
Simulated Time for Host-Based Testing

with TTCN-3 ⋆

Stefan Blom a, Thomas Deiß b, Natalia Ioustinova c,

Ari Kontio d, Jaco van de Pol c,e, Axel Rennoch f ,
Natalia Sidorova e

aInstitute of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria

bNokia Research Center, Meesmannstrasse 103, D-44807 Bochum, Germany

cCWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

dNokia Research Center, Itämerenkatu 11-13, 00180 Helsinki, Finland

eDepartment of Mathematics and Computer Science, Eindhoven University of

Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

fFraunhofer FOKUS, Kaiserin-Augusta-Allee 31, D-10589, Berlin, Germany

Abstract

Prior to testing embedded software in a target environment, it is usually tested in a
host environment used for developing the software. When a system is tested in a host
environment, its real-time behavior is affected by the use of simulators, emulation
and monitoring. In this paper, the authors provide a semantics for host-based testing

with simulated time and propose a simulated-time solution for distributed testing
with TTCN-3, which is a standardized language for specifying and executing test
suites. The paper also presents the application of testing with simulated time to
two real-life systems.

Corresponding author: Natalia Ioustinova, tel: +31-20-5924247.

Key words: testing, distributed systems, real time, discrete time, simulated time,
telecom, railway control systems, TTCN-3.

⋆ This work has been done within the project “TT-medal. Test and Testing Method-
ologies for Advanced Languages (TT-Medal) sponsored by Information Technology
for European Advancement program (ITEA)” [1]

Email addresses: Stefan.Blom@uibk.ac.at (Stefan Blom),
thomas.deiss@nokia.com (Thomas Deiß), ustin@cwi.nl (Natalia Ioustinova),
ari.kontio@nokia.com (Ari Kontio), Jaco.van.de.Pol@cwi.nl (Jaco van de
Pol), axel.rennoch@fokus.fhg.de (Axel Rennoch), n.sidorova@tue.nl (Natalia
Sidorova).

3 April 2007

1 Introduction

Software testing is of key importance for the quality of embedded systems.
Although no testing regime can find all errors, testing helps to detect bugs and
increases confidence in the trustworthiness of a system. Prior to testing in a
target environment embedded software is usually tested in a host environment
used for its development. When being tested, embedded software is executed
to check whether it meets certain quality requirements and to detect failures.
The requirements are expressed in the form of test cases that are executed by
a test system. The test system sends stimuli to the system under test (SUT)
and checks whether the response of the SUT matches one of the responses
expected by the test case. Note that both the SUT and the test system can be
distributed. If a failure is detected, the cause of the failure should be found by
debugging and corrected. Wrong timing of stimuli from the test system to the
SUT may lead to failures even in a correct system. Therefore, a test system
should be an adequate representation of a real environment of the SUT with
respect to time behavior.

Testing is an incremental process where components and (sub-)systems are
integrated and tested. Many software and hardware components and services
are not available for testing until the end of the development process. When
testing a component or a sub-system, a host environment makes use of simula-
tion and emulation techniques to execute it. Monitoring and instrumentation
are used to observe the external behavior of embedded software. Ideally, the ef-
fect of simulation, emulation and monitoring on the real-time behavior should
be negligible, not influencing test results. However, solutions satisfying this
requirement are often expensive and product-specific. In case the effects of
simulation, emulation and monitoring significantly change the real-timed be-
havior, real-time testing might miss to find errors or might report non-existing
errors.

A simple naive solution would be to test with scaled time. Scaled time is
calculated as initial time plus the product of a time factor and the difference
between the current physical time and the initial moment. The larger the
factor the faster tests can be executed. Choosing the optimal time factor is,
however, not trivial. The effects of a host environment are difficult to calculate
particularly for distributed systems. Moreover they may vary through the
execution. Thus using scaled time does not always solve the problem.

In this paper the authors propose a time semantics for testing with simulated
time. In simulated time, the system clock is modeled by a discrete logical
clock and time progression is modeled by a tick action. Simulated time is
suitable for testing and verifying a class of systems where delays are signifi-
cantly larger than the duration of normal events in the system. When used

2

for testing, simulated time ensures that an SUT and a test system agree on
time and advance time together. For testing distributed systems, simulated
time facilitates debugging by synchronizing time progression at all nodes and
providing the ability to stop or suspend time progression. Simulated time im-
proves thus controllability of testing and debugging. In general, simulated time
can be seen as scaled time with a dynamic time factor that is determined au-
tomatically. Since the factor is dynamic, the approach is efficient in the case
of varying computation times.

The authors have chosen the Testing and Test Control Notation version 3
(TTCN-3) to implement the proposed solution for testing with simulated time.
TTCN-3 is a language for specifying test suites. It has a syntax and operational
semantics standardized by the European Telecommunications Standards In-
stitute (ETSI) [2–4]. TTCN-3 was originally developed for real-time testing of
telecommunication systems. A TTCN-3 test executable has predefined stan-
dard interfaces [5,6,4]. Standardized interfaces of TTCN-3 allow the definition
of test suites on a level independent of a particular implementation or plat-
form, which significantly increases the reuse of TTCN-3 test suites. TTCN-3
interfaces provide support for distributed testing, which makes TTCN-3 par-
ticularly beneficial for testing embedded systems. TTCN-3 has already been
successfully applied to the testing of embedded systems not only in telecom-
munication but also in automotive and railway domains [7,8]. The time seman-
tics of TTCN-3 has been intentionally left open to enable the use of TTCN-3
with different time semantics [3]. Implementing simulated time using existing
TTCN-3 interfaces is, however, not straightforward.

In this paper the authors provide a framework for host-based simulated-time
testing with TTCN-3. They define the semantics of simulated time for host-
based testing with TTCN-3 and discuss which time constraints can be ade-
quately tested in a host environment with simulated time. Furthermore, the
authors provide a solution for implementing simulated time for a distributed
TTCN-3 test system and argue its correctness. The solution allows the exe-
cution of TTCN-3 test suites in real and in simulated time without having to
change them.

The rest of the paper is organized as follow. In Section 2, some aspects of
host-based testing of timed systems are discussed. In Section 3, the authors
define a semantics for host-based testing with simulated time and discuss the
adequacy of test results for host-based testing with real and with simulated
time. In Section 4, two applications of host-based testing with simulated time
are illustrated: one from the railway domain and another one from the tele-
com domain. Section 5 provides a brief survey on the general structure of a
distributed TTCN-3 test system and formalizes requirements to a distributed
TTCN-3 test system with simulated time. Section 6 contains requirements to
the entities of a TTCN-3 test system which enable implementing simulated

3

time. Section 7 presents a solution for simulated time host-based testing with
TTCN-3. Section 8 concludes the paper and provides a discussion of related
work.

2 Host-based testing of timed systems

Testing software in a target environment can be expensive and even impossible
due to the absence of the target environment. Software failures that occur
when testing safety-critical embedded systems (e.g. railway control systems)
in a target environment can be not only dangerous but also disastrous. The
time period when the target environment is available for testing software can
be very short, for example updating banking software often happens at night.
Therefore software is first tested in a host environment to find and fix as
many software errors as possible prior to running any test case in the target
environment. Increasing the degree of host-based testing before testing in a
target environment is a widely accepted approach to ensure the quality of
developed software.

Embedded systems are typically timed, i.e. a system has to interact with its
environment under certain timing constraints. Timing constraints are imposed
both on the system and on its target environment. The environment is respon-
sible for the timing of stimuli to the system. In this section the authors discuss
how a host environment affects the timed behavior of embedded software.

