
WFLP 2008

Transforming SAT into Termination of

Rewriting 1

Harald Zankl2 Christian Sternagel3 Aart Middeldorp4

Institute of Computer Science
University of Innsbruck
Innsbruck, Austria

Abstract

In this paper we propose di�erent translations from SAT to termination of term rewriting, i.e., we translate
a propositional formula ' into a generic rewrite system R' with the property that ' is satis�able if and only
if R' is (non)terminating. Our experiments reveal that the generated rewrite systems are challenging for
automated termination provers. Furthermore, a large class of them seems to be just unprovable by current
methods implemented in termination analyzers.

Keywords: term rewriting, termination, semantic labeling, SAT solving

1 Introduction

Termination of term rewrite systems (TRSs) is an undecidable property [12]. Nev-

ertheless, nowadays powerful (incomplete) algorithms exist that can prove termina-

tion of many rewrite systems as can be witnessed by the international termination

competition. 5 In 2004 Kurihara and Kondo were the �rst who encoded a termina-

tion method in propositional logic [19] and in 2006 the �rst tools (Jambox 6 and

Matchbox [21]) employed SAT-solving techniques in the competition. They surprised

the community by the gains in power and speed. Their success was mainly due to

the so-called matrix-method [8] which can e�ectively be implemented using SAT-

solvers. But even for very simple and ancient methods like the lexicographic path

order [13,6] (LPO) the recent development in the SAT community allows way faster

implementations [4] than some years ago. A similar speedup [22] is achieved for the

Knuth-Bendix order (KBO) [14]. This is remarkable because KBO orientability is

1 This research is supported by FWF (Austrian Science Fund) project P18763.
2 Email: harald.zankl@uibk.ac.at
3 Email: christian.sternagel@uibk.ac.at
4 Email: aart.middeldorp@uibk.ac.at
5 http://www.lri.fr/�marche/termination-competition/
6 Available from http://joerg.endrullis.de.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:harald.zankl@uibk.ac.at
mailto:christian.sternagel@uibk.ac.at
mailto:aart.middeldorp@uibk.ac.at
http://www.lri.fr/~marche/termination-competition/
http://joerg.endrullis.de

Zankl, Sternagel and Middeldorp

known to be decidable in polynomial time [18] whereas SAT is NP-complete [5]. In

other words, the sophisticated algorithms for solving the computationally harder

(unless P = NP) problem SAT outperform the dedicated methods for KBO [7,18].

In this paper we address the question whether a similar result also holds when

translating the NP-complete SAT problem into the undecidable termination prop-

erty of TRSs. However, the experiments reveal that at least for our translations

the results are as expected. Concerning the transformation from SAT to termina-

tion, the dedicated SAT approaches perform much better. Even further, only the

most simple propositional formulas produce TRSs which can be shown terminating

by state-of-the-art termination provers. Therefore the translations can be used to

generate a large set of di�cult termination problems automatically.

The rest of the paper is organized as follows: In Section 2 propositional formulas

are introduced and many-sorted rewriting is de�ned. In Section 3 we de�ne TRSs

U' that are terminating if and only if the propositional formula ' is unsatis�able.

In Section 4 the dual problem is considered for many-sorted TRSs S' and T '

that are terminating if and only if ' is satis�able. That even simple propositional

formulas produce TRSs where termination analysis is challenging is demonstrated

in Section 5 where it also becomes apparent that narrowing [10] is one method which

can handle small instances. We conclude in Section 6.

2 Preliminaries

In this section we �x basic notation concerning propositional logic, introduce many-

sorted TRSs and de�ne the model variant of semantic labeling [24] in a many-sorted

setting. Aoto and Yamada [1] already generalized semantic labeling to many-sorted

rewriting but just for the quasi-model case.

2.1 Propositional Logic

Let A be a set of propositional variables (atoms). Sometimes we �nd it convenient

to abbreviate the set of atoms p1; : : : ; pn by An. The set of propositional formulas

P(A) is inductively de�ned by the following BNF

' ::= p 2 A j (' ^ ') j (:')

Note that we do not allow disjunction (which does not pose a restriction but al-

lows to keep the presentation concise). The following convention is used to reduce

the number of parentheses: (i) Outermost parenthesis are omitted, (ii) `^' is left-
associative, and (iii) `:' binds stronger than `^'.

Let B := f0; 1g. An assignment is a mapping � : A ! B. It is lifted to an

interpretation of formulas: [�] : P(A)! B with

[�](') =

8><
>:
�(p) if ' = p for some p 2 A

[�]() � � if ' = ^ �

[�]() if ' = :

Here (�) : B�B! B is de�ned as x � y = 1 if and only if x = y = 1 and for (�) : B! B

2

Zankl, Sternagel and Middeldorp

we have x = 1 if and only if x = 0. A formula ' is satis�able (unsatis�able) if an

(no) assignment � exists such that [�](') = 1. This problem is known as the

satis�ability problem (SAT). For a propositional formula ' its depth is de�ned as

follows: depth(p) = 0 for p 2 A, depth(' ^) = 1 + max(depth('); depth()), and

depth(:') = 1+depth('): Similarly the set of variables Var(') is de�ned recursively
by: Var(p) = fpg for p 2 A, Var(' ^) = Var(') [Var(), and Var(:') = Var(').
The well-known coincidence lemma states that when testing ' for satis�ability only

the (�nitely many) variables that actually occur in ' have to be considered which

makes SAT decidable because the search space becomes �nite. Furthermore, this

allows us to relate assignments to substitutions (whose domain must be �nite by

de�nition) in the next section. Despite the fact that the search space for a satisfying

assignment is �nite, deciding SAT is di�cult, more precisely, SAT is an NP-complete

problem [5].

