Lazy Termination Analysis!
dissertation
by

Harald Zankl

submitted to the Faculty of Mathematics, Computer
Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements
for the degree of “Doktor der technischen Wissenschaften”

advisor: Univ.-Prof. Dr. Aart Middeldorp

Innsbruck, September 2009

! This thesis is supported by FWF project P18763.

informatik

institut far

universitat

innsbruck

dissertation

Lazy Termination Analysis
Harald Zankl

Harald.Zankl@uibk.ac.at

September 2009

advisor: Univ.-Prof. Dr. Aart Middeldorp

To Mom and Dad

Abstract

This thesis is concerned with automated termination analysis of first-order term
rewrite systems. “Lazy Termination Analysis” addresses various termination
arguments and brings them to their full potential by encoding them as arith-
metic constraints. Here lazy indicates that the actual work is done by somebody
else, i.e., a SAT, PB, or SMT solver. Hence, unlike most contributions in this
field, the thesis also goes beyond pure SAT solving by considering arithmetic
constraints instead of plain propositional logic. How such constraints can be
solved most efficiently by means of SAT, PB, or SMT techniques is also out-
lined. One brilliant example demonstrating the benefits of our approach is the
Knuth-Bendix order, which—although already more than 40 years of age—still
lacks an efficient implementation. It turned out that the method can quite
succinctly be encoded as linear arithmetic constraints which can then most effi-
ciently be solved by current SMT solvers. The expressiveness of SAT also allows
to implement increasing interpretations, a variant of polynomial interpretations
which at the same time also considers information from the dependency graph.
As already suggested by its name this method allows some rules to temporarily
increase the interpreted value. This thesis also provides theory and empirical
evaluation for matrices over the reals which makes it the first contribution that
considers reals encoded in SAT. That not only termination criteria are in the
scope of arithmetic encodings is also demonstrated. To this end a looping re-
duction of given length involving only strings of given size is formulated as a
satisfiability problem. Furthermore we formalized looping non-termination in
the theorem prover Isabelle resulting in the first automated verifier capable of
certifying non-termination. Finally after all the (non-)termination encodings
we investigate the other direction, i.e., encode propositional satisfiability as a
termination problem in rewriting. Only the most simple formulas yield rewrite
systems that can be handled by sophisticated termination analyzers. Hence this
approach allows to easily generate testbeds of challenging rewrite systems. All
encodings presented in this thesis have been integrated into the fully automatic
(non-)termination analyzer TTTy.

Acknowledgments

I am grateful to my advisor Aart Middeldorp for introducing me into research.
Although he allowed me much freedom in my studies his valuable guidance and
expertise was indispensable for the success and progress of this thesis. Also the
other two T7Ty developers and office mates Martin Korp and Christian Sternagel
deserve special thanks for their contributions and (programming) skills that
have made TgTy successful. Apart from them also Nao Hirokawa, Stefan Jorer,
and Sarah Winkler contributed in some form or another to TyT).

I must mention my two office mates here again, not only for the myriads of
hours of helpful—and sometimes rather heavy—discussion concerning research
but also for all the common activities outside the office. And Christian Sternagel
even deserves a third mention here for being my main TpXnician; I would even
consider calling him ChrisTgXan.

Although some of them have not directly contributed to this thesis I thank all
members of the Computational Logic group at University of Innsbruck, namely
Aart, Andreas, Christian, Friedrich, Georg, Martin A., Martin K., Martina,
René, Sarah, and Simon for providing a group atmosphere which not necessarily
ends after work as witnessed by various group activities such as group cinemas,
group espressi, group lunches, group hikes, group holidays, group marathons,
and group parties.

The financial support from the Austrian Fund of Science (FWF) over the last
three years via the project P18763 is also acknowledged.

Finally, I thank my family and my companion in life Michaela for supporting
my work on a topic which is completely incomprehensible to them.

vii

Contents

Introduction

1 Preliminaries

1.1 Term Rewriting o o
1.2 Dependency Pair Framework
1.3 Encodings
1.4 Test Environment and Testbenches
2 Knuth-Bendix Order
2.1 Preliminaries
2.2 A Bound on Weights
2.3 Direct Encodings o oo
2.3.1 KBO in (Linear) Arithmetic.
2.3.2 KBO in Pseudo-Boolean
2.4 Encodings with Dependency Pairs
2.4.1 Representing Argument Filterings
2.4.2 Embedding
2.4.3 Knuth-Bendix Order
2.5 Experiments. L
2.5.1 Resultsfor TRSs
2.5.2 Resultsfor SRSs L.
2.5.3 Results with Dependency Pairs
2.6 Assessment
2.7 Summary ...
3 Increasing Interpretations
3.1 Preliminaries
3.1.1 Graphs
3.1.2 Polynomial Interpretations
3.2 Towards Increasing Interpretations
3.2.1 From Cyclesto SCCs
3.3 TwoDP Processors
3.4 Implementation L L L Lo
3.4.1 Computing the Distance of a Node
3.4.2 Compressing Graphs
3.5 Assessment L.
3.6 Related and Future Work
3.7 Summary ...

4 Matrix Interpretations

13
14
15
19
19
20
23
24
26
27
30
30
32
33
34
36

37
37
37
38
40
42
44
47
48
50
53
95
56

59

ix

4.1 Matrices over the Reals,

4.2 Implementation
4.3 Experiments.
4.4 Assessment
4.5 Summary e e e
5 Loops
5.1 Finding Loops for String Rewrite Systems
5.2 Formalizing Loops oo
5.3 Certifying Loops
5.4 Experiments.
5.4.1 Finding Loops
5.4.2 Certifying Loops L.
5.5 Future Work
5.6 Summary e
6 Solving Arithmetic Constraints
6.1 Transforming Arithmetic Constraints to SAT
6.1.1 Arithmeticover N
6.1.2 Arithmeticover Z
6.1.3 Arithmeticover Q
6.1.4 Arithmeticover R
6.2 Transforming Arithmetic Constraints to SMT
6.3 Constraint Solving Module
7 SAT via Termination
7.1 Preliminaries
7.1.1 Propositional Logic
7.1.2 Many-Sorted Semantic Labeling
7.2 Transforming Unsatisfiability to Termination
7.3 Transforming Satisfiability to Termination
7.3.1 An Alternative Transformation
7.4 Experiments. e
7.5 Summary e e
Conclusion
Bibliography
Appendix
A T4
Al Syntax
A2 Semantics
A.3 Specification and Configuration
A4 TqTy Strategieso L
Index

81
81
81
84
86
87
88
88

I can resist everything, except
termination.

freely adapted from Oscar Wilde

Introduction (1854-1900)

Term rewriting is a powerful model of computation which forms the underlying
theory of declarative programming and theorem proving. Since term rewriting
is Turing-complete, all basic properties such as termination and confluence are
undecidable. Nevertheless researchers have spent much effort in developing
(incomplete) methods to (dis-)prove termination of rewrite systems since this
property is essential for, e.g., verification or Knuth-Bendix completion.
Starting more then 40 years ago, Knuth and Bendix introduced in a land-
mark paper the Knuth-Bendix order [48], one of the first termination criteria
for rewrite systems. Since then for many years simplification orderings have
dominated research although they are rather restrictive in power. It took until
1995 when Zantema introduced semantic labeling [96] as one method that over-
comes the limitations of simplification orderings. Also the monotonic semantic
path order [7] established by Borralleras et al. in 2000 yields enormous gains in
power but is challenging to implement. At about the same time Arts and Giesl
presented the dependency pair method [3] which is omnipresent nowadays.
Since the beginning of the 215 century the focus turned on automation of
termination criteria. In 2004 the first international competition' of termination
tools emerged after a tool demonstration in 2003. Since then this event takes
place annually and various tools compete against each other in different cate-
gories on standard testbenches. Nowadays the majority of the tools implement
the dependency pair framework [31, 33, 79, 38] which is a modular extension
of the dependency pair method [3]. An exploration of (the order of) recursive
function calls is captured in the dependency graph which allows modular termi-
nation checking due to a recursive treatment of cyclic call structures [38] in this
graph. Recently termination analysis of rewrite systems has successfully been
applied in the termination analysis of functional [34] and logic programs [74, 68].
Kurihara and Kondo [57] were the first to encode a termination method for
term rewriting into propositional logic. In this highly innovative paper they
showed how to encode orientability with respect to the lexicographic path or-
der (LPO) [45] as a satisfaction problem using binary decision diagrams [9]. In
the recent past a vast number of SAT encodings has been proposed for various
termination methods. Codish et al. [10] presented a more efficient formulation
for the properties of a precedence. They achieve further speedup by replacing
binary decision diagrams by state of the art SAT solvers. In [11, 91] encodings
of argument filterings are presented which can be combined with propositional
encodings of reduction pairs in order to obtain logic-based implementations of
traditional processors in the dependency pair method. Encodings of other ter-
mination methods are described in [22-25, 41, 43, 50, 51, 75, 92, 99]. The

! http://termination-portal.org/wiki/Termination_Competition

http://termination-portal.org/wiki/Termination_Competition

benefits of the SAT encodings seem almost endless. Existing termination cri-
teria can usually be implemented with considerably less effort compared to
dedicated algorithms. For many methods these encodings additionally result in
a tremendous speedup [10, 11, 23, 75, 91]. And in addition SAT solving paves
the way for exploring extremely large search spaces [41, 22, 92] which have
previously been out of reach resulting in innovative and new termination crite-
ria. This thesis is almost completely devoted to such encodings which improve
termination tools in two aspects: power and speed. Since most computational
effort is thus transferred from the termination analyzer to the constraint solver
this explains the title of the thesis “Lazy Termination Analysis”.

Overview

The remainder of the thesis is organized as follows.

Chapter 1 presents preliminaries concerning term rewriting in general and the
dependency pair framework in particular. Furthermore a simple language for
arithmetic constraints is fixed which is employed for all encodings. The chapter
ends with a description of the test environment used for the experiments.

Chapter 2 is concerned with the Knuth-Bendix order. An easy encoding using
arithmetic constraints is presented which allows to implement the order with
considerably less effort compared to dedicated algorithms while yielding gains in
efficiency. The encoding is augmented by argument filterings in the second part
of the chapter which improves applicability of the order. Extensive experimental
results and an assessment of the contribution conclude the chapter.

Chapter 3 introduces increasing interpretations which are a generalization
of polynomial interpretations. The novelty of the approach is that some rules
might increase the interpreted value which is in stark contrast to all existing
termination criteria where at least a weak decrease is demanded for every rule
considered. Two theorems are formulated for increasing interpretations and
possibilities for an implementation are presented and empirically evaluated.

Chapter 4 revisits matrix interpretations. We show that matrices over the
non-negative real numbers may be used for termination proofs and evaluate
the approach in comparison with natural and non-negative rational numbers as
coefficients.

Chapter 5 is concerned with non-termination. The first part of the chapter
is devoted to finding loops. To this end an encoding is given that captures a
loop of given length involving only strings of a given size. The second part
of the chapter sketches an Isabelle [69] formalization of loops which has been
integrated into the termination certifier IsaFoR/CeTA [80]. This contribution
makes CeTA the first automated certifier capable of certifying non-termination
of rewrite systems.

Chapter 6 is devoted to solving arithmetic constraints. They are not solved
directly but transformed into problems over propositional satisfiability (SAT),
pseudo-boolean logic (PB), or satisfiability modulo theory (SMT). For the
SAT case it is shown how natural (integer, rational, and real) numbers are
represented in binary and how necessary operations of arithmetic are mimicked.

Chapter 7 focuses on encoding SAT as a termination problem in rewriting.
Since encoding termination criteria in SAT performs so well we explored the
reverse direction. The outcome are three transformations from propositional
formulas ¢ to rewrite systems R¥ such that R¥ is terminating if and only
if ¢ is (un-)satisfiable. Surprisingly only rewrite systems stemming from ex-
tremely small formulas are in the reach of current termination tools. Hence
this approach is very suitable for generating testbeds of rewrite systems where
proving (non-)termination is very challenging.

Appendix A presents the termination analyzer T1Ty with special focus on its
strategy language.

Suggested Way of Reading

The chapters within this thesis can be read independently from each other with
one exception: All chapters depend on the preliminaries presented in Chapter 1.
Furthermore, Chapter 4 refers to some results from Section 3.1 but appropriate
references are given there.