In host-based testing, a target environment is replaced by an environment
simulation. Ideally, the timing of stimuli in the simulated environment should
not differ significantly from the timing of stimuli in the target environment.
Developing simulators that adequately mimic the target environment is, how-
ever, often unfeasible due to high costs and time limitations imposed on the
whole testing process.

When executed, embedded software interacts with an operating system (OS)
that provides communication, time, scheduling and synchronization services.
In host-based testing, the services of the target operating system are often
emulated. To obtain adequate test results, the emulation should be accurate
with respect to the time required by the target operating system to provide the
above mentioned services. High timing accuracy is difficult to achieve when
emulating the target OS.

To assess the correctness of embedded software it is necessary to observe the
timing and the order of external events in the SUT. This is usually done by
monitoring or by instrumentation. To obtain adequate test results, changes
introduced by monitoring or instrumentation into the real time behavior of

4

the SUT should be negligible, i.e. they should not lead to changes in the timed
behavior of the SUT.

Monitoring introduces a software tool or hardware equipment that runs con-
currently with an SUT and logs observable events. Non-intrusive monitoring,
i.e. monitoring not affecting real time behavior of an SUT is expensive and
hard to achieve because it requires a product-specific hardware-based imple-
mentation.

Instrumentation enables observability by inserting additional code into the
code of an SUT. This extra code collects information about the SUT’s behav-
ior during test execution. To overcome the probe effects induced by instru-
mentation, instrumentation should be kept active in the real product so that
the test version and the real version behave similarly. This solution would,
however, increase the size of the code and sometimes significantly decrease
the system’s performance.

Simulations, emulations of the target operating system, monitoring and in-
strumentation affect the real-time behavior of an SUT. This restricts the class
of timing constraints that can be validated with host-based testing. Timing
constraints are often divided into two categories: performance constraints and
behavioral constraints [9]. Performance constraints are concerned with setting
limits on the latency and throughput of a system. Behavioral constraints spec-
ify logical correctness of a system. A behavioral requirement can, for example,
state that a system or a component produces an output if a certain stimulus
does not arrive within certain time limits. This paper focuses on testing logical
correctness rather than performance.

3 Simulated time for host-based testing

In this section, the time semantics for host-based testing with simulated time
is defined and guidelines on using testing with simulated time are formulated.
The adequacy of results obtained by host-based testing in real and in simulated
time is discussed.

Normally, it is assumed that real-time systems operate in “real” continuous
time. Although an environment of an embedded system changes continuously,
the system observes only snapshots of the environment. That provides a nat-
ural discretization of the environment’s behavior. Moreover, a less expensive,
discrete time solution is, for many systems, as good as dense time in the mod-
eling sense, and better than the dense one when testing and verification are
concerned [10,11]. Therefore, the authors choose to work with discrete time.

5

An embedded system should react to all important changes that happen in
its environment. That means that the system should take snapshots of the
environment often enough to catch the important changes. Moreover, the sys-
tem’s computations and communication should be fast enough for the system
to respond to the environment’s changes on time.

The authors consider the class of systems where (i) the snapshots are taken
often enough to allow to the system to see the important changes in the
environment and (ii) external delays are significantly larger compared with
the duration of normal computations and communication within the system.
If the system satisfies these requirements, the duration of computations within
the system is negligible compared to the external delays and can be safely
treated as instantaneous or zero time.

Host-based testing makes use of environment simulations, OS emulations,
monitoring and instrumentation which significantly affect timed behavior of
the system. To obtain test results independent of the changes caused by OS
emulations, the authors assume that the OS services are instantaneous (i.e.
provided in zero time). To get rid of probe effects induced by monitoring or
instrumentation, they are treated as being instantaneous as well.

The assumption that communication and computation is instantaneous im-
plies that time progress can never take place if some action is still enabled,
or in other words, time progress has the least priority in the system and may
take place only when the system is idle. This property is known as minimal
delay or maximal progress [12]. The assumption that actions are instantaneous
does not prevent one from modeling actions that take some time. Whenever
necessary, an explicit time delay can be put before an action or an action can
be split into start- and finish-events. Time progress is referred to as tick and
the period of time between two ticks is referred to as a time slice.

The concept of timers is usually used to express time-dependent behavior. A
timer can be either active or deactivated. An active timer keeps the informa-
tion about the time left until its expiration. When the delay becomes zero,
the timer expires and becomes deactivated. An expiration of a timer produces
a timeout. If the system is idle, the time progresses by action tick by the
minimal timer value of the currently active timers. If the delay left until timer
expiration reaches zero, the timer expires within the current time slice. Timers
ready to expire within the same time slice expire in an arbitrary order.

For testing purposes, the focus is on closed systems (a test system together
with an SUT) consisting of multiple components communicating with each
other. A component is idle if and only if it cannot proceed by performing
computations, receiving messages or consuming timeouts. The idleness of a
single component is called local idleness. A system is idle if and only if all

6

components of the system are idle and there are no messages or timeouts that
can still be received during the current time slice. Such messages and timeouts
are referred to as pending. The idleness of the whole system is called global
idleness. Subsequently, this time semantics is called simulated time.

Definition 1 (Global Idleness) A closed system is globally idle if and only
if all components are locally idle and there are no messages and no timeouts
pending.

To assess the adequacy of testing with simulated time, consider first the na-
ture of inadequate test results. A false positive refers to situations where an
execution of a system passes a test case but there exists another execution of
the system in the target environment on which the test case fails. A false neg-
ative refers to situations where a test case fails for some execution but for all
executions of the system in the target environment the test case passes. Note
that false positives are possible both in the host and in the target environment
whereas false negatives are only possible in the host one.

False negatives can be caused by an inadequate host environment. Building an
adequate host environment is a challenge both in the real and in the simulated
time frameworks. However, the discretization in the environment’s behavior
assumed for simulated time may alleviate this challenge to some extent. Even
if a test case passes in the target environment, failing the test case in the host
environment shows that there can be an environment where this test case fails.
This knowledge can be useful when migrating the system to another platform
or modifying the target environment.

Simulated time is convenient for debugging because it allows suspending time
progression in the SUT and the test system, inspecting the current situa-
tion with a debugger without stopping test execution completely and later on
resuming the test execution from the suspension point. Although helpful in
many ways, host-based testing with simulated time has the same limitations
as host-based testing in real time and testing in general as far as false positives
and false negatives are concerned.

4 Case Studies

In this section, two case studies illustrate the applicability of host-based testing
with simulated time. The first one is from the railway domain and the second
is from the telecommunication domain. 1

1 Non-disclosure agreements with the companies involved prevent release of any
details about the test systems, the SUTs and statistics on test execution.

7

Railway Interlockings Railway control systems consist of three layers: in-
frastructure, logistic, and interlocking. The infrastructure represents a railway
yard; the logistic layer is responsible for the interface with human experts, who
give control instructions for the railway yard to guide trains. The interlock-
ing guarantees that the execution of these instructions does not cause train
collisions or derailments. If the interlocking considers a command as unsafe,
the execution of the command is postponed until the command can be safely
executed or discarded.

Testing the interlocking in a target environment is safety-critical and expen-
sive. Therefore, it may take place only when a high level of confidence in
the logical correctness of the system has been achieved by host-based testing.
The authors tested the interlocking software in a host environment where the
interlocking software and the target environment have been simulated.

The tested interlocking system is based on Vital Processor Interlocking (VPI)
that is used nowadays in Australia, some Asian countries, Italy, the Nether-
lands, Spain and the USA. A VPI is implemented as a machine which executes
hardware checks and a program consisting of a large number of guarded as-
signments. The assignments reflect dependencies between various objects of a
specific railway yard like points, signals, level crossings, and delays on electrical
devices and ensure the safety of the railway system.

