
Proving Termination of Rewrite Systems using Bounds

Martin Korp and Aart Middeldorp

Institute of Computer Science
University of Innsbruck

Austria

Abstract. The use of automata techniques to prove the termination of
string rewrite systems and left-linear term rewrite systems is advocated
by Geser et al. in a recent sequence of papers. We extend their work to
non-left-linear rewrite systems. The key to this extension is the intro-
duction of so-called raise rules and the use of tree automata that are not
quite deterministic. Furthermore, we present negative solutions to two
open problems related to string rewrite systems.

1 Introduction

Using automata techniques is a relatively new and elegant approach for automat-
ically proving the termination of rewrite systems. Initially proposed for string
rewriting by Geser, Hofbauer, and Waldmann [7], the method has recently been
extended to left-linear term rewrite systems [10]. Variations and improvements
are discussed in [5, 8, 9]. The fact that the method has been implemented in sev-
eral different termination provers ([4, 12, 16, 17]) is a clear witness of the success
of the approach.

In this paper we look at two extremes. On the one hand, we present a negative
solution to the problem whether a given string rewrite system can be proved
terminating by the method if no a priori bound is given. A simple reduction
from the undecidable termination problem for string rewrite systems does the
trick. We further show that failure of the method is not completely characterized
by the presence of a so-called witnessing set. Both results settle open problems
in [7].

On the other hand, we extend the method to term rewrite systems contain-
ing rules that are not left-linear. This turns out to be surprisingly challenging.
First of all, the theory on which the method is based does not work without fur-
ther ado for non-left-linear rewrite systems. So-called raise rules are introduced
to solve this issue. Second, the usual approach of using deterministic tree au-
tomata for dealing with non-left-linear rewrite rules appears to be incompatible
with the method. We introduce quasi-deterministic tree automata to overcome
this problem. Finally, the raise rules need special care to enable the automata
construction to terminate.

The remainder of the paper is organized as follows. In the next section we
recall basic definitions concerning the automata theory approach to proving ter-
mination of rewrite systems. In Section 3 we introduce raise rules to overcome the

problem caused by non-left-linear rules. Quasi-deterministic tree automata are
introduced in Section 4. In Sections 5 and 6 it is explained how these automata
are used to infer termination. Like in the linear case, the power of the method is
increased by considering right-hand sides of forward closures. This is explained
in Section 7. We present experimental data in Section 8. In Section 9 we present
our negative solutions to the open problems for string rewrite systems.

2 Preliminaries

We assume familiarity with term rewriting [1] and tree automata [2]. General
knowledge of the match-bound technique [7, 10] will be helpful. Below we recall
important definitions and results from the latter paper.

A TRS R over a signature F is called locally terminating if every restriction
of R to a finite signature G ⊆ F is terminating. Given a set L ⊆ T (F) of ground
terms, we denote the set {t ∈ T (F) | s →∗

R t for some s ∈ L} of descendants
of L by →∗

R(L). Given a set N ⊆ N of natural numbers, the signature F × N
is denoted by FN . Here function symbols (f, n) with f ∈ F and n ∈ N have
the same arity as f and are written as fn. Let F be a signature. The mappings
liftc : F → FN, base : FN → F , and height : FN → N are defined as follows:

liftc(f) = fc base(fi) = f height(fi) = i

for all f ∈ F and c, i ∈ N. They are extended to terms and to set of terms in
the obvious way.

Let t be a term in T (F ,V) and V ⊆ Var(t) a set of variables. A position
p ∈ FPos(t) is a roof position in t for V if V ⊆ Var(t|p). The set of all roof
positions in t for V is denoted by RPosV (t). Let l and r be two terms in T (F ,V).
The mappings top, roof, and match are defined as follows:

top(l, r) = {ε} roof(l, r) = RPosVar(r)(l) match(l, r) = FPos(l)

Let R be a TRS over the signature F and e a function that maps every rewrite
rule l → r ∈ R to a nonempty subset of FPos(l). The TRS e(R) over the
signature FN consists of all rewrite rules l′ → liftc(r) for which there exists a
rule l → r ∈ R such that base(l′) = l and c = 1+min{height(l′(p)) | p ∈ e(l, r)}.
Let c ∈ N. The restriction of e(R) to the signature F{0,...,c} is denoted by ec(R).
Let e ∈ {top, roof,match} and L a set of terms. The TRS R is called e-bounded
for L if there exists a c ∈ N such that the maximum height of function symbols
occurring in terms in →∗

e(R)(lift0(L)) is at most c. If we want to precise the
bound c, we say that R is e-bounded for L by c. In the following we do not
mention L if we have the set of all ground terms in mind.

Lemma 1 ([10]). Let R be a TRS. The TRSs top(R) and roof(R) are locally
terminating. If R is right-linear then match(R) is locally terminating. ut

2

3 Raise-Bounds

The following example shows that e-bounded TRSs need not be terminating.

Example 2. Consider the non-terminating TRS R = {f(x, x) → f(a, x)}. The
TRSs match(R), roof(R), and top(R) coincide and consist of the rules

fi(x, x) → fi+1(ai+1, x)

for all i > 0. It is not difficult to see that with these rules we can never reach
height 2 starting from a term in T ({a0, f0}). Hence R is e-bounded by 1 for all
e ∈ {top, roof,match}.