2.2 Many-Sorted Semantic Labeling

We assume basic familiarity with term rewriting [3]. Let S be a non-empty set of

sorts. An S-sorted signature is a set of function symbols F , where each f 2 F of

arity n is associated with the function signature sig : F ! Sn+1. Here the �rst n

components of sig(f) give the sort (type) of each argument and the last gives the

sort of the function's result. In the following, we write f : s1 � � � � � sn ! sn+1, to

express that f has (function) signature (s1; : : : ; sn+1).

An S-sorted set A is a family of sets fAsgs2S . For an S-sorted set V of variables

(where Vs \Vt = ? for s 6= t), let T (F ;V)s denote the set of terms with sort s over

F and V, which is de�ned inductively by the rules

x 2 Vs
x

f 2 F f : s1 � � � � � sn ! s ti 2 T (F ;V)si
f(t1; : : : ; tn)

This yields the S-sorted set T (F ;V) = fT (F ;V)sgs2S . Associated with every

term t 2 T (F ;V) is its sort, i.e., if t 2 T (F ;V)s then sort(t) = s. An S-sorted
TRS R is an S-sorted set of pairs (l; r) 2 Rs|the so called rewrite rules|written

as l ! r, such that there exists an s 2 S with l, r 2 T (F ;V)s and the usual

restrictions that l is not a variable and all variables in r also occur in l are satis�ed.

In the sequel we identify one-sorted TRSs with unsorted ones and feel free to omit

sort information where it is not essential.

Let F be an S-sorted signature. An S-sorted F-algebra A consists of an S-sorted
carrier A (where each As 2 A is non-empty) and a set of interpretations ffAgf2F ,
such that for each function symbol f : s1�� � ��sn ! sn+1 there is an interpretation

fA : As1 � � � � �Asn ! Asn+1 . An S-sorted substitution � : V ! T (F ;V) is a set of
mappings �s : Vs ! T (F ;V)s for every s 2 S such that �(x) 6= x only for �nitely

many x 2 V. An S-sorted assignment � : V ! A is a set of mappings �s : Vs ! As

for every s 2 S. For every S-sorted term t and assignment � : V ! A, a mapping

[�]A : T (F ;V)! A is de�ned inductively

[�]A(t) =

(
�s(x) if t = x and sort(t) = s

fA([�]A(t1); : : : ; [�]A(tn)) if t = f(t1; : : : ; tn)

3

Zankl, Sternagel and Middeldorp

An S-sorted F-algebra is a model of an S-sorted TRS, if for all S-sorted assign-

ments � and rewrite rules l ! r 2 R it holds that [�]A(l) = [�]A(r). A labeling L

chooses for every f 2 F a set of labels Lf . The labeled signature is de�ned by

Flab = ff j f 2 F ; Lf = ?g [ffa j f 2 F ; a 2 Lfg

where the arity and function signature of fa and f coincide. A labeling ` for an S-
sorted algebra A consists of a labeling L together with a labeling function `f : As1�
� � � � Asn ! Lf for every f 2 F with Lf 6= ? and sig(f) = s1 � � � � � sn ! sn+1.

Let AV denote the set of all S-sorted assignments from V to A. Let ` be a labeling

for A. For every assignment � 2 AV a mapping lab� : T (F ;V) ! T (Flab;V) is
de�ned inductively as follows

lab�(t) =

8><
>:
x if t = x

f(lab�(t1); : : : ; lab�(tn)) if t = f(t1; : : : ; tn) and Lf = ?

fa(lab�(t1); : : : ; lab�(tn)) if t = f(t1; : : : ; tn) and Lf 6= ?

with a = `f ([�]A(t1); : : : ; [�]A(tn)). For any S-sorted TRS R over F , together with
an F-algebra A and a labeling `, the S-sorted TRS Rlab over Flab is given by

Rlab = flab�(l)! lab�(r) j l! r 2 R; � 2 AVg

An S-sorted TRS R is terminating if it does not admit an in�nite rewrite se-

quence t1 !R t2 !R : : : starting at some t1 2 T (F ;V)s for some s 2 S.

Theorem 2.1 Let R be an S-sorted TRS. Let the algebra A be a model of R and

let ` be a labeling for A. Then R is terminating if and only if Rlab is terminating.

For the TRSs we are dealing with in the subsequent sections, many-sorted termi-

nation is equivalent to the one-sorted case [23] since the systems are non-collapsing.

A TRS is collapsing if it contains a rule l ! x for some variable x. Restricting to

many-sortedness simpli�es the proofs of Theorems 4.2 and 4.6 considerably.