The VPI program has several read-only input variables, auxiliary variables
used for computations and several writable variables that correspond to the
outputs of the program. The program specifies a control cycle that is repeated
with a fixed period by the hardware. The control cycle consists of two phases:
an active phase and an idle phase. The active phase starts with reading new
values for input variables. The infrastructure and the logistic layer determine
the values of the input variables. After the values are latched by the pro-
gram, it uses them to compute new values for internal variables and finally
decides on new outputs. The values of the output variables are transmitted to
the infrastructure and to the logistic, where they are used to manage signals,
points, level crossings and trains. Here we assume that the infrastructure al-
ways follows the commands of the interlocking. The rest of the control cycle
the system stays idle.

The length of the control cycle is fixed by the design of the system. Delays
are used to ensure the safety of the system. A lot of safety requirements to
VPIs are timed. They describe dependencies between infrastructure objects
over a period of time. The objects of the infrastructure are represented in the
VPI program by input and output variables. Thus the requirements defined in
terms of infrastructure objects can easily be reformulated in terms of input and
output variables of the VPI program. Hence VPIs are time-critical systems.

8

For safety reasons, time spent by the system on communication and compu-
tation must be much smaller than the minimal time within which the system
must react to the changes in the environment. Thus the system satisfies the
requirements formulated for application of simulated time and simulated time
may be safely used for testing the system in the host environment.

The authors performed host-based testing of the interlocking with simulated
time. The standard requirements were formulated for the interlocking with
a general configuration. All requirements were of the form: initial situation,
action, expected results. To develop test cases, we had to (1) map the general
configuration to a particular configuration of the station; (2) map the initial
situation to the stimuli for the SUT; (3) map the final situation to the output
values expected from the SUT; (4) define default values for objects of the
station that are not involved in the tested situation but still can influence it;
(5) formulate time requirements for tested actions. We specified the test cases
in TTCN-3.

When we implemented a simulator for VPI, two things quickly became clear:
First, the simulator is a lot faster than the real hardware. Second, the running
time of the simulator is far less predictable. The reason for this unpredictability
is that the simulator spends less time on a slice without events than on a slice
in which an event happens. In practice the difference is often an order of
magnitude. Typically, time slices without events outnumber those with events
by an order of magnitude, so the gain of using simulated time is considerable.

The experiments showed that our approach to host-based testing with sim-
ulated time allows to detect violations of safety requirements in interlocking
software. The conclusion drawn from the experiments is that testing with sim-
ulated time is an adequate host-based testing method for this type of systems.
Moreover, it is a low-cost method compared to its alternatives.

GSM/WCDMA Mobile Phone Application The system from the telecom-
munication domain is embedded software for a dual-mode mobile terminal that
supports both WCDMA (Wideband Code Division Multiple Access) [13] and
GSM (Global System for Mobile Communication) [14]. Besides other control
functionality, the software considered implements the handover control be-
tween WCDMA and GSM: When a phone user first establishes a voice call
using WCDMA and then moves outside of WCDMA coverage, the phone is
able to continue the voice call service over GSM without noticeable distur-
bance. The SUT is a timed system. For example handover from WCDMA to
GSM should be accomplished within certain time bounds. Otherwise handover
would become visible to an end-user.

The authors tested the software in a host environment. The services of the
target operating system were emulated on a workstation and executed together

9

with the software. In the test system, representing the network side, the peer
entity to the tested software was implemented in TTCN-3. The lower protocol
layers were implemented in a C-based library for finite state machines and the
air interface was replaced by an Ethernet connection.

Typically, a message exchanged between the SUT and the test system causes
several messages to occur in the lower protocol layers. One could view the oc-
currence of messages within the complete system as bursty. Processing these
message bursts was fast compared to the duration of timers in the tested soft-
ware. Therefore the requirements for applying simulated time are satisfied in
this case. We used host based testing with simulated time to check behavioral
time-dependent features of the SUT.

To implement simulated time, idleness had to be detected in the tested soft-
ware, the protocol implementations, and in the TTCN-3 part of the system.
At the time of implementing this system the TTCN-3 control interface had
not been defined and the authors used a proprietary API. This API was sim-
ilar to the corresponding TCI operations and the idleness detection could be
implemented.

Testing the SUT with the developed test system allowed to debug the test
system. Throughout the test execution the SUT could be suspended and in-
spected with a debugger. These inspection time intervals could be arbitrary
long. As the SUT could not become idle while being suspended, no timer ex-
pired in such an interval and test case execution could continue after such a
long interval. The test system was implemented and shown to be working.

The solution for testing with simulated time in TTCN-3 is also applicable to
other systems with similar characteristics.

5 TTCN-3 test systems

In this section, an overview of a distributed TTCN-3 test system is given
and requirements for implementing a distributed TTCN-3 test system are
formulated.

TTCN-3 is a language for the specification of test suites [15]. The specifications
can be generated automatically or developed manually. A specification of a test
suite is a TTCN-3 module which might import other modules. Modules are
the TTCN-3 building blocks that can be parsed and compiled autonomously.
A module consists of two parts: a definition part and a control part. The first
one specifies test cases. The second one defines the order in which these test
cases should be executed.

10

C
om

po

n

en
t H

an

dl
in

g
 (C

H

)

Test Management (TM)

TRI

Test Logging (TL)

TTCN-3 executable (TE)

Main Test Component

Test Component

C
od

in
g

an

d
D

ec
od

in
g

(C

D
)

Platform Adapter
(PA)

System Adapter
(SA)

TCI-TM TCI-TL

T
C

I-

C

H

T
C

I-

C

D

Fig. 1. General structure of a distributed TTCN-3 test system (TS)

A test suite is executed by a TTCN-3 test system whose general structure is
defined by the TRI (TTCN-3 Runtime Interface) standard [5] and illustrated
in Fig. 1. The TTCN-3 executable (TE) entity actually executes or interprets
a test suite. A call to a test case can be seen as an invocation of an independent
program. Starting a test case creates a configuration. A configuration consists
of several test components running in parallel. The first test component cre-
ated at the starting point of a test case execution is the main test component
(MTC). The test components communicate with each other and with an SUT
by message passing or by procedure calls. For communication purpose, a test
component owns a set of ports. Each port has in and out directions: infinite
FIFO queues are used to represent the in directions; the out directions are
linked directly to the communication partners.

The concept of timers is used in TTCN-3 to express time-dependent behav-
ior. A timer can be either active or deactivated. An active timer keeps the
information about the time left until its expiration. When this time becomes
zero, the timer expires and becomes deactivated. The expiration of a timer
produces a timeout. The timeout is enqueued at the component to which the
timer belongs.

The Platform Adapter (PA) implements timers and operations on them. The
System Adapter (SA) implements communication between a TTCN-3 test sys-
tem and an SUT. It adapts message- and procedure-based communication of
the TTCN-3 test system to the particular execution platform of the SUT. The
TTCN-3 runtime interface (TRI) allows the TE entity to invoke operations
implemented by the PA and the SA.

The Test Management (TM) entity controls the order of the invocation of
modules. The Test Logging (TL) logs test events and presents them to the
test system user. The Coding and Decoding (CD) entity is responsible for

11

the encoding and decoding of TTCN-3 values into a format suitable to be
exchanged to the SUT. The Component Handling (CH) is responsible for im-
plementing distribution of components, remote communication between them
and synchronizing components running on different instances of the test sys-
tem. Instances of the TE entity interact with the TM, the TLs, the CDs and
the CH via the TTCN-3 Control Interface (TCI) [6].