The problem is that even though every single R-step can be simulated by
an e(R)-step, this does not hold for consecutive R-steps. We have f(a, a) →R
f(a, a) →R f(a, a) but after the step f0(a0, a0) →e(R) f1(a1, a0) we are stuck
because a0 6= a1.

Definition 3. Let F be a signature. The TRS raise(F) over the signature FN
consists of all rules

fi(x1, . . . , xn) → fi+1(x1, . . . , xn)

with f an n-ary function symbol in F , i ∈ N, and x1, . . . , xn pairwise different
variables. The restriction of raise(F) to the signature F{0,...,c} is denoted by
raisec(F). For terms s, t ∈ T (FN,V) we write s 6 t if s →∗

raise(F) t and s ↑ t for
the least term u with s 6 u and t 6 u. The latter notion is extended to ↑ S for
finite nonempty sets S ⊂ T (FN,V) in the obvious way.

The following result corresponds to Lemma 1. The right-linearity condition
is weakened to non-duplication in order to cover more non-left-linear TRSs. (A
TRS is duplicating if there exist a rewrite rule l → r and a variable x that occurs
more often in r than in l.)

Lemma 4. Let R be a TRS over a signature F . The TRSs top(R) ∪ raise(F)
and roof(R) ∪ raise(F) are locally terminating. If R is non-duplicating then
match(R) ∪ raise(F) is locally terminating.

Proof. Straightforward adaptations of the proofs of Lemmata 16 and 17 in [10].
ut

An immediate consequence of the next lemma states that every derivation in
R can be simulated using the rules in e(R) and raise(F).

Lemma 5. Let R be a TRS over a signature F . If s →R t then for all s′ with
base(s′) = s there exists a term t′ such that base(t′) = t and s′ →+

e(R)∪raise(F) t′.

Proof. Straightforward. ut

3

However, since raise(F) is non-terminating, in order to use e(R) ∪ raise(F)
to infer termination of R, we have to restrict the rules of raise(F) to those that
are really needed to simulate derivations in R. We do this by defining a new
relation >−→e(R) in which the necessary raise steps are built in. The idea is that
s

>−→e(R) t if t can be obtained from s by doing the minimum number of raise
steps to ensure the applicability of a non-left-linear rewrite rule in e(R).

Definition 6. Let R be a TRS over a signature F . We define the relation
>−→e(R) on T (FN,V) as follows: s

>−→e(R) t if and only if there exist a rewrite
rule l → r ∈ e(R), a position p ∈ Pos(s), a context C, and terms s1, . . . , sn

such that l = C[x1, . . . , xn] with all variables displayed, s|p = C[s1, . . . , sn],
base(si) = base(sj) whenever xi = xj, and t = s[rθ]p. Here the substitution θ is
defined as follows:

θ(x) =

{
↑ {si | xi = x} if x ∈ {x1, . . . , xn}
x otherwise

Note that >−→e(R) =→e(R) for left-linear TRSs R.

Definition 7. The TRS R is called e-raise-bounded for L if there exists a
c ∈ N such that the maximum height of function symbols occurring in terms
in >−→∗

e(R)(lift0(L)) is at most c.

For left-linear TRSs, e-raise-boundedness coincides with e-boundedness.

Lemma 8. Let R be a TRS over a signature F . If s →R t then for all terms s′

with base(s′) = s there exists a term t′ such that base(t′) = t and s′
>−→e(R) t′.

Proof. Straightforward. ut

Theorem 9. Let R be a TRS over a signature F and let L ⊆ T (F). If R is
top-raise-bounded or roof-raise-bounded for L then R is terminating on L. If R
is non-duplicating and match-raise-bounded for L then R is terminating on L.

Proof. Assume to the contrary that there exists an infinite sequence t1 →R
t2 →R · · · with t1 ∈ L. With help of Lemma 8 this sequence is lifted to an
infinite >−→e(R) sequence starting from lift0(t1). Since R is e-raise-bounded for
L, all terms in this latter sequence belong to T (F{0,...,c}) for some c ∈ N. Hence
the employed rules must come from ec(R) ∪ raisec(F) and therefore ec(R) ∪
raisec(F) is non-terminating. This is impossible because e(R)∪raise(F) is locally
terminating according to Lemma 4. ut

We conclude this section with an example.

Example 10. Consider the TRS R consisting of the rules f(x, x) → f(a, g(a, x))
and g(x, x) → b over the signature F = {a, f, g}. With the rules

f0(x, x) → f1(a1, g1(a1, x)) g0(x, x) → b1 g1(x, x) → b2

4

of match(R), arbitrary derivations in R can be simulated using the relation
>−→match(R). For instance,

f(f(a, a), f(a, b)) →R f(f(a, g(a, a)), f(a, b))
→R f(f(a, b), f(a, b))
→R f(a, g(a, f(a, b)))

is turned into

f0(f0(a0, a0), f0(a0, b0))
>−→match(R) f0(f1(a1, g1(a1, a0)), f0(a0, b0))
>−→match(R) f0(f1(a1, b2), f0(a0, b0))
>−→match(R) f1(a1, g1(a1, f1(a1, b2)))

Here the following raise rules are used implicitly to enable the application of the
non-left-linear rules in match(R):

a0 → a1 b1 → b2

b0 → b1 f0(x, y) → f1(x, y)

It can be shown that R is match-raise-bounded by 2.

