (y ∨ z)

13 : x ∧♯ (y ∨ z) → (x ∧ y) ∨♯ (x ∧ z) 20 : (x ∨ y) ∨♯ z → y ∨♯ z

An immediate consequence of Lemma 1 and the previous definition is that for
every term s ∈ T∞ there exist terms t, u ∈ T∞ such that s♯ →∗

R t♯ →DP(R) u♯.
Hence, every non-terminating TRS R admits an infinite rewrite sequence of
the form

t1 →
∗
R t2 →DP(R) t3 →

∗
R t4 →DP(R) · · ·

with ti ∈ T ♯
∞ for all i > 1. Consequently, to prove termination of a TRS R it

is sufficient to show that R ∪ DP(R) admits no such infinite sequences. For
finite R, every such sequence contains a tail in which all applied dependency
pairs are used infinitely many times. The set of those dependency pairs forms
a cycle in the dependency graph, which is defined below. 1 From now on, we
assume that all TRSs are finite.

1 But not every cycle in the dependency graph can be obtained in this way.
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Definition 4 The nodes of the dependency graph DG(R) are the dependency
pairs of R and there is an arrow from s → t to u → v if and only if there exist
substitutions σ and τ such that tσ →∗

R uτ . A cycle is a nonempty subset C
of dependency pairs of DP(R) if for every two (not necessarily distinct) pairs
s → t and u → v in C there exists a nonempty path in C from s → t to u → v.

The following theorem corresponds to Theorem 3.3 in [18].

Theorem 5 For every non-terminating TRS R there exist a cycle C in DG(R)
and an infinite rewrite sequence in R∪ C of the form

T ♯
∞

∈t1 →
∗
R t2 →C t3 →

∗
R t4 →C · · ·

in which all rules of C are applied infinitely often. 2

We call such an infinite rewrite sequence C-minimal. The difference with the
related concept of infinite R-chain of dependency pairs in [5,18] is that we
impose minimality (i.e., the condition t1 ∈ T ♯

∞). Minimality is essential for the
new results (Theorems 8 and 20) that we present below.

So proving termination of a TRS R boils down to proving the absence of C-
minimal rewrite sequences, for any cycle C in the dependency graph DG(R).

Example 6 Our leading example has the following dependency graph (dotted
arrows do not contribute to cycles):
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It contains 33 cycles: all nonempty subsets of {8, 9, 11, 12}, {14, 15, 17, 18},
and {19, 20}.
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Although the dependency graph is not computable in general, sound approx-
imations exist that can be computed efficiently [5,26]. Soundness here means
that every cycle in the real dependency graph is a cycle in the approximated
graph. For our example all known approximations compute the real depen-
dency graph.

We now present a new criterion which permits us to ignore certain cycles of
the dependency graph.

Definition 7 Let R be a TRS and C ⊆ DP(R) such that every dependency
pair symbol in C has positive arity. A simple projection for C is a map-
ping π that assigns to every n-ary dependency pair symbol f ♯ in C an ar-
gument position i ∈ {1, . . . , n}. The mapping that assigns to every term
f ♯(t1, . . . , tn) ∈ T ♯, with f ♯ a dependency pair symbol in C, its argument at
position π(f ♯) is also denoted by π.

If R is a set of rewrite rules and O is a relation on terms then the expression
π(R) denotes the set {π(l) → π(r) | l → r ∈ R}, the inclusion R ⊆ O
abbreviates “(l, r) ∈ O for all l → r ∈ R”, and the inequality R ∩ O 6= ∅

abbreviates “(l, r) ∈ O for at least one l → r ∈ R”. So the conditions in the
following theorem state that after applying the simple projection π, every rule
in C is turned into an identity or a rule whose right-hand side is a proper
subterm of the left-hand side. Moreover, the latter case applies at least once.

Theorem 8 Let R be a TRS and let C be a cycle in DG(R). If there exists
a simple projection π for C such that π(C) ⊆ D and π(C) ∩ ⊲ 6= ∅ then there
are no C-minimal rewrite sequences.

PROOF. Suppose to the contrary that there exists a C-minimal rewrite se-
quence:

T ♯
∞

∈t1 →
∗
R u1 →C t2 →

∗
R u2 →C t3 →

∗
R · · · (1)

All terms in this sequence have a dependency pair symbol in C as root symbol.
We apply the simple projection π to (1). Let i > 1.

• First consider the dependency pair step ui →C ti+1. There exist a depen-
dency pair l → r ∈ C and a substitution σ such that ui = lσ and ti+1 = rσ.
We have π(ui) = π(l)σ and π(ti+1) = π(r)σ. We have π(l) D π(r) by as-
sumption. So π(l) = π(r) or π(l) ⊲ π(r). In the former case we trivially
have π(ui) = π(ti+1). In the latter case the closure under substitutions of ⊲

yields π(ui) ⊲ π(ti+1). Because of the assumption π(C) ∩ ⊲ 6= ∅, the latter
holds for infinitely many i.

• Next consider the rewrite sequence ti →
∗
R ui. All steps in this sequence take

place below the root and thus we obtain the (possibly shorter) sequence
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π(ti) →
∗
R π(ui).

So by applying the simple projection π, sequence (1) is transformed into an
infinite →R ∪ ⊲ sequence containing infinitely many ⊲ steps, starting from
the term π(t1). Since the relation ⊲ is well-founded, the infinite sequence
must also contain infinitely many →R steps. By making repeated use of the
well-known relational inclusion ⊲ · →R ⊆ →R · ⊲ (⊲ commutes over →R

in the terminology of [8]), we obtain an infinite →R sequence starting from
π(t1). In other words, the term π(t1) is non-terminating with respect to R.
Let t1 = f ♯(s1, . . . , sn). Because t1 ∈ T ♯

∞, f(s1, . . . , sn) is a minimal non-
terminating term. Consequently, its argument π(t1) = sπ(f♯) is terminating
with respect to R, providing the desired contradiction. 2

In contrast to the standard dependency pair approach (cf. Theorem 12 be-
low), the above theorem permits us to discard cycles of the dependency graph
without considering any rewrite rules. This is extremely useful. Moreover, the
criterion is very simple to check.

Example 9 First consider the cycle C1 = {8, 9, 11, 12}. The only dependency
pair symbol in C1 is ¬♯. Since ¬♯ is a unary function symbol, there is just one
simple projection for C1: π1(¬

♯) = 1. By applying π1 to C1, we obtain

8: x ∨ y → x 11: x ∧ y → x

9: x ∨ y → y 12: x ∧ y → y

We clearly have π1(C1) ⊆ ⊲. Hence we can ignore C1 (and all its subcycles).
Next consider the cycle C2 = {19, 20}. The only dependency pair symbol in C2

is ∨♯. By applying the simple projection π2(∨
♯) = 1 to C2, we obtain

19: x ∨ y → x 20: x ∨ y → y

We clearly have π2(C2) ⊆ ⊲. Hence we can ignore C2 (and its two subcycles).
The only cycles that are not handled by the criterion of Theorem 8 are the
ones that involve 17 or 18; applying the simple projection π(∧♯) = 1 produces

17, 18: y ∨ z → x

whereas π(∧♯) = 2 gives

17: x → y 18: x → z

None of these rules are compatible with D.

In implementations one should not compute all cycles of the dependency graph
(since there can be exponentially many in the number of dependency pairs),
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but use the technique of Hirokawa and Middeldorp [26] to solve strongly con-
nected components 2 recursively (which gives rise to a linear algorithm): if all
pairs in a strongly connected component (SCC for short) are compatible with
D after applying a simple projection, the ones that are compatible with ⊲

are removed and new SCCs among the remaining pairs are computed. This
is illustrated in the following example. This example furthermore shows that
the subterm criterion is capable of proving the termination of TRSs that were
considered to be challenging in the termination literature (cf. remarks in [20,
Example 9]).

Example 10 Consider the following TRS from [36]:

1: intlist([ ]) → [ ]

2 : intlist(x : y) → s(x) : intlist(y)

3 : int(0, 0) → 0 : [ ]

4 : int(0, s(y)) → 0 : int(s(0), s(y))

5 : int(s(x), 0) → [ ]

6 : int(s(x), s(y)) → intlist(int(x, y))

The term int(sm(0), sn(0)) evaluates to the list [sm(0), sm+1(0), . . . , sn(0)]; lists
are constructed using : and [ ]. There are 4 dependency pairs:

7: intlist♯(x : y) → intlist♯(y)

8 : int♯(0, s(y)) → int♯(s(0), s(y))

9 : int♯(s(x), s(y)) → intlist♯(int(x, y))

10 : int♯(s(x), s(y)) → int♯(x, y)

The dependency graph

8 oo //
""

10 //
GG

9 // 7
GG

contains 2 SCCs: {7} and {8, 10}. The first one is handled by the simple
projection π(intlist♯) = 1:

7: x : y → y

For the second one we use the simple projection π(int♯) = 2:

8: s(y) → s(y) 10 : s(y) → y

After removing the strictly decreasing pair 10, we are left with 8. Since the
restriction of the dependency graph to the remaining pair 8 contains no SCCs,
the TRS is terminating.

2 A strongly connected component is a maximal cycle in the dependency graph.
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An empirical evaluation of the subterm criterion can be found in Section 6.

3 Usable Rules

What to do with cycles C of the dependency graph that cannot be handled by
the criterion of the preceding section? In the dependency pair approach one
uses orders &, >, and > that satisfy the properties stated below such that

(1) all rules in R are oriented by &,
(2) all rules in C are oriented by >, and
(3) at least one rule in C is oriented by >.

Definition 11 A reduction triple (&,>, >) consists of three relations that are
closed under substitutions such that & and > are preorders, & is closed under
contexts, > is a well-founded order, and the following compatibility condition
holds: both & · > ⊆ > and > · > ⊆ > or both > · & ⊆ > and > · > ⊆ >. We
say that (&, >) is a reduction pair if (&,& ∪ >,>) is a reduction triple.

Since we do not demand that > is the strict part of the preorders & or >, the
identities & · > = > and > · > = > need not hold. Note that every reduction
pair (&, >) gives rise to the reduction triple (&,& ∪ >,>). In earlier papers
on dependency pairs, reduction pairs are used and the relation > in condition
(2) above is consequently replaced by &∪>. The formulation using reduction
triples is slightly more general and anticipates the developments in Section 4.