A test system (TS) can be distributed over several test system instances TS1,
..., TSn each running on a separate test device [16]. Each TSi has an instance
TEi of the TE entity equipped with the corresponding SAi, the test logging
(TL) entity TLi, a PAi and a coder/decoder CDi running on the node. One
of the TE’s instances is identified to be the main one. It starts executing a
TTCN-3 module and computes final testing results.

5.1 Simulated time requirements for a TTCN-3 test system

The time semantics of TTCN-3 has been intentionally left open to enable the
use of TTCN-3 with different time semantics [3]. Nevertheless, the focus has
been on using TTCN-3 for real-time testing; not much attention has been paid
to implementing other time semantics for TTCN-3 [4]. The existing standard
interfaces TCI and TRI [5,6] provide excellent support for real-time testing
but lack operations necessary for implementing simulated time.

The goal of our research is to provide a solution for implementing simulated
time for distributed TTCN-3 test systems. Developing a test suite for host-
based testing costs time and effort. Therefore, the test suites developed for
host-based testing with simulated time should be reusable for real-time testing
in the target environment. Here, the authors provide a solution that can be
implemented on the level of adapters instead on the level of TTCN-3 code.
In this way, the same TTCN-3 test suites can be used both for host-based
testing with simulated time and for real-time testing in the target environment.
Although providing such a solution inevitably means extending the TRI and
TCI interfaces, the authors try to keep these extensions minimal.

According to the definition of global idleness (Def. 1), it is important to detect
situations when all components of the system are locally idle and there are
no messages and no timeouts pending. Here this definition is reformulated in
terms of a necessary and sufficient condition to detect global idleness of the
closed system.

Procedure-based communication in TTCN-3 treats procedure calls, replies,
and exceptions as special kinds of messages. Analogous to the send and
receive operations for messages, the operations call and getcall are re-
sponsible for sending and receiving procedure calls. The operations reply and

12

[∀i = 1..n : idle(TEi) ∧ idle(PAi) ∧ idle(SAi)] ∧ idle(SUT) (1)
∑

i=1..n SASentSUTi = EnqdSUT (2)

SentSUT =
∑

i=1..n EnqdSAi (3)
∑

i=1..n TCISentTEi =
∑

i=1..n TCIEnqdTEi (4)

∀i = 1..n : TRISentTEi = TRIEnqdSAPAi (5)

∀i = 1..n : TRISentSAPAi = TRIEnqdTEi (6)

Fig. 2. Global Idleness Conditions

getreply are used to send and to receive replies of procedures. The operations
raise and catch do the same for exceptions [4]. Therefore, the treatment of
procedure calls, replies and exceptions in idleness detection would not differ
much from treating messages when detecting idleness. Handling calls, replies,
and exceptions on the TRI and the TCI levels is also similar to handling mes-
sages [5,6]. For the sake of simplicity, in the rest of the paper the authors
restrict communication to message-based communication.

The closed system consists of a TTCN-3 test system and an SUT. A distributed
TTCN-3 test system (TS) consists of n test system instances running on dif-
ferent test devices. In the following the test instance i is denoted as TSi. Each
TSi consists of a TEi, SAi and PAi. Global idleness requires all the entities to
be in the idle state (see condition (1) in Fig. 2). Condition (1) is necessary but
not sufficient to decide on global idleness of the closed system. There still can
be messages or timeouts pending which can activate one of the idle entities.

“No messages or timeouts pending” means that all sent messages and timeouts
are already enqueued at the input ports of the receiving components. When
testing with TTCN-3, the following conditions have to be ensured:

• There are no messages pending between the SUT and the TS, i.e. all mes-
sages sent by the SA (SASentSUT) are enqueued by the SUT (Enqd-
SUT) and all messages sent by the SUT (SentSUT) are enqueued by the
SA (EnqdSA) (see conditions (2-3) in Fig. 2).

• There are no remote messages pending at the TCI interface, i.e. all messages
sent by all instances of the TE entity via the TCI interface (TCISentTE)
are enqueued at the instances of the TE entity (TCIEnqdTE) (see condi-
tion (4) in Fig. 2).

• There are no messages pending at the TRI interface, i.e. the number of
messages sent by every TEi via the TRI (TRISentTE) should be equal to
the number (TRIEnqdSAPA) of messages enqueued by the correspond-
ing SAi and PAi, and the number of messages sent by every SAi and PAi

TRISentSAPA is the same as the number of messages enqueued by the
corresponding TEi, TRIEnqdTE (see conditions (5-6) in Fig. 2).

13

Proposition 2 A closed system is globally idle if and only if conditions (1-6)
in Fig. 2 are satisfied.

Thus to implement simulated time for TTCN-3, it is important to detect
situations in which conditions (1-6) in Fig. 2 are satisfied and enforce time
progression in the form of tick actions.

6 Local idleness of PA, SA and TE

The entities of the test system have to provide information on their status to
detect global idleness. This section defines the requirements on the behavior
of PA, SA and TE that have to be satisfied to enable implementing a TTCN-3
test system with simulated time. For the sake of readability, the requirements
are formulated in terms of messages that should be issued and received by PA,
SA and TE entities to report their status and to progress time. (Note that
these requirements can be easily reformulated in terms of interfaces provided
and required by PA, SA, TE and CH entities.)

A PAi is responsible for implementing timers. It is assumed that the PAi

maintains the list of deactivated timers, the list of timers ready to expire, and
the list of active timers that are not ready to expire in the current time slice.
A PAi is idle iff it does not perform any computations and none of the timers
is ready to expire. Otherwise the PAi may proceed with expiring the timer and
sending a timeout to the TEi. Local idleness of the PAi is easy to detect by
checking the list of ready timers. Whenever the list of ready timers becomes
empty, PAi sends a message IDLE parametrized by the number TRISent of
messages sent and the number TRIEnqd of messages received and enqueued
by the PAi via the TRI respectively.

The list of ready timers has to be updated at each time-progression step. To
enforce time progression, an idle PAi has to be able to receive message TICK.
On receiving this message, the PAi updates the list of ready timers. To trigger
the expiration of timers in the next time slice, the PAi has also to be able to
receive message RESTART. Receiving this message triggers expiring all ready
timers by the PAi.

Another possibility to activate the PAi is to start a timer with zero-delay. In
this case the timer is ready to expire in the current time slice. Every time the
TEi calls the triStartTimer operation at an idle PAi, the PAi has to send
message ACTIVE to indicate its activation within the same time slice.

An SAi is idle iff it does not perform any computations and there are no
messages the SAi still can deliver to the TEi or to the SUT within the same

14

time slice. An idle SAi becomes active iff it receives a message from the TEi

or from the SUT. In case the SAi makes use of timers (for example to mimic
channels with delays), it can also be activated by timeouts from the PAi.

An active SAi issues message IDLE when the SAi has no messages to deliver in
the current time slice. This message is parametrized by the number TRISent

of messages sent by the SAi, the number TRIEnqd of messages enqueued
at the SAi, and by SUTSent and SUTEnqd, which provide the analogous
information about messages exchanged between the SAi and the SUT.

In case an idle SAi receives a message from the SUT or from TEi, or a timeout
from the PAi, it reports this activation by sending message ACTIVE. Note
that queues of the SAi do not have to be empty when reporting local idleness.
Delivering messages can be delayed for one or more time slices.