Chapter 1
Preliminaries

This chapter first recalls some basics of term rewriting in Section 1.1 (for more
details we refer to [4, 100]) before introducing a simple version of the dependency
pair framework in Section 1.2. The grammar of arithmetic constraints which
are heavily used within this thesis to encode (non-)termination criteria is fixed
in Section 1.3. All experiments presented within this document have been
performed on the run time environment and testbeds described in Section 1.4.

Within this thesis N refers to the set {0, 1, ...} of natural numbers whereas Z,
Q, and R denote integer, rational, and real numbers, respectively. If confusion
might arise, sometimes relations such as < are indexed by the corresponding
domain, like in <z, the standard order on integers. Furthermore notation like
N>3 defines the set {n € N |n > 3}.

1.1 Term Rewriting

A signature F is a set of function symbols with fixed arities. Let V denote
an infinite set of variables disjoint from F. Then 7 (F,V) forms the set of
terms over the signature F using variables from V. For a term t € T (F,V)
the expression ||t|| denotes the number of function symbols occurring in t, |¢|
computes its size, |t|, for a € F UV counts how often the symbol a occurs in ¢,
and Var(t) returns all variables occurring in t. A term t = f(t1,...,t,) has
root f. For a term ¢ the set Pos(t) of positions in t is defined inductively by {¢}
ift € Vand Pos(t) = {e}U{ip | p € Pos(t;),1 <i<n}ift= f(t1,...,t,). For
p € Pos(t) the subterm of ¢ at position p is denoted by t|,. Contexts are terms
over the extended signature F U {0} with exactly one occurrence of the fresh
constant [J (called hole). The expression C[t] denotes the result of replacing
the hole in C by the term t. A substitution ¢ is a mapping from variables to
terms and to denotes the result of replacing the variables in ¢ according to o.
As usual we assume that a substitution changes only finitely many variables
which allows to write it as a finite set of bindings {z1/t1,...,2n/tn}. Rewrite
rules are pairs of terms (I, 7), usually written as | — r, with the property that
[is not a variable and that all variables of r appear in [. A term rewrite system
(TRS) is a set of rewrite rules. We assume TRSs to be finite. A string rewrite
system (SRS) is a TRSs where all function symbols are unary. A TRS R is
non-duplicating if for all variables x € V and rewrite rules | — r € R the
condition |l|; > |r|z holds. The rewrite relation induced by a TRS R is a
binary relation on terms denoted by —x with s —x t for terms s and ¢ if and
only if there exist a rewrite rule [— r € R, a context C, and a substitution o

1 Preliminaries

such that s = C[lo] and t = C[ro]. The (reflexive and) transitive closure of
—g is denoted by (—%) —%. A TRS R is called strongly normalizing (SN)
or terminating if —x is well-founded, i.e., there is no rewrite sequence of the
form t1 —»g to —r t3 —gr t4 —r ---. A rewrite sequence of the special
shape t; —g -+ —r t, —gr Clti0] is called a loop of length n and can be
represented by the triple ([t1,...,,],C, o). Clearly every loop gives rise to an
infinite rewrite sequence of the form t; —} C[tio] —% C[C[tiolo] —% -
since rewriting is closed under contexts and substitutions. In the sequel we
omit the subscript R in —g, —%, and —>7Jg whenever R is irrelevant or clear
from the context.
We illustrate some concepts by means of the following example.

Example 1.1. The TRS Cime/append_wrong! consisting of the seven rules

is_empty(nil) — true is_empty(cons(z, xs)) — false
tl(cons(z, xs)) — cons(z, xs) hd(cons(z, zs)) — x
if (s, ys, false) — cons(hd(zs), tl(xs) +H ys) if (xs, ys, true) — ys

xs H ys — if(zs,ys,is_empty(xs))
admits the non-terminating rewrite sequence
if (cons(x, zs), ys, false)
— cons(hd(cons(x, zs)), tl(cons(z, xs)) +H- ys)

(

— cons(hd(cons(x, xs
(,if(cons(x, xs), ys, is_.empty(cons(z, xs))))
(

()
((), cons(z, zs) H ys)
— cons(hd(cons(z, xs))
— cons(hd(cons(z, xs)), if (cons(z, xs), ys, false))

forming a loop of length four with context cons(hd(cons(z,zs)),J) and empty
substitution.

1.2 Dependency Pair Framework

In this section we sketch a simplified version of the dependency pair frame-
work [3, 31, 33, 38, 79] which we specialize to fit our requirements. Let R be
a TRS over a signature F. The signature F is extended with dependency pair
symbols f* for every symbol f € {root(l) | I — r € R}, where f* has the same
arity as f, resulting in the signature F*.2 In examples one usually uses capi-
talization, i.e., one writes F for f%. If | — r € R and t is a subterm of r with
a defined root symbol that is not a proper subterm of { then the rule I — tf
is a dependency pair of R. Here I* and t! are the result of replacing the root
symbols in [and ¢ by the corresponding dependency pair symbols. The set of
dependency pairs of R is denoted by DP(R).

! Labels in sans-serif font refer to TRSs from the TPDB (cf. Section 1.4).
2 Function symbols that appear as a root of a left-hand side are called defined.

1.2 Dependency Pair Framework

Example 1.2. The TRS from Example 1.1 admits five dependency pairs:

x5+ ys — ISEEMPTY (s) (1.1)
xs +HF ys — IF(xs, ys, is_empty(zs)) (1.2)
IF(zs,ys, false) — TL(xs) (1.3)
IF (s, ys, false) — tl(zs) + ys (1.4)
IF(zs,ys, false) — HD(xs) (1.5)

A DP problem (P, R) is a pair of TRSs P and R such that the root symbols
of the rules in P do neither occur in R nor in proper subterms of the left-
and right-hand sides of rules in P. The problem is said to be finite if there is
no infinite sequence sy —p t; —%5 s —p ta —% --- such that all terms ¢,
to, ... are terminating with respect to R. Such an infinite sequence is called
minimal. The main result underlying the dependency pair approach states that
termination of a TRS R is equivalent to finiteness of the initial DP problem
(DP(R),R).

The concept of minimality is illustrated in the following example.

Example 1.3. Let (P, R) be the initial DP problem for the TRS from Exam-
ple 1.1. Then

t = IF(cons(x, zs), ys, false)
—p tl(cons(z, z5)) HF ys
—% cons(z, zs) H ys
—p |IF(cons(z, zs), ys,is_.empty(cons(z, zs)))
—1 IF(cons(z, xs), ys, false)

—p e

is an infinite sequence. It is minimal since all reducts of ¢ are terminating with
respect to R. For the substitution o = {ys/if(cons(z, xs),ys, false)} the term
to clearly starts an infinite sequence but no minimal one due to the fact that
if (cons(x, zs), ys, false) itself is not terminating (cf. Example 1.1).

In order to prove a DP problem finite, a number of DP processors have been
developed. DP processors are functions that take a DP problem (P, R) as input
and return a set of DP problems or “no” as output. In order to be employed to
prove termination DP processors need to be sound, that is, if all DP problems
in a set returned by a DP processor are finite then (P, R) is finite. In addition,
to ensure that a DP processor can be used to prove non-termination it must
be complete which means that if one of the DP problems returned by the DP
processor is not finite then (P, R) is not finite. Proofs in the DP framework can
be seen as trees. The nodes are DP problems and the children of a node (P, R)
are the single DP problems (or “no”) a DP processor returns when being applied
to (P,R). The root node is the initial DP problem. Hence if only sound DP
processors are used and all leaves in the proof tree have empty P components,
then this shows termination of the original TRS. On the contrary, if along a

1 Preliminaries

path within the proof tree only complete DP processors are applied and the
leaf node is “no” then the original TRS is non-terminating.

One important DP processor is the dependency graph. In general it is not
computable but sound approximations exist [3, 32, 38, 55, 65]. Here sound-
ness means that every edge in the original graph also is an edge in the esti-
mated graph and hence it forms an over-approximation of the actual depen-
dency graph.

Definition 1.4. Let (P, R) be a DP problem. The dependency graph DG(P,R)
with nodes P contains an edge from node s — ¢ to node u — v if there exist
substitutions o and 7 such that to —% ur.

Next we formulate a corresponding DP processor. Here a strongly connected
component (SCC) is a maximal set of nodes such that there is a non-empty
path from every node to every (not necessarily distinct) other node. Maximality
means that the property of being an SCC is lost if a further node is added.

Theorem 1.5. The following DP processor is sound and complete. For a DP
problem (P, R) the processor returns {(P1,R),...,(Pn,R)} where Pi,..., Py
are the SCCs of DG(P,R). O

Next we compute the dependency graph for the running example.

Example 1.6. The initial DP problem from the TRS of Example 1.1 admits
the dependency graph

1.3 1L5<—12_ _14—>11

with one SCC {1.2,1.4}.

One popular method to get sound and complete DP processors are reduction
pairs. We will encounter reduction pairs based on KBO and monotone algebras
in Chapters 2 and 4, respectively. Formally, a reduction pair (Z,>) consists of
a rewrite pre-order 2 (a pre-order on terms that is closed under contexts and
substitutions) and a well-founded order > that is closed under substitutions
such that the inclusion > - 2> C > (compatibility) holds. Reduction pairs give
rise to DP processors.

Theorem 1.7. Let (2, >) be a reduction pair. The processor that maps a DP
problem (P,R) to

e {(P\>R)}ifPCZU>and RC 2
e {(P,R)} otherwise
s sound and complete. 0

For all reduction pairs originating from simplification orders the order >
is closed under contexts although the theorem above does not require this.
To overcome this limitation we introduce argument filterings. An argument
filtering for a signature F is a mapping 7 that assigns to every n-ary function

1.3 Encodings

symbol f € F an argument position ¢ € {1,...,n} or a (possibly empty) list
[i1,...,0m) of argument positions with 1 < i1 < -+ < iy, < n. The signature F7"
consists of all function symbols f such that 7(f) is some list [i1,. .., %], where
in F7™ the arity of f is m. Every argument filtering 7 induces a mapping from
T(F,V) to T(F™,V), also denoted by m: «(t) =tift € V, w(t) = w(t;) if t =
ft1, ... ty) with n(f) =4, and #(¢t) = f(n(ti,),...,7(ti,,)) if t = f(t1,... tn)

with 7(f) = [i1,...,4m). We further abuse notation and define 7(l — r) for
rewrite rules and 7(R) for TRSs in an obvious manner. We write i € 7(f) if
w(f) =i or w(f)=[i1,...,0n] with i =i for some 1 < k < m.

The next example familiarizes the reader with argument filterings.

Example 1.8. Let 7 be an argument filtering satisfying m(+-#) = 2 and
m(IF) = [1,2]. Applying 7 to the SCC from the previous example results in
7({1.2,1.4}) = {ys — IF(zs,ys),IF(xs,ys) — ys}. We have 2 € 7(+¥) and
1,2 € 7(IF) but 1 & m(+5).

Next we strengthen Theorem 1.7 since for a DP problem (P, R) a reduction
pair does not necessarily have to weakly orient all rules from R due to min-
imality. It is safe to just consider the usable rules. The usable rules modulo
7 [33] for a DP problem (P,R) and an argument filtering 7 are denoted by
U(P,R) and defined as the union of all {{ — r € R | root(l) € US(t)} with
s — t € P. Here US,(t) is defined as follows: If ¢ = z then US,(t) = @
and if t = f(t1,...,t,) then US;(t) is the least set such that f € US,(t)
and US(t;) € US(t) whenever i € w(f) for all 1 < i < n. Furthermore, if
root(l) € USx(t) then US,(r) CUS(t) for all | — r € R.

Example 1.9. When computing the usable rules for the (filtered) SCC from
the previous example the rules defining is_empty are not usable since 7 ignores
IF’s third argument. Note that these rules are not usable independent from the
choice of m(is_empty).

If reduction pairs are combined with usable rules, then Cg-compatibility must
be ensured, i.e., for a fresh function symbol g the constraints g(x,y) 2 « and
g(x,y) 2 y must hold (cf. [33, 39]). The following result allows to generalize
Theorem 1.7 by usable rules and argument filterings.

Theorem 1.10. Let (2,>) be a Cg-compatible reduction pair and 7 be an
argument filtering. The processor that maps a DP problem (P,R) to

e {P\{pePlnlp) e>},R)} ifw(P) S 2 U> and n(Ur(P,R)) C 2
e {(P,R)} otherwise

18 sound and complete. O

1.3 Encodings

This section describes a grammar for arithmetic constraints which allows to
present the encodings from Chapters 2, 3, 4, and 5 concisely. Furthermore
this section gives hints on design issues when translating arithmetic constraints
to SAT. Information on solving such constraints can be found in Chapter 6.