A typical example of a reduction pair is (≥lpo, >lpo), where >lpo is the lexico-
graphic path order induced by the (strict) precedence >, and ≥lpo denotes its
reflexive closure. In order to benefit from the fact that closure under contexts
is not required, the conditions (1), (2), and (3) mentioned at the beginning of
this section may be simplified by applying an argument filtering [5] to delete
certain (arguments of) function symbols occurring in R and C before testing
orientability.

A general semantic construction of reduction pairs, which covers polyno-
mial interpretations, is based on the concept of algebra. If we equip the car-
rier A of an algebra A = (A, {fA}f∈F) with a well-founded order > such
that every interpretation function is weakly monotone in all arguments (i.e.,
fA(x1, . . . , xn) > fA(y1, . . . , yn) whenever xi > yi for all 1 6 i 6 n, for every
n-ary function symbol f ∈ F) then (>A, >A) is a reduction pair. Here the
relations >A and >A are defined as follows: s >A t if [α]A(s) > [α]A(t) and
s >A t if [α]A(s) > [α]A(t), for all assignments α of elements of A to the
variables in s and t ([α]A(·) denotes the usual evaluation function associated
with the algebra A).
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We now present the standard dependency pair approach [18, Theorem 3.5] to
the treatment of cycles in the dependency graph using reduction triples.

Theorem 12 Let R be a TRS and let C be a cycle in DG(R). If there exists
a reduction triple (&,>, >) such that R ⊆ &, C ⊆ >, and C ∩ > 6= ∅ then
there are no C-minimal rewrite sequences. 2

The proof of Theorem 12 does not use the fact that C-minimal rewrite se-
quences start from terms in T ♯

∞. In the remainder of this section we show that
by restoring the use of minimality, we can get rid of some of the constraints
originating from R.

Arts and Giesl [5] proved that for establishing innermost termination, the
constraint R ⊆ & can be weakened to U(C) ⊆ &. Here U(C) denotes the set
of usable rules of C, which is defined as follows.

Definition 13 We write f �d g if there exists a rewrite rule l → r ∈ R
such that f = root(l) and g is a defined function symbol in Fun(r). For a
set G of defined function symbols we denote by R↾G the set of rewrite rules
l → r ∈ R with root(l) ∈ G. The set U(t) of usable rules of a term t is defined
as R↾{g | f �

∗
d g for some defined function symbol f in Fun(t)}. Finally, if

C is a set of dependency pairs then

U(C) =
⋃

l → r ∈ C

U(r)

Example 14 None of the dependency pairs that appear in the SCCs {8, 9, 11,
12} and {14, 15, 17, 18} in our leading example have defined symbols in their
right-hand sides, so for both SCCs the set of usable rules is empty. The right-
hand side of dependency pair 19 contains the defined symbol ∨. We have {g |
∨ �

∗
d g} = {∨} and hence the usable rules of the SCC {19, 20} are the rules

that define ∨, which is just rule 6.

Urbain [42] obtained a first significant result for termination. By combining a
modularity result of Gramlich [21] with a weaker version of the dependency
pair method, he essentially showed that the constraint R ⊆ & can be replaced
by R′ ∪ P ⊆ & for some subset R′ of R. Here P denotes the TRS consisting
of the two projection rules

cons(x, y) → x

cons(x, y) → y

for a fresh function symbol cons. By adapting this result to the formulation
of the dependency pair method in Theorem 12, Giesl et al. [20] obtained a
strictly more powerful result. In both approaches R′ is a superset of U(C).
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Below we show that the constraint U(C)∪P ⊆ & is sufficient. To this end we
transform a presupposed C-minimal rewrite sequence

t1 →
∗
R u1 →C t2 →

∗
R u2 →C t3 →

∗
R · · ·

into an infinite rewrite sequence in U(C)∪C∪P in which every rule of C is used
infinitely often, providing a contradiction with the assumptions U(C)∪P ⊆ &,
C ⊆ >, and C ∩ > 6= ∅. The transformation is achieved by applying the
mapping IG defined below, where G is the set of defined symbols of R\ U(C),
to all terms in the above sequence.

Definition 15 Let R be a TRS over a signature F and let G ⊆ F . The
interpretation IG is a mapping from terminating terms in T (F ♯,V) to terms in
T (F ♯∪{nil, cons},V), where nil and cons are fresh function symbols, inductively
defined as follows:

IG(t) =















t if t is a variable

f(IG(t1), . . . , IG(tn)) if t = f(t1, . . . , tn) and f /∈ G

cons(f(IG(t1), . . . , IG(tn)), t′) if t = f(t1, . . . , tn) and f ∈ G

where in the last clause t′ denotes the term order({IG(u) | t →R u}) with

order(T ) =







nil if T = ∅

cons(t, order(T \ {t})) if t is the minimum element of T

Here we assume an arbitrary but fixed total order on T (F ♯ ∪ {nil, cons},V).

The idea behind the mapping IG is to anticipate the applications of non-usable
rules by collecting in a recursive manner the corresponding reducts into a list.
The rules of P will be used to extract appropriate elements from the lists
constructed by IG.

Because we deal with finite TRSs, the relation →R is finitely branching and
hence the set {u | t →R u} of one-step reducts of t is finite. Moreover, every
term in this set is terminating. The well-definedness of IG now follows by a
straightforward induction argument.

The above definition is a variation of a similar definition in Urbain [42], which
in turn is based on a definition in Gramlich [21]. The difference with Urbain’s
definition is that we insert f(IG(t1), . . . , IG(tn)) in the list t′ when f ∈ G. This
modification is crucial for obtaining Theorem 20 below.

We start with some preliminary results. The first one addresses the behaviour
of IG on instantiated terms.

Definition 16 If σ is a substitution that assigns to every variable a termi-
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nating term then we denote the substitution that assigns to every variable x
the term IG(xσ) by σIG .

Lemma 17 Let R be a TRS over a signature F and let G ⊆ F . Let t be a
term and σ a substitution. If tσ is terminating then IG(tσ) →∗

P tσIG and, if t
does not contain G-symbols, IG(tσ) = tσIG .

PROOF. We use induction on t. If t is a variable then IG(tσ) = tσIG . Let
t = f(t1, . . . , tn). We distinguish two cases.

• If f /∈ G then IG(tσ) = f(IG(t1σ), . . . , IG(tnσ)). The induction hypothesis
yields IG(tiσ) →∗

P tiσIG for 1 6 i 6 n and thus

IG(tσ) →∗
P f(t1σIG , . . . , tnσIG) = tσIG

If there are no G-symbols in t1, . . . , tn then we obtain IG(tiσ) = tiσIG for all
1 6 i 6 n from the induction hypothesis and thus IG(tσ) = tσIG .

• If f ∈ G then

IG(tσ) = cons(f(IG(t1σ), . . . , IG(tnσ)), t′) →P f(IG(t1σ), . . . , IG(tnσ))

for some term t′. We obtain f(IG(t1σ), . . . , IG(tnσ)) →∗
P tσIG as in the pre-

ceding case and thus IG(tσ) →∗
P tσIG as desired. 2

The second preliminary result states that IG preserves any top part without
G-symbols. We omit the straightforward proof.

Lemma 18 Let R be a TRS over a signature F and let G ⊆ F . If t =
C[t1, . . . , tn] is terminating and the context C contains no G-symbols then
IG(t) = C[IG(t1), . . . , IG(tn)]. 2

The following lemma is the key result. It states that rewrite steps in R are
transformed by IG into rewrite sequences in U(C)∪P, provided G is the set of
defined symbols of R \ U(C).

Lemma 19 Let R be a TRS and let C ⊆ DP(R). Furthermore, let G be the
set of defined symbols of R\U(C). If terms s and t are terminating and s →R t
then IG(s) →+

U(C)∪P IG(t).

PROOF. Let p be the position of the rewrite step s →R t. We distinguish
two cases.

• First suppose that there is a function symbol from G at a position above p. In
this case we may write s = C[s1, . . . , si, . . . , sn] and t = C[s1, . . . , ti, . . . , sn]
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with si →R ti, where root(si) ∈ G and the context C contains no G-symbols.
We have IG(si) →P order({IG(u) | si →R u}). Since si →R ti, we can extract
IG(ti) from the term order({IG(u) | si →R u}) by appropriate P steps, so
IG(si) →

+
P IG(ti). We now obtain IG(s) →+

P IG(t) from Lemma 18.

• In the other case s = C[s1, . . . , si, . . . , sn] and t = C[s1, . . . , ti, . . . , sn] with
si

ǫ
−→R ti, where root(si) /∈ G and the context C contains no G-symbols.

Since root(si) /∈ G and R = U(C) ∪ (R↾G), the applied rewrite rule l → r
in the step si

ǫ
−→R ti must come from U(C). Let σ be the substitution with

Dom(σ) ⊆ Var(l) such that si = lσ and ti = rσ. We obtain IG(si) →
∗
P lσIG

from Lemma 17. Because right-hand sides of rules in U(C) do not contain G-
symbols, the same lemma yields IG(ti) = rσIG . Clearly lσIG →U(C) rσIG and
thus IG(si) →

+
U(C)∪P IG(ti). Lemma 18 now yields the desired IG(s) →+

U(C)∪P

IG(t). 2

After these preparations, the main result 3 of this section is easily proved.

Theorem 20 Let R be a TRS and let C be a cycle in DG(R). If there exists
a reduction triple (&,>, >) such that U(C) ∪ P ⊆ &, C ⊆ >, and C ∩ > 6= ∅

then there are no C-minimal rewrite sequences.

PROOF. Suppose to the contrary that there exists a C-minimal rewrite se-
quence:

t1 →
∗
R u1 →C t2 →

∗
R u2 →C t3 →

∗
R · · · (2)

Let G be the set of defined symbols of R\U(C). We show that after applying
the interpretation IG we obtain an infinite rewrite sequence in U(C) ∪ P ∪ C
in which every rule of C is used infinitely often. Since all terms in (2) belong
to T ♯

∞, they are terminating with respect to R and hence we can indeed apply
the interpretation IG. Let i > 1.