There can be several test components running in a single TEi. Each test
components can be either active or idle. Whenever a message or a timeout
is enqueued at a port of a component, this test component becomes active.
Whenever a test component is waiting for a message or a timeout to receive
but there are no messages to process, the test component is idle. A TEi is idle
iff all test components running on it are idle and there are no messages and
timeouts pending in the TEi.

The goal of this work is to obtain a TTCN-3 test suite that is executable both
with simulated and with real time, without having to introduce changes in
order to switch from one mode to another. Therefore, detecting the idleness of
a TEi has to be performed by the TEi itself. For test execution, the TEi keeps
track of components running on it and messages exchanged via the TCI and
TRI interfaces. Moreover, the TEi also has access to the content of the internal
queues. Thus the functionality of a runtime system can be easily adapted to
detect the situations when all test components running on a test device are
idle.

A TEi should send message IDLE when the active TEi becomes idle. The mes-
sage is parametrized by TCISent and TCIEnqd, which keep track of messages
exchanged via the TCI, and by TRISent and TRIEnqd that capture the same
information for messages exchanged via the TRI interface. To detect activat-
ing an idle TEi by a message via the TCI, an idle TEi activated by a remote
message should issue message ACTIVE. 2 Note that the parameters provide
the numbers of messages exchanged since the last time an entity has reported
idleness or since the initialization (for the first time slice).

2 Nokia has submitted a change request to ETSI to introduce an operation
tciAllAWait(TRIcounter1, TRIcounter2, TCIcounter1, TCIcounter2)
with the same functionality to the TCI interface. The change request is currently
pending.

15

7 Global idleness detection

The conditions for detecting global idleness are similar to the conditions that
have to be detected to decide on a termination of a distributed system consist-
ing of N components communicating with each other [17]. In this section, the
authors extend the well-known distributed termination detection algorithm of
Dijkstra-Safra [18] to detect global idleness and to implement time progres-
sion.

Distributed termination detection algorithm of Dijkstra-Safra The
distributed termination detection algorithm of Dijkstra-Safra [18] detects ter-
mination of a system of N components. Each component has a unique identity
that is a natural number from 0 to N−1. The algorithm distinguishes two kinds
of messages: (i) basic messages exchanged by the components; (ii) termination
detection messages. The main assumption important for the correctness of the
algorithm is that the communication is reliable, meaning that no message is
lost. (That is a reasonable assumption for embedded systems.)

Each component has a status that is either active or idle. Active compo-
nents can send messages, idle components are waiting. An idle component
can become active only if it receives a basic message. An active component
can become idle without receiving any stimuli from outside. The system ter-
minates only if all components have idle status and all channels are empty.
The Dijkstra-Safra algorithm allows one of the components, for example the
0-component, to detect whether termination has been reached.

One cannot decide on termination by only looking at the status of the compo-
nents. The idle status of the components is necessary but not sufficient. The
status of a component changes from idle to active only by receiving a basic
message, so one has to keep track of all the messages in the network. To do
this, each component has a local message counter. A component decreases its
counter when it receives a basic message. When a component sends a basic
message, it increases its message counter. Moreover, each component has a lo-
cal flag. The flag is initially false, and it turns true only when the component
receives a basic message.

The components are connected into a ring that is used to transmit the ter-
mination message referred to as a token. The termination token consists of a
global message counter and a global flag. The 0-component initiates the termi-
nation detection algorithm by sending a termination token with the counter
equal to 0 and the flag equal to false to the next component in the ring.
The 0-component expects that no messages are pending in the network and
no component has active status, which is to be checked by passing the token
along the ring.

16

If the component with the token has active status, it keeps the token un-
til its status becomes idle. If the component has idle status, it modifies the
token by adding its local message counter to the global message counter. If
the value of the local flag of the component is true, the component sets the
global flag to true, meaning that maybe one of the system components is still
active. Otherwise the global flag remains unchanged. Then the component
forwards the token to the next component along the ring. After forwarding
the token, the component changes its local flag to false, meaning that the
token already got the up-to-date information about this component. The ter-
mination is detected by the 0-component only if the component gets back the
token with the global flag equal to false and the sum of the global message
counter with the local message counter of the 0-component is zero. In this case
the 0-component can be sure that all other components have idle status and
there are no messages pending in the FIFO queues representing the channels.
Otherwise, the 0-component starts a new round of termination detection by
sending a termination token with the counter equal to 0 and the flag equal to
false.

7.1 An extension of the distributed detection algorithm

The authors extend the Dijkstra-Safra distributed termination detection algo-
rithm to decide on the global idleness of a closed system and to trigger time
progression. In the Dijkstra-Safra algorithm, termination detection is built
into the functionality of a component. Here the global idleness detection is
separated from the normal functionality of a component by introducing an
idleness handler for each component of the closed system. Since TTCN-3 is
mainly used in the context of black-box testing, where one can only observe
external actions, the SUT is considered as a single component which has to im-
plement certain interfaces in order to be tested with simulated time. Instances
of the TS are considered as single components in a distributed TTCN-3 test
system. The authors require synchronous communication between a compo-
nent and its idleness handler to guarantee the correctness of the extension of
the algorithm.

To decide on the global idleness the authors introduce a time manager which
corresponds to the 0-component in the Dijkstra-Safra algorithm. The time
manager can be provided as a part of the SUT or as a part of the test system.
The time manager and the idleness handlers are connected into a ring.

Time Manager The time manager initializes the global idleness detection,
decides on the global idleness and enforces time progression. In a distributed
system, one needs to ensure that all components take the time progression
step prior to starting the new time slice.

17

To ensure correct time progression, the progress of time is divided into two
phases: (i) time progress; (ii) reactivation of components in the new time
slice. Time progression causes reinitializing of the idleness handlers in the
new time slice and propagating time progress to platform adapters. When
all instances of the TS and the SUT are informed about time progress, they
may issue timeouts in the new time slice. If an instance of TS or the SUT
was allowed to issue timeouts immediately after it receives information about
time progression, it could lead to receiving messages “from the future” by an
instance of the TS or by the SUT where time has not progressed yet. After
reactivating all the instances of TS and the SUT, the time manager proceeds
with detecting idleness in the new time slice.

Detecting global idleness, time progression, and reactivating the instances of
the TS and the SUT in the new time slice are done by sending a token along
the ring. As in the original algorithm, the idleness token has a counter, which
keeps track of external messages exchanged by instances of the TS and the
SUT, and a global flag.

To support time progression and reactivation in the next time slice, the set
of values of the global flag carried by the token is extended. In the original
algorithm, the global flag was either true or false. In the extended version,
the flag can be “IDLE”, meaning that there are no active instances in the
TS, “ACTIVE”, meaning that maybe one of the TS instances or the SUT is
still active, “TICK”, meaning time progression, and “RESTART”, meaning
reactivating the system in the new time slice.

The time manager initiates idleness detection by sending the idleness token
with the counter equal to 0 and the flag equal to “IDLE” to the next idle-
ness handler along the ring. The time manager detects global idleness if it
receives the idleness token with the counter equal to zero, meaning there are
no messages pending between instances of the TS and the SUT, and the flag
equal to “IDLE” meaning that all instances of the TSs and the SUT are idle.
Otherwise it repeats idleness detection in the same time slice.

If global idleness is detected, the time manager changes the flag of the token
to “TICK” and sends the token along the ring. After the time manager has
received again the token with the flag “TICK”, it triggers the start of a new
time slice by sending the token with flag “RESTART”. Upon receiving the
token with flag “RESTART”, the time manager restarts idleness detection in
the new time slice.