1 Preliminaries

Definition 1.11. An arithmetic constraint ¢ is described by the following
BNF:

pu=L[T|p|l (=) [(eVe) |l (eAp) | (p—¢)|(p—p)
[(a>a)|(a=a)|(a>a)

and
az=al|r|(a+a)|(a—a)|(axa)|(p?a:)

where L (T) denotes propositional contradiction (tautology), p (a) ranges over
propositional (arithmetical) variables, = (V, A, —, <) logical not (or, and, im-
plication, bi-implication), > (=, >) greater, (equal, greater or equal), r ranges
over the real numbers, and + (—, x) denotes addition (subtraction, multiplica-
tion). If-then-else is written as (- 7 - : -).

Next the reader is familiarized with the syntax of arithmetic constraints.
Example 1.12. The expressions

e 5

® P1oo

e (p1o 7 (2.1 x a12) : 0)

o ((((a12 + (V2 x agy)) +7.2) > (0 — a5)) A p2)
are well-formed arithmetic constraints whereas

e —aj

o (x=+3)

e a+3

e ((a+3)n)
are not.

To save parentheses we employ the binding hierarchy for the connectives
where X binds strongest, followed by + and —, which precede the relation
symbols >, >, and =. The logical connective — is next in the hierarchy, followed
by V and A. The operators —, <, and (- ? - : -) bind weakest. Furthermore the
operators +, X, V, A, and « are are left-associative while — and — associate
to the right. Using these conventions the most complex constraint from the
example above simplifies to ajo + V2xag+72>0—a; A Ppa.

For solving arithmetic constraints we propose three different methods. The
first approach considers a translation to satisfiability of propositional formulas
(SAT) and works for any arithmetic constraint. In case of linear arithmetic
there is the alternative to also use a satisfiability modulo theory solver (SMT,
where the theory of choice is linear arithmetic) as back-end. Furthermore for

10

1.4 Test Environment and Testbenches

Chapter 2 we regard a third possibility namely pseudo-boolean satisfiability
(PB) due to the fact that the Knuth-Bendix order can easily be represented in
pseudo-boolean logic.

Considering the SAT back-end, any arithmetic constraint must be translated
into propositional logic. To achieve this, for operations like + and x over the
naturals we use similar encodings as [22] inspired by circuits used in hardware.
For integers we favor two’s complement representation due to the straightfor-
ward (re-)definitions of + and x. This results in easier encodings than the
approach in [23] where integers are dealt with in excess representation, i.e., ev-
ery number is represented by — a where a is some fixed constant. For dealing
with rationals our experiments produced consistent results with [25] where a
fixed denominator (powers of two) is suggested. We also experimented with
a fixed point representation of numbers which produced slightly worse results.
To our knowledge there exists no SAT encoding for arithmetic over the reals.
There are two main challenges which must be solved. First of all a represen-
tation of (a subset of) numbers from R must be fixed. Our proposal is to
employ pairs (c,d) which represent ¢ + v/2d. Another major problem arises
when two such numbers are compared, e.g., how to determine the value of
c+v2d > +V2d if e,d,d,d # 0?7 To this end heuristics are employed where
an under- (over-approximation) of the left- (right-hand) side is used. More de-
tails on the translation from arithmetic to SAT and linear arithmetic to SMT
are given in Chapter 6.

For the sake of completeness we want to mention the recent approach from [8]
where SMT solvers are used to solve non-linear arithmetic. The idea is to fix a
finite domain for every arithmetic variable. Afterwards the non-linear constraint
is linearized by using an explicit case analysis of the values a variable might
take. Adopting this approach one gets integer arithmetic for free (from the
SMT solver) and [8] reports a speedup for rational valued domains. However,
since SMT solvers currently do not support real numbers (just rationals) it is
unclear how this contribution can be employed for arithmetic over the reals.

1.4 Test Environment and Testbenches

All encodings discussed within this thesis have been implemented on top of the
Tyrolean Termination Tool 2 (T7Ty) [56] version 1.01. MiniSat [20] (release from
July 21, 2007) and MiniSat+ [19] (release from January 5, 2007) were used to
check satisfiability of the SAT and PB based encodings and version 1.0.17 of
Yices [18] was the choice for the SMT approach. All three tools are interfaced
from Tyl which is written in the functional programming language OCaml.
For the SAT approach propositional formulas are transformed into conjunctive
normal form (CNF) similar to [72] which is an improvement of the method
presented in [82]. MiniSat expects the input formula to be in CNF. For more
information about TyTy (especially on its strategy language) please consider
Appendix A. The loops within Chapter 5 have been certified with CETA [80, 77]
(version 1.04).

As a test set we used the 1391 TRSs and 732 SRSs of the standard rewriting

11

1 Preliminaries

category in version 5.0 of the Termination Problems Data Base (TPDB), the
testbed which is also used for the competitions. All tests have been performed
on a server equipped with eight dual-core AMD Opteron® processors 885 run-
ning at a clock rate of 2.6 GHz and 64 GB of main memory. Computation time
of the solvers was limited to 60 seconds per system. Apart from Chapter 5 TT»
was run on a single node only.

All details on the tests reported in this thesis are available from the URL

http://colo6-c703.uibk.ac.at/ttt2/hz/thesis/

12

http://colo6-c703.uibk.ac.at/ttt2/hz/thesis/

Chapter 2
Knuth-Bendix Order

This chapter is concerned with proving termination of TRSs with the Knuth-
Bendix order (KBO), a method invented by Knuth and Bendix in [48] well be-
fore termination research in term rewriting became a very popular and compet-
itive endeavor. While checking if a given KBO orients a TRS can be performed
in linear time [60], deciding KBO orientability is of polynomial effort [53]. The
first termination tools that provide an implementation of KBO, AProVE [30]
and T7T [39], adopt the algorithms in [17, 53] which are not easy to implement
efficiently. Consequently AProVE and T{T never used KBO in the TRS cate-
gory of the competitions while T1Ty relied on KBO in more than 20% of the
successful termination proofs in the respective category of the 2008 competi-
tion. TyTy implements the methods presented in the sequel. The aim of this
chapter is to make KBO a more attractive choice for termination tools by pre-
senting a simple! encoding of KBO orientability using arithmetic constraints
such that checking satisfiability of the resulting constraints amounts to proving
KBO orientation. Alternatively, an encoding in pseudo-boolean satisfiability
(PB) is given. We show that in the case of KBO one can improve upon pure
SAT encodings in two ways; on the one hand the implementation effort can be
reduced by applying a more expressive constraint language, on the other hand
performance can be improved by choosing the right back-end.

In Section 2.1 the necessary definitions for KBO are presented. Section 2.2
shows that weights can be bound from above. Then Section 2.3.1 introduces
an encoding of KBO in the arithmetic constraint language introduced in Def-
inition 1.11 and in pseudo-boolean logic (Section 2.3.2). The encoding is aug-
mented by argument filterings in Section 2.4 before we compare the power and
run times of our implementations with the ones of AProVE and TyT in Sec-
tion 2.5 and show the enormous gain in efficiency. We draw some conclusions
in Section 2.6.

The results of this chapter appeared in earlier publications: The SAT and
PB encodings originate from [89] and the SAT encoding within the dependency
pair setting was first published in [88]. These results have been augmented
by a theorem on bounding weights from above and an SMT encoding in [91].
However, here we combine the SAT and SMT encodings by abstracting them
into a single encoding using arithmetic constraints introduced in Definition 1.11.

! Here, simple should be understood in the sense of “easy to implement”.

13

2 Knuth-Bendix Order

2.1 Preliminaries

A quasi-precedence 2 (strict precedence >) is a quasi-order (strict part of a
quasi-order) on a signature F. Sometimes we find it convenient to call a quasi-
precedence simply precedence. A weight function for a signature F is a pair
(w,wp) consisting of a mapping w: F — N and a constant wy > 0 such that
w(c) = wy for every constant ¢ € F. Let F be a signature and (w, wp) a weight
function for F. The weight of a term t € 7 (F,V) is defined as follows:

() = {wo if t is a variable,
w(f)+ i wt) ift=f(t,... 1)

A weight function (w,wg) is admissible for a quasi-precedence 2 if f = g for
all function symbols g whenever f is a unary function symbol with w(f) = 0.

Definition 2.1 ([48, 17, 76]). Let 2 be a quasi-precedence and (w, wp) a weight
function. We define the Knuth-Bendiz order >upo on terms inductively as
follows: s >ypo t if |s|; = |t|, for all variables z € V and either

(a) w(s) > w(t), or
(b) w(s) = w(t) and one of the following alternatives holds:
(1) teV,sc T(FD {t}), and s # ¢, or
(2) s = f(s1,..-y8n), t = g(t1,...,tm), f ~ g, and there exists an
1<i< mm{n m} with s; >kpo t; and s; =t for all 1 < j <7, or
(3) s=f(s1,---,8n), t=g(t1,...,tm), and f > g.

Here F(™ denotes the set of all function symbols f € F of arity n. Thus in case
(b)(1) the term s consists of a non-empty sequence of unary function symbols
applied to the variable ¢ (since s # ¢ and |s|, > |t|, for all x € V).

Specializing the above definition to (the reflexive closure of) a strict prece-
dence, one obtains the definition of KBO in [4], except that we restrict weight
functions to have range N instead of R*?. According to results in [53, 59] this
does not decrease the power of the order for finite TRSs.

Theorem 2.2. A TRS R is terminating whenever there exist a quasi-precedence
2 and an admissible weight function (w,wg) such that R C >ypo- O

Example 2.3. The TRS SK90/2.42 consisting of the rules

flat(nil) — nil rev(nil) — nil
flat(unit(z)) — flat(x) rev(unit(z)) — unit(x)

flat(z -+ y) — flat(z) ++ flat(y) rev(z + y) — rev(y) +H- rev(x)
flat(unit(z) + y) — flat(z) +- flat(y) rev(rev(z)) — x

flat(flat(z)) — flat(z) (x+y) +H 2 — x+ (y +H2)

T+ nil -z nil Hy —y

14

2.2 A Bound on Weights

can be proved terminating by KBO. The weight function satisfying w(flat) =
w(rev) = w(+) = 0 and w(unit) = w(nil) = wp = 1 together with the quasi-
precedence flat ~ rev > unit > ++ > nil ensures that [>p, 7 for all rules [— 7.
Using a quasi-precedence is essential to handle this system because the rules
flat(z + y) — flat(x) + flat(y) and rev(z ++ y) — rev(y) +- rev(z) demand
w(flat) = w(rev) = 0 but KBO with strict precedence does not allow different
unary functions to have weight zero.

One can imagine a more general definition of KBO. For instance, in case
(b)(2) we could demand that s; ~ypo t; for all 1 < j < i where s ~ypo ¢
denotes syntactic equality with respect to equivalent function symbols of the
same arity. Here, function symbols f and g are equivalent if both, f ~ ¢ and
w(f) = w(g). Another obvious extension would be to compare the arguments
according to permutations [76, 73, 75] or as multisets [87, 75]. To keep the
discussion and implementation simple, we do not consider such refinements in
the sequel. Furthermore, we stress that the main ingredient of KBO is the
weight function which is rather unaffected by a status.

2.2 A Bound on Weights

We give a bound on weights to finitely characterize KBO orientability. While
there are at most finitely many precedences on a finite signature, the follow-
ing example demonstrates that there exist TRSs which need arbitrarily large
weights.

Example 2.4. Consider the parametrized TRS consisting of the three rules

f(g(x,y)) — g(f(2),f(y)) h(z) — f(f(2)) i(2) — h*(2)

where h’(z) = 2 and h"*!(z) = h(h™(x)). Since the first rule duplicates the
function symbol f we must assign weight zero to it. The admissibility condition
for the weight function demands that f is a maximal element in the precedence.
The second rule ensures that the weight of h is strictly larger than zero. It
follows that the minimum weight of h*(z) is k + wg, which at the same time is
the minimum weight of i(z). Thus w(i) is at least k.

Throughout this section we do not distinguish vectors from matrices. We
write e; for the unit column vector whose i-th position is 1 and all other positions
are 0 (the length of the vector is usually clear from the context). Let A = (ai;);
be an m x n matrix. We define ||A|| = max; j |a;;|. The i-th row vector of A is
denoted by a;. We say that a vector x is a solution of A if Ax > 0 and x > 0.
A solution x that maximizes {i | a;x > 0} with respect to set inclusion is called
principal. Unless stated otherwise, matrix entries are integers.