• First consider the dependency pair step ui →C ti+1. There exist a depen-
dency pair l → r ∈ C and a substitution σ such that ui = lσ and ti+1 = rσ.
We may assume that Dom(σ) ⊆ Var(l). Since ui ∈ T ♯

∞, σ(x) is termi-
nating for every variable x ∈ Var(l). Hence the substitution σIG is well-
defined. Since right-hand sides of rules in U(C) lack G-symbols, we have
IG(rσ) = rσIG by Lemma 17. The same lemma also yields IG(lσ) →∗

P lσIG .
Hence

IG(ui) →
∗
P lσIG →C rσIG = IG(ti+1)

• Next consider the rewrite sequence ti →∗
R ui. Because all terms in this

sequence are terminating, we obtain IG(ti) →
∗
U(C)∪P IG(ui) by repeated ap-

plications of Lemma 19.

3 This result has been independently obtained by Thiemann et al. [40].
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So we obtain the infinite rewrite sequence

IG(t1) →
∗
U(C)∪P IG(u1) →

∗
P · →C IG(t2)

→∗
U(C)∪P IG(u2) →

∗
P · →C IG(t3) →

∗
U(C)∪P · · ·

in which all rules in C are infinitely often applied. Using the assumptions of the
theorem, the latter sequence is transformed into an infinite sequence consisting
of &, >, and infinitely many > steps. Using the compatibility condition, we
obtain a contradiction with the well-foundedness of >. 2

Example 21 Let us take a final look at the SCC {14, 15, 17, 18} in our leading
example. There are no usable rules. By taking the linear polynomial interpre-
tation ∧♯

N(x, y) = x + y and ∨N(x, y) = x + y + 1 the involved dependency
pairs result in the following inequalities over N:

14, 17: x + y + z + 1 > x + y

15, 18: x + y + z + 1 > x + z

Hence there are no C-minimal rewrite sequences for any nonempty subset C ⊆
{14, 15, 17, 18} and we conclude that the TRS is terminating.

Linear polynomial interpretations are insufficient to prove termination of the
TRS in our leading example with the earlier modularity result in [20]. For the
SCC {14, 15, 17, 18} it identifies the rules in {4, 5, 6} as usable. The interpre-
tation ∨N(x, y) = x + y + 1 turns rule 6 into the identity (x + y + 1) + z + 1 =
x+ (y + z + 1) + 1, but there is no linear polynomial interpretation for ∧ such
that rules 4 and 5 are turned into valid weakly decreasing inequalities.

Since U(C) in general is a proper subset of R, the condition U(C) ⊆ & is
easier to satisfy than the condition R ⊆ & of Theorem 12. What about the
additional condition P ⊆ &, i.e., cons(x, y) & x and cons(x, y) & y? Almost
all reduction pairs that are used in termination tools can be extended to
satisfy this condition. For reduction pairs that are based on simplification
orders (in connection with argument filterings) this is obvious. For reduction
pairs based on well-founded algebras with weakly monotone interpretations
a sufficient condition for P-compatibility is that each pair of elements of the
carrier has an upper bound. For interpretations in the set N of natural numbers
equipped with the standard order this is obviously satisfied. The necessity of
the upper bound condition follows by considering the term algebra associated
with the famous rule f(a, b, x) → f(x, x, x) of Toyama [41] equipped with
the well-founded order →+: a and b do not have an upper bound and P-
compatibility does not hold because the union of f(a, b, x) → f(x, x, x) and
P is not terminating. In Section 4 we introduce reduction triples based on
polynomial interpretations with negative coefficients that are not compatible
with P .

14



As a matter of fact, due to the condition P ⊆ &, Theorem 20 provides only a
sufficient condition for the absence of C-minimal rewrite sequences. This is in
contrast to Theorem 12, which provides a sufficient and necessary condition
for termination. The reason is that termination of a TRS R is equivalent to
the termination of R∪ DP(R), a result due to [5] (see [34] for a simple proof
based on type introduction). An example of a terminating TRS that cannot
be proved terminating by the criterion of Theorem 20 is presented below.

Example 22 Consider the terminating TRS R consisting of the following
two rewrite rules:

1: f(s(a), s(b), x) → f(x, x, x)

2 : g(f(s(x), s(y), z)) → g(f(x, y, z))

There are three dependency pairs:

3: f♯(s(a), s(b), x) → f♯(x, x, x)

4 : g♯(f(s(x), s(y), z)) → g♯(f(x, y, z))

5 : g♯(f(s(x), s(y), z)) → f♯(x, y, z)

The dependency graph contains 1 cycle: C = {4}. We have U(C) = {1}.
We claim that the conditions U(C) ∪ P ⊆ &, C ⊆ >, and C ∩ > 6= ∅ are
not satisfied by any reduction triples (&,>, >). The reason is simply that the
term t = g♯(f(u, u, u)) with u = s(cons(s(a), s(b))) admits the following cyclic
reduction in U(C) ∪ P ∪ C:

t →C g♯(f(cons(s(a), s(b)), cons(s(a), s(b)), u))

→P g♯(f(s(a), cons(s(a), s(b)), u))

→P g♯(f(s(a), s(b), u))

→U(C) t

The final result 4 of this section gives two sufficient conditions that allow us
to ignore P for cycles C in Theorem 20. The experimental results described in
Section 6 make clear that this is very useful for the polynomial interpretations
with negative coefficients introduced in the next section, which give rise to
reduction triples that do not satisfy P ⊆ &.

Theorem 23 Let R be a TRS and let C be a cycle in DG(R) such that U(C)∪C
is non-duplicating or C contains a right-ground rule. If there exists a reduction
triple (&,>, >) such that U(C) ⊆ &, C ⊆ >, and C ∩> 6= ∅ then there are no
C-minimal rewrite sequences. 2

4 This is a new result compared to the conference paper [25].
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PROOF. If there are C-minimal rewrite sequences then we obtain an infinite
rewrite sequence t1 →∗

U(C)∪P t2 →C t3 →∗
U(C)∪P t4 →C · · · as in the proof of

Theorem 20. If U(C) ∪ C is non-duplicating then, because the rules in U(C) ∪
C do not introduce cons symbols, there can be only finitely many P-steps
in this sequence. The same holds if C contains a right-ground rule because
after applying this rule there are no cons symbols left. So there is an index
n such that tn →∗

U(C) tn+1 →C tn+2 →∗
U(C) tn+3 →C · · · , contradicting the

assumptions. 2

4 Polynomial Interpretations with Negative Coefficients

In this section we develop polynomial interpretations with negative coefficients
which can be used in connection with the dependency pair method. Polyno-
mial interpretations that are used for direct termination proofs need to be
strictly monotone in all arguments, which precludes interpretations like x + 1
for binary function symbols. In connection with the dependency pair method,
weak monotonicity is sufficient and hence x + 1 or even 0 as interpretation
of a binary function symbol causes no problems. Monotonicity is typically
guaranteed by demanding that all coefficients are positive. We go a step fur-
ther. We show that polynomial interpretations over the integers with negative
coefficients like x − 1 and x − y + 1 can also be used for termination proofs.

To make the discussion more concrete, let us consider two examples.

Example 24 Consider the TRS consisting of the following rewrite rules:

1: half(0) → 0 4: bits(0) → 0

2: half(s(0)) → 0 5: bits(s(x)) → s(bits(half(s(x))))

3 : half(s(s(x))) → s(half(x))

The function half(x) computes ⌈x
2
⌉ and bits(x) computes the number of bits

that are needed to represent all numbers less than or equal to x. Termination
of this TRS is proved in [6] by using the dependency pair method together with
the narrowing refinement. There are three dependency pairs:

6: half♯(s(s(x))) → half♯(x)

7 : bits♯(s(x)) → bits♯(half(s(x)))

8 : bits♯(s(x)) → half♯(s(x))

and the dependency graph contains two SCCs: {6} and {7}. The SCC {6}
is handled by the subterm criterion with the simple projection π(half♯) = 1.
Consider the SCC {7}. The usable rules are U({7}) = {1, 2, 3}. By taking
the polynomial interpretation 0Z = 0, halfZ(x) = x − 1, bitsZ(x) = bits

♯
Z
(x) =
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half
♯
Z
(x) = x, and sZ(x) = x + 1 over the integers, the rule and dependency

pair constraints reduce to the following inequalities:

1: −1 > 0 2: 0 > 0 3: x + 1 > x 7: x + 1 > x

These constraints are obviously not satisfied. Nevertheless, we will argue that
the given polynomial interpretation can be used to conclude termination and,
moreover, that the search for appropriate interpretations can be efficiently im-
plemented.

The next example shows that negative coefficients in polynomial interpreta-
tions can be useful.

Example 25 Consider the following variation of a TRS in [6]:

1: 0 6 y → true 7: x − 0 → x

2: s(x) 6 0 → false 8: s(x) − s(y) → x − y

3: s(x) 6 s(y) → x 6 y 9: if(true, x, y) → x

4: mod(0, s(y)) → 0 10: if(false, x, y) → y

5: mod(s(x), 0) → 0

6: mod(s(x), s(y)) → if(y 6 x, mod(s(x) − s(y), s(y)), s(x))

There are six dependency pairs:

11: s(x) 6♯ s(y) → x 6♯ y

12: s(x) −♯ s(y) → x −♯ y

13: mod♯(s(x), s(y)) → if♯(y 6 x, mod(s(x) − s(y), s(y)), s(x))

14 : mod♯(s(x), s(y)) → y 6♯ x

15: mod♯(s(x), s(y)) → mod♯(s(x) − s(y), s(y))

16 : mod♯(s(x), s(y)) → s(x) −♯ s(y)

The dependency graph contains three SCCs: {11}, {12}, and {15}. The first
two are handled by the subterm criterion (take π(6♯) = 1, and π(−♯) = 1).
The SCC {15} is problematic. The usable rules are U({15}) = {7, 8}. We
need to find an P-compatible reduction triple (&,>, >) such that rules 7 and
8 are oriented by & and dependency pair 15 is oriented by >. The only way to
achieve the latter is by using the observation that s(x) is semantically greater
than the syntactically larger term s(x) − s(y). If we take the interpretation
−Z(x, y) = x − y, sZ(x) = x + 1, and 0Z = 0, together with mod

♯
Z
(x, y) = x

then we obtain the following induced ordering constraints:

7: x > x 8: x − y > x − y 15: x + 1 > x − y

which are satisfied for all natural numbers x and y. However, are we allowed
to use an interpretation like −Z(x, y) = x − y in termination proofs?
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In the next subsection we present the theoretical foundations for using poly-
nomial interpretations with negative coefficients. Afterwards we discuss how
to automate the proposed framework.