Idleness handler for TSi The idleness handler decides on local idleness
of the TSi, propagates the idleness token along the ring and triggers time
progression at the PAi. The idleness handler for the SUT is a simplified version
of the TSi idleness handler and is explained at the end of this section. The

18

behavior of an idleness handler for TSi is specified as a Promela process [19].

The syntax of Promela is similar to that of C, but the if and do-loop use
Dijkstra’s guarded command syntax [20]. That is,

do
:: Guard1 −→ Response1

:: Guard2 −→ Response2

od
means: if Guard1 is true, execute Response1; if Guard2 is true, execute
Response2; if both are true choose non-deterministically and repeat until a
break statement is executed. Moreover, the syntax for sending (receiving) a
message MSG with parameters p, q on channel CName is CName!MSG,p,q
(CName?MSG,p,q). Receiving is often used in guards, where the message
received can both be stored in a variable and compared against a given value.
In channel declarations, the size of the buffer is specified. A buffer size of 0
specifies that communication is synchronous rather than asynchronous.

Fig. 3 contains the declarations of channels and variables plus the main event
loop. The body of the event loop is split over Fig. 4 and 5, which contain the
handling of local and global messages, respectively.

The idleness handler receives an idleness token via channel RingIn and sends
it further via channel RingOut (declared in Fig. 3, l. 2,3). Channels TE,

PA, SA (l. 4-6) serve for communication with the PAi, the SAi and the TEi

respectively.

Messages exchanged by the TEi, the SAi, and the PAi via the TRI interface
are referred to as internal wrt. the TSi. Messages exchanged by the TEi via the
TCI interface and messages exchanged by the SAi with the SUT are referred
to as external wrt. the TSi. The idleness handler receives messages IDLE and
ACTIVE from the TEi, the SAi and the PAi and sends messages TICK and
RESTART to the PAi (declared in l. 1). IDLE messages are parametrized
with the number of messages exchanged via TRI, TCI, and with the SUT as
defined in Section 6.

The TSi is locally idle if and only if the TEi, the SAi, and the PAi are idle
and there are no messages or timeouts pending between the TEi, the SAi,
and the PAi. The idleness handler maintains several local counters to collect
information on the number of internal and external messages exchanged (l.
11-13). TRISentTE and TRIEnqdTE keep the number of messages sent and
enqueued by the TEi via the TRI interface. TRISentSAPA and TRIEnqd-

SAPA provide analogous information for the SAi and the PAi. These four
counters are necessary to detect the local idleness of the TSi. TCITEcount

and SASUTcount keep the number of external messages exchanged by the
TSi via the TCI interface and with the SUT. The last two counters contain

19

1 mtype={IDLE , ACTIVE, TICK, RESTART} ;
2 chan RingIn = [1] of {mtype , int , bool } ;
3 chan RingOut = [1] of {mtype , int , bool } ;
4 chan TE=[0] of {mtype , int , int , int , int } ;
5 chan PA=[0] of {mtype , int , int } ;
6 chan SA=[0] of {mtype , int , int , int , int } ;
7 active proctype TSIdlenessHandler (){
8 bool flagSA = true , flagTE = true ; /* local flags */
9 bool idleSA = false , idlePA = false , idleTE = false ; /* idleness status */

10 bool buffer = false ; /* presence of idleness token */
11 int TRISentTE = 0 , TRIEnqdTE = 0 , TCITEcount =0; /* local counters of TE */
12 int TRISentSAPA = 0 , TRIEnqdSAPA = 0 ; /* local counters of SA and PA */
13 int SASUTcount = 0 ; /* local counter of SA/SUT */
14 mtype tokenFlag ; /* global flag */
15 int tokenCount ; /* global counter */
16 int TRISent , TRIEnqd , TCISent , TCIEnqd , SUTSent , SUTEnqd ;
17 do {
18 /* TE, PA and SA report idle or active, see Fig. 4 */ . . .

19 /* detection local idleness of TS and propagation of idleness token, see Fig. 5 */ . . .

20 }
21 od

22 }

Fig. 3. Idleness Handler for TSi

information necessary to decide on the global idleness.

The information about external messages exchanged by the TSi is propagated
to the time manager by updating the token. To ensure that the same in-
formation is used at most once for updating, the idleness handler keeps two
flags: one for TEi and one for SAi (flagTE, flagSA, l. 8). The flags indicate
whether TCITEcount and SASUTcount contain information that has not
been propagated yet. The PAi is not involved in communication with the SUT
and the rest of the TS, information on messages exchanged by the PAi is only
important to detect local idleness of the TSi, thus there is no need for a local
flag for the PAi. The idleness handler keeps information on the status of the
TEi, SAi and PAi in variables idleTE, idleSA and idlePA respectively (l. 9).

Initially, the statuses are false meaning the PAi, the SAi and the TEi are po-
tentially active. The flags are initiated to true, meaning the idleness manager
does not have up-to-date information about messages exchanged by the TSi

via TCI and about messages exchanged by the TSi and the SUT. The counters
are initially zero.

In Fig. 4, if the idleness handler receives an IDLE message from the TEi (l.
1), it sets the flag flagTE to true, changes idleTE to true, and modifies the
local counters TRISentTE, TRIEnqdTE and TCITEcount (l. 2-5). Now the
flag flagTE indicates that the information about the TSi carried by the token
is not up-to-date anymore. Similarly to the original Dijkstra-Safra algorithm,
the number of messages sent by the TEi via the TCI interface to the rest of the
test system is added to the TCITEcount-counter and the number of messages
received via the TCI interface and enqueued by the TEi is subtracted from
the counter.

20

1 : : TE? IDLE , TCISent , TCIEnqd , TRISent , TRIEnqd −→{ /* TE reports idle */
2 flagTE = true ; idleTE = true ;
3 TRISentTE = TRISentTE + TRISent ;
4 TRIEnqdTE = TRIEnqdTE + TRIEnqd ;
5 TCITEcount = TCITEcount + (TCISent−TCIEnqd) ;
6 }
7 : : PA?IDLE , TRISent , TRIEnqd −→{ /* PA reports idle */
8 idlePA = true ;
9 TRISentSAPA = TRISentSAPA + TRISent ;

10 TRIEnqdSAPA = TRIEnqdSAPA + TRIEnqd ;
11 }
12 : : SA?IDLE , TRISent , TRIEnqd , SUTSent , SUTEnqd −→ { /* SA reports idle */
13 flagSA = true ; idleSA = true ;
14 TRISentSAPA = TRISentSAPA + TRISent ;
15 TRIEnqdSAPA = TRIEnqdSAPA + TRIEnqd ;
16 SASUTcount = SASUTcount + (SUTSent−SUTEnqd) ;
17 }
18 : : TE?ACTIVE, , , , −→ idleTE = false ; /* TE reports active */
19 : : PA?ACTIVE, , −→ idlePA = false ; /* PA reports active */
20 : : SA?ACTIVE, , , , −→ idleSA = false ; /* SA reports active */

Fig. 4. PAi, SAi and TEi report IDLE or ACTIVE

Receiving an IDLE message from the PAi (l. 7) results in changing the status-
variable idlePA to true and updating the local counters TRISentSAPA and
TRIEnqdSAPA by the number of messages sent TRISent and the number of
message enqueued TRIEnqd by the PAi, resp. (l. 8-10)

Receiving an IDLE message from the SAi (l. 12) results in changing the flag of
SAi to true, setting the status of SAi to true, and updating the local counters
TRISentSAPA, TRIEnqdSAPA, and SUTSAcount (l. 13-16). The number
TRISent of messages sent by the SAi is added to TRISentSAPA; the num-
ber TRIEnqd of messages enqueued by the SAi is added to TRIEnqdSAPA.
Similarly to the original algorithm, the number of messages exchanged with
the SUT is increased by the number SUTSent of messages sent by the SAi to
the SUT, and decreased by the number SUTEnqd of messages from the SUT
enqueued by the SAi.