Lemma 2.5. Let A be an m X n matriz. There exists a principal solution x of
A with ||x|| < n?" (2n]|A)?" L.

Before proving the lemma we recall the idea for solving KBO from [17] and
mention its consequences.

15

2 Knuth-Bendix Order

Example 2.6. Below on the left we give the inequations that the algorithm
in [17] starts with (corresponding to a KBO proof attempt with empty prece-
dence) for the TRS from Example 2.4 where we fix the parameter k = 2. The
first four equations ensure that every weight is non-negative, the fifth equation
captures wg and the last three equations express that for every rule [— r we
have w(l) > w(r):

w(f) >0 1000 0
w(g) > 0 01000
w(h) > 0 00100 :U”((f))
w(i) > 0 00010 &
wh) | >0
wy > 0 00 00 1f|
w(f) +w(g) + 2wy > w(g) +2w(f) +2wy |10 0 0 0O w
w(h) +wy > 2w(f) + wy 20 1 0 0 0
w(i) +wo > 2w(h) 4+ wp 0 0-210

To solve the inequations on the left, the algorithm in [17] starts with the slightly
generalized equational system Ax > 0 on the right, which clearly has a (princi-
pal) solution. But for a principal solution the algorithm must test if every strict
inequation w(s) > w(t) for corresponding terms s and ¢ is indeed satisfied. If
this is not the case then it replaces the inequation w(s) > w(t) by w(s) = w(t),
and

(a) fails,if s€e V, t €V, or s =t,

(b) adds the inequation w(s;) > w(t;) for the least 7 (1 < i < n) such that
si#tiif s= f(s1,...,8,) and t = f(t1,...,t,), or

(c) extends the strict precedence ([17] only supports strict precedences) if
possible by

— root(s) > f for all f € F \ {root(s)} if root(s) is unary and all
principal solutions require w(root(s)) =0, or
— root(s) > root(t) otherwise

and again tries to solve the inequations. In the example no principal solution
satisfies the constraint w(f(g(z,y))) > w(g(f(z),f(y))) (since it simplifies to
0 > w(f) contradicting w(f) > 0) but case (c¢) applies and the corresponding rule
is oriented by extending the precedence with f > g, h,i. Since now there exists
a principal solution satisfying the current constraints (e.g. w(f) = w(g) = 0,
w(h) = wp =1, and w(i) = 3) the algorithm successfully terminates.

The question remains which matrix A to take for Lemma 2.5. The exam-
ple above demonstrates that A changes during the execution of the algorithm.
Unfortunately not even the dimension of A stays constant; the columns of
A are fixed by the number of unknowns but the rows may increase (cf. case
(b) above). It is easy to see that the largest dimension of a matrix can be
m xn where n = |F|+1and m=n+),_ . min{depth(l), depth(r)} where
depth(z) = 1ifx € V and depth(f(t1,...,tq)) = 1+max{depth(t;) | 1 <i < ¢}.
Furthermore for every matrix A that might evolve during the algorithm we

16

2.2 A Bound on Weights

have ||A| < max{|l|g,[7|e | | — r € R,a € F UV} According to the
lemma one can find a principal solution in [0, 72" (2n||A|)?"~1]". Hence we
get 2" (2n||A||)2" ! as an upper bound on the weights. Later this number
will be referred to as Br. For Example 2.6 we get n =5, m =5+ 7 = 12,
|A|| < 2, and consequently Br = 52'°202°~1. Section 2.5 shows that in prac-
tice much smaller weights suffice. Expressed in terms of the size of the TRS R,
the inequality Br < N*" ™" can easily be shown for N = 1+ Yrer (U +1r]),
provided that all symbols from F appear in R.

In order to prove Lemma 2.5 we first recall the method of complete description
(MCD) introduced by Dick et al. in [17].

Definition 2.7. For a row vector (ay, ..., ay) we define the matrix (ai,...,a,)"
as

(e,- | a; = O) -+ (ijei — ;€ | a; < O,CL]' > 0)
with unit vectors e;, e; of length n. The operator + merges vectors into a
matrix. Let A be an m x n matrix. For each 0 < ¢ < m we inductively define
S as follows: Sg! is the n x n identity matrix and S2, = S/ (a;115{))". The

sum of all column vectors of S/ is denoted by s4.

Proposition 2.8 ([17]). Let Ax > 0. Then s is a principal solution of A. [
The next example demonstrates how to compute (-)* and s?.

Example 2.9. For the matrix A = (—2 01 3 —1) we have

0001300 4
1000000 1

S =SMasg) =af=[0 1 0 2 0 1 0| ands?= |4
0010201 4

0000013 4

We show that s? fulfills the condition of Lemma 2.5.

Lemma 2.10. Let B be a p X ¢ matriz, C a ¢ X v matriz and a a 1 X q row
vector. Then the following holds:

1 |BC| < qlIBllIC]l,
2. [|Ba"| < 2[|Bf[]a"],
3. [la®| = [lall,

4. the number of rows of a® is q and the number of columns is bounded from
above by ¢>.

Proof. Claims 1 and 3 are trivial. Claim 2 follows from the fact that all columns
in a® have at most two non-zero entries. For Claim 4 we reason as follows.
The vector a is partitioned into three sets {a; > 0}, {a; = 0}, and {a; < 0}
with cardinalities ¢, d, and e. We have ¢ = ¢+ d + e and by construction
a" has ¢ + d 4 ce columns. Let + denote integer division. One easily verifies
that ¢ = (¢+ 1) =2, d = 0, and e = ¢ + 2 maximizes this number. Since
((g+1)=+2)((g+2) +2) < ¢? this gives the desired result. O

17

2 Knuth-Bendix Order

Lemma 2.11. If A is an m X n matrix then SZA is an n X q matriz for some

qénw.

Proof. We perform induction on i. The base case is trivial since 564 isthe nxn
identity matrix. Here ¢ = n < n?’ = n. For the inductive step assume that
SlA is an n x ¢ matrix with ¢ < n?". We show that S;il is an n x ¢’ matrix
for some ¢’ < n2* By definition Sﬁl = Sf(aiHSf‘)“. Since a;11 isa 1l xn
matrix and by assumption SZA is an n X ¢ matrix, ai+1SZA is of dimension 1 X q.
By Lemma 2.10 point 4 we get that (ai+15/)" is a ¢ x ¢’ matrix with ¢’ < ¢%.
Hence ¢ < ¢ < (n2l)2 = p2" by the induction hypothesis and the result
immediately follows.]
Lemma 2.12. ||SA|| < (2n]|A])2 L.

Proof. We perform induction on ¢. The base case is trivial, because 5’()4 is the
identity matrix and thus ||S{| = 1 = (2n]lA])2~!. We show the inductive
step. Since S{il = S (a;4151)"%, we get
1Sl < 20188 M1l (i1 Sl

= 2[5 a5

< 2nllai|]| 71

< 2nflAll) 712

< 2n4] ((2n]lA*)

= (24"
Here we used the (in-)equalities from Lemma 2.10, the trivial observation

llai+1]] < ||A]| in the fourth step, and the induction hypothesis in the fifth
step.]

Now we are ready to prove the main lemma of this section.

Proof of Lemma 2.5. Easy consequence of Proposition 2.8 and Lemmata 2.11
and 2.12. O

Considering that s* is an integer vector whenever A is an integer matrix, we
obtain a finite characterization of KBO orientability.

Theorem 2.13. Termination of R can be shown by KBO if and only if termi-
nation of R can be shown by KBO whose weights belong to {0,1,...,Br}. O

We conclude this section by showing that a principal solution of A can be
computed in polynomial time and mention its consequences.

Lemma 2.14. Lets; (1 < i< m) be a solution of Ax > e; if such a solution
exists and s; = 0 otherwise. Then s1 + --- + Sy, is a principal solution of A.

Proof. Clearly As; > 0 for 1 < i < m. By Gale’s theorem [26, Theorem 2.13]
also s; + - - - + s;,, is a solution of A. It is principal by construction. O

18

2.3 Direct Encodings

Therefore finding a principal solution of A boils down to solving Ax > e; for
1 < i < m. The latter can be handled in polynomial time due to the following
known result.

Proposition 2.15 ([47, 46]). Ax > b can be solved in polynomial time. O

Note that a (possibly rational) solution s satisfying As > e; can be trans-
formed into the desired integer solution by multiplication with a sufficiently
large scalar since e; > 0. Hence the approach in [17] can solve KBO in poly-
nomial time (if MCD is replaced by linear programming) due to a similar ar-
gumentation as in [53]: The algorithm performs polynomially many steps, all
matrices A that might appear during the algorithm are of polynomial size (cf.
the discussion before Definition 2.7), a principal solution of A can be computed
in polynomial time, and testing a finite precedence for well-foundedness (by
computing its transitive closure and testing for irreflexivity) is polynomial.

2.3 Direct Encodings

In this section the constraints KBO puts on a TRS are transformed into (linear)
arithmetic (Section 2.3.1) and pseudo-boolean logic (Section 2.3.2).

2.3.1 KBO in (Linear) Arithmetic

Due to the rich input format for arithmetic constraints (cf. Definition 1.11) one
can directly translate orientability of KBO into constraints of (linear) arith-
metic. As shown in Chapter 6 the encoding can be solved with both, SAT and
SMT back-ends.

We employ for every function symbol f € F non-negative integer variables w s
and p; indicating the weight of f and its position in the precedence, respectively.
Consequently an assignment satisfying py > py indicates f > g.2 Together with
an integer variable wo the definition of an admissible weight function ADM(F)
is easy as can be seen in the next definition.

Definition 2.16. For a signature F, let ADM(F) be the constraint

wp >0 A /\ We = Wo A /\ (Wf:() — /\(pf?pg)).
ce FO) feF® geF

Similarly, the weight of a term can be computed.

Definition 2.17. The weight of a term ¢ is encoded as follows:
wo ifteV,

Wf—l—Zth ift:f(tl,...,tn).
=1

Wy =

We are now ready to define an arithmetic constraint that reflects the defini-
tion of >ypo.

2 Codish et al. [10] were the first who encoded a precedence by a mapping into N.

19

2 Knuth-Bendix Order

Definition 2.18. Let s and ¢ be terms. We define the formula KBO(s >y, t) as
follows. If s € V or s =t or |s|, < |[t|, for some z € V then KBO(s >ypo t) = L.
Otherwise

KBO(s >kpo t) = We>Wy V (Wy=W; A KBO(s >0 t))
with KBO(s > t) = Tift €V, s € T(FW {t}), and s # ¢, and

KBO(s >ypy t) = Pr > pg V (Pf =g A KBO(Si >kbo ti))

in case of s = f(s1,...,8n) and ¢t = g(t1,...,tm) where i denotes the least
1 < j < min{n,m} with s; # ¢;.

Definition 2.19. Let R be a TRS. The formula KBO(R) is defined as

ADM(F) A [\ KBO(l >po 7).
l—reR

Theorem 2.20. Termination of R can be shown by KBO if and only if the
arithmetic constraint KBO(R) is satisfiable. O

Note that for solving the above constraint two possibilities are proposed in
Chapter 6. As discussed there, for the SAT approach numbers must be repre-
sented in binary. The variables p; indicate the position of f in the precedence
and hence can be bound by [logy(|F|)]. For the variables of weights (wy) such
a bound is also possible due to Theorem 2.13. Section 2.5 shows that in prac-
tice much smaller weights suffice. The SMT approach is not affected by such
considerations.

2.3.2 KBO in Pseudo-Boolean
A pseudo-boolean constraint (PBC) is of the form

n
(Zaz*xz) om
=1

where a1,...,a,, m are fixed integers, x1,...,x, Boolean variables that range
over {0,1}, and o € {>,=,<}. We separate PBCs that are written on a
single line by semicolons. A sequence of PBCs is satisfiable if there exists an
assignment which satisfies every PBC in the sequence. This means that PB can
easily encode conjunctions of linear arithmetic expressions whereas disjunctions
are tricky. In the sequel we show that nevertheless PBCs allow to encode KBO
concisely. Since 2005 pseudo-boolean evaluation? is a track of the international
SAT competition.