4 Quasi-Deterministic Tree Automata

A common approach to handle non-linearity with automata techniques is to con-
sider deterministic tree automata (cf. [2, 14, 15]). The weaker property defined
below turns out to be more suitable for our purposes. To simplify the presenta-
tion we consider tree automata without ε-transitions.

Definition 11. Let A = (F , Q,Qf ,∆) be a tree automaton. For a left-hand side
l ∈ lhs(∆) of a transition, we denote the set {q | l → q ∈ ∆} of possible right-
hand sides by Q(l). We call A quasi-deterministic if for every l ∈ lhs(∆) there
exists a state p ∈ Q(l) such that for all transitions f(q1, . . . , qn) → q ∈ ∆ and
i ∈ {1, . . . , n} with qi ∈ Q(l), the transition f(q1, . . . , qi−1, p, qi+1, . . . , qn) → q
belongs to ∆. Moreover, we require that p ∈ Qf whenever Q(l) contains a final
state.

Deterministic tree automata are trivially quasi-deterministic because Q(l) is
a singleton set for every left-hand side l ∈ lhs(∆). In general, Q(l) may contain
more than one state that satisfies the above property. In the following we assume
that there is a unique designated state, which we denote by pl. The set of all
designated states is denoted by Qd and the restriction of ∆ to transition rules
l → q that satisfy q = pl is denoted by ∆d.

Lemma 12. Let A = (F , Q,Qf ,∆) be a quasi-deterministic tree automaton. If
t →∗

∆ q then t →∗
∆d

· →∆ q for all terms t ∈ T (F) and states q ∈ Q.

5

Proof. We use induction on t. If t is a constant the claim holds trivially. Let t =
f(t1, . . . , tn). The sequence from t to q can be written as t →∗

∆ f(q1, . . . , qn) →∆

q. The induction hypothesis yields for every i ∈ {1, . . . , n} a left-hand side li ∈
lhs(∆) such that ti →∗

∆d
li →∆ qi. Since A is quasi-deterministic, li →∆d

pli and
qi ∈ Q(li). According to the definition of pl1 the transition f(pl1 , q2, . . . , qn) → q
belongs to ∆. Repeating this argument n − 1 times yields that the transition
f(pl1 , . . . , pln) → q belongs to ∆. Thus t →∗

∆d
f(pl1 , . . . , pln) →∆ q. ut

Lemma 13. Let A = (F , Q,Qf ,∆) be a quasi-deterministic tree automaton.
The tree automaton Ad = (F , Q,Qf ,∆d) is deterministic and L(A) = L(Ad).

Proof. From the definition it is obvious that Ad is deterministic. The inclusion
L(Ad) ⊆ L(A) is trivial. In order to show the reverse inclusion, we prove the
following claim for all terms t ∈ T (F) and states q ∈ Q:

If t →∗
∆ q then t →∗

∆d
pl and q ∈ Q(l) for some l ∈ lhs(∆).

We use induction on t. If t is a constant then t → q ∈ ∆. Hence t ∈ lhs(∆),
q ∈ Q(t), and t → pt ∈ ∆d. Let t = f(t1, . . . , tn). The sequence from t to q can
be written as t →∗

∆ f(q1, . . . , qn) →∆ q. From the previous lemma we know that
t →∗

∆d
f(p1, . . . , pn) →∆ q. Let l = f(p1, . . . , pn). We have l ∈ lhs(∆), q ∈ Q(l),

and l → pl ∈ ∆d. It follows that t →∗
∆d

pl. This completes the proof of the claim.
Now let t ∈ L(A). So t →∗

∆ qf for some qf ∈ Qf . From the claim we obtain
t →∗

∆d
pl and qf ∈ Q(l) for some l ∈ lhs(∆). Since Q(l) contains a final state,

we have pl ∈ Qf by definition. Hence t ∈ L(Ad). ut
A simple procedure to turn an arbitrary tree automaton A = (F , Q,Qf ,∆)

into an equivalent quasi-deterministic one without losing any transitions of ∆ is
the following:
1. Use the subset construction to transform A into a deterministic tree automa-

ton A′ = (F , Q′, Q′
f ,∆′).

2. Take the union of A and A′ after identifying states {q} ∈ Q′ with q ∈ Q.

Let us illustrate this on a small example.

Example 14. The tree automaton A = (F , Q,Qf ,∆) with F = {a, f}, Q =
{1, 2}, Qf = {1}, and ∆ = {a → 1, a → 2, f(1, 2) → 1} is not quasi-deterministic;
we have Q(a) = {1, 2} but if we take pa = 1 then the transition f(1, 1) → 1 is
missing and if we take pa = 2 then the transition f(2, 2) → 1 is missing. The
subset construction produces A′ = (F , Q′, Q′

f ,∆′) with Q′ = {{1}, {2}, {1, 2}},
Q′

f = {{1}, {1, 2}}, and ∆′ consisting of the following transitions:

a → {1, 2} f({1}, {2}) → {1} f({1, 2}, {2}) → {1}
f({1}, {1, 2}) → {1} f({1, 2}, {1, 2}) → {1}

Combining A and A′ after identifying {1} with 1 and {2} with 2 produces the
following transitions:

a → {1, 2} f(1, 2) → 1 f({1, 2}, 2) → 1
a → 1 f(1, {1, 2}) → 1 f({1, 2}, {1, 2}) → 1
a → 2

6

The final states are 1 and {1, 2}, and pa = {1, 2}.