Even if the TEi, the SAi, and the PAi are reported to be idle, they will not
necessarily remain locally idle until the next time slice. An idle TEi remains
idle until it receives a message or a timeout. An idle PAi can be reactivated by
setting a timer to the current time. A message from the SUT or a message from
the TEi activates an idle SAi. If activated, the entity sends message ACTIVE

to the idleness handler. The idleness handler changes the corresponding status
variable to false (see Fig. 4, l. 18-20).

In Figure 5, the first two lines allow TSi to receive the token and store it.

Local idleness of the TSi may be concluded (l. 4,5) if the status variables
idleSA, idlePA and idleTE are true and there are no messages between TEi,
PAi and SAi. The latter holds if all messages sent by TEi via TRI are already
enqueued by SAi and PAi (i.e. TRISentTE is equal to TRIEnqdSAPA), and

21

1 /* receiving idleness token */
2 : : RingIn?tokenFlag , tokenCount −→ buffer = true ;
3 /* detection local idleness TS, propagation of token */
4 : : (idlePA ∧ idleSA ∧ idleTE ∧ (TRISentTE == TRIEnqdSAPA) ∧
5 (TRIEnqdTE == TRISentSAPA) /* TS is locally idle */
6 ∧ buffer)−→ /* and TS holds the token */
7 { i f

8 : : (tokenFlag==IDLE ∨ tokenFlag==ACTIVE) −→
9 { i f

10 : : (flagTE) −→ {tokenFlag = ACTIVE;
11 tokenCount = tokenCount + TCITEcount;
12 TCITEcount = 0 ; flagTE = false ; }
13 f i ;
14 i f

15 : : (flagSA) −→ {tokenFlag=ACTIVE;
16 tokenCount = tokenCount + SASUTcount;
17 SASUTcount = 0 ; flagSA = false ; }
18 f i

19 }
20 : : (tokenFlag==TICK) −→ { /* time progression */
21 TRISentTE = 0 ; TRIEnqdTE = 0 ;
22 TRISentSAPA = 0 ; TRIEnqdSAPA = 0 ;
23 SASUTcount = 0 ; idlePA = false ;
24 flagSA = true ; flagTE = true ;
25 PA!TICK,0 ,0 ; }
26 : : (tokenFlag== RESTART) −→ PA!RESTART, 0 , 0 ; /* start new time slice */
27 f i ;
28 buffer = false ;
29 RingOut ! tokenFlag , tokenCount ; /* propagate token */
30 }

Fig. 5. Detection local idleness, propagation and time progression

the messages sent by the SAi and the PAi via TRI are already enqueued by
the TEi (i.e. TRIEnqdTE is equal to TRISentSAPA).

Since the TEi, the SAi, and the PAi report the number of the enqueued
messages only when they become idle (see Section 6), conditions (1-3) in Fig. 6
imply local idleness of the TSi.

If the local idleness conditions are satisfied and the idleness handler possesses
the idleness token with flag “IDLE” or “ACTIVATE” (l. 8), the handler prop-
agates the up-to-date information about external messages exchanged by the
TSi to the time manager by updating the idleness token (l. 9-19) and sending
it further along the ring (l. 28,29). If the TE has reported being idle at least
once since the last visit of the token, i.e. the flagTE is true (l. 10), then
the number of messages exchanged via TCI has possibly changed. Thus the
handler updates the counter of the idleness token. The value kept by TCI-

count is added to the counter of the idleness token (l. 11-12). Analogously, if
the SA has reported being idle at least once since the last visit of the token,
i.e. flagSA is true (l. 15), the number of messages exchanged with the SUT
has possibly changed. Thus the idleness handler updates the token counter by
adding the value kept in SASUTcount (l. 16,17). If at least one of the flags is
true, the flag of the token changes to “ACTIVATE” (l. 10,15) meaning that
one of TS instances or the SUT is still possibly active.

22

idle(SAi) ∧ idle(PAi) ∧ idle(TEi) (1)

TRISentTEi = TRIEnqdSAPAi (2)

TISentSAPAi = TRIEnqdTEi (3)

Fig. 6. Local idleness of TSi

If the idleness handler holds an idleness token with flag “TICK” (l. 20), it
prepares to detect idleness in the next time slice by setting all the flags to
true, setting idlePA to false, sending a TICK message to the PAi (l. 21-25),
and sending the token to the next handler along the ring (l. 28,29). The PAi

is activated by time progression, so it should report idleness at least once per
time slice. Both TEi and SAi may, however, remain idle during a time slice,
i.e. they do not necessarily report idleness in every time slice. Therefore, the
status of TEi and of SAi remains idle until explicit activation.

If the idleness handler gets an idleness token with flag “RESTART” (l. 26),
it sends message RESTART to the PAi and propagates the token to the next
idleness handler (l. 29).

Proposition 3 An idleness handler for a TSi detects local idleness of the TSi

iff conditions (1-3) in Fig. 6 are satisfied.

Idleness Handler for SUT It does not matter whether the time manager
is implemented by the test system or by the SUT as long as there is precisely
one time manager per closed system. Moreover, the idleness handler of the
SUT should support sending and receiving of an idleness token.

An SUT is idle iff it cannot progress further by performing computations or
by exchanging messages with the test system. When doing black-box testing,
one does not have control over the computations of an SUT and one cannot
observe its internal FIFO queues. Therefore the following assumption is made
on an SUT: The SUT implements an idleness handler, idleness detection,
and time progression analogous to the one described for the TS. The idleness
handler of the SUT propagates the idleness token iff the SUT is idle. When
the SUT’s handler propagates the token, it increments the token’s counter by
the number of messages sent by the SUT to the test system and decrements
it by the number of messages from the TS enqueued by the SUT since the
SUT has been idle last time. The handler also has to change the token’s flag
to “ACTIVATE” if the SUT has been activated at least once since the last
visit of the idleness token.

If the SUT’s handler gets the token with flag “TICK”, the SUT forces time
progression in the system by marking the timers as ready to expire in the
next time slice. If the SUT’s handler gets the token with flag “RESTART”,
the idleness handler triggers such ready timers. In both cases the token is

23

propagated to the next handler in the ring.

According to the Dijkstra-Safra termination detection algorithm [18], the solu-
tion proposed in this section detects global idleness if and only if all test system
instances are idle and there are no messages pending between instances of the
test system and the SUT. That means that the global idleness is detected iff
conditions (2-4) in Fig. 2 are satisfied. According to Prop. 3, local idleness of
a TSi is detected if and only if conditions (1-3) in Fig. 6 are satisfied. This,
together with local idleness of the SUT satisfies of conditions (1) and (5-6) in
Fig. 2.

Proposition 4 The solution for simulated time proposed in Section 7 detects
global idleness iff conditions (1-6) in Fig. 2 are satisfied.

8 Conclusion and Related Work

Blom et al. [8] proposed host-based testing with simulated time for non-
distributed applications. There, simulated time is implemented at the level
of TTCN-3 specifications. This paper provides a framework for host-based
testing of distributed embedded systems with TTCN-3, where simulated time
is implemented at the level of test adapters. Moreover, this framework allows
the use of the same test suites for host-based testing with simulated time
and for testing with real-time in the target environment. Simulated time also
improves the controllability of testing and debugging.