In order to give an encoding of KBO orientability, we must take care of repre-
senting a precedence and a weight function. For the former we introduce three
sets of propositional variables X = {Xy, | f,ge F}, Y = {Yy, | frg€ F},

3 http://www.cril.univ-artois.fr/PB07/
4 http://www.satcompetition.org/

20

http://www.cril.univ-artois.fr/PB07/
http://www.satcompetition.org/

2.3 Direct Encodings

and Z = {Z¢, | f,9 € F} depending on the underlying signature F [57, 10].
The intended semantics of these variables is that an assignment which satisfies
a variable X, corresponds to a precedence with f > g, similarly Y}, suggests
f ~ g and Zy, takes the third possibility (either g > f or f and g are incom-
parable). When dealing with strict precedences it is safe to assign zero to all
Yy, variables. We remark that the Zy, variables are not necessary as far as
termination proving power is concerned (because total precedences suffice as
KBO is incremental with respect to the precedence) but they are essential to
encode partial precedences which are sometimes handy (cf. Section 2.6).

Definition 2.21. For a signature F we define PREC-PB(F) as the conjunction
of the PBCs below, for all f, g € F:

Q*ng—i—Yfg—FYgf—{—Q*ng:Q
—Xyg+2 % Yy +2' % Zsg +5i(f) = Pi9) 2 0
2% Xy + Yig+ 25 Zg +py(f) —Di(9) > 1

where [= [logy(|F|)] and 7,(f) = 27 fy + -+ + 2 % f; denotes the position
of f in the precedence by interpreting f in N using [bits. Here f,..., f1 are
Boolean variables.

The above definition expresses all requirements of a quasi-precedence. The
symmetry of ~ and the mutual exclusion of the X, Y, and Z wvariables is
mimicked by the first constraint. The second constraint encodes the conditions
that are put on the X variables. Whenever a system needs f > ¢ in the
precedence to be terminating then Xy, must evaluate to one and (because
they are mutually exclusive) Yy, and Zy, to zero. Hence in order to remain
satisfiable p;(f) > P;(g) must hold. In a case where f > g is not needed (but
the TRS is KBO orientable) the constraint must remain satisfiable. Thus Yy,
or Zy, evaluate to one and because p;(g) is bound by 2! —1 the constraint does
no harm. Summing up, the second constraint encodes a proper order on the
symbols in F. The third constraint forms an equivalence relation on F using the
Yy, variables. Whenever f ~ g is demanded somewhere in the encoding, then
Xyq and Zj, evaluate to zero by the first constraint. Satisfiability of the third
constraint implies p;(f) = p;(g) but at the same time symmetry demands that
Y, s also evaluates to one which leads to p;(¢g) > p;(f) and thus to p;(f) = p;(9)-

The next definition captures the admissibility condition of a weight function
for a signature F.

Definition 2.22. For a signature F we denote by ADM-PBy(F) the collection
of PBCs

[] k>1

g

e Wy(c) —woy =0 forall ce F(0)

gl

o nxWk(f)+ 20 e r(Xpg+Ysg) = nforall f e F)

where n = |F|, wi,(f) = 2" % f] + -+ + 2 x f{ denotes the weight of f in N
using k bits, and W, captures wg. Again, f7,..., f| are Boolean variables.

21

2 Knuth-Bendix Order

In the definition above the first two PBCs express that wyq is strictly larger
than zero and that every constant has weight at least wg. Whenever the con-
sidered function symbol f has weight larger than zero the third constraint is
trivially satisfied. In the case that the unary function symbol f has weight zero
the constraints on the precedence add up to n if and only if f is a maximal
element. Note that Xy, and Yy, are mutual exclusive (which is ensured when
encoding the constraints on a quasi-precedence, cf. Definition 2.21).

For the encoding of KBO-PBj (s >kpo t) and KBO-PBy(s >yp t) (case (b) in
Definition 2.1) auxiliary propositional variables KBO(s,t) and KBO'(s,t) are
introduced. The intended meaning is that if KBO(s,t) (KBO'(s,t)) evaluates
to one under a satisfying assignment then s >upo ¢ (8 >ypo). The general
idea of the encoding is very similar to the one from the previous subsection.
As we do not know anything about the weights and the precedence at the time
of encoding we have to consider the cases w(s) > w(t) and w(s) = w(t) at the
same time. That is why KBO'(s,t) and the recursive call to KBO-PBy, (s >, t)
must be considered in any case.

The weight Wi (t) of a term ¢ is defined similarly as in Definition 2.17 with the
only difference that the weight w(f) of the function symbol f € F is represented
in k bits as described in Definition 2.22.

Definition 2.23. Let s and ¢ be terms. The encoding of KBO-PB(s >kpo t)
amounts to KBO(s,t) =0if s € V or s =t or |s|, < |t|; for some x € V. In all
other cases KBO-PBj (s >kpo t) is the combination of KBO-PB(s >, t) and

—(p+1) x KBO(s, t) + wk(s) — wg(t) + KBO'(s,t) = —p (2.1)

where p = 2Fx|t|. Here KBO-PBy (s >4 t) is the empty constraint when t € V,
s € T(FWM {t}), and s # t. In the remaining case when s = f(s1,...,s,) and
t = g(t1,...,tm) then KBO-PBy(s >ypo t) is the combination of the PBCs
KBO-PB(si >kbo ti) and

—2% KBO'(s,t) 4 2% X ¢y + Yy, + KBO(s3, t;) > 0
where ¢ denotes the least 1 < j < min{n, m} with s; # .

Since the encoding of KBO-PBj (s >kpo t) is explained in the example below
here we just discuss the intended semantics of KBO-PBg(s >p). In the
first case where t is a variable there are no constraints on the weights and the
precedence which means that the empty constraint is returned. In the other
case the constraint expresses that whenever KBO'(s,t) is satisfied then either
f > g or both f ~ g and KBO(s;,t;) must hold.

To get familiar with the encoding and to see why the definitions are a bit
tricky consider the example below. For reasons of readability symbols occurring
both in s and in ¢ are removed immediately. This entails that the multiplication
factor p should be lowered to

p=">_ max{0,2" x (|t]a — |s[a)},
aceFUYVY

which also is a lower bound on the left-hand side of constraint (2.1) if KBO(s, t)
is zero because wi(s) — wg(t) = —p.

22

2.4 Encodings with Dependency Pairs

Example 2.24. Consider the TRS consisting of the rule

s =f(g(z),g(g(x))) — f(g(g(z)),z) =t.

The PB encoding KBO-PBj (s >po t) then looks as follows:

—KBO(s, t) + wk(g) + KBO'(s

—2 % KBO'(s,t) + 2 * X + Vi + KBO(g(x), g(g(x

—(2° + 1) KBO(g(). 8(g(x))) — wi(g) + KBO'(g(x), g(g(x
—2 % KBO'(g(2), g(g(x))) + 2 * Xgg + Ygg + KBO(z, g(
KBO(z, g(

~— N
O O — ~+
o O

T

(
(
(
(

\\/\\/ VoWV
w
B

S e

o O

X

(

Constraint (2.2) states that if s >ypo ¢ then either wy(g) > 0 or s >, t. Note
that here the multiplication factor p is 0. Clearly the attentive reader would
assign wi(g) = 1 and termination of the TRS is shown. The encoding however
is not so smart and performs the full recursive translation to PB. In (2.4) it is
not possible to satisfy s; = g(z) >wbo g(g(z)) = 1 since the former is embedded
in the latter. Nevertheless the constraint (2.4) must remain satisfiable because
the TRS is KBO orientable. The trick is to introduce a hidden case analysis.
The multiplication factor in front of the KBO(sy,t1) variable does that job.
Whenever s; >ypo t1 is needed then KBO(sy, 1) must evaluate to one. Then
implicitly the constraint demands that wy(s1) > wWk(t1) or wi(s1) = wWg(t1)
and s1 > t1 which reflects the definition of KBO. If s1 >kpo t1 need not be
satisfied (e.g., because already s >kpo ¢ in (2.2) then the constraint holds in any
case since the left-hand side in (2.4) never becomes smaller than —2* because
w(g) < ok,

The next definition expresses KBO in PB. The constraint KBO-PBy (s >kpo)
demands that if KBO(s,t) = 1 then s >ypo t. To ensure KBO orientation, for
every rule [— r the constraint KBO(l,r) = 1 is added. Note that without
these additional constraints, the encoding would always be satisfiable, so also
for TRSs that are not terminating.

Definition 2.25. Let R be a TRS over a signature F. The pseudo-boolean
encoding KBO-PBy(R) is the combination of PREC-PB(F), ADM-PB(F), and

KBO-PB(l >kbo 7); KBO(l,7) =
foralll —reR.

Theorem 2.26. Termination of R can be shown by KBO whenever the PBCs
KBO-PBy(R) are satisfiable. O

The reverse holds for all k£ > [logy(Bgr + 1)] (cf. Theorem 2.13).

2.4 Encodings with Dependency Pairs

One obvious and powerful extension of KBO is to integrate it in the dependency
pair method.

23

2 Knuth-Bendix Order

In this section we reformulate the reduction pair processor with argument
filterings and usable rules (Theorem 1.10) as a satisfiability problem over arith-
metic constraints for specific orders. In Section 2.4.2 we address the embedding
order and in Section 2.4.3 we address KBO, but first (Section 2.4.1) we explain
how to represent argument filterings in propositional logic.

This encoding allows SAT and SMT as back-end. We note that for PB
this approach does not seem so suitable since the resulting formula contains
many disjunctions. The main motivation for using pseudo-boolean in the direct
encoding (Section 2.3.2) was that it allows a concise implementation because
the KBO constraints can easily be expressed in PB. This is no longer true
when combining KBO with argument filterings. One could of course perform a
Tseitin-like [82] transformation to PB but that would destroy the elegance of
the approach. Why PB can still be advantageous is outlined in Section 2.6.

Before we actually start with encoding argument filterings we demonstrate a
termination proof within the dependency pair setting by means of the following
example. This example already shows that KBO gains much power by allowing
argument filterings since they are capable of making duplicating rules non-
duplicating.

Example 2.27. The TRS AG01/#3.1 consisting of the four rules
minus(z,0) — x quot(0,s(y)) — 0
minus(s(z), s(y)) — minus(z,y) quot(s(x),s(y)) — s(uot(minus(z, y),s(y)))

gives rise to the dependency pairs

MINUS(s(x),s(y)) — MINUS(z, y) (2.7)
QUOT(s(z),s(y)) — MINUS(z,y)
QUOT(s(x),s(y)) — QUOT (minus(x,y),s(y)). (2.8)

The dependency graph contains the two SCCs {2.7} and {2.8}. For the first
one there are no usable rules and rule 2.7 can easily be handled by KBO.
The second SCC is more challenging. To make rule 2.8 non-duplicating we
take an argument filtering satisfying 7(QUOT) = 7(quot) = mw(minus) = 1 and
m(s) = [1], producing s(x) — z with filtered usable rules z — x and s(z) — =
originating from the rules defining minus. KBO can easily handle these rules.

2.4.1 Representing Argument Filterings

Within this subsection F is considered as a signature over a DP problem (P, R).

Definition 2.28. For a signature F we denote by 7mr the set of propositional
variables {ny | f € F} U {ﬂ} | feFand1<i<arity(f)}. Let m be an
argument filtering for . The induced assignment . is defined as follows:

o iR =] [1 fien(f)
w(m) {0 it w(f) =i d an(m) {0 if i ¢ 7(f)

for all n-ary function symbols f € F and i € {1,...,n}.

24

2.4 Encodings with Dependency Pairs

Definition 2.29. An assignment « for mx is said to be argument filtering
consistent if for every n-ary function symbol f € F such that o 7 7y there is a
unique ¢ € {1,...,n} such that a F T

It is easy to see that a, is argument filtering consistent.

Definition 2.30. The propositional formula AF™(F) is defined as A ;c » AF™(f)
with
arity(f) ‘ '
AFT(f) =m¢ V \/ (W} A /\—nrgc).
i=1 j#i

Lemma 2.31. An assignment « for wr is argument filtering consistent if and

only if a = AF™(F). O

Definition 2.32. Let a be an argument filtering consistent assignment for 7.
The argument filtering m,, is defined as follows: 7o (f) =[i | a F 77}] if a F oy
and 7o (f) =i if a Z 7y and a F 7r3}, for all function symbols f € F.

Example 2.33. Consider the signature from Example 2.27. The assignment
« only satisfying the variables myinus, WEMNUS, Tminuss W%UOT, Wéuot, T, and
Ts is argument filtering consistent. The induced argument filtering 7, consists
of mo(MINUS) = [2], ma(minus) = 74 (0) = ma(s) = [], ma(QUOT) = 2, and
7o (quot) = 1.