5 Compatibility

The reason why we prefer quasi-deterministic tree automata over deterministic
automata is the importance of preserving existing transitions when constructing
an automaton that satisfies the compatibility condition defined below. This will
be illustrated in Example 17.

Definition 15. Let R be a TRS, L a language, and A = (F , Q,Qf ,∆) a quasi-
deterministic tree automaton. We say that A is compatible with R and L if L ⊆
L(A) and for each rewrite rule l → r ∈ R and state substitution σ : Var(l) → Qd

such that lσ →∗
∆d

q it holds that rσ →∗
∆ q.

Theorem 16. Let R be a TRS and L a language. Let A be a quasi-deterministic
tree automaton. If A is compatible with R and L then →∗

R(L) ⊆ L(A).

Proof. Let s and t be two ground terms such that s ∈ L(A) and s →R t. We show
that t ∈ L(A). The desired result then follows by induction. There exist a rewrite
rule l → r ∈ R, a position p ∈ Pos(s), and a ground substitution σ such that
s = s[lσ]p →R s[rσ]p = t. Let A = (F , Q,Qf ,∆). Because s ∈ L(A) = L(Ad),
there exist states q ∈ Q and qf ∈ Qf such that s = s[lσ]p →∗

∆d
s[q]p →∗

∆d

qf . Because Ad is deterministic by Lemma 13, different occurrences of xσ in
lσ are reduced to the same state in the sequence from s[lσ]p to s[q]p. Hence
there exists a mapping τ : Var(l) → Qd such that lσ →∗

∆d
lτ →∗

∆d
q. We have

rσ →∗
∆d

rτ →∗
∆d

· →∆ q by the definition of compatibility and Lemma 12. Hence
t = s[rσ]p →∗

∆d
· →∆ s[q]p →∗

∆d
qf and thus t ∈ L(A). ut

Since the set >−→∗
e(R)(lift0(L)) need not be regular, even for left-linear R and

regular L [10], we cannot hope to give an exact automaton construction. The
general idea [6, 10] is to look for violations of the compatibility requirement:
lσ →∗

∆d
q and not rσ →∗

∆ q for some rewrite rule l → r, state substitution
σ : Var(l) → Q, and state q. Then we add new states and transitions to the cur-
rent automaton to ensure rσ →∗

∆ q. There are several ways to do this, ranging
from establishing a completely new path rσ →∗

∆ q to adding as few as possi-
ble new transitions by reusing transitions from the current automaton. After
rσ →∗

∆ q has been established, we look for further violations of compatibility.
This process is repeated until a compatible automaton is obtained, which may
never happen if new states are kept being added.

The following example explains why we prefer quasi-deterministic automata
over deterministic ones.

Example 17. Consider the TRS R = {f(x, x) → f(a, b), c → a, c → b} over the
signature F = {a, b, c, f} and the initial tree automaton A = (F{0}, {1}, {1},∆)
with the following transitions:

a0 → 1 b0 → 1 c0 → 1 f0(1, 1) → 1

7

Suppose we look for a deterministic automaton that is compatible with match(R)
and lift0(T (F)). Note that L(A) = lift0(T (F)). Since c0 →match(R) a1 and
c0 → 1, we add the transition a1 → 1. Similarly, c0 →match(R) b1 gives rise
to the transition b1 → 1. Next we consider f0(1, 1) →match(R) f1(a1, b1) with
f0(1, 1) → 1. In order to ensure f1(a1, b1) →∗ 1 we may reuse one or both of the
transitions a1 → 1 and b1 → 1. Let us consider the various alternatives.

– If we reuse both transitions then we only need to add the transition f1(1, 1) →
1 in order to obtain f1(a1, b1) →∗ 1. This gives rise to a further violation of
compatibility, f1(1, 1) →match(R) f2(a2, b2) with f1(1, 1) → 1, which is similar
to the previous one.

– Suppose we reuse a1 → 1 but not b1 → 1. That means we have to add a new
state 2 and transitions b1 → 2 and f1(1, 2) → 1 resulting in the following
transitions:

a0 → 1 b0 → 1 c0 → 1 f0(1, 1) → 1
a1 → 1 b1 → 1 b1 → 2 f1(1, 2) → 1

Making these transitions deterministic produces an automaton that includes
c0 → 1 and b1 → {1, 2}. Because the transition b1 → 1 was removed, the
second violation of compatibility that we considered, c0 →match(R) b1 and
c0 → 1, reappears. So we have to add b1 → 1 again, but each time we make
the automaton deterministic this transition is deleted.

– The remaining options would be to choose a fresh state for a1 or for both a1

and b1. However they all give rise to the same situation.