3 Transforming Unsatis�ability to Termination

In the following we want to express SAT as a termination problem in rewriting, i.e.,

given a formula ', we construct a TRS R' that is terminating if and only if ' is

satis�able. This transformation is addressed in the next section. First we focus on

the simpler dual problem, namely the construction of a TRS R' that is terminating

if and only if ' is unsatis�able.

For this purpose we consider a fboolg-sorted signature F = f?;�g containing

a binary function symbol (?) : bool � bool ! bool and a unary function symbol

� : bool ! bool. Furthermore we assume that the propositional atoms in A are

contained in the set of term variables Vbool. Although `?' will represent (on the

term level) the same as `^' does on formulas, we use di�erent function symbols

because we want to clearly separate between the two di�erent concepts. The same

holds for the symbols `�' and `:'. The obvious encoding p�q : P(A)! T (f?;�g;V)
transforms formulas into terms as follows: ppq = p for p 2 A, p' ^ q = p'q ? p q,

4

Zankl, Sternagel and Middeldorp

and p:'q = � p'q. Now every well-formed formula in P(A) has a corresponding

term representation in T (F ;V).

The next goal is to mimic the task of assignments for formulas on the term

level. Thus the signature F is extended by two constant symbols of sort bool,

namely `?' and `>'. We say that an assignment � : An ! B and a substitution

� : Vn ! f?;>g are corresponding if �(pi) = 0 if and only if �(pi) = ? for all

1 6 i 6 n (here Vn = An).

In order to perform the work [�] does on formulas the six rewrite rules

? ?? ! ? ? ?> ! ? > ?? ! ? > ?> ! > �? ! > �> ! ?

referred to as the TRS S imp are employed. The next lemma formalizes the interplay

of assignments and substitutions.

Lemma 3.1 Let ' 2 P(An) and t 2 T (F ;V) such that p'q = t. If the assignment

� and the substitution � are corresponding, then

� [�](') = 0 implies t� !�
Simp ? and dually

� [�](') = 1 implies t� !�
Simp >

Proof By induction on the structure of '. 2

The following example already contains the main idea for constructing nonter-

minating sequences.

Example 3.2 Consider the formula ' = p1 ^ :p2 with the corresponding term

t = p'q = p1 ? (� p2). Then the TRS S imp together with the rewriting rule

unsat(p1; p2;>)! unsat(p1; p2; p1 ? (� p2))

admits the cyclic reduction

unsat(>;?;>)! unsat(>;?;> ? (�?))! unsat(>;?;> ?>)! unsat(>;?;>)

which proves nontermination of this TRS. The reason for nontermination is that

for a satisfying assignment � (in this case �(p1) = 1 and �(p2) = 0) there is

a corresponding substitution � such that the term p'q� = t� rewrites to > by

Lemma 3.1.

The next theorem formally establishes the relation between satis�able formulas

and nontermination of corresponding TRSs.

Theorem 3.3 Let ' 2 P(An). The parametrized TRS U' that consists of all rules

in S imp and

unsat(p1; : : : ; pn;>)! unsat(p1; : : : ; pn; p'q) (1)

is terminating if and only if ' is unsatis�able.

Proof For the direction from left to right assume U' to be terminating and ' to

be satis�able to arrive at a contradiction. Since ' is satis�able there must be a

5

Zankl, Sternagel and Middeldorp

?B = 0 >B = 1

?B(x; y) = x � y �B(x) = x

unsatB(p1; : : : ; pn; y) = 0

Table 1
A model for the TRS U'.

satisfying assignment � and a corresponding substitution �. But then there is the

cyclic reduction

t = unsat(�(p1); : : : ; �(pn);>)! unsat(�(p1); : : : ; �(pn); p'q�)!
� t

where the �rst rewrite step is an application of rule (1) and the rest of the sequence

holds by Lemma 3.1 since p'q� !�
Simp >. Contradiction.

For the direction from right to left we assume unsatis�ability of ' and show

termination of U'. For this purpose we apply semantic labeling. Note that we

consider U' as one-sorted. The idea is to label the symbol unsat by the value

which ' evaluates to|under all possible assignments. To obtain a model, the

function symbols are interpreted in the Boolean algebra. The interpretation B
over the carrier B depicted in Table 1 is a model for U'. Next the labeling for

U' is de�ned. For this purpose only the function symbol unsat gets labeled, i.e.,

L? = L� = ?
7 and Lunsat = B. The labeling function `unsat : B

n+1 ! B is de�ned

as: `unsat(p1; : : : ; pn; y) = y. By assumption the formula ' evaluates to 0 under all

assignments. Hence the labeled variant of rule (1) looks like

unsat1(p1; : : : ; pn;>)! unsat0(p1; : : : ; pn; p'q) (2)

Termination of the labeled system can then easily be shown by some basic method,

e.g., LPO; choosing the precedence unsat1 > unsat0; ?;� allows to orient rule (2)

from left to right and � > ?;> handles the rules in S imp. So U'
lab is terminating.