4.1 Theoretical Framework

When using polynomial interpretations with negative coefficients, the first
challenge we face is that the standard order > on Z is not well-founded. Re-
stricting the domain to the set N of natural numbers makes an interpretation
like halfZ(x) = x − 1 ill-defined. We propose to ensure well-definedness by
modifying the interpretation of half to halfN(x) = max{0, x − 1}.

Definition 26 Let F be a signature and let Z be an F-algebra over Z. The
interpretation functions of the induced algebra N = (N, {fN}f∈F) are defined
as follows: fN(x1, . . . , xn) = max{0, fZ(x1, . . . , xn)} for all x1, . . . , xn ∈ N.

With respect to the interpretations in Example 24, we obtain sN(halfN(x)) =
max{0, max{0, x − 1} + 1} = max{0, x − 1} + 1, halfN(0N) = max{0, 0} = 0,
and halfN(sN(x)) = max{0, max{0, x + 1} − 1} = x.

Lemma 27 If Z is an algebra such that every interpretation function is
weakly monotone in all its arguments then (>N ,>N , >N ) is a reduction triple.

PROOF. It is easy to show that the interpretation functions of the induced
algebra are weakly monotone in all arguments. Routine arguments reveal that
the relation >N is a well-founded order which is closed under substitutions and
that >N is a preorder closed under contexts and substitutions. Moreover, the
identity >N · >N = >N holds. Hence (>N ,>N , >N ) is a reduction triple. 2

The reduction triples of Lemma 27 can be used in connection with Theorem 20
because they can be made P-compatible by simply defining consN(x, y) =
max{x, y}.

Corollary 28 Let R be a TRS and let C be a cycle in DG(R). If there exist
an algebra Z with weakly monotone interpretations such that U(C) ∪ C ⊆ >N

and C ∩ >N 6= ∅ then there are no C-minimal rewrite sequences. 2

Example 29 Consider again the TRS of Example 24. For the SCC {7} we
obtain the following constraints over N:

1, 2: 0 > 0 3: x + 1 > max{0, x − 1} + 1 7: x + 1 > x
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Polynomial interpretations with negative constants are weakly monotone, but
admitting negative coefficients like in Example 25 destroys weak monotonicity
and without weak monotonicity of the interpretation functions, the order >N

is not closed under contexts: if s >N t then it may happen that C[s] 6N C[t].
Consequently, we do not obtain a reduction triple. However, if we have s =N t
rather than s >N t, closure under contexts is obtained for free. So for polyno-
mial interpretations with negative coefficients we can take (=N ,>N , >N ) as
reduction triple. This works fine in Example 25 because the induced algebra
is a model of the set of usable rules {7, 8} and >N orients dependency pair
15.

We stress that using the reduction pair (=N , >N ) instead of the reduction
triple (=N ,>N , >N ) would result in the requirement that all dependency pairs
in a cycle are compatible with =N ∪ >N , which is rather restrictive because
dependency pairs that are transformed into a polynomial constraint of the
form x > 0 or x + y > x cannot be handled.

Lemma 30 Let A be an algebra equipped with a well-founded order >. The
triple (=A,>A, >A) is a reduction triple.

PROOF. Straightforward. 2

Corollary 31 Let R be a TRS and let C be a cycle in its dependency graph.
If there exists an algebra A equipped with a well-founded order > such that
R ⊆ =A, C ⊆ >A, and C ∩ >A 6= ∅ then there are no C-minimal rewrite
sequences. 2

The constraint R ⊆ =A in Corollary 31 means that A is a model of R.
Replacing it by U(C) ∪ P ⊆ =A will not work. The reason is that P does not
admit any nontrivial models—in any model A of P we have x = consA(x, y) =
y for all x, y in the carrier A of A—and trivial models are useless since they
admit only the empty well-founded order >. This is a problem for the TRS in
Example 25. There we have U({15}) ⊆ =N but one easily checks that R ⊆ =N

implies modN(x, y) = x mod y, which cannot be represented with polynomials
of finite degree. The following example shows that replacing R ⊆ =A by
U(C) ⊆ =A is unsound.

Example 32 Consider the following non-terminating TRS R (Toyama [41]):

1: f(a, b, x) → f(x, x, x) 2 : g(x, y) → x 3: g(x, y) → y

The only dependency pair f♯(a, b, x) → f♯(x, x, x) forms a cycle in the depen-
dency graph. There are no usable rules. If we take the polynomial interpretation
aZ = 1, bZ = 0, and f

♯
Z
(x, y, z) = x − y then f♯(a, b, x) >N f♯(x, x, x) as the

dependency pair is transformed into 1 − 0 = 1 > 0 = x − x.
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The problem in the above example is that the non-right-linearity of C, which is
essential for non-termination, is eliminated by applying the interpretation. In
the following we prove that we may replace R ⊆ =A by U(C) ⊆ =A, provided
> is a well-order (i.e., a total well-founded order) and, more importantly, A
regards U(C) ∪ C as right-linear. 5 The latter concept is defined as follows.

Definition 33 A linear term s is called a linearization of a term t if sσ = t
for some substitution σ that maps variables to variables. Let A be an algebra. A
TRS R is A-right-linear if for every rule l → r ∈ R there exists a linearization
r′ of r such that r =A r′.

Example 34 The dependency pair f♯(a, b, x) → f♯(x, x, x) in Example 32 is
not N -right-linear with respect to the induced algebra N as

f
♯
N
(x, x, x) = max{0, x − x} = 0

and f
♯
N
(x′, y′, z′) 6= 0 for every linearization f♯(x′, y′, z′) of f♯(x, x, x). For in-

stance, f
♯
N
(y, x, z) = max{0, y − x}. Consider the SCC C = {15} in Exam-

ple 25. We claim that N regards U(C) ∪ C as right-linear. For the rules in
U(C) = {7, 8} this is clear as they are right-linear. Because of the interpreta-
tion mod

♯
Z
(x, y) = x, we have

mod♯(s(x) − s(y), s(y)) =N s(x) − s(y) =N mod♯(s(x) − s(y), s(z))

and thus the single rule in C is regarded as right-linear.

The following definition introduces a new algebraic construction that is used
to prove the desired result.

Definition 35 Let F be a signature and let A = (A, {fA}f∈F) be an F-algebra
equipped with a well-order >. Let S be the set of all nonempty finite subsets
of A. We define the set extension of A as the (F ∪ {cons})-algebra S with
carrier S and interpretations consS(X,Y ) = X ∪ Y and

fS(X1, . . . , Xn) = {fA(x1, . . . , xn) | x1 ∈ X1, . . . , xn ∈ Xn}

for all f ∈ F . The relations ⊇S , >S , and >S are defined on terms as follows:

s ⊇S t if [α]S(s) ⊇ [α]S(t)

s >S t if max([α]S(s)) > max([α]S(t))

s >S t if max([α]S(s)) > max([α]S(t))

for all assignments α : V → S.

Note that since [α]S(u) is a finite nonempty set for every term u and > is a
well-order, the relations >S and >S are well-defined.

5 This is a new result compared to the conference papers [24,25].
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Lemma 36 The triple (⊇S ,>S , >S) is a P-compatible reduction triple.

PROOF. The relations ⊇S and >S are clearly preorders. Closure under con-
texts of ⊇S follows because all interpretations in S are weakly monotone with
respect to set inclusion. We show that ⊇S is closed under substitutions. Sup-
pose that s ⊇S t and let σ be a substitution. Let α : V → S be an arbitrary
assignment. We have to show that [α]S(sσ) ⊇ [α]S(tσ). Define the assign-
ment β as β(x) = [α]S(xσ) for all x ∈ V. It is not difficult to show that
[α]S(sσ) = [β]S(s) and [α]S(tσ) = [β]S(t). The assumption s ⊇S t yields
[β]S(s) ⊇ [β]S(t). Closure under substitutions of >S and >S follows in the same
way. The relation >S is a strict partial order. It inherits well-foundedness from
>. Since ⊇S ⊆ >S and >S · >S = >S , compatibility holds. We have P ⊆ ⊇S

by the definition of consS . 2

The next example illustrates the difference between >N and >S .

Example 37 Consider again the TRS and the interpretation of Example 32.
If we take an assignment α with α(x) = {0, 1} then [α]S(a) = aS = {aA} =
{1}, [α]S(b) = bS = {bA} = {0}, [α]S(x) = α(x) = {0, 1} and thus

[α]S(f♯(a, b, x)) = f
♯
S([α]S(a), [α]S(b), [α]S(x)) = f

♯
S({1}, {0}, {0, 1})

= {f♯
A(1, 0, 0), f♯

A(1, 0, 1)} = {1}

and

[α]S(f♯(x, x, x)) = f
♯
S({0, 1}, {0, 1}, {0, 1})

= {f♯
A(x1, x2, x3) | x1, x2, x3 ∈ {0, 1}} = {0, 1}

Hence f♯(a, b, x) >S f♯(x, x, x) does not hold.

In the following lemma β ∈ α abbreviates “β(x) ∈ α(x) for all x ∈ V”.

Lemma 38 Let t be a term. For every assignment α : V → S we have

[α]S(t) ⊇ {[β]A(t) | β ∈ α}.

Moreover, if t is linear then the reverse inclusion also holds.

PROOF. We show the result by induction on t. If t is a variable then
[β]A(t) = β(t) ∈ α(t) = [α]S(t) and thus

[α]S(t) = α(t) = {β(t) | β ∈ α} = {[β]A(t) | β ∈ α}.
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Suppose t = f(t1, . . . , tn) and let β ∈ α. The induction hypothesis yields
[β]A(ti) ∈ [α]S(ti) for all i ∈ {1, . . . , n}. Hence, by the definition of fS,

[β]A(t) = fA([β]A(t1), . . . , [β]A(tn)) ∈ fS([α]S(t1), . . . , [α]S(tn)) = [α]S(t).