So by using deterministic automata we will never achieve compatibility. The
problem is clearly the removal of transitions that were added in an earlier stage
to ensure compatibility and that is precisely the reason why we introduced quasi-
deterministic automata. Starting from the transitions in the last case above, the
following quasi-deterministic tree automaton is constructed:

a0 → 1 b0 → 1 c0 → 1 f0(1, 1) → 1
a1 → 1 | 2 | 4 b1 → 1 | 3 | 5 f1(2, 3) → 1

f0(1, 4) → 1 f0(1, 5) → 1 f0(4, 5) → 1 f0(4, 4) → 1
f0(4, 1) → 1 f0(5, 1) → 1 f0(5, 4) → 1 f0(5, 5) → 1
f1(2, 5) → 1 f1(4, 3) → 1 f1(4, 5) → 1

Here 4 (abbreviating {1, 2}) is the designated state for a1 and 5 (abbreviating
{1, 3}) is the designated state for b1. The transitions in the last three rows
are added to satisfy the condition of Definition 11. The resulting automaton is
compatible with match(R).

To conclude match-raise-boundedness in the previous example, it is not
enough to construct a tree automaton that is compatible with match(R). We
also have to ensure that the automaton is closed under the implicit raise steps
caused by >−→match(R). How this can be done is explained in the next section.

8

6 Raise-Consistency

A naive (and sound) approach to guarantee that the implicit raise rules in the
definition of >−→e(R) are taken into account would be to require compatibility
with all raise rules fi(x1, . . . , xn) → fi+1(x1, . . . , xn) for which fi+1 appears in
the current set of transitions. The following example shows that this approach
may over-approximate the essential raise steps too much.

Example 18. Continuing the previous example, we have f0(1, 1) →raise(F) f1(1, 1)
with f0(1, 1) → 1. Compatibility requires the addition of the transition f1(1, 1) →
1, causing a new compatibility violation f1(1, 1) →match(R) f2(a2, b2) with f1(1, 1)
→ 1. After establishing the path f2(a2, b2) →∗ 1, f2 will make its appearance and
thus we have to consider f1(1, 1) →raise(F) f2(1, 1) with f1(1, 1) → 1. This yields
the transition f2(1, 1) → 1. Clearly, this process will not terminate.

To avoid the behaviour in the previous example, we now outline a better
way to handle the raise rules. Let fi(q1, . . . , qn) → q be a transition that we
add to the current set ∆ of transitions, either to resolve a compatibility vio-
lation or to satisfy the quasi-determinism condition. Then, for every transition
fj(q1, . . . , qn) → p ∈ ∆ with j < i we add fi(q1, . . . , qn) → p to ∆ and for
every transition fj(q1, . . . , qn) → p ∈ ∆ with j > i we add fj(q1, . . . , qn) → q to
∆. The automata resulting from this implicit handling of raise rules satisfy the
property defined below.

Definition 19. Let A = (FN , Q,Qf ,∆) be a tree automaton with N a finite
subset of N. We say that A is raise-consistent if for every pair of transitions
fi(q1, . . . , qn) → q and fj(q1, . . . , qn) → p in ∆ with i < j, the transition
fj(q1, . . . , qn) → q belongs to ∆.

Lemma 20. Let A = (FN , Q,Qf ,∆) be a quasi-deterministic tree automaton.
If A is raise-consistent then for all terms s, t ∈ T (FN) and states p, q ∈ Q with
base(s) = base(t), s →∗

∆ p, and t →∗
∆ q there exists a left-hand side l ∈ lhs(∆)

such that s ↑ t →∗
∆d

l and p, q ∈ Q(l).

Proof. We prove the lemma by induction on s and t. If s and t are constants
then s ↑ t ∈ {s, t}. If s 6 t then s ↑ t = t and p ∈ Q(t) by the definition of
raise-consistency. If t 6 s then s ↑ t = s and q ∈ Q(s). So in both cases we can
take l = s ↑ t. For the induction step suppose that s = fj(s1, . . . , sn) and t =
fk(t1, . . . , tn) with s →∗

∆ fj(p1, . . . , pn) →∆ p and t →∗
∆ fk(q1, . . . , qn) →∆ q.

The induction hypothesis yields left-hand sides l1, . . . , ln ∈ lhs(∆) such that si ↑
ti →∗

∆d
li with pi, qi ∈ Q(li) for all i ∈ {1, . . . , n}. Let m = max {j, k}. Clearly

s ↑ t = fm(s1 ↑ t1, . . . , sn ↑ tn). Let l = fm(pl1 , . . . , pln). We have s ↑ t →∗
∆d

fm(l1, . . . , ln) →∗
∆d

l. Because A is quasi-deterministic, fj(pl1 , . . . , pln) → p and
fk(pl1 , . . . , pln) → q belong to ∆. It follows that l ∈ lhs(∆). Raise-consistency
yields p, q ∈ Q(l). ut

Theorem 21. Let R be a TRS and L a language. Let A be a quasi-deterministic
and raise-consistent tree automaton. If A is compatible with e(R) and lift0(L)
then R is e-raise-bounded for L.