Theorem 2.1 yields the termination of U'. 2

4 Transforming Satis�ability to Termination

In the previous section the task was somehow simpler since there it su�ced to

construct a nonterminating sequence if there exists a satisfying assignment. Hence

by guessing a satisfying assignment for ' one could construct an in�nite sequence

in the TRS U'. In this section the endeavor is more challenging, because one

has to guarantee that one cycles if no satisfying assignment exists. Hence, the

parametrized TRS will have to test all assignments before entering a loop if none of

them satis�ed the formula '. Thus we have to provide the possibility to generate all

assignments successively. The following three rules, referred to as Next do this job

by representing assignments as bitlists (consequently the signature F is extended

by the binary function symbol (::) : bool� list! list, the constant nil : list, and the

7 Labeling constants is super
uous and hence we implicitly set L? = L> = ?.

6

Zankl, Sternagel and Middeldorp

unary function symbol next : list! list):

next(nil)! nil

next(? :: xs)! > :: xs

next(> :: xs)! ? :: next(xs)

To ease notation we will encode lists over ? and > as natural numbers. There-

fore, lists are interpreted as little endian representation of binary numbers where

? corresponds to 0 and > to 1. Let G be the signature f?;>; ::; nilg. The map-

ping enc : T (G) ! N � N, enc(nil) = (0; 0) and enc(x :: xs) = (x + 2i; l + 1) where

enc(xs) = (i; l), uniquely associates lists with entries ? or > to pairs. The �rst

component of the pair is the little endian representation of the bitlist whereas the

second component is the length of the list. For convenience we denote (i; l) by il.

Furthermore if l is irrelevant or �xed we feel free to omit it. Taking the above

conventions into account the bitlist [>;?;>;>] 8 can be written as 134 or more

sloppily as 13. But we do not only identify these bitlists with natural numbers,

they also encode substitutions. Hence, a bitlist [t1; : : : ; tn] gives rise to a substitu-

tion � with �(pi) = ti for 1 6 i 6 n. Using this convention a term t indexed with

a bold face integer denotes the result of applying the substitution to the term, i.e.,

(p1 ? ((� p2) ? p3))13 denotes > ? ((�?) ?>).

Lemma 4.1 For a bitlist t, next(t) rewrites to the successor of t:

If enc(t) = il then next(t)!�
Next t

0 with enc(t0) = (i+1 mod 2l)l.

Proof By induction on the structure of t and unfolding the de�nition of il. 2

To proceed we explicitly state the function signature sig, i.e., the sort for each

function symbol, in the left column of Table 2. In the theorem below the variables

p1; : : : ; pn are of sort bool and xs is of sort list.

Theorem 4.2 Let ' 2 P(An). Then the parametrized fbool; listg-sorted TRS S'

that contains all rules of S imp, Next, and additionally

sat([p1; : : : ; pn];?)! sat(next([p1; : : : ; pn]); p'q) (3)

is terminating if and only if the formula ' is satis�able.

Proof For the direction from left to right assume for the sake of a contradiction

unsatis�ability of '. The cyclic reduction

sat(0;?)!

sat(next(0); p'q0)!
� sat(1; p'q0)!

� sat(1;?)!� � � � !�

sat(next(2n � 1); p'q2n�1)!
� sat(0; p'q2n�1)!

� sat(0;?)

proves nontermination of S' where next(in) !�
Next (i + 1 mod 2n)n follows from

Lemma 4.1 and since we assumed that ' is unsatis�able p'qin !�
Simp ? by

Lemma 3.1, for all 0 6 i < 2n.

8 To ease readability, lists x :: (y :: (z :: nil)) are abbreviated by [x; y; z].

7

Zankl, Sternagel and Middeldorp

? : bool ?A = 0

> : bool >A = 1

? : bool� bool! bool ?A(x; y) = x � y

� : bool! bool �A(x) = x

nil : list nilA = (0; 0)

:: : bool� list! list ::A(x; (i; l)) = (x+ 2i; l + 1)

next : list! list nextA((i; l)) = (i+ 1 mod 2l; l)

sat : list� bool! bool satA((i; l); b) = 0

Table 2
A model for the fbool; listg-sorted TRS S'.

For the direction from right to left we will again give a proof using semantic

labeling. The di�erence this time is that we exploit the many-sorted version of

semantic labeling. Now for every sort s 2 fbool; listg we have to specify a carrier.

The choices are Abool = B and Alist = P := f(i; l) 2 N � N j i < 2lg. Then the

interpretation in the right column of Table 2 is a model for S'. We show this for

the Next-rules. Let us �x an arbitrary value (i; l) 2 P for xs. The three Next-rules

generate the three equalities

(0 + 1 mod 20; 0) = (0; 0) (4)

((0 + 2i) + 1 mod 2l+1; l + 1) = (1 + 2i; l + 1) (5)

((1 + 2i) + 1 mod 2l+1; l + 1) = (0 + 2(i+ 1 mod 2l); l + 1) (6)

Equation (4) is trivially valid. Since i < 2l by de�nition of P equation (5) holds

since the modulo operation can be omitted. Validity of equation (6) is shown

by case distinction. For i = 2l � 1 it simpli�es to 1 + 2(2l � 1) + 1 mod 2l+1 =

0+ 2(2l � 1 + 1 mod 2l) where both sides equal 0. For the other case we know that

i < 2l � 1 and consequently 2i + 2 < 2l+1. Hence, the modulo operation does no

harm and both sides evaluate to the same value.