The solution provided allows the implementation of simulated time for dis-
tributed testing with TTCN-3. Time simulation is implemented at the level
of test system adapters and does not affect a TTCN-3 test suite. That means
that the same TTCN-3 test suite can be executed both in real and in simulated
time. The solution for testing with simulated time is based on an extension of
a well-known distributed termination detection algorithm [18]. The usefulness
of host-based testing with simulated time has been confirmed by two case
studies: one from the railway and another one from the telecommunication
domain.

Related Work Using simulation techniques is common for software testing
and verification. Blom et al. [10] proposed simulated time for verifying re-
active systems. Using simulated time for host-based testing is motivated by
the case studies performed during the TT-medal project [1] and the paper of
Latvakoski et al. [21] discussing time simulation methods that can be used to
reduce external non-determinism when testing embedded software for commu-
nicating systems. These papers, however, provide no simulated-time solution
for distributed testing.

24

A paper close to ours in spirit and technique is that of Alvarez and Chris-
tian [22] where the CESIUM testing environment is proposed for simulation-
based testing of communication protocols for dependable embedded systems.
Alvarez and Christian aim at distributed testing whereas CESIUM is a central-
ized simulation engine that executes on a distributed set of tasks in a single
address space. Moreover, this paper focuses on host-based testing of logical
correctness, while the approach by Alvarez and Christian [22] tries to com-
pute some performance predictions on the behavior of embedded software.
Dai et al. [23] introduce Timed TTCN-3, a TTCN-3 extension for perfor-
mance testing. Timed TTCN-3 assumes that the test components have access
to synchronized clocks but the synchronization itself is not addressed.

Distributed and parallel simulation techniques also make use of distributed ter-
mination detection algorithms. Although testing in a host environment often
relies on simulation techniques, the goal of host-based testing is different from
the goals of distributed and parallel simulation formulated by Fujimoto [24].
In simulation, a simulation model is executed to predict the system behav-
ior and performance in real world. In host-based testing, a host environment
makes use of simulations to execute embedded software and to validate its be-
havioral (time-dependent) features. For example, Mattern extends Dijkstra’s
distributed termination detect algorithm [25] to approximate global virtual
time (GVT) [26]. This paper employs a time semantics different from one pre-
sented in this paper. There, each of the components has a local clock and may
increase it at any time. Although this paper and the one of Mattern [26] are
both devoted to detecting a certain global state of a distributed system, the
purpose of the extensions and the conditions being detected by the extensions
are different.

Acknowledgments The authors would like to thank Daan van der Meij (Pro-
Rail, The Netherlands) and Wan Fokkink (Free University of Amsterdam) who
provided us with detailed information on Virtual Processor Interlockings. The
authors also appreciate discussions with Antti Huima (Conformiq Company,
Finland) who helped us to improve our solution. Finally, the authors are grate-
ful to the reviewers of this paper for their detailed and useful comments and
suggestions.

References

[1] TTMedal. Testing and Testing Methodologies for Advanced Languages.
http://www.tt-medal.org.

[2] ETSI ES 201 873-1 V3.1.1 (2005-06). Methods for Testing and Specification
(MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3
Core Language.

25

[3] ETSI ES 201 873-4 V3.1.1 (2005-06). MTS; TTCN-3; Part 4: TTCN-3
Operational Semantics.

[4] C. Willcock, T. Deiß, S. Tobies, S. Keil, F. Engler, and S. Schulz. An

Introduction to TTCN-3. Wiley, 2005.

[5] ETSI ES 201 873-5 V1.1.1 (2005-06). MTS; TTCN-3; Part 5: TTCN-3 Runtime
Interface (TRI).

[6] ETSI ES 201 873-6 V1.1.1 (2005-06). MTS; TTCN-3; Part 6: TTCN-3 Control
Interface (TCI).

[7] S. Burton, A. Baresel, and I. Schieferdecker. Automated testing of automotive
telematics systems using TTCN-3. In Proceedings of 3rd Workshop on SYSTEM

TESTING AND VALIDATION, Paris 2004. Fraunhofer, 2004.

[8] S. Blom, N. Ioustinova, J. van de Pol, A. Rennoch, and N. Sidorova. Simulated
time for testing railway interlockings with TTCN-3. In C. Weise, editor,
FATES’05, volume 3997 of LNCS, pages 1–15. Springer, 2005.

[9] B. Dsarathy. Timing constraints of real-time systems: constructs for expressing
them, methods for validating them. In Proc. real-time systems symposium: Los

Angeles, California, pages 197–204. IEEE Computer Society, 1982.

[10] S. Blom, N. Ioustinova, and N. Sidorova. Timed verification with mCRL. In
M. Broy and A. V. Zamulin, editors, Ershov Memorial Conference, volume 2890
of Lecture Notes in Computer Science, pages 178–192. Springer, 2003.

[11] T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In
W. Kuich, editor, ICALP, volume 623 of Lecture Notes in Computer Science,
pages 545–558. Springer, 1992.

[12] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras.
In Proc. of the Real-Time: Theory in Practice, REX Workshop, pages 526–548.
Springer-Verlag, 1992.

[13] H. Holma and A. Toskala. WCDMA for UMTS- Radio Access for Third

Generation Mobile Communications. John Wiley and Sons, 2004.

[14] H. Kaaranen, A. Ahtiainen, L. Laitinen, S. Naghian, and V. Niemi. UMTS

Networks: Architecture, Mobility and Services. John Wiley and Sons, 2005.

[15] J. Grabowski, D. Hogrefe, G. Réthy, I. Schieferdecker, A. Wiles, and
C. Willcock. An Introduction into the Testing and Test Control Notation
(TTCN-3). Computer Networks, Volume 42, Issue 3, pages 375–403, June 2003.

[16] I. Schieferdecker and T. Vassiliou-Gioles. Realizing Distributed TTCN-3 Test
Systems with TCI. In D. Hogrefe and A. Wiles, editors, TestCom, volume 2644
of Lecture Notes in Computer Science, pages 95–109. Springer, 2003.

[17] J. Matocha and T. Camp. A taxonomy of distributed termination detection
algorithms. J. Syst. Softw., 43(3):207–221, 1998.

26

[18] E. W. Dijkstra. Shmuel Safra’s version of termination detection. EWD998-0,
Univ. Texas, Austin, 1987.

[19] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison Wesley, 2003.

[20] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18(8):453–457, 1975.

[21] J. Latvakoski and H. Honka. Time simulation methods for testing protocol
software embedded in communicating systems. In G. Csopaki, S. Dibuz, and
K. Tarnay, editors, IWTCS, volume 147 of IFIP Conference Proceedings, pages
379–394. Kluwer, 1999.

[22] G. A. Alvarez and F. Cristian. Simulation-based testing of communication
protocols for dependable embedded systems. J. Supercomput., 16(1-2):93–116,
2000.

[23] Z. R. Dai, J. Grabowski, and H. Neukirchen. Timed TTCN-3 - A Real-time
Extension for TTCN-3. In I. Schieferdecker, H. König, and A. Wolisz, editors,
TestCom, volume 210 of IFIP Conference Proceedings, pages 407–424. Kluwer,
2002.

[24] R. M. Fujimoto. Parallel and Distributed Simulation Systems. Wiley Series on
Parallel and Distributed Computing. Wiley, 2000.

[25] E. W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren. Derivation of
a termination detection algorithm for distributed computations. Information

Processing Letters, 16(5):217–219, June 1983.

[26] F. Mattern. Efficient algorithms for distributed snapshots and global virtual
time approximation. Journal of Parallel and Distributed Computing, 18(4):423–
434, 1993.

27