9

Proof. Let F be the signature of R and let A = (FN , Q,Qf ,∆). We have
lift0(L) ⊆ L(A). Let s ∈ L(A) and s

>−→e(R) t. Then there is a term s′ such
that s →∗

raise(F) s′ →e(R) t. We show that s′ ∈ L(A). If l is linear then
s = s′ and we are done. Suppose l is non-linear. To simplify the notation we
assume that l = f(x, x). We may write s = s[f(s1, s2)]p and s′ = s[f(u, u)]p
with base(s1) = base(s2) and u = s1 ↑ s2. Since s ∈ L(A), there exist states
p1, p2, q ∈ Q and qf ∈ Qf such that s →∗

∆ s[f(p1, p2)]p →∆ s[q]p →∗
∆ qf . In

order to conclude s′ ∈ L(A) we show that f(u, u) →∗
∆ q. The previous lemma

yields a left-hand side l ∈ lhs(∆) such that u →∗
∆d

l and p1, p2 ∈ Q(l). We obtain
f(u, u) →∗

∆d
f(l, l) →∗

∆d
f(pl, pl). Quasi-determinism yields f(pl, pl) → q ∈ ∆

and thus f(u, u) →∗
∆ q as desired. Now that s′ ∈ L(A) is established, we obtain

t ∈ L(A) from the compatibility of A and e(R), as in the proof of Theorem 16.
ut

Example 22. Since the resulting quasi-deterministic tree automaton in Exam-
ple 17 is raise-consistent and compatible with match(R) and lift0(T (F)), R is
match-raise-bounded by Theorem 21.

7 Forward Closures

When proving termination of a TRS R that is non-overlapping [11] or right-
linear [3] it is sufficient to restrict attention to the set RFC(R) of right-hand
sides of forward closures. This set is defined as the closure of the right-hand
sides of the rules in R under variable renaming and narrowing. More formally,
RFC(R) is the least extension of rhs(R) such that

– t[r]pσ ∈ RFC(R) whenever t ∈ RFC(R) and there exist a position p ∈
FPos(t) and a fresh variant l → r of a rewrite rule in R with σ a most
general unifier of t|p and l,

– tσ ∈ RFC(R) whenever t ∈ RFC(R) and σ is a variable renaming.

Dershowitz [3] obtained the following result.

Theorem 23. A right-linear TRS R is terminating if and only if R is termi-
nating on RFC(R). ut

The following concept has been introduced in [10]. It enables the simulation of
narrowing in the definition of right-hand sides of forward closures by rewriting.
This makes it possible to use tree automata to compute an approximation of
RFC(R) for linear R.

Definition 24. Let R be a TRS. The TRS R# is defined as the least extension
of R that is closed under the following operation. If l → r ∈ R# and p ∈
FPos(l) \ {ε} then l[#]p → rσ ∈ R#. Here the substitution σ is defined by
σ(x) = # if x ∈ Var(l|p) and σ(x) = x otherwise. The substitution that maps all
variables to # is denoted by σ#. Here # is a fresh function symbol.

The following results are proved in [10].

10

Lemma 25. If R is a linear TRS then RFC(R)σ# = →∗
R#

(rhs(R)σ#). ut

Corollary 26. If a linear TRS R is match-bounded for →∗
R#

(rhs(R)σ#) then
R is terminating. ut

In order to obtain a corresponding result for right-linear TRSs, we linearize
left-hand sides of rewrite rules.

Definition 27. Let t be a term. The set of linear terms s with Var(t) ⊆ Var(s)
for which there exists a variable substitution τ : Var(s) \ Var(t) → Var(t) such
that sτ = t is denoted by linear(s). Let R be a TRS. The set of rewrite rules
{l′ → r | l → r ∈ R and l′ ∈ linear(l)} is denoted by linear(R). We write R′

#

for linear(R)#.

Lemma 28. If R is right-linear then RFC(R)σ# ⊆ →∗
R′

#
(rhs(R)σ#).

Proof. We obviously have rhs(R) = rhs(linear(R)). Applying Lemma 25 to
linear(R) yields RFC(linear(R))σ# = →∗

R′
#
(rhs(R)σ#). Hence it is sufficient

to prove the inclusion RFC(R)σ# ⊆ RFC(linear(R))σ#. We omit the straight-
forward details. ut

The following example shows that the reverse inclusion does not hold.

Example 29. For the TRSR = {f(x, x) → f(b, g(x)), a → b} we have RFC(R)σ#

= {f(b, g(#)), b} and →∗
R′

#
(rhs(R)σ#) = {f(b, gi(#)), b, f(b, gi(b)) | i > 1}.

Corollary 30. Let R be a right-linear TRS. If R is match-raise-bounded for
→∗

R′
#
(rhs(R)σ#) then R is terminating.

Proof. Since RFC(R)σ# is a subset of →∗
R′

#
(rhs(R)σ#), R is also match-raise-

bounded for RFC(R)σ#. Theorem 9 yields the termination of R on RFC(R)σ#.
Since rewriting is closed under substitution, R is terminating on RFC(R). From
Theorem 23 we conclude that R is terminating on all terms. ut

We conclude this section by stating a simple criterion that allows us to restrict
the set of terms that have to be considered for termination of TRSs that are
non-duplicating but not necessarily right-linear. The easy proof is omitted. For
right-linear systems the use of forward closures is more powerful.