Corresponding to the definition of U, (P, R) and Theorem 1.10 from page 9
we encode m(Ur(P,R)UP) C 2 as the conjunction of

/\ (Uroot(l) A ZZF T) A /\ (Uroot(l) - lZW T)
l—reP l—r€ER

and

/\ <Uroot(l) - /\ < /\ Trioot(r\q) - TOOt(T|p))>'

l-reRUP p€EPosg(r) ¢ i:ig<p
root(r|p) is defined

Here | 2™ r abbreviates 7(l) 2 n(r). Furthermore, Uy is a new propositional
variable for every defined and every dependency pair symbol f. If Uy evaluates
to true, then rules of the form f(...) — 7 must be oriented. In the formula
above the first conjunct expresses that all rules from P must be oriented by 2>7.
The second conjunct expresses that if a rule is usable, then it must be compatible
with 27 whereas the third conjunct computes the usable rules with respect to
an argument filtering (if a rule is usable, then defined symbols—occurring on
positions that are not deleted by the argument filtering—in its right-hand side
also give rise to usable rules). The relation 2™ can be replaced by an encoding
of 2 (the weak part of a reduction pair) that incorporates argument filterings
7. The above formula is a crucial ingredient for implementing the DP processor
from Theorem 1.10 and is abbreviated by U(P,R,27).

25

2 Knuth-Bendix Order

2.4.2 Embedding

To reformulate Theorem 1.10 as a satisfaction problem, we must fix a reduction
pair, incorporate argument filterings, and encode the combination in proposi-
tional logic. Next we take the reduction pair (>emp, >emb) corresponding to the
embedding order. Because embedding has no parameters it allows for a trans-
parent translation of the constraints 7(U,(P,R) UP) C 2 and n(P) N> # &
needed to implement Theorem 1.10. In Section 2.4.3 we consider KBO, which
is a bit more challenging.

Definition 2.34. The embedding relation <emp is defined on terms as follows:
S Demp t if s =t ort = f(t1,...,t,) and either s Demp t; for some i or
s = f(s1,.-.,8,) and 8; Demp t; for all . The strict part is denoted by <lemp.
The converse relations are denoted by Bemp and >emp-

In the following we define propositional formulas s >7 ¢t and s T ¢ which,
in conjunction with AF™(F), represent all argument filterings 7 that satisfy
Ta(S) Demb Ta(t) and ma(s) Bemb ma(t). We start with defining a formula
s =™ t that represents all argument filterings which make s and ¢ equal. (In the
remainder of this chapter we assume that A binds stronger than V.)

Definition 2.35. Let s and ¢ be terms in 7 (F,V). We define a propositional
formula s =" ¢t by induction on s and ¢. If s €) then

T if s =t,
s="t = (¢ L m ifteV and s #t,
~mg AN (T A s =T tg) it =g(ty, ... tm).
j=1

Let s = f(s1,...,8p). If t €V then

n
s="1¢ = —|7Tf/\\/(7rjc/\si =" t).
i=1
Ift=g(ty,..., ty,) with f # g then

n m

s="1¢ = —\7Tf/\\/(7T§cA5i =" t)vﬁng \/(ﬂ'g/\s:”tj).
i=1 j=1

Finally, if t = f(t1,...,t,) then

n

n
s="t = ﬁﬂ'f/\\/(?‘l’jc/\si =7 ti)\/Trf/\/\(Tr}—>s,~ :ﬂ-ti).
=1 =1

For readability we present a translation related as close as possible to the
definition of argument filterings. In an implementation one should minimize
the formulas, e.g., the last formula can be expressed more concisely as

n

s="t = /\(7‘(‘} — 5 =" ti)
i=1

since we know that AF™(F) must hold anyway.

26

2.4 Encodings with Dependency Pairs

Definition 2.36. Let s and t be terms in 7 (F,V). We define propositional
formulas s >7 tand s Tt =s>7 , tVs="1 Dby induction on s and ¢. If

se€Vthens>l t = L. Let s= f(s1,...,5,). If t €V then

n n
sDipt = T A \/(77} Nsi Blopt)V ome A \/(77} Asi Iy t).-

i=1 i=1

Ift = g(t1,...,tm) with f # g then s 7, t is the disjunction of

n m
T A <7Tg A \/ (71'} Asi BT t) Vomg A \/ (ﬂ'g A8 D>l tj)>
i=1 j=1

n
and -7y A \/ (W} A Si >ob t). Finally, if t = f(t1,...,t,) then
i=1
s>Tpt = T A (\/(ﬂ'}/\si DT 1)V \ (75 = si B0 i) A
i=1 i=1
n n)
(7'('}' N S; ngb ti).

(773} A 8i D>omp tz)> Voo A
1

1 7

(2

The formula s >7 , t A AF"(F) is satisfiable if and only if there exists
an argument filtering 7 such that 7(s) >emp 7(t). Actually the statement is
even stronger, since s >7 .t A AF™(F) encodes all argument filterings 7 that
satisfy 7(s) >emp m(t). Analogous statements hold for s =™ ¢ A AF7(F) and
sT ot A AFT(F).

—emb

Lemma 2.37. Let s and t € T(F,V). If a is an assignment for nx such that
akEspl ot AAFT(F) then mo(s) Demb Talt). If m is an argument filtering
such that m(s) Demb 7(t) then ar Es>I _t A AFT(F). O

emb

We conclude this subsection by stating the propositional formulation of the
DP processor of Theorem 1.10 specialized to embedding.

Theorem 2.38. Let (P, R) be a DP problem over a signature F. The formula

U(P,R,=I) A AFT(E) A \/ s>l t
s—teP

1s satisfiable if and only if there exists an argument filtering m such that the
constraints Uy (P,R)UP) C >emp and 7(P) N >emp # 2 hold.” d

2.4.3 Knuth-Bendix Order

Our aim is to define a formula

s >ppo t A AFT(F) A ADM™(F)

5 Independently, in [11] a similar encoding is presented for LPO.

27

2 Knuth-Bendix Order

that is satisfiable if and only if there exist an argument filtering 7 and a prece-
dence > such that 7(s) >kpo m(t). The conjunct ADM™(F) takes care of the
admissibility condition.

Below we define the conjunct s >7, t. The basic idea is to adapt s >7_, t by
incorporating the recursive definition of >yp,. First we propose a formula that

expresses that after applying the argument filtering no variables are duplicated.

Definition 2.39. The formula ND" (s, t) is defined as follows:

ND™(s,t) = N I8 Tle =1t Tl

x € Var(t)
with
w?71:0 if s =z,
5, 0l = 0 if s €V and s # x,
9 xr n
Z|si,g0/\7r;}]x if s = f(s1,...,5n).
i=1

The idea behind the recursive definition of |s, |, is to collect the constraints
under which a variable is preserved by the argument filtering. If those con-
straints are satisfied they correspond to an occurrence of the variable. Adding
the constraints yields the number of variables which survive the argument fil-
tering.

Example 2.40. Consider the rule I = MINUS(s(z),s(y)) — MINUS(z,y) = r.
Then the formula ND” (I, r) evaluates (modulo simplifications) to

(mpinus ATe 7 1:0) = (myinus 712 0)A (Tinus Aa 2 1:0) = (mnus 7 1:0)

where the first (second) conjunct expresses non-duplication of variable x (y).
Informally, the formula states that whenever an argument filtering 7 keeps the
first (or second) argument of MINUS, then it must also keep the argument of s.

Next we give a formula that computes the weight of a term after an argument
filtering has been applied.

Definition 2.41. We define w”(t) as w/.(¢, T) with
@e?wyp:0 ifteV,

n
(mp A 2wy 0)+ > whlti,mh Ap) ift=f(t1,... tn).
=1

W (t7 90) =

Definition 2.42. Let s and t be terms. We define propositional formulas
S >t = ND7(s,t) A (WT(s) > w7 (t) V w'(s) =w"(t) A s> t)
and

521t = S >kt Vs="1

28

2.4 Encodings with Dependency Pairs

with s >7 ¢ inductively defined as follows. If s € V then s >7 ¢ = L. Let
s=f(s1,--.,8n). ft€Vthen s >t = s>t Ift=g(t,... ty) with
f # g then

5>t = T ATgA pr>pgV
m n
g AN (7 A s >To t) Vo AN (T Asi ST t).
j=1 i=1

Finally, if t = f(t1,...,t,) then

n
§ Moot = T A1 o sn) >l (et Voo AN (T A s T t)-

i=1
Here (s1,...,Sn) >:B]; (ti,...,tn) is defined as L if n =0 and as
TEAS1 >ho 11V (TF = 51 =" 1) A (82, ., 8n) >l {2, tn)

if n> 0.

Note that s >7 ¢ corresponds to the definition of KBO in the case of equal
weights (cf. Definition 2.1 case (b)(2)). The equation s >[, ¢t = s >, t for
t € V might look peculiar but can be explained by the admissibility condition
(encoded below) and the fact that 7(s) and w(t) = ¢ are assumed to have
equal weight. The formula ADM™(F) from the next definition is satisfiable if
and only if the encoded weight function is admissible in the presence of an
argument filtering. Here C™(f) and U™(f) express that 7(f) is constant and

unary, respectively.

Definition 2.43. For a signature F, let ADM™(F) be the formula

wo >0 A /\ (CT(f) = wy = wo) A

ferF
N\ U () Awr=0 — A (g = ps > py))
fer geF
arity (f) ' arity(f) ‘)
with C™(f) =7y A /\ -7y and UT(f) =7 A \/ (ﬂ'} A /\ —wr?c).
i=1 i=1 i#j

Theorem 2.44. Let (P, R) be a DP problem over a signature F. The formula

U(P, R, >fp0) A ADMT(F) A AFT(F) A \/ s > t
s—teP

1s satisfiable if and only if there are an argument filtering 7, a precedence >,
and an admissible weight function (w,wq) such that ©(Uz(P,R) UP) C Zupo
and m(P) N >kpo # 9. O

29

2 Knuth-Bendix Order

From a satisfying assignment one can read off the argument filtering, the
precedence, and the weight function. We omit the straightforward details.
When solving the constraints from Theorem 2.44 the SMT back-end always
gives a complete implementation whereas the SAT approach is only complete
for sufficiently large weights. However, again due to the results of Section 2.2 up-
per bounds on weights can always be computed and experiments (Section 2.5.3)
show that in practice small weights suffice.

2.5 Experiments

Below we compare our implementations of KBO, sat, pbc, and smt (on top of
T1To) with the ones of TT [39], a special version of AProVE [30] provided by
the authors, and an implementation dkm (also on top of TyTy) as proposed
by Dick et al. in [17]. TqT and AProVE admit only strict precedences. Both
implement the algorithm of Korovin and Voronkov [53] together with techniques
from [17]. For two of our approaches (sat and pbc) KBO orientability amounts
to finding a satisfying assignment for a propositional formula whereas the smt
approach is based on linear programming. The other tools find a solution
by solving a system of homogeneous linear inequations which also amounts
to linear programming. Although this problem is known to be decidable in
polynomial time [47, 46] in practice algorithms with exponential (worst-case)
time complexity such as the simplex method [15] perform much better. Dick et
al. [17] prefer the method of complete description over simplex due to its support
for incrementality. This shows that although computing a KBO for a given TRS
can be done in polynomial time, none of the existing tools does so.

Concerning optimizations, when computing weights of terms symbols occur-
ring on both sides of rules are ignored. Furthermore the encoding of KBO (in
the direct setting) is only computed if a test for embedding fails. Keeping the
encoding in a cache allows to re-use precomputed formulas which drastically
reduces encoding time. For all data given in the following tables addition in
SAT (Definition 6.2) takes overflows into account, i.e., adding two k-bit numbers
results in a (k + 1)-bit number.

2.5.1 Results for TRSs

As addressed earlier for the SAT and PB back-ends one has to fix the number
k of bits which is used to represent natural numbers in binary representation.
The actual choice is specified as argument to sat (pbc). Note that a rather
small k is sufficient to handle all potential systems from TPDB which makes
Theorems 2.20 and 2.26 powerful in practice also for the SAT and PB back-
ends. As already indicated in Example 2.4 there does not exist a uniform upper
bound on k but for every given TRS one can compute such a k according to
Theorem 2.13.