The following sets of labels are employed: L? = L� = L:: = Lnext = ? and

Lsat = N� B. Then, the labeling function `sat : P �N! N� B with `sat((i; l); b) =

(i; b) is used which produces the following labeled variants of rule (3)

sati;0([p1; : : : ; pn];?)! sat(i+1 mod 2n);'in
(next([p1; : : : ; pn]); p'q) (7)

where 0 6 i < 2n. In the right-hand side of the generic rule (7) the expression 'in
means that ' is evaluated by the assignment corresponding to the bitlist in.

If for at least one assignment ' evaluates to 1 then the system can be proved

terminating. Assume that the j-th assignment satis�es '. Then the precedence

sat(j+1);0 > sat(j+2);0 > � � � > sat(2n�1);0 > sat0;0 > sat1;0 > � � � > satj;0

sati;0 > sat(i+1 mod 2n);1 (0 6 i < 2n)

satj;0 > next; ?;� > ?;>

8

Zankl, Sternagel and Middeldorp

is well-founded and allows LPO to orient all rules of the labeled TRS S'
lab from left

to right. Termination of S' follows from Theorem 2.1. 2

As an example consider the transformation of the formula p1 ^ :p2 below.

Example 4.3 The system Sp1^:p2 gives rise to the labeled rules

sat0;0([p1; p2];?)! sat1;0(next([p1; p2]); p1 ? (� p2))

sat1;0([p1; p2];?)! sat2;1(next([p1; p2]); p1 ? (� p2))

sat2;0([p1; p2];?)! sat3;0(next([p1; p2]); p1 ? (� p2))

sat3;0([p1; p2];?)! sat0;0(next([p1; p2]); p1 ? (� p2))

Note that because in the second line the term (p1 ? (� p2))1 is interpreted as 1 and

hence the system can easily be proved terminating by LPO with the precedence

sat2;0 > sat3;0 > sat0;0 > sat1;0 > sat2;1; next; ?;� � > ?;>

In this translation the TRS S'
lab gets exponentially larger (in the number of variables

in ') than the original unlabeled system. More precisely, rule (3) gives rise to 2n

di�erent labeled variants due to the n Boolean variables in the list [p1; : : : ; pn]. But

the resulting TRS is still �nite, in contrast to the one from the next subsection.

4.1 An Alternative Transformation

In the transformation S' the formula ' gets assigned the values implicitly by pattern

matching because the same variables p1; : : : ; pn are used in the formula and in the

assignment. One not so nice side-e�ect is that in rule (3) the list of variables

occurring in ' must be speci�ed as the �rst argument to sat. Here we present

a di�erent translation where the variables p1; : : : ; pn are considered as constants

v1; : : : ; vn in the signature F . For terms that represent formulas on the syntactic

level, the sort formula is used, i.e., vi : formula for 1 6 i 6 n. Furthermore a close

inspection of the systems U' and S' reveals that there is no clear separation between

syntax and semantics when formulas are represented as terms. To di�erentiate these

two concepts we employ di�erent function symbols for the two layers. Once more

the signature F is augmented by a binary function symbol and : formula�formula!
formula and a unary function symbol not : formula ! formula. Consequently also

the encoding p�q must now map formulas to their syntactic representation on the

term level. Hence the function p�q is rede�ned accordingly, i.e., p�q : P(An) !
T (fv1; : : : ; vn; and; notg) with ppiq = vi for 1 6 i 6 n, p' ^ q = and(p'q; p q), and

p:'q = not(p'q). Thus, for the formula p1 ^:p2 the (syntactic) term representation

p'q is and(v1; not(v2)).

In the TRS S' the assignment was applied automatically by pattern matching

of the variables. Now we employ separate rewrite rules that perform that step. Note

that these rules at the same time execute the transformation from the syntactic to

9

Zankl, Sternagel and Middeldorp

the semantic level. The TRS Assign

assign(xs; and(x; y))! assign(xs; x) ? assign(xs; y)

assign(xs; not(x))! � assign(xs; x)

assign(xs; vi)! nth(xs; si(0)) 1 6 i 6 n

nth(? :: xs; 0)! ?

nth(> :: xs; 0)! >

nth(b :: xs; s(j))! nth(xs; j)

performs the task of [�] on the term representation of propositional formulas. The

way how assignments were generated in the previous subsection is no longer suitable.

There all variables occurring in ' had to be speci�ed in sat's �rst argument. Since

we want to get rid of that requirement the idea is to start with an empty assignment

(empty list) and increase its length repeatedly. Hence in this section the assignments

are no longer computed modulo some length but the over
ow is simply taken into

account by increasing the length of the list. The three rules below are referred to

as the TRS Next2:

next(nil)! > :: nil

next(? :: xs)! > :: xs

next(> :: xs)! ? :: next(xs)

Similar to before a more readable notation for bitlists is employed, i.e., they

are identi�ed with natural numbers as follows: enc : T (G) ! N with enc(nil) =

enc(?) = 0, enc(>) = 1, and enc(x :: xs) = enc(x) + 2 enc(xs). This encoding is not

injective because the lists [>;?;?] and [>] are both denoted by 1. In our setting

these (more or less) leading zeros do not pose a problem.