Lemma 31. Let R be a non-duplicating TRS over a signature F and let G ⊆ F
consist of all function symbols in rhs(R). Then R is terminating if and only if
R is terminating on T (G). ut

11

Table 1. 87 non-left-linear TRSs

28 right-linear 59 non-right-linear

RFC

explicit implicit explicit implicit explicit implicit

successes 8 9 21 21 4 8

average time 3 4 6 6 3421 549

timeouts 20 19 7 7 55 51

8 Experimental Results

The techniques described in the preceding sections are implemented in TTTbox.1

TTTbox is written in OCaml2 and consists of about 5000 lines of code.
Since quasi-determinisation is expensive, TTTbox collects and resolves all

compatibility violations with respect to the current automaton before making
the automaton quasi-deterministic. Then new compatibility violations are de-
termined and the process is repeated. Compatibility violations are resolved by
adding new transitions according to the following strategy, which is a variation
of the one used by Matchbox [16]. To establish a path rσ →∗

∆ q, TTTbox

1. calculates all contexts C[2, . . . ,2], D1[2, . . . ,2], . . . , Dn[2, . . . ,2] and terms
t1, . . . , tm ∈ T (F , Q) such that C[D1[t1, . . . , ti], . . . , Dn[tj , . . . , tm]] = rσ,
C[q1, . . . , qn] →∗

∆ q and ti →∗
∆ qti for states q1, . . . , qn, qt1 , . . . , qtm ∈ Q,

2. chooses among all possibilities one where the combined size of D1[2, . . . ,2],
. . . , Dn[2, . . . ,2] is minimal,

3. adds new transitions involving new states to achieve D1[qt1 , . . . , qti
] →∗ q1,

. . . , Dn[qtj , . . . , qtm] →∗ qn.

We report on the experiments we performed with TTTbox on the 87 non-left-
linear TRSs in version 3.2 of the Termination Problem Data Base.3 All tests were
performed on a server equipped with two Intel R© XeonTM processors running at
a CPU rate of 2.40 GHz and 2048 MB of system memory. Our results are sum-
marized in Table 1. We list the number of successful termination attempts, the
average system time needed to prove termination (measured in milliseconds),
and the number of timeouts. For all experiments we used a 60 seconds time
limit. In the left part of the table we deal with right-linear systems and test
for match-raise-boundedness, both with the explicit approach for handling raise
rules described in the first paragraph of Section 6 and the implicit approach
using raise-consistency. The positive effect of forward closures (Corollary 30)
is clearly visible. In the right part of Table 1 we deal with non-right-linear
TRSs. If the TRS under consideration is non-duplicating we test for match-
raise-boundedness; duplicating TRSs are tested for roof-raise-boundedness.
1
http://cl-informatik.uibk.ac.at/~mkorp/TTTbox.html

2
http://caml.inria.fr/

3
http://www.lri.fr/~marche/tpdb

12

All non-left-linear TRSs in the Termination Problem Data Base that can
be proved terminating with TTTbox can also be proved terminating with other
termination provers. Nevertheless there are non-left-linear TRSs which can cur-
rently only be handled by TTTbox. One such TRS consists of the following rules:

f(g(x, y)) → g(y, g(f(f(x)), a)) g(c, g(c, x)) → g(e, g(d, x))
g(x, x) → g(a, b) g(d, g(d, x)) → g(c, g(e, x))

g(e, g(e, x)) → g(d, g(c, x))

Using the implicit approach, TTTbox certifies in 0.059 seconds that this TRS
is match-raise-bounded for the set of right-hand sides of forward closures by 2.
It produces a quasi-deterministic and raise-consistent tree automaton that has
47 states and 213 transitions. None of the tools that participated in last year’s
termination competition can prove termination within 300 seconds.

9 Two Results for Match-Bounded String Rewriting

For the class of string rewrite systems (SRSs in the following), the match-bound
technique has some properties which do not hold for the more general case of
(left-linear) term rewriting. One of these is regularity preservingness [7]. The
following result of [7] states that match-boundedness is decidable if the bound c
is fixed.

Theorem 32. The following problem is decidable:

instance: an SRS R, a regular set L, a bound c ∈ N
question: is R match-bounded for L by c?

An efficient and exact algorithm for finding a compatible automaton that
solves the problem of Theorem 32 is described in Endrullis et al. [5] and imple-
mented in Jambox. When c is not fixed, match-boundedness becomes undecid-
able. This settles an open problem in [7].4

Theorem 33. The following problem is undecidable:

instance: an SRS R and a regular set L
question: is R match-bounded for L?

Proof. Let t be an arbitrary string and consider L = {t}. We show that R
is match-bounded for L if and only if t is terminating. Since the termination
problem for SRSs is undecidable [13], the result follows. If R is match-bounded
for L then t is terminating according to [7, Theorem 2]. Otherwise, for each
c ∈ N there exists a string u and a derivation lift0(t) →∗

match(R) u such that u
contains a function symbol of height c. Because the relation →match(R) is finitely
branching, it follows that there must be an infinite match(R)-derivation starting
from lift0(t). Erasing the heights from this derivation produces an infinite R-
derivation from t. Hence t is not terminating. ut
4 The question whether an SRS is match-bounded for the set of all strings remains

open.