In Table 2.1 we compare different approaches dealing with KBO. The columns
labeled yes indicate the number of successful proofs while t/o (timeout) counts
how often execution was killed since the tool did not produce an answer within
60 seconds. The column total time is measured in seconds. The left part of

30

2.5 Experiments

Table 2.1: KBO for 1391 TRSs

strict precedence quasi-precedence
method(#bits) yes total time tfo yes total time tfo
sat/pbc(2) 104/104 24.7/174.9 0/0 105/104 23.7/247.9 0/1
sat/pbc(3) 106/106 24.1/180.1 0/0 107/107 24.6/223.4 0/0
sat/pbc(4) 107/107 28.0/181.4 0/0 108/108 26.3/229.7 0/0
sat/pbc(10) 107/107 257.3/267.2 3/1 108/107 261.8/335.6 3/2
smt; 107 24.0 0 108 19.9 0
smt, 107 23.9 0 108 19.5 0
AProVE 101 1946.0 18
T 101 335.0 1
T7T (simplex) 105 360.5 4
dkm 99 801.4 13
dkm’ 102 436.1 7

Table 2.1 summarizes the results for strict precedences. Interestingly, already
k = 4 suffices to prove the maximum number of systems terminating. The ap-
plicative® TRS higher-order/AProVE/HO /ReverseLastlnit consisting of the rules

compose f gz — g (f x) hd (consz xs) — =
reverse | — reverse2 [nil tl (consz zs) — xs
reverse2 (consz xs)l — reverse2 xs (consxz) reverse2 nill — 1

last — compose hd reverse
init — compose reverse (compose tl reverse)

can only be handled by sat and pbc with k£ > 4. The constant reverse needs at
least weight three and thus nine is the smallest weight for the constant init. The
SMT approach does not need to represent numbers in binary and consequently
there are no bit-restrictions on the weights. Furthermore, this back-end allows
to choose the real numbers as domain for the weights. However, the SMT
solver we use (Yices) can only deal with rationals. The index for smt indicates
if integers (smt;) or rationals (smt,) are employed.

Since T7T and AProVE implement the slightly stronger KBO definition of [53]
they can prove two TRSs (various/27 and TRCSR/Ex9_Luc06_GM) terminating
which cannot be handled by our methods. (We did not investigate if one can
specialize the encodings to also capture these systems but are convinced that
this is in principle possible.) On the other hand TyT gives up on HM/t000 (and
six more TRSs that derive from context sensitive rewriting) which specifies
addition for natural numbers in decimal notation (using 104 rewrite rules).
The problem is not the time limit but at some point the algorithm detects
that it will require too many resources. To prevent running out of memory,
the computation is terminated and a “don’t know” result is reported. AProVE
does not cut off execution and consequently for this system (and 17 others) no
result is obtained within 60 seconds. Also dkm fails on HM/t000 (t/0) whereas

5 In applicative notation the binary function symbol app is written as juxtaposition and
left-associative. E.g., the term hd (cons x xs) represents app(hd, app(app(cons, x), xs)).

31

2 Knuth-Bendix Order

Table 2.2: KBO for 732 SRSs

strict precedence quasi-precedence
method(#bits) | yes total time t/o yes total time t/o
sat/pbc(3) 924/24 10.0/8.0 0/0 24/24 11.1/91 0/0
sat/pbc(4) 30/30 10.8/8.4 0/0 30/30 13.6/9.5 0/0
sat/pbc(6) 33/33 13.7/95 0/0 33/33 17.1/108 0/0
sat/pbc(8) 33/33 16.7/10.1 0/0 33/33 20.3/13.2 0/0
smt; 33 9.4 0 33 9.0 0
smt, 33 9.6 0 33 8.9 0
AProVE 30 676.6 4
T 30 44.3 0
T7T (simplex) 33 21.2 0
dkm 29 366.9 6
dkm’ 30 255.8 4

for none of our approaches this system seems to pose a problem; sat(4), pbc(4),
smt;, and smt, succeed within 0.19, 0.16, 0.03, and 0.03 seconds. The algorithm
dkm produces large sparse matrices during execution for some systems (e.g. for
HM/t000 after 30 seconds 1 GB of memory is used). We developed an OCaml
module for sparse matrices which could drastically reduce memory usage (e.g.
for HM/t000 after 30 seconds only 50 MB). Nevertheless this effort just slightly
improves the data for dkm. On the whole database the number of successful
proofs did not increase and execution time decreases just slightly. Another issue
that increased performance of dkm much more was sorting the set of equations
in order to keep the internal data-structure (the matrices S{!) for MCD much
smaller. This allowed us to prove various/21 in 0.03 seconds whereas it was
intractable for this method beforehand (out-of-memory after eight minutes).
The idea of sorting somehow contradicts the claim in [17] that MCD is preferable
over the simplex method [15] due to its incremental nature. Our tests showed
that restarting MCD (with sorted inequalities) whenever some new inequalities
are added performs better than just incrementally adding one inequality after
the other. Table 2.1 shows that by sorting (dkm’) the method can prove three
additional TRSs while the execution time drops by a factor of two. We also
varied (within TqT) the back-end for solving linear inequations. While the
standard implementation of TTT uses MCD, the special version T7T (simplex)
provided by Nao Hirokawa implements the first phase of [15]. Again the results
contradict the claim in [17] that MCD is better suited than the simplex method.

As can be seen in the right part of Table 2.1, by admitting quasi-precedences
one additional TRS (SK90/2.42, Example 2.3) can be proved terminating.

2.5.2 Results for SRSs

For SRSs we have similar results, as can be inferred from Table 2.2. The main
difference is the larger number of bits needed for the propositional representa-
tion of the weights. The maximum number of SRSs is proved terminating with
k > 6. Generally speaking T7T performs better on SRSs than on TRSs con-

32

2.5 Experiments

Table 2.3: KBO with dependency pairs for 1391 TRSs/732 SRSs

TRSs SRSs
method(#bits) | yes total time t/o yes total time tfo
sat(2) 488 19129 16 45 1174 0
sat(3) 491 2440.6 15 48 261.4 0
sat(4) 491 4915.5 36 55 524.7 1
sat(h) 489 8570.8 85 56 1098.8 3
sat(6) 488 11870.0 140 57 1820.4 7
sat(10) 487 17820.6 240 55 6388.7 43
smt; 488 2353.2 22 57 119.1 1
smt, 489 1862.9 18 57 105.6 1
AProVE 445 15727.8 235 37 2873.1 37
T 323 24095.2 370 27 2644.9 36

cerning KBO because it can handle all systems within the time limit. However,
again our experiments reveal that the implementation of T7T is not complete,
i.e., it proves termination of 30 SRSs only whereas our implementations suc-
ceed on 33 SRSs. The three SRSs that make up the difference (Trafo/dupll,
Zantema/z069, Zantema/z070) derive from algebra (polyhedral groups). Also
AProVE and dkm are unable to handle these systems (t/o) while the simplex
version of TqT performs well. Admitting quasi-precedences does not allow to
prove additional SRSs from TPDB terminating by KBO.

2.5.3 Results with Dependency Pairs

Apart from the concepts explained in Sections 1.2 and 2.4 for the results in this
subsection the dependency graph refinements presented in [32, 38] and usable
rules like in [32] have been considered.

In combination with the dependency pair setting KBO gains much power
compared to the direct approach. One reason is that by allowing argument
filterings duplicating systems may become non-duplicating and consequently
this (severe) restriction is eased.

We implemented the encoding from Section 2.4 in T7Ty yielding implementa-
tions for sat and smt. The following strategy skeleton is used to call T7T5 in this
setting: var | dp;edg; (sccs;ur;kbo -dp -ur [)*. To obtain an executable
strategy, [J must be replaced by concrete flags, e.g., -sat -ib 2. More infor-
mation on TyTy’s strategy language is available in Appendix A and the exact
strategies that have been used to produce the tables are listed in Section A.4.

Table 2.37 shows that the smt encoding is fastest and for rational weights the
solving time is drastically reduced compared to the integer case. Interestingly
even if the weights are allowed to take rational values Yices returns integer so-
lutions for almost all systems, see Section 2.6 for details. Although smt, misses
proving two systems compared to sat(3) it remains the optimal choice since no

7 We stress that T4T has a weaker implementation of the dependency pair framework and
consequently the results cannot directly be compared.

33

2 Knuth-Bendix Order

parameters have to be chosen to call the method. Furthermore the two missing
systems can be handled by slightly increasing the timeout, i.e., smt, is successful
on TRCSR/PALINDROME _complete-noand_FR within 86.4 seconds and spends
151.8 seconds on TRCSR/PALINDROME_complete-noand_Z. For the SRS cate-
gory SMT is the clear winner since it is by far the fastest while yielding maximal
termination proving power as demonstrated in the right part of Table 2.3.

2.6 Assessment

In this section we compare the three new approaches presented in this chapter.
Let us start with the most important measurements: power and run time. Here
smt is the clear winner. In [89] smt was not considered and pbc performed
best. Since here a different database is employed the results look slightly worse
for PB. On most examples pbc still outperforms sat but on a few systems
(transformations from context-sensitive rewriting) pbc is not efficient at all.
But pbc still scales better when using more bits (cf. Table 2.1). Furthermore,
the pseudo-boolean approach is less implementation work since additions are
performed by the solver and also the transformation to CNF is not necessary.
However it is not straightforward to extend the PB encoding by argument fil-
terings. Of course smt combines the benefits of both approaches. The encoding
is straightforward, little effort to implement, and efficient.

But an advantage of the pseudo-boolean approach is the option of a goal func-
tion which should be minimized while preserving satisfiability of the constraints.
Although the usage of such a goal function is not of computational interest it
is useful for generating easily human readable proofs. We experimented with
functions reducing the comparisons in the precedence and minimizing weights
for function symbols. Concerning the former we detected that using two (three,
four, ten) bits to encode weights of function symbols 49 (56, 60, 60) TRSs can
be proved terminating with empty precedence. The latter has the advantage
that one obtains minimal weights in KBO proofs which is nicely illustrated on
the SRS Zantema/z113 consisting of the rules

11 — 43 33 — 56 55 — 62
12 - 21 22 — 111 34 — 11
44 — 3 56 — 12 66 — 21.

TqT and AProVE produce the proof

w(l) = 32471712256 w(2) = 48725750528 w(3) = 43247130624
w(4) = 21696293888 w(5) = 44731872512 w(6) = 40598731520
3>1>2 1>4

whereas pbc(6) yields

w(l) = 31 w(2) = 47 w(3) = 41
w(4) =21 w(5) = 43 w(6) = 39
3>1>2 3>5>6>2 1>4

34

2.6 Assessment

So for the first time it became clear that these large numbers are not needed
to prove KBO orientability of the system Zantema/z113. To some extent it is
clear that AProVE and TyT produce such large weights since these implementa-
tions are based on the work in [17] which always ensures minimal precedences.
Surprisingly our dkm’ implementation produced a proof for various/21 with
minimal (since empty) precedence and weight function w(+) = 12, w(pl) = 24,
w(p2) = 42, w(p5) = 90, and w(pl0) = 141, contradicting the discussion at
the end of [17, Example 2| claiming that a precedence pl0 > p5 > p2 > pl is
needed.

Without dependency pairs there is no real gain in speed when allowing ratio-
nals for SMT. This might be due to the fact that only two proofs (HM/t000 and
SK90/2.46) make use of rational valued weights in the TRS category and three
proofs when considering SRSs (Trafo/dup01, Trafo/dupll, and Trafo/dupl6).
But the difference becomes larger within the dependency pair setting. Suddenly
46 proofs for TRSs contain rational valued weights while the number does not
increase for SRSs. As already mentioned earlier [53] proves that restricting to
integer weights does not change the power of the order.

While running the experiments, sat and pbc produced different answers for
the SRS Zantema/z13; pbc claimed KBO termination whereas sat answered
“don’t know”. Chasing that discrepancy revealed a bug (Eén Niklas, personal
conversation, 2007) in MiniSat+ (which has been corrected in the meantime).

Our experiments reveal that SMT suits an efficient and simple implementa-
tion best. However, for KBO linear arithmetic is sufficient which is not the case
for other popular termination techniques like polynomial interpretations [58].
Currently SMT solvers do not support non-linear arithmetic at all or completely
inappropriate. Thus until recently it seemed inevitable to use SAT as a back-
end [23] for efficient implementations dealing with polynomials. The approach
from [8] allows to solve non-linear arithmetic constraints using SMT solvers
only supporting linear arithmetic.