Now suppose that t is linear. We show the reverse inclusion

[α]S(t) ⊆ {[β]A(t) | β ∈ α}

The induction hypothesis yields

[α]S(ti) ⊆ {[β]A(ti) | β ∈ α}

for all i ∈ {1, . . . , n}. Because t is linear, the variables in t1, . . . , tn are pairwise
disjoint and hence [α]S(t1)×· · ·× [α]S(tn) ⊆ {([β]A(t1), . . . , [β]A(tn)) | β ∈ α}.
Consequently,

[α]S(t) = {fA(a1, . . . , an) | (a1, . . . , an) ∈ [α]S(t1) × · · · × [α]S(tn)}

⊆ {fA([β]A(t1), . . . , [β]A(tn)) | β ∈ α}

= {[β]A(t) | β ∈ α}

2

Set equality in the above lemma is not guaranteed without the linearity of
t. This can be seen from Example 37 where [α]S(f♯(x, x, x)) = {0, 1} and
{[β]A(f♯(x, x, x)) | β ∈ α} = {0}.

The following lemma relates interpretations in A to interpretations in S.

Lemma 39 Let l → r be an A-right-linear rewrite rule.

• If l =A r then l ⊇S r.
• If l >A r then l >S r.
• If l >A r then l >S r.

PROOF. Let r′ be a linearization of r such that r′ =A r and let σ be a
substitution such that r′σ = r. We may assume that σ only affects the (fresh)
variables in Var(r′) \ Var(r). In particular, l = lσ. Since the relations ⊇S , >S ,
and >S are closed under substitutions it is sufficient to show l ⊇S r′, l >S r′,
and l >S r′ under the stated conditions. We have [α]S(l) ⊇ {[β]A(l) | β ∈ α}
and [α]S(r′) = {[β]A(r′) | β ∈ α} = {[β]A(r) | β ∈ α} according to Lemma 38.
Now, if l =A r then [β]A(l) = [β]A(r) for all assignments β and thus [α]S(l) ⊇
[α]S(r′). Hence l ⊇S r′ by definition. Next, if l >A r then [β]A(l) > [β]A(r) for
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all assignments β. Hence

max ([α]S(l)) > max {[β]A(l) | β ∈ α}

> max {[β]A(r) | β ∈ α}

= max ([α]S(r′))

and thus l >S r′ by definition. The proof that l >S r whenever l >A r follows
in exactly the same way. 2

We are now ready for the usable rules criterion announced earlier.

Theorem 40 Let R be a TRS and let C be a cycle in its dependency graph.
If there exists an algebra A equipped with a well-order > such that U(C) ∪ C
is A-right-linear, U(C) ⊆ =A, C ⊆ >A, and C ∩ >A 6= ∅ then there are no
C-minimal rewrite sequences.

PROOF. From Lemma 39 we obtain U(C) ⊆ ⊇S , C ⊆ >S , and C ∩ >S 6= ∅.
Lemma 36 states that (⊇S ,>S , >S) is a reduction triple and P ⊆ ⊇S . Hence
the conditions of Theorem 20 are satisfied and the result follows. 2

Note that the set extension is only used in the proof of Theorem 40. One can
formulate a version of Theorem 40 that uses the reduction triple (⊇S ,>S , >S)
instead of (=A,>A, >A) in its statement. This may result in a stronger result
(as the A-right-linearity condition disappears from sight) but we expect that
verifying the constraints U(C) ⊆ ⊇S , C ⊆ >S , and C ∩ >S 6= ∅ will be much
harder.

Example 41 Consider again the problematic SCC C = {15} of Example 25.
In Example 34 we observed that the induced algebra over N regards U(C)∪C as
right-linear. Hence Theorem 40 is applicable. The induced ordering constraints

7: x > x 15: x + 1 > max{0, x − y}

8: max{0, x − y} > max{0, x − y}

are satisfied and therefore we can finally conclude the termination of the TRS
in Example 25.

4.2 Towards Automation

How can an inequality like x + 1 > max{0, x − 1} + 1 in Example 29 or
x + 1 > max{0, x − y} in Example 41 be verified automatically? Because in-
equalities resulting from interpretations with negative coefficients may contain
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the max operator, we cannot use standard techniques (cf. [28]) for comparing
polynomial expressions. In order to avoid reasoning by case analysis (x−1 > 0
or x−1 6 0 for the above inequality), we approximate the evaluation function
of the induced algebra.

First we present an approach for weakly monotone polynomial interpretations
in connection with Corollary 28.

Definition 42 Given a polynomial P with coefficients in Z, we denote the
constant part by c(P ) and the non-constant part P − c(P ) by n(P ). Let Z be
an F-algebra such that every fZ is a weakly monotone polynomial. With every
term t we associate polynomials Pleft(t) and Pright(t) with coefficients in Z and
variables in t as indeterminates:

Pleft(t) =















t if t is a variable

0 if t = f(t1, . . . , tn), n(P1) = 0, and c(P1) < 0

P1 otherwise

where P1 = fZ(Pleft(t1), . . . , Pleft(tn)) and

Pright(t) =















t if t is a variable

n(P2) if t = f(t1, . . . , tn) and c(P2) < 0

P2 otherwise

where P2 = fZ(Pright(t1), . . . , Pright(tn)).

The mapping Pright over-approximates the evaluation function of the induced
algebra by removing negative constants. The mapping Pleft provides an under-
approximation by estimating max{0, P} with P provided P is not a negative
constant.

Example 43 Consider again the TRS of Example 24. Since halfZ(0) = −1
and both n(−1) = 0 and c(−1) < 0, we have Pleft(half(0)) = 0. By applying
Pleft to the left-hand sides and Pright to the right-hand sides of the rules in
{1, 2, 3, 7}, the following ordering constraints are obtained:

1, 2: 0 > 0 3: x + 1 > x + 1 7: x + 1 > x

The only difference with the constraints in Example 29 is the interpretation of
the term s(half(x)) on the right-hand side of rule 3. We have Pright(half(x)) =
n(x− 1) = x and thus Pright(s(half(x))) = x + 1. Although x + 1 is less precise
than max{0, x − 1} + 1, it is accurate enough to solve the ordering constraint
resulting from rule 3.

Although Pleft(t) may have negative coefficients, we always assume that the
indeterminates in Pleft(t) (and in Pright(t)) range over the natural numbers.
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According the following lemma, Pleft(t) provides an under-approximation and
Pright(t) an over-approximation of the interpretation of t in the induced alge-
bra.

Lemma 44 Let Z be an F-algebra such that every interpretation function is a
weakly monotone polynomial. Let t be a term. For every assignment α : V → N

we have α(Pright(t)) > [α]N (t) > α(Pleft(t)).

PROOF. By induction on the structure of t. If t ∈ V then α(Pright(t)) =
α(Pleft(t)) = [α]N (t) = α(t). Suppose t = f(t1, . . . , tn). Let P1 and P2 as in
Definition 42. We have α(P1) = fZ(α(Pleft(t1)), . . . , α(Pleft(tn))) and α(P2) =
fZ(α(Pright(t1)), . . . , α(Pright(tn))). According to the induction hypothesis,

α(Pright(ti)) > [α]N (ti) > α(Pleft(ti))

for all i. Since fZ is weakly monotone,

α(P2) > fZ([α]N (t1), . . . , [α]N (tn)) > α(P1)

By applying the weakly monotone function max{0, ·} we obtain

max{0, α(P2)} > [α]N (t) > max{0, α(P1)}

We have

α(Pleft(t)) =







0 if n(P1) = 0 and c(P1) < 0

α(P1) otherwise

and thus α(Pleft(t)) 6 max{0, α(P1)}. Likewise,

α(Pright(t)) =







α(n(P2)) if c(P2) < 0

α(P2) otherwise

In the former case, α(n(P2)) = α(P2)− c(P2) > α(P2) and α(n(P2)) > 0. The
latter inequality is a consequence of the fact that Pright(t) has no negative
coefficients, which is easily proved by induction on the structure of t. In the
latter case α(P2) > 0. So in both cases we have α(Pright(t)) > max{0, α(P2)}.
Hence we obtain the desired inequalities. 2

Once the interpretations fZ are determined, we transform a rule l → r into
the polynomial Pleft(l) − Pright(r). Standard techniques can then be used to
test whether this polynomial is positive (or non-negative) for all values in N

for the variables.

Corollary 45 Let Z be an F-algebra such that every fZ is a weakly monotone
polynomial. Let s and t be terms. If Pleft(s) − Pright(t) > 0 then s >N t. If
Pleft(s) − Pright(t) > 0 then s >N t. 2
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The remaining question is how to find suitable interpretations for the function
symbols. This problem will be discussed in Section 5.

The approximation for negative constants is typically useful for handling de-
structors like predecessor and the tail function on lists:

p(0) → 0 tail([ ]) → [ ]

p(s(x)) → x tail(x : xs) → xs

The limitation of the approximation becomes clear when trying to prove
p(x) >N p(x) or p(x) >N 0. More importantly, the approach developed so
far cannot handle inequalities like x + 1 > max{0, x − y} in Example 41
that originate from polynomial interpretations with negative coefficients. The
reason is that Lemma 44 relies essentially on weak monotonicity of the poly-
nomial interpretations. Suppose that we would modify the definition of Pright

such that on input t = f(t1, . . . , tn) it returns the non-negative part N(P2) of
P2 when P2 contains negative coefficients. Then we would wrongly conclude
0 >N s(0) − (s(0) − x) as

Pleft(0) = 0 = N(1 − 1) = N(1 − N(1 − x)) = Pright(s(0) − (s(0) − x))

Because Pleft and Pright are approximations, they also cannot be used for check-
ing equalities.

We now present an approach that can be used checking equalities and inequal-
ities in connection with Corollary 31 and Theorem 40 for polynomial interpre-
tations with negative coefficients. This new approach does not subsume the
approximation introduced above for polynomial interpretations with negative
constants. In particular, it cannot cope with a constraint like x >N p(x).

Let P>0 be a subset of the set of polynomials with integral coefficients such
that α(P ) > 0 for all P ∈ P>0 and all α : V → N and such that membership
in P>0 is decidable. For instance, P>0 could be the set of polynomials without
negative coefficients. We define P<0 in the same way.