Lemma 4.4 For a bitlist t, next(t) rewrites to the successor of t:

If enc(t) = i then next(t)!�
Next2 t

0 with enc(t0) = i+1.

Proof By induction on the structure of t and unfolding the de�nition of i. 2

The desired property that the rules in Assign evaluate the term representation

p'q for a given bitlist i is formalized in the lemma below.

Lemma 4.5 Let ' 2 P(An) and let i be the encoding of an assignment � with

[�](') = 0. Then assign(i; p'q)!�
Assign[Simp ?.

Proof By induction on the structure of p'q and unfolding the de�nition of i. 2

Now, we will establish a theorem similar to Theorem 4.2. Again, we prove the

theorem in a many-sorted setting. The full information is depicted in Table 3. The

variables in the TRS are associated to sorts as follows: b 2 Vbool, xs 2 Vlist, j 2 Vnat,

and x, y 2 Vformula.

10

Zankl, Sternagel and Middeldorp

? : bool >A = 1

> : bool ?A = 0

? : bool� bool! bool ?A(x; y) = x � y

� : bool! bool �A(x) = x

nil : list nilA = 0

:: : bool� list! list ::A(x; i)) = x+ 2i

next : list! list nextA(i) = i+ 1

vi : formula 1 6 i 6 n viA = pi

and : formula� formula! formula andA(x; y) = x ^ y

not : formula! formula notA(x) = :x

0 : nat 0A = 0

s : nat! nat sA(x) = x+ 1

assign : list� formula! bool assignA(i; ') = [�i](')

nth : list� nat! bool nthA(i; j) = �i(pj)

sat : list� bool! bool satA(i; b) = 0

Table 3
A model for the fbool; formula; list; natg-sorted TRS T '.

Theorem 4.6 Let ' 2 P(An). Then the parametrized fbool; formula; list; natg-
sorted TRS T ' consisting of the S imp-, Next2-, and Assign-rules plus additionally

sat(xs;?)! sat(next(xs); assign(xs; p'q)) (8)

is terminating if and only if ' is satis�able.

Proof Concerning the direction from left to right one can again construct a non-

terminating reduction for any unsatis�able formula '. In order not to get stuck

while evaluating assign(i; p'q) a su�ciently large i is taken (e.g., i = 2n+1). Then

there is the in�nite sequence

sat(i;?)! sat(next(i); assign(i; p'q))!�

sat(i+ 1;?)! sat(next(i+ 1); assign(i+ 1; p'q))!�

sat(i+ 2;?)! sat(next(i+ 2); assign(i+ 2; p'q))!� � � �

where the !-steps are applications of rule 8 and the !�-steps can be performed

because of Lemmata 4.4 and 4.5.

For the direction from right to left once more a semantic labeling approach is

followed. The interpretation given in Table 3 models the fbool; formula; list; natg-
sorted TRS T '. What remains to be de�ned is an enumeration �i of assignments

as follows: �i(pj) = f j(i) mod 2 with f0(i) = i and f j+1(i) = f j(di�2e). Checking
that A models T ' is straightforward.

Again, only the function symbol sat is labeled. Note that the labeled TRS T'
lab

is in�nite since all possible instances of bitlists are considered (compared to �nitely

11

Zankl, Sternagel and Middeldorp

many bitlists of a speci�ed length in the previous subsection). The labeling function

`sat(i; b) = (i; b) gives rise to in�nitely many rules of the following shape

sati;0(xs;?)! sat(i+1);[�i](')(next(xs); assign(xs; p'q))

Similar to before a precedence of the shape sati;0 > sat(i+1);0 if [�i](') = 0 and

sati;0 > sat(i+1);1 if [�i](') = 1 for all i > 0 is needed which in general might not be

well-founded since it can contain the in�nite sequence

sat0;0 > sat1;0 > sat2;0 > : : :

but due to the assumption that ' is satis�able, not all of these precedence com-

parisons are necessary. If [�j](') = 1 then there is no labeled rule which demands

satj;0 > sat(j+1);0. Without loss of generality we can assume 0 6 j < 2n. Due to

the construction of �j also �j+2n , �j+2n+1 , : : : satisfy ' and hence removing all

super
uous comparisons sat(j+2n+m);0 > sat(j+2n+m+1);0 for all m 2 N produces a

well-founded precedence (because for any i 2 N one can �nd a k 2 N such that

i 6 j + 2n+k). It follows that T '
lab is terminating. The termination of T ' follows

from Theorem 2.1. 2

Although the transformations S' and T ' look very similar at �rst, they are quite

di�erent. Concerning the number of rewrite rules, S' does not depend on ' whereas

T ' depends linearly on the number of variables in '. On the other hand, the list

of variables p1; : : : ; pn must be given as an argument to sat in S'. In Section 5

it becomes apparent that proving (non)termination automatically is much more

challenging for T ' than for S'. The main reason is that by separating syntax from

semantics, there is less structure that can be exploited by termination tools. The

nontermination proofs become more challenging because for S' an in�nite rewrite

sequence can be captured by considering cyclic reductions of ground terms, i.e.,

t !+ t for a ground term t (cf. the proof of Theorem 4.2). In contrast T ' really

demands looping reductions, i.e., t !+ C[t�] where the context C is empty but t

may no longer be ground since the lengths of the bitlists are increased.