13

The properties e-boundedness and e-raise-boundedness for e ∈ {match, roof,
top} are likewise undecidable. In order to prove that a given SRS R is not
match-bounded for a given set L, the following concept was introduced in [7].

Definition 34. Let R be an SRS and W a nonempty set that does not contain
the empty string. The set of all strings t for which there exist a string s ∈ W and
strings u, t′, v such that lift0(s) →∗

match(R) ut′v, base(t′) = t, and the height of
every symbol in t′ is at least 1, is denoted by raised(R,W). If W ⊆ raised(R,W)
then W is called a witnessing set for R.

Lemma 35 ([7]). Let R be an SRS such that ε /∈ lhs(R). If W is a witnessing
set for R then R is not match-bounded for W . ut

In [7] it is further shown that an SRS is looping if and only if it admits a
finite witnessing set. We now show that the converse of Lemma 35 does not
hold. We do this by exhibiting an SRS R without witnessing set that is not
match-bounded (for the set of all strings). This settles an open problem in [7].

Lemma 36. The SRS R = {aab → ab, bc → ab} is not match-bounded for
{a, b, c}∗.

Proof. Similar to the proof of Claim 2 in [7, Example 20]. First we prove by
induction on n that

a1b1c
2n−1
0 →∗

match(R) an+1bn+1

for all n > 1. If n = 1 then a1b1c0 →match(R) a1a1b1 →match(R) a2b2. If n > 1
then

a1b1c
2n−1
0 = a1b1c

2n−1−1
0 c2n−1

0 →∗
match(R) anbnc2n−1

0 →match(R) ana1b1c
2n−1−1
0

→∗
match(R) ananbn →∗

match(R) an+1bn+1

by applying the induction hypothesis twice. It follows that

a0b0c
2n

0 →match(R) a0a1b1c
2n−1
0 →match(R) a1b1c

2n−1−1
0 →∗

match(R) an+1bn+1

for all n > 1 and hence R is not match-bounded. ut

Lemma 37. The SRS R = {aab → ab, bc → ab} admits no witnessing set.

Proof. Assume to the contrary that W ⊆ raised(R,W) for some nonempty set
W ⊆ {a, b, c}+. Since c does not appear in any right-hand side of R it can never
reach a height greater than 0. Hence no string in W contains c and thus the
rule bc → ab cannot be used in establishing the inclusion W ⊆ raised(R,W). It
follows that W ⊆ raised(R′,W) for the SRS R′ = {aab → ab}. The following
finite automaton certifies that R′ is match-bounded for {a, b}∗ by 1:

//?>=<89:;/.-,()*+1

a0,b0

II

a1
**?>=<89:;2

b1

jj

Since W ⊆ {a, b}∗,R′ is also match-bounded for W . But then W ⊆ raised(R′,W)
cannot hold by Lemma 35. ut

14

Acknowledgments

We thank Alfons Geser for simplifying our earlier example in Lemmata 36 and 37.

References

1. F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

2. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications. Available from www.

grappa.univ-lille3.fr/tata, 2002.
3. N. Dershowitz. Termination of linear rewriting systems (preliminary version). In

Proc. 8th ICALP, volume 115, pages 448–458, 1981.
4. J. Endrullis. Jambox: Automated termination proofs for string/term rewriting.

Available from http://joerg.endrullis.de/, 2006.
5. J. Endrullis, D. Hofbauer, and J. Waldmann. Decomposing terminating rewrite

relations. In Proc. 8th WST, pages 39–43, 2006.
6. T. Genet. Decidable approximations of sets of descendants and sets of normal

forms. In Proc. 9th RTA, volume 1379 of LNCS, pages 151–165, 1998.
7. A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting sys-

tems. AAECC, 15(3-4):149–171, 2004.
8. A. Geser, D. Hofbauer, and J. Waldmann. Termination proofs for string rewriting

systems via inverse match-bounds. JAR, 34(4):365–385, 2005.
9. A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. Finding finite automata

that certify termination of string rewriting systems. IJFCS, 16(3):471–486, 2005.
10. A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. On tree automata that

certify termination of left-linear term rewriting systems. I&C, 205(4):512–534,
2007.

11. O. Geupel. Overlap closures and termination of term rewriting systems. Report
MIP-8922, Universität Passau, 1989.

12. J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termina-
tion proofs in the dependency pair framework. In Proc. 3rd IJCAR, volume 4130
of LNAI, pages 281–286, 2006.

13. G. Huet and D.S. Lankford. On the uniform halting problem for term rewriting
systems. Rapport Laboria 283, INRIA, 1978.

14. A. Middeldorp. Approximating dependency graphs using tree automata techniques.
In Proc. IJCAR, volume 2083 of LNAI, pages 593–610, 2001.

15. T. Nagaya and Y. Toyama. Decidability for left-linear growing term rewriting
systems. I&C, 178(2):499–514, 2002.

16. J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proc. 15th
RTA, volume 3091 of LNCS, pages 85–94, 2004.

17. H. Zantema. Termination of rewriting proved automatically. JAR, 34:105–139,
2005.

15