In the following definition we define a polynomial Q(t) for every term t. Unlike
Pleft(t) and Pright(t), Q(t) contains enough information to compute the exact
value of [α]N (t). This latter property is formally expressed in Theorem 48.

Definition 46 Let Z be an algebra. With every term t we associate a poly-
nomial Q(t) as follows:

Q(t) =



























t if t is a variable

P if t = f(t1, . . . , tn) and P ∈ P>0

0 if t = f(t1, . . . , tn) and P ∈ P<0

v(P ) otherwise
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where P = fZ(Q(t1), . . . , Q(tn)). In the last clause v(P ) denotes a fresh ab-
stract variable that we uniquely associate with P .

The polynomial Q(t) is computed by recursively interpreting t in the given
algebra. If at any stage a polynomial is encountered that belongs to P<0, it is
replaced by 0. A polynomial whose status cannot be determined is replaced
by an abstract variable. There are two kinds of indeterminates in Q(t): or-
dinary variables occurring in t and abstract variables. The intuitive meaning
of an abstract variable v(P ) is max{0, P}. The latter quantity is always non-
negative, like an ordinary variable ranging over the natural numbers, but from
v(P ) we can extract the original polynomial P and this information may be
crucial for a comparison between two polynomial expressions to succeed. Note
that the polynomial P associated with an abstract variable v(P ) may contain
other abstract variables. However, because v(P ) is different from previously
selected abstract variables (in recursive calls to Q), there are no spurious loops
like P1 = v(x − v(P2)) and P2 = v(x − v(P1)).

The reason for using P>0 and P<0 in the above definition is to make our
approach independent of the particular method that is used to test non-
negativeness or negativeness of polynomials.

Definition 47 With every assignment α : V → N we associate an assignment
α∗ : V → N defined as follows:

α∗(x) =







max{0, α∗(P )} if x is an abstract variable v(P )

α(x) otherwise

The above definition is recursive because P may contain abstract variables.
However, since v(P ) is different from previously selected abstract variables,
the recursion terminates and it follows that α∗ is well-defined.

Theorem 48 Let Z be an algebra such that every fZ is a polynomial. Let t
be a term. For every assignment α : V → N we have [α]N (t) = α∗(Q(t)).

PROOF. We show that [α]N (t) = α∗(Q(t)) by induction on t. If t is a variable
then [α]N (t) = α(t) = α∗(t) = α∗(Q(t)). Suppose t = f(t1, . . . , tn). Let P =
fZ(Q(t1), . . . , Q(tn)). The induction hypothesis yields [α]N (ti) = α∗(Q(ti)) for
all i and thus

[α]N (t) = fN(α∗(Q(t1)), . . . , α
∗(Q(tn)))

= max{0, fZ(α∗(Q(t1)), . . . , α
∗(Q(tn)))} = max{0, α∗(P )}

We distinguish three cases, corresponding to the definition of Q(t).
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• First suppose that P ∈ P>0. This implies that α∗(P ) > 0 and thus we have
max{0, α∗(P )} = α∗(P ). Hence [α]N (t) = α∗(P ) = α∗(Q(t)).

• Next suppose that P ∈ P<0. So α∗(P ) < 0 and thus max{0, α∗(P )} = 0.
Hence [α]N (t) = 0 = α∗(Q(t)).

• In the remaining case we do not know the status of P . We have Q(t) = v(P )
and thus α∗(Q(t)) = max{0, α∗(P )} which immediately yields the desired
identity [α]N (t) = α∗(Q(t)). 2

Corollary 49 Let Z be an algebra such that every fZ is a polynomial. Let s
and t be terms. If Q(s) = Q(t) then s =N t. If α∗(Q(s) − Q(t)) > 0 for all
assignments α : V → N then s >N t. If α∗(Q(s)−Q(t)) > 0 for all assignments
α : V → N then s >N t. 2

Corollary 49 can be used to verify equalities.

Example 50 Consider rule 8 in Example 25. We have s(x) − s(y) =N x − y
because Q(s(x)−s(y)) = v(x−y) = Q(x−y). Next consider dependency pair 15.
We have Q(mod♯(s(x), s(y))) = x+1 and Q(mod♯(s(x)−s(y), s(y))) = v(x−y).
Since x+1−v(x−y) may be negative (when interpreting v(x−y) as a variable),
the above corollary cannot be used to conclude that 15 is strictly decreasing.
However, if we estimate v(x − y) by x, the non-negative part of x − y, then
we obtain x + 1 − x = 1 which is clearly positive.

If non-negativeness of Q = Q(s)−Q(t) cannot be shown, we select an abstract
variable in Q and apply the following lemma.

Given a polynomial P with coefficients in Z, we denote the non-negative part
of P by N(P ).

Lemma 51 Let Q be a polynomial with integer coefficients. Suppose v(P ) is
an abstract variable that occurs in Q but not in N(Q). If Q′ is the polynomial
obtained from Q by replacing v(P ) with N(P ) then α∗(Q) > α∗(Q′) for all
assignments α : V → N.

PROOF. Let α : V → N be an arbitrary assignment. In α∗(Q) every oc-
currence of v(P ) is assigned the value α∗(v(P )) = max{0, α∗(P )}. We have
α∗(N(P )) > α∗(P ) and α∗(N(P )) > 0. These two facts imply α∗(N(P )) >

α∗(v(P )). By assumption, v(P ) occurs only in the negative part of Q. Hence
Q is (strictly) anti-monotone in v(P ) and therefore α∗(Q) > α∗(Q′). 2

In order to determine whether s >N t (or s >N t) holds, the idea now is to first
use standard techniques to test the non-negativeness of Q = Q(s)−Q(t) (i.e.,
we determine whether α(Q) > 0 for all assignments α by checking whether
Q ∈ P>0). If Q is non-negative then we certainly have α∗(Q) > 0 for all
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assignments α and thus s >N t follows from Corollary 49. If non-negativeness
cannot be shown then we apply the previous lemma to replace an abstract
variable that occurs only in the negative part of Q. The resulting polynomial
Q′ is tested for non-negativeness. If the test succeeds then for all assignments
α we have α∗(Q′) > 0 and thus also α∗(Q) > 0 by the previous lemma.
According to Corollary 49 this is sufficient to conclude s >N t. Otherwise
we repeat the above process with Q′. The process terminates when there are
no more abstract variables left that appear only in the negative part of the
current polynomial.

5 Tyrolean Termination Tool

The techniques introduced in the preceding sections have been implemented
in the Tyrolean Termination Tool. TTT produces textbook quality output and
has a convenient web interface. The tool is available at

http://cl2-informatik.uibk.ac.at/ttt

In contrast to its predecessor, the Tsukuba Termination Tool [23], it is pos-
sible to run the tool in fully automatic mode on a collection of rewrite sys-
tems. Moreover, besides ordinary (first-order) rewrite systems, the tool accepts
simply-typed applicative rewrite systems which are transformed into ordinary
rewrite systems by the recent method of Aoto and Yamada [3].

In the next subsection we describe the fully automatic mode. Section 5.2
describes the differences between the semi automatic mode and the Tsukuba
Termination Tool. In Section 5.3 we show a termination proof of a simply-
typed applicative system obtained by TTT. In Section 5.4 we describe how to
input a collection of rewrite systems and how to interpret the resulting output.
Some implementation details are given in Section 5.5.

5.1 Fully Automatic Mode

In this mode TTT uses a simple strategy to solve (recursively) the ordering
constraints for each SCC of the approximated dependency graph. The strategy
is based on the new features described in the previous sections and uses LPO
(both with strict and quasi-precedence) with some argument filterings [26]
and mostly linear polynomial interpretations with coefficients from {−1, 0, 1}
as base orders.

After computing the SCCs of the approximated dependency graph, the strat-
egy subjects each SCC to the following algorithm:
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(1) First we check whether the subterm criterion is applicable.
(2) If the subterm criterion was unsuccessful, we compute the usable rules.
(3) The resulting (usable rules and dependency pairs) constraints are sub-

jected to the natural (see below) polynomial interpretation.
(4) If the constraints could not be solved in step 3, we employ the divide

and conquer algorithm for computing suitable argument filterings with
respect to the some heuristic [26] and the lexicographic path order (LPO)
with strict precedence.

(5) If the previous step was unsuccessful, we repeat step 3 with arbitrary
linear polynomial interpretations with coefficients from {0, 1}.

(6) Next we repeat step 4 with the variant of LPO based on quasi-precedences
and a small increase in the search space for argument filterings (see be-
low).

(7) If the constraints could still not be solved, we try polynomial interpreta-
tions with negative constants.

(8) As a last resort, we use polynomial interpretations with coefficients from
{−1, 0, 1} in connection with Theorems 40 and 23. If the latter fails, due
to the A-right-linearity restriction, we give Corollary 31 a try.

If only part of an SCC could be handled, we subject the resulting new SCCs
recursively to the same algorithm.

Taking the following polynomial interpretations for certain function symbols
that appear in many example TRSs is what we call natural (for other function
symbols we take linear interpretations with coefficients from {0, 1}):

0Z = 0 1Z = 1 2Z = 2 · · ·

sZ(x) = x + 1 pZ(x) = x − 1 +Z(x, y) = x + y ×Z(x, y) = xy

If the current set of constraints can be solved in step 4 or 5, then they can
also be solved in step 6 or 7, respectively, but the reverse is not true. The sole
reason for adopting LPO and polynomial interpretations in alternating layers
is efficiency; the search space in steps 3 and 4 is significantly smaller than
in steps 5 and 6. Needless to say, the search space in step 5 is much smaller
than in step 7 which in turn is much smaller than in step 8. The reason for
putting the subterm criterion first is that with this criterion many SCCs can
be eliminated very quickly. The extension of the search space for argument
filterings mentioned in step 6 is obtained by also considering the full reverse
argument filtering [n, . . . , 1] for every n-ary function symbol. The advantage
of this extension is that there is no need for a version of LPO with right-to-left
status.

The effectiveness of the automatic strategy can be seen from the data presented
in Figure 1, which were obtained by running TTT in fully automatic mode on
the 89 terminating TRSs (66 in Section 3 and 23 in Section 4) of [6]. An
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Fig. 1. Output produced by TTT.

explanation of the data is given in Section 5.4.