5 Evaluation

For experimental results 9 we considered all automated (non)termination analyzers

that participated in the 2007 edition of the international termination competition

for term rewrite systems augmented with TPA [15], a tool with strong support for

termination proofs via semantic labeling. To our knowledge none of these tools

supports analysis of sorted TRSs. Consequently we provide our examples unsorted.

As already stated in the beginning, dropping sorts does not a�ect termination of the

TRSs we propose. Furthermore we stress that the proofs of Theorems 4.2 and 4.6

can be modi�ed to work on unsorted TRSs. For the TRS S' this means that the

interpretations range over the set of pairs P whereas the proof of Theorem 4.6 can

be generalized to one sort by using the natural numbers as a carrier and representing

formulas via a G�odel encoding [11].

9 Further details to be found at http://colo6-c703.uibk.ac.at/ttt2/hz/sat2trs/.

12

http://colo6-c703.uibk.ac.at/ttt2/hz/sat2trs/

Zankl, Sternagel and Middeldorp

2 variables, depth 3 3 variables, depth 4 4 variables, depth 5

tool S' T ' U' S' T ' U' S' T ' U'

T/ N T/N T/ N T/N T/N T/ N T/N T/N T/ N

AProVE 81/19 0/ 0 19/81 34/ 0 0/ 0 10/88 14/ 0 0/ 0 5/79

Jambox 16/ 0 0/ 0 19/ 0 24/ 0 0/ 0 12/ 0 15/ 0 0/ 0 11/ 0

NTI 0/19 0/ 0 0/81 0/ 5 0/ 0 0/74 0/ 0 0/ 0 0/11

TPA 0/ 0 0/ 0 1/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0 0/ 0

TTT2 10/ 0 0/ 0 0/ 0 6/ 0 0/ 0 0/ 0 5/ 0 0/ 0 0/ 0

Table 4
Experimental Results.

It turned out that even for rather small formulas (some of) our transformations

produce rewrite systems whose termination analysis is challenging. We considered

100 randomly generated formulas of di�erent shapes. Table 4 summarizes the re-

sults, e.g., formulas of depth three using two di�erent propositional variables are

considered in the leftmost block, etc. Every tool was run on all TRSs resulting from

transforming the formula ' to S', T ', and U' for at most 60 seconds to analyze

termination (T) or nontermination (N) of each system. Globally speaking, for TRSs

originating from very small formulas AProVE [9] performs best. This is due to its

support for narrowing which allows to exploit the structure of S' and U'. Jambox

solves some instances by semantic labeling over Boolean models (which is very close

to the way how we proved termination) and by the matrix method. The latter

systems could also be handled by TTT2.
10 NTI [20] supports only nontermination

analysis, using an unfolding operator. Semantic labeling based on Boolean models

and (quasi-)models over the naturals is implemented in TPA [17,16] which usually

performs very well on standard examples. The experiments reveal that the latter

is not powerful for the systems obtained from the transformations proposed in this

paper.

But narrowing is expensive which can be seen by comparing the di�erent blocks

of Table 4. AProVE can handle all TRSs resulting from the S' translation if formulas

are of depth three but for depth four (�ve) the performance decreases to 34% (14%).

For the other translations the e�ect is not so tremendous, well, for T ' the surprising

outcome is that no tool could handle any system at all and the systems in U' are

generally a bit easier since they do not iterate over the assignments. Needless to

say, the formulas ' which are considered for our experiments are a very trivial task

for any SAT-solver.

We conclude this section by a sketch of how AProVE solves many instances by

considering the TRS S' for ' = p1 ^ p2. After some preliminary analysis based on

dependency pairs [2], AProVE concludes that any in�nite sequence applies the rule

sat([p1; p2];?)! sat(next([p1; p2]); p1 ? p2)

inde�nitely. Narrowing the above rule at position 1 allows to replace it by the two

10http://colo6-c703.uibk.ac.at/ttt2/

13

http://colo6-c703.uibk.ac.at/ttt2/

Zankl, Sternagel and Middeldorp

rules

sat([?; p2];?)! sat(next([?; p2]);? ? p2)

sat([>; p2];?)! sat(next([>; p2]);> ? p2)

and narrowing these rules at position 1 gives

sat([?;?];?)! sat(next([?;?]);? ??)

sat([?;>];?)! sat(next([?;>]);? ?>)

sat([>;?];?)! sat(next([>;?]);> ??)

sat([>;>];?)! sat(next([>;>]);> ?>)

After this state is reached the right-hand sides can be rewritten [10] using the

S imp and Next rules which allows the dependency graph processor [2] to conclude

termination.

6 Conclusion

In this paper we proposed three di�erent transformations from propositional for-

mulas ' to con
uent|since orthogonal|term rewrite systems S', T ', and U'

such that ' is satis�able (unsatis�able) if and only if S', T ' (U') is terminating.