5.2 Semi Automatic Mode

Figure 2 shows the web interface for the semi-automatic mode.

This menu corresponds to the options that were available in the Tsukuba Ter-
mination Tool. A first difference is that we now support the dependency pair
method for innermost termination [5]. A second difference is that dependency
pairs that are covered by the criterion of Dershowitz [13] are excluded (cf.
the remark following Definition 2). The other differences are described in the
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Fig. 2. A screen shot of the semi automatic mode of TTT.

following paragraphs.

First of all, when approximating the (innermost) dependency graph the orig-
inal estimations of [5] are no longer available since the approximations de-
scribed in [26] generally produce smaller graphs while the computational over-
head is negligible.

Secondly, the user can no longer select the cycle analysis method (all cycles
separately, all strongly connected components separately, or the recursive SCC
algorithm of [26]). Extensive experiments reveal that the latter method out-
performs the other two, so this is now the only supported method in TTT.

Most of the boxes and buttons are self-explanatory. Many correspond to set-
tings described in Section 5.1. By clicking the enumerate box, TTT searches
for a suitable argument filtering by enumerating all possible argument filter-
ings. For most examples the divide and conquer method is more efficient than
the straightforward enumeration method, but still, there are TRSs where enu-
meration is more effective (cf. [26]), so the user has the option to change the
search strategy.
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5.3 Simply-Typed Applicative Rewrite Systems

Besides ordinary first-order TRSs, TTT accepts simply-typed applicative rewrite
systems (STARSs) [2]. Applicative terms are built from variables, constants,
and a single binary operator ·, called application. Constants and variables are
equipped with a simple type such that the rewrite rules typecheck. A typical
example is provided by the following rules for the map function

(map · f) · nil → nil

(map · f) · ((cons · x) · y) → (cons · (f · x)) · ((map · f) · y)

with the type declaration nil : α, cons : β → α → α, map : (β → β) → α → α,
f : β → β, x : β, and y : α. Here α is the list type and β the type of elements
of lists. STARSs are useful to model higher-order functions in a first-order
setting. As usual, the application operator · is suppressed in the notation and
parentheses are removed under the “association to the left” rule. The above
rules then become

map f nil → nil

map f (cons x y) → cons (f x) (map f y)

This corresponds to the syntax of STARSs in TTT. The types of constants must
be declared by the keyword TYPES. The types of variables is automatically
inferred when typechecking the rules, which follow the RULES keyword. So the
above STARS would be inputted to TTT as

TYPES

nil : a ;

cons : b => a => a ;

map : (b => b) => a => a ;

RULES

map f nil -> nil ;

map f (cons x y) -> cons (f x) (map f y) ;

In order to prove termination of STARSs, TTT uses the two-phase transforma-
tion developed by Aoto and Yamada [3]. In the first phase all head variables
(e.g. f in f x) are removed by the head variable instantiation technique. The
soundness of this phase relies on the ground term existence condition, which
basically states that all simple types are inhabited by at least one ground
term. Users need not be concerned about this technicality as TTT automat-
ically adds fresh constants of the appropriate types to the signature so that
the ground term existence condition is satisfied. (Moreover, the termination
status of the original STARS is not affected by adding fresh constants.) After
the first phase an ordinary TRS is obtained in which the application symbol
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is the only non-constant symbol. Such TRSs are not easily proved terminating
since the root symbol of every term that has at least two symbols is the appli-
cation symbol and thus provides no information which could be put to good
use. In the second phase applicative terms are transformed into ordinary terms
by the translation to functional form technique. This technique removes all
occurrences of the application symbol. We refer to [3] for a complete descrip-
tion of the transformation. We contend ourselves with showing the Postscript
output (in Fig. 3) produced by TTT on the following variation of combinatory
logic (inspired by a recent question posted on the TYPES Forum by Jeremy
Dawson):

TYPES

I : o => o ;

W : (o => o => o) => o => o ;

S : (o => o => o) => (o => o) => o => o ;

RULES

I x -> x ;

W f x -> f x x ;

S x y z -> x z (y z) ;

Note that the types are crucial for termination; the untyped version admits
the cyclic rewrite step W W W → W W W.

5.4 A Collection of Rewrite Systems as Input

Single TRSs (or STARSs) are inputted by typing (the type declarations and)
the rules into the upper left text area or by uploading a file via the browse
button. Besides the original TTT syntax (which is obtained by clicking the
TRS link), TTT supports the official format of the Termination Problem Data
Base [38]. The user can also upload a zip archive. All files ending in .trs

are extracted from the archive and the termination prover runs on each of
these files in turn. The results are collected and presented in two tables. The
first table gives the number of successes and failures, both with the average
time spent on each TRS, the number of timeouts, and the total number of
TRSs extracted from the zip archive together with the total execution time.
The second table lists for each TRS the execution time in seconds together
with the status: bold green indicates success, red italics indicates failure, and
gray indicates timeout. By clicking green (red) entries the user can view the
termination proof (attempt) in HTML or Postscript format. The tables are
regularly updated during the termination proving process, enabling the user
to access generated termination proofs without having to wait for the overall
process to terminate. Figure 1 shows the two tables for the 89 terminating
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Termination Proof Script a

Consider the simply-typed applicative TRS

I x → x

W f x → f x x

S x y z → x z (y z)

over the signature I : o ⇒ o, W : (o ⇒ o ⇒ o) ⇒ o ⇒ o, and
S : (o ⇒ o ⇒ o) ⇒ (o ⇒ o) ⇒ o ⇒ o. In order to satisfy the ground
term existence condition we extend the signature by c : o ⇒ o ⇒ o and c′ : o.
Instantiating all head variables yields the following rules:

I x → x

W c x → c x x

S c I z → c z (I z)

S c (W w) z → c z (W w z)

S c (S w v) z → c z (S w v z)

S c (c w) z → c z (c w z)

By transforming terms into functional form the TRS

1 : I1(x) → x

2 : W2(c, x) → c2(x, x)

3 : S3(c, I, z) → c2(z, I1(z))

4 : S3(c, W1(w), z) → c2(z, W2(w, z))

5 : S3(c, S2(w, v), z) → c2(z, S3(w, v, z))

6 : S3(c, c1(w), z) → c2(z, c2(w, z))

is obtained. There are 3 dependency pairs:

7 : S
♯
3(c, I, z) → I

♯
1(z)

8 : S
♯
3(c, W1(w), z) → W

♯
2(w, z)

9 : S
♯
3(c, S2(w, v), z) → S

♯
3(w, v, z)

The approximated dependency graph contains one SCC: {9}.
• Consider the SCC {9}. By taking the simple projection π with π(S♯

3) = 2,
the dependency pair simplifies to

9 : S2(w, v) → v

and is compatible with the proper subterm relation.
Hence the TRS is terminating.
a Tyrolean Termination Tool (0.01 seconds) — September 21, 2005

Fig. 3. Example output.
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TRSs in Sections 3 and 4 of [6]. Here we used TTT’s fully automatic mode
with a timeout of 1 second (for each TRS). The experiment was performed
on a PC equipped with a 1.80 GHz Intel Pentium Processor - M and 1 GB of
memory, using native-compiled code for Linux/Fedora.

5.5 Some Implementation Details

The web interface of TTT is written in Ruby 6 and the termination prover
underlying TTT is written in Objective Caml (OCaml), 7 using the third-party
libraries 8 findlib, extlib, and pcre-ocaml.

The termination prover consists of about 13,000 lines of OCaml code. About
20% is used for the manipulation of terms and rules. Another 15% is devoted
to graph manipulations. This part of the code is not only used to compute
dependency graph approximations, but also for precedences in KBO and LPO,
and for the relation �d in Definition 13 which is used to compute the usable
rules. The various termination methods that are provided by TTT account for
less than 10% each. Most of the remaining code deals with I/O: parsing the
input and producing HTML and Postscript output. For the official Termina-
tion Problem Data Base format we use parsers written in OCaml by Claude
Marché.

It is interesting to note that two of the original techniques that make TTT

fast, the recursive SCC algorithm and the subterm criterion, account for just
13 and 20 lines, respectively. Actually, we implemented the subterm criterion
twice. The number 20 refers to a straightforward encoding that generates all
simple projections until a suitable one is found. This encoding works fine on all
examples we tested (see Section 6), with one exception (AProVE/AAECC-ring).
The reason is that the dependency graph of that TRS contains an SCC con-
sisting of nine 7-ary and one 6-ary dependency pair symbols, amounting to
79 × 6 = 242121642 simple projections. Specializing the divide and conquer
algorithm developed in [26] for arbitrary argument filterings amounts to 11
additional lines of code. (The generic divide and conquer algorithm is imple-
mented in 209 lines of OCaml code.) This latter implementation is the one
used in the experiments described in Section 6 and the only one available from
the web interface.

Concerning the implementation of simply-typed applicative rewrite systems,
we use the Damas-Milner type reconstruction algorithm (see e.g. [35]) to infer
the types of variables.

6 http://www.ruby-lang.org/
7 http://www.ocaml.org/
8 http://caml.inria.fr/humps/
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We conclude this section with some remarks on the implementation of base
orders in TTT. The implementation of LPO follows [23] but we first check
whether the current pair of terms can be oriented by the embedding order in
every recursive call to LPO. This improves the efficiency by about 20%. The
implementation of KBO is based on [30]. We use the “method for complete
description” [14] to compute a suitable weight function. The implementation
of polynomial interpretations with coefficients from {0, 1} is based on [11,
Figure 1] together with the simplification rules described in Section 4.4.1 of
the same paper. The current implementation of polynomial interpretations
with coefficients from {−1, 0, 1} in TTT is rather naive. In particular, we do
not backtrack when the choice of the abstract variable in Lemma 51 does not
lead to a positive conclusion. We anticipate that the recent techniques of [11]
can be extended to handle negative coefficients.

6 Experiments

In this section we assess the techniques introduced in the preceding sections
on the 773 TRSs (at least 94 of which are non-terminating) in version 2.0 of
the Termination Problem Data Base [38].

In all experiments we used the EDG∗ approximation [33] of the dependency
graph. Moreover, we adopted the recursive SCC algorithm in [26] for handling
cycles in the graph. When the lexicographic path order or Knuth-Bendix order
is used, the divide and conquer algorithm is used to search for suitable argu-
ment filterings. The experiments were conducted in the same environment as
described in Section 5.4.

We tested individual methods and combinations of them. The results are sum-
marized in Tables 1–3. The letters in the column headings have the following
meaning:

s the subterm criterion of Section 2,
u the usable rule criterion of Sections 3 (for Tables 1 and 2) and 4 (for Table 3),
l lexicographic path order in combination with some [26] argument filterings,
k Knuth-Bendix order in combination with some argument filterings,
p polynomial interpretation restricted to linear polynomials with coefficients

and constants indicated in the table headings.

We list the number of successful termination attempts, the number of failures
(which means that no termination proof was found while fully exploring the
search space implied by the options), and the number of timeouts. The figures
below the number of successes and failures denote the average time in seconds.
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Table 1
Experiments I.

dg s l ul sul k uk suk

success 51 (44) 206 206 244 260 162 262 290

0.00 (0.00) 0.00 0.06 0.15 0.14 0.29 0.29 0.24

failure 722 (729) 567 540 504 488 548 465 437

0.01 (0.01) 0.01 0.57 0.42 0.43 0.96 0.75 0.79

timeout (30 s) 0 (0) 0 27 25 25 63 46 46

total time 8 (9) 9 1133 998 996 2464 1804 1795

In Table 1 the combination of the subterm criterion and the usable rule crite-
rion in connection with traditional simplification orders is examined. As can be
seen from column s, the subterm criterion is extremely fast. This is even more
apparent from a comparison with column dg, where termination is concluded
if the approximated dependency graph contains no cycles. In parentheses we
provide the numbers when the original definition of dependency pairs is used
(cf. the paragraph following Definition 2). The difference disappears as soon
as the subterm criterion is applied. It is interesting to note that the subterm
criterion could handle 1052 of the 1589 generated SCCs, resulting in termi-
nation proofs for 206 of the 773 TRSs. Clearly, the subterm criterion is very
suitable as a method of first choice in any termination prover incorporating
the dependency pair technique.

Table 2 shows the effect of the usable rule criterion in combination with linear
polynomial interpretations possibly with negative constants. Enlarging the
coefficient domain {0, 1} with the value 2 gives very few additional examples
(when using the usable rule criterion). The effect of allowing −1 as constant
is more apparent. An interesting remark is that there is no overlap between
the additional TRSs that can be proved terminating by allowing 2 and by
allowing −1.

In Table 3 we use the negative coefficient method developed in Section 4 in
connection with Corollary 31 (p) and Theorems 23 (u1p) and 40 (u2p and u3p).
The difference between columns u2p and u3p is that for the latter we revert
to Corollary 31 if the A-right-linearity condition in Theorem 40 cannot be
satisfied. In column u4p we first check whether the SCC C under consideration
contains a right-ground dependency pair or C ∪U(C) is non-duplicating. If one
of these conditions is fulfilled then we use U(C) and ignore the A-right-linearity
constraint, otherwise we proceed as in column u3p.

Comparing the p and u1p columns, the usefulness of Theorem 23 is clear. The-
orem 40 (u2p) is even more powerful. However, as can be inferred from columns
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Table 2
Experiments II.

coefficients 0, 1 0, 1, 2 0, 1

constants 0, 1 0, 1, 2 −1, 0, 1

p up sup p up sup p up sup

success 247 340 364 262 348 369 256 355 381

0.28 0.31 0.29 0.32 0.29 0.29 0.31 0.29 0.29

failure 458 395 371 372 347 326 348 325 300

1.12 0.82 0.85 0.98 0.64 0.68 1.71 1.22 1.22

timeout (30 s) 68 38 38 139 78 78 169 93 92

total time 2622 1571 1562 4619 2664 2667 5745 3292 3238

Table 3
Polynomial interpretations with negative coefficients from {−1, 0, 1}.

p u1p u2p u3p u4p su1p su2p su3p su4p

success 151 232 264 270 270 282 303 309 309

0.46 0.26 0.36 0.36 0.36 0.20 0.30 0.30 0.30

failure 400 369 357 317 334 334 324 286 302

2.35 1.54 1.39 2.24 1.47 1.54 1.27 2.23 1.39

timeout (30 s) 222 172 152 186 169 157 146 178 162

total time 7670 5788 5149 6388 5657 5280 4884 6071 5374

u3p and u4p, six TRSs handled by Theorem 23 and Corollary 31 violate the
A-right-linearity condition in Theorem 40. Four of them are variations of
Toyama’s example, the remaining two are the one-rule system x×((−y)×y) →
(−(y× y))× x and the two-rules system consisting of f(x, x) → f(g(x), x) and
g(x) → s(x).

Comparing the p, u4p, and su4p columns in Table 3 with the final three
columns in Table 2, one might wrongly conclude that polynomial interpre-
tations with negative coefficients make TTT both slower and less powerful.
Therefore, in Table 4 we provide in columns p′, u4p′, and su4p′ the results for
the strategy where polynomial interpretations with negative coefficients are
attempted only if polynomial interpretations with negative constants fail.
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Table 4

(p) p′ (u4p) u4p′ (su4p) su4p′

success (151) 270 (270) 372 (309) 400

(0.46) 0.44 (0.36) 0.30 (0.30) 0.39

failure (400) 312 (334) 276 (302) 255

(2.35) 2.62 (1.47) 1.55 (1.39) 1.49

timeout (30 s) (222) 191 (169) 125 (162) 118

total time (7670) 6668 (5657) 4290 (5374) 4077

Table 5
Fully automatic mode.

t 1 2 10 30

success 390 394 403 411

0.03 0.05 0.16 0.54

failure 184 202 224 240

0.18 0.28 0.68 1.80

timeout (t s) 199 177 146 122

total time 244 430 1678 4314

Table 5 shows the power of the fully automatic mode of TTT. A remarkable
95% of the successful termination proofs obtained with a 30 seconds timeout
are also obtained when setting the timeout to 1 second. Most of the remaining
5% are due to polynomial interpretations.

Although the numbers presented in Table 5 may suggest otherwise, the fully
automatic mode does not encompass the full power of TTT. For instance, the
fully automatic mode misses out on two TRSs in the {0, 1, 2} columns of
Table 2. Another such TRS, which can be handled by appropriately setting
the options in the semi-automatic mode, is given in [26, Example 43].
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7 Related Work

Needless to say, TTT is not the only tool available for proving termination of
rewrite systems and the dependency pair method is not the only successful
termination technique. We start this final section by briefly discussing some
of the other tools that participate in the TRS category of the annual termi-
nation competition 9 and the techniques they implement. We do not claim
completeness of the description below; because of the rapid developments in
the field, by the time this paper appears in print, any description is likely to
be outdated.

• We start our discussion with CiME [10], the very first tool for automatically
proving termination of rewrite systems that is still available. CiME is a tool
with powerful techniques for finding termination proofs based on polynomial
interpretations in connection with the dependency pair method. In contrast
to TTT, CiME can handle rewrite systems with AC operators. As a matter
of fact, termination is only a side-issue in CiME. Its main strength lies in
completing equational theories modulo theories like AC and C.

• Matchbox [43] is a tool that is largely based on methods from formal lan-
guage theory. These methods are especially useful for proving termination of
string rewrite systems. The latest version of Matchbox tries to establish ter-
mination or non-termination using results on match-bounded rewriting [17]
in combination with matrix interpretations [15].

• TPA [29] is a tool based on semantic labeling [44]. Besides a two-valued
domain it also uses natural numbers as labels, which is surprisingly pow-
erful. Polynomial interpretations and recursive path orders are available as
basic techniques. TPA can prove relative termination (Geser [16]). Because
of semantic labeling, the tool is capable of proving termination of rewrite
systems that are not handled by any current tool based on dependency
pairs.

• Last but not least, AProVE, a very powerful tool for proving termination
and non-termination of ordinary rewrite systems (possibly modulo AC),
logic programs, conditional rewrite systems, context-sensitive rewrite sys-
tems. Version 1.2 of AProVE is described in [19]. Of all existing tools, AProVE

supports the most base orders and even offers several different algorithms
implementing these. It incorporates virtually all recent refinements of the
dependency pair method. AProVE has several methods that are not available
in any other tool. We mention here the size-change principle [39], transfor-
mations for dependency pairs like narrowing and instantiation, and a mod-
ular refinement where the set of usable rules is determined after a suitable
argument filtering has been computed [40].

9 http://www.lri.fr/∼marche/termination-competition
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With respect to the results presented in this paper, most tools that incorpo-
rate dependency pairs use the subterm criterion and compute usable rules. The
latest version of AProVE combines the subterm criterion with the size-change
principle. The latter tool also contains an implementation of polynomial in-
terpretations with negative coefficients. Aoto and Yamada [4] extended the
subterm criterion to simply-typed applicative rewrite systems. Very recently,
Alarcón et al. [1] extended the subterm criterion to context-sensitive rewrite
systems.

We conclude with mentioning related work on the use of polynomial interpre-
tations with negative coefficients for proving termination. Lucas [31,32] con-
siders polynomials with real coefficients for automatically proving termination
of (context-sensitive) rewrite systems are considered. He solves the problem of
well-foundedness by replacing the standard order on R with >δ for some fixed
positive δ ∈ R: x >δ y if and only if x − y > δ. In addition, he demands that
interpretations are uniformly bounded from below (i.e., there exists an m ∈ R

such that fR(x1, . . . , xn) > m for all function symbols f and x1, . . . , xn > m).
While this method allows one to use finer positive polynomial like x2− 1

2
x+1,

the latter requirement entails that interpretations like x−1 or x−y+1 cannot
be handled. This contrasts our approach in which a given algebra (on Z) is
replaced by an induced algebra (on N). We anticipate that by combining both
approaches, unrestricted polynomial interpretations with real coefficients like
x − 1

2
y can be used for termination proofs.

Gramlich and Lucas [22] use polynomial interpretations with integral coeffi-
cients for proving termination of context-sensitive rewriting. Negative coef-
ficients are allowed, but only for argument positions where no rewriting is
permitted. Consequently, the lack of monotonicity does not pose a problem.
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