Although the systems can be proved (non)terminating by semantic labeling using

intuitive models, state-of-the-art termination tools fail even on very small and sim-

ple TRSs. Especially the transformation T ' produces unsolvable rewrite systems

which might be due to the fact that it preserves much less structure than S' does.

If tool authors investigate the reasons why the generated problems are that hard,

new termination techniques could emerge.

References

[1] Aoto, T. and T. Yamada, Termination of simply typed term rewriting by translation and labelling, in:
Proc. 14th International Conference on Rewriting Techniques and Applications, LNCS 2706, 2003, pp.
380{394.

[2] Arts, T. and J. Giesl, Termination of term rewriting using dependency pairs, Theoretical Computer
Science 236 (2000), pp. 133{178.

[3] Baader, F. and T. Nipkow, \Term Rewriting and All That," Cambridge University Press, 1998.

[4] Codish, M., V. Lagoon and P. Stuckey, Solving partial order constraints for LPO termination, in: Proc.
17th International Conference on Rewriting Techniques and Applications, LNCS 4098, 2006, pp. 4{18.

[5] Cook, S., The complexity of theorem-proving procedures, in: Proc. 3rd annual ACM symposium on
theory of computing (1971), pp. 151{158.

[6] Dershowitz, N., Orderings for term-rewriting systems, Theoretical Computer Science 17 (1982),
pp. 279{301.

[7] Dick, J., J. Kalmus and U. Martin, Automating the Knuth-Bendix ordering, Acta Informatica 28 (1990),
pp. 95{119.

[8] Endrullis, J., J. Waldmann and H. Zantema, Matrix interpretations for proving termination of term
rewriting, Journal of Automated Reasoning 40 (2008), pp. 195{220.

[9] Giesl, J., P. Schneider-Kamp and R. Thiemann, AProVE 1.2: Automatic termination proofs in the
dependency pair framework, in: Proc. 3rd International Joint Conference on Automated Reasoning,
LNAI 4130, 2006, pp. 281{286.

14

Zankl, Sternagel and Middeldorp

[10] Giesl, J., R. Thiemann and P. Schneider-Kamp, The dependency pair framework: Combining techniques
for automated termination proofs, in: Proc. 11th International Conference on Logic for Programming,
Arti�cial Intelligence, and Reasoning, LNAI 3452, 2005, pp. 301{331.

[11] G�odel, K., �Uber formal unentscheidbare s�atze der principia mathematica und verwandter systeme,
Monatshefte f�ur Mathematik und Physik 38 (1931), pp. 173{198.

[12] Huet, G. and D. Lankford, On the uniform halting problem for term rewriting systems, Technical
Report 282, INRIA, Le Chesnay, France (1978).

[13] Kamin, S. and J. L�evy, Two generalizations of the recursive path ordering, Unpublished manuscript,
University of Illinois (1980).

[14] Knuth, D. and P. Bendix, Simple word problems in universal algebras, in: J. Leech, editor,
Computational Problems in Abstract Algebra, Pergamon Press, 1970 pp. 263{297.

[15] Koprowski, A., TPA: Termination proved automatically., in: Proc. 17th International Conference on
Rewriting Techniques and Applications, LNCS 4098, 2006, pp. 257{266.

[16] Koprowski, A. and A. Middeldorp, Predictive labeling with dependency pairs using SAT, in: Proc. 21st
International Conference on Automated Deduction, LNAI 4603, 2007, pp. 410{425.

[17] Koprowski, A. and H. Zantema, Automation of recursive path ordering for in�nite labelled rewrite
systems, in: Proc. 3rd International Joint Conference on Automated Reasoning, LNAI 4130, 2006, pp.
332{346.

[18] Korovin, K. and A. Voronkov., Orienting rewrite rules with the Knuth-Bendix order, Information and
Computation 183 (2003), pp. 165{186.

[19] Kurihara, M. and H. Kondo, E�cient BDD encodings for partial order constraints with application
to expert systems in software veri�cation, in: Proc. 17th International Conference on Industrial and
Engineering Applications of Arti�cial Intelligence and Expert Systems, LNAI 3029, 2004, pp. 827{837.

[20] Payet, �E., Detecting non-termination of term rewriting systems using an unfolding operator, in: Proc.
11th International Symposium on Logic-Based Program Synthesis and Transformation, LNCS 4407,
2007, pp. 194{209.

[21] Waldmann, J., Matchbox: A tool for match-bounded string rewriting, in: Proc. 15th International
Conference on Rewriting Techniques and Applications, LNCS 3091, 2004, pp. 85{94.

[22] Zankl, H. and A. Middeldorp, Satisfying KBO constraints, in: Proc. 18th International Conference on
Rewriting Techniques and Applications, LNCS 4533, 2007, pp. 389{403.

[23] Zantema, H., Termination of term rewriting: Interpretation and type elimination, Journal of Symbolic
Computation 17 (1994), pp. 23{50.

[24] Zantema, H., Termination of term rewriting by semantic labelling, Fundamenta Informaticae 24 (1995),
pp. 89{105.

15

	Introduction
	Preliminaries
	Propositional Logic
	Many-Sorted Semantic Labeling

	Transforming Unsatisfiability to Termination
	Transforming Satisfiability to Termination
	An Alternative Transformation

	Evaluation
	Conclusion
	References