Comparing KBO with other direct approaches for proving termination such as
LPO [45] or polynomial interpretations, the question arises how powerful KBO
is. Despite the severe restriction of non-duplication, there are KBO terminating
TRSs that cannot be oriented by LPO or polynomial interpretations. Taking
derivational complexity as measure for the power of an order, KBO surpasses
some other approaches. The derivation length, denoted dlz(n), computes the
length of a longest possible derivation starting at a term of size n. Hofbauer and
Lautemann [40] showed that KBO can prove TRSs R terminating for which dlg
cannot be bounded by a primitive recursive function whereas polynomials are
bounded from above by double exponential functions. Lepper [59] proved that
the Ackermann function gives an upper bound on dly if termination of R can
be proved by KBO. Moser [66] extended this result to infinite signatures. Con-
cerning LPO, Weiermann [86] showed that multiple recursive functions suffice
for bounding derivational complexity.

To stress the significance of our contribution we state some details about the
use of KBO in the termination prover TqTy. It used the SMT encoding (with
rationals) in the November 2008 termination competition for both categories in
which it participated. Here KBO had to compete with a number of other ter-

35

2 Knuth-Bendix Order

mination techniques in TyTy. For the category TRS Standard (SRS Standard)
KBO was used in about 22% (18%) of the successful termination proofs which
shows the applicability of the method.

2.7 Summary

In this chapter we revisited the Knuth-Bendix order (KBO) by presenting logic-
based encodings of KBO—solvable by pure SAT, PB, and SMT—which can be
implemented more efficiently and with considerably less effort than the dedi-
cated methods described in [17, 53]. A method to compute upper bounds for
weights makes the SAT and PB approaches complete. Furthermore we gave
an alternative poly-time decidability result of the order to [53]. Comparisons
with existing implementations on standard testbenches reveal enormous gains
in efficiency. Especially the SMT approach gives rise to a very fast and user-
friendly implementation since the method is parameter-free (no restriction of
bits for weights).

36

Chapter 3

Increasing Interpretations

This chapter introduces a refinement of interpretation-based termination cri-
teria for TRSs in the dependency pair setting. Traditional methods share
the property that—in order to be successful—all rewrite rules considered must
(weakly) decrease with respect to some measure. One novelty of the approach
introduced in this chapter is that it allows an increase for some rules. Possible
candidates for such rules are found by simultaneously searching for adequate
polynomial interpretations while considering the information of the dependency
graph. We prove that our method extends the termination proving power of
linear interpretations. Furthermore, this generalization perfectly fits the de-
pendency pair framework which is implemented in virtually every termination
prover dealing with term rewrite systems. We present two DP processors for
increasing interpretations. The novelty of the second one is that it can be used
to eliminate single edges from the dependency graph. Two SAT encodings are
given to implement the proposed DP processors and the implementations are
evaluated on standard testbenches.

The chapter is organized as follows. In Section 3.1 the necessary preliminaries
for the later sections are recalled. Section 3.2 motivates our approach by means
of an example and already suggests that special care is needed to formulate
a sound DP processor. Afterwards in Section 3.3 two sound and complete
DP processors are introduced. Implementation details and optimizations are
presented in Section 3.4. An assessment of our contribution can be found in
Section 3.5 before ideas for future work are addressed in Section 3.6.

The results of this chapter originate from [92] which is a significant extension
of [90].

3.1 Preliminaries

Next we fix notation on labeled graphs in Section 3.1.1 and introduce polynomial
interpretations in Section 3.1.2.

3.1.1 Graphs

Let N be a finite set. A graph G = (N, E) is a pair such that E C N x N.
Elements of N (FE) are called nodes (edges). A labeled graph is a pair (G, ()
consisting of a graph G = (N, F) and a labeling function £: N — L that assigns

37

3 Increasing Interpretations

)
o of
+1] | —
WY A A
- - +

Figure 3.1: Labeled graphs

to every node a label.! A path from ni to n,, in a graph G = (N, E) is a finite

sequence [nq,...,n,] of nodes such that (n;,n;11) € E for all 1 <i < m. In
the sequel we only consider non-empty paths, i.e., m > 1. A path is called
elementary if all its nodes are distinct. The cost of a path [n1, ..., ym_1, 7] is

l(ny) + -+ €(nm—1) and its length is m — 1. The distance between two nodes
a and b is the maximal cost of an elementary path from a to b and denoted
by d(a,b) if such a path exists and undefined otherwise. A path [nq,...,n,,] is
called cyclic if ny = ny,. A cycle [n1,...,ny] is a cyclic path where (n;, n;41) #
(nj,njy1) forall1 <i < j <m. Acycle [ng,...,nm—1,ny] is called elementary
if ny,...,n;,_1 are pairwise distinct. The definition of cost carries over naturally
from paths to cycles. A cycle is called decreasing (increasing) if its cost is
less (greater) than zero. Furthermore we define the distance d(n) for a single
node n as the maximal cost of an elementary cycle starting in n if such a
cycle exists. For aesthetic reasons, labels of nodes are associated to edges in
graphical representations of graphs throughout the chapter, where edges (n,m)
are labeled with £(n).

Example 3.1. In the labeled graph of Figure 3.1(a), p1 = [1,2,3,4,1] is an
example of a (non-elementary) path and also forms an elementary cycle. The
(non-elementary) path ps = [1,4, 1,4, 1] is no cycle since the edge (1,4) appears
twice. We have length(p;) = 0 and length(ps) = 2. The distance of node 1 is
1 since it is the maximal cost of the elementary cycles [1,4, 1] and [1,2, 3,4, 1].
Note that in Figure 3.1(b) [1,2,3,2,1] is a cycle but not an elementary one
since node 2 is passed twice.

3.1.2 Polynomial Interpretations

Before recalling polynomial interpretations [58] over the natural numbers, the
theoretical foundations why they may be used for termination proofs are pre-
sented.

For a signature F an F-algebra A consists of a carrier A and a set of in-
terpretations f4 for every f € F. Whenever F is irrelevant or clear from the
context we call an F-algebra simply algebra.

! In our setting we deal not only with concrete labels (e.g. N, Z, or Q) but also with ab-
stract labels (e.g. propositional formulas representing numbers in binary) that are closed
under certain operations (addition, subtraction, maximum) and allow comparison. Further
details are discussed in Section 3.4.

38

3.1 Preliminaries

Definition 3.2. A non-empty F-algebra A over the carrier A together with
two relations > and > on A is called weakly monotone, if

e f4 is monotone in all its coordinates with respect to >, i.e., for all
at,...,ap,b€ Aand 1 <7 < n:

a; > b implies fa(at,...,a;, ... an) = fa(ay,...,b,... ap),

e > is well-founded, and
e >.> C > (compatibility) holds.

Let A be an algebra over some carrier A. An assignment « for A is a mapping
from V to A. Interpretations are lifted from function symbols to terms—using
assignments to fix the values of the variables—as usual. The induced mapping is
denoted by [@].4(-). For two terms s and ¢ we define s > 4 t if [a]a(s) > [a]a(t)
holds for all possible assignments «. The comparison >4 is similarly defined.
Whenever « is irrelevant we abbreviate [a]4(s) to [s]4. Next we recall that
weakly monotone algebras give rise to reduction pairs.

Theorem 3.3. Let (A, >,>) be a weakly monotone algebra. Then (Z4,>4) is
a reduction pair.

Proof. Immediate from [22, Theorem 2, part 2] which is a stronger result. [
Due to Theorems 1.7 and 3.3 we get the following corollary.

Corollary 3.4. Let (A,>,>) be a weakly monotone algebra. The processor
that maps a DP problem (P, R) to

o {(P\>A,R)}ifPC2aU>gand R C 24
e {(P,R)} otherwise
s sound and complete.]

In the sequel of this chapter we only regard a special class of weakly mono-
tone algebras, namely polynomial interpretations [58]. Here every n-ary func-
tion symbol f € F is mapped to a polynomial fy over the carrier N in n
indeterminates. Polynomial interpretations Z together with >y and >y are
algebras (Z, >y, >n). Hence polynomial interpretations which are monotone
with respect to >y over N yield reduction pairs. One important issue concern-
ing automation is how polynomials are compared. For non-linear polynomi-
als with coefficients ranging over the natural numbers this problem is known
to be undecidable (Hilbert’s 10t problem). In typical implementations poly-
nomials are ordered by absolute positiveness criteria [44]. In order to test
whether p > ¢ holds for linear polynomials p = coxg + - -+ + cp®n + Ccnt1 and
q = doxo+ -+ dnxn + dny1, a sufficient condition is ¢; 2y d; for all 0 < i < n
and c¢p41 >N dp+1- The test p > ¢ is similar except for the constant case, i.e.,
Cnt1 2N dpt1-

39

3 Increasing Interpretations

Existing generalizations of polynomial interpretations allow different carriers,
e.g., rational [64, 25] and real numbers [64] or integers [37, 39, 23, 24]. Other
approaches go beyond pure polynomials and allow less restrictive kinds of inter-
pretations including max [24]. Furthermore matrix [41, 22|, quasi-periodic [99],
and arctic [51] interpretations do also extend the termination proving power
significantly. All these extensions share the property that the rewrite rules un-
der consideration must weakly decrease and at least one rule has to decrease
strictly. Our approach differs from these ones in the sense that we allow a
possible increase for some rules (under the side condition that some other rules
eliminate that increase). In order to detect possible candidates where the inter-
preted value might increase when applying a rule, the dependency pair method
in combination with the dependency graph refinement is employed.

3.2 Towards Increasing Interpretations

This section demonstrates the limitations of polynomial interpretations and
suggests an improvement by additionally considering the order of recursive calls
encoded in the dependency graph.

Example 3.5. Consider the TRS R consisting of the following three rules:

£(0,z) — f(1,g(x)) (3.1)
f(1,g(g(z))) — f(0,z) (3:2)
g(1) — g(0) (3.3)

The dependency pairs

N oo ot
N— N N N

~~ A/~ —~

admit the following dependency graph:
37<—34<—36___ 35

According to the DP processor of Theorem 1.5 it suffices to consider the
DP problem (P,R) with P = {3.5,3.6}. To make further progress we have
to find a reduction pair (2, >) such that all rules in P U R decrease weakly
and at least one rule in P decreases strictly. In the sequel we will show that
the current DP problem (P, R) cannot be handled by reduction pairs based on
traditional implementations of linear polynomial interpretations. To be able to
address all possible polynomial interpretations, we consider our problem as an
abstract constraint satisfaction problem. Consequently the coefficients for the
polynomials are variables whose values are numbers. Similarly to [23] a term

F(x,y) is transformed into an abstract linear polynomial Foz 4+ F1y + F5. Doing

40

3.2 Towards Increasing Interpretations

Table 3.1: Rules with increasing interpretations

f(0,z) — f(1,g(x)) 0>0 (3.1)
f(1,g(g(x))) — f(0,z) 0>0 (3.2)
g(1) — g(0) 1>1 (3.3)

F(0,z) — F(1,g(x)) r>x+1 (3.5)
F(1,g(g(x))) — F(0,2) r+2>x (3.6)

so for the DP problem mentioned above results in the constraints

FoOo + Fiz + Fa > Folp + Fi(gor + g1) + F2
Folo + Fi(go(gox +g1) + 81) + F2 = Fo0g + Fiz + F2

where at least one inequality is strict. By simple mathematics the inequalities
simplify to

F()Oo + Fll‘
Folo + Figogor + F1gog1 + F1g1

olo + Figox + Fig1. (3.8)

E
FoOp + F1x (39)

VoV

From the fact that one of the above inequalities has to be strict it is obvious
that F; > 0. The constraints for x in (3.8) demand gp < 1 and similarly (3.9)
gives gg > 1. Hence the constraint problem is equivalent to

FoOo
Folop + Figi + Fig1

Folo =+ F1g1 (3.10)

>
= FoOo (3.11)

which demands g; > 0 to make one inequality strict. The (simplified) constraint
for rule 3.3 amounts to

19 = 09 (3.12)
The proof is concluded by the contradictory sequence

FoOo = Folo + F1g1 = FoOp + F1g1 (3.13)

where the first inequality derives from (3.10), the second one from (3.12), and
the contradiction from the fact that Fi,g; > 0 which we learned earlier.

Although we just proved that there is no termination proof for the system
above with linear polynomials, we will present a termination proof right now.
Assume the weakly monotone interpretation

Fn(z,y)=2z+y fu(z,y) =0 gn(z)=2+1 Oy=0 1y=0

which orients almost all rules of interest correctly as can be seen in Table 3.1.
Here, rule 3.5 is not correctly oriented. The idea to turn this interpretation

41

3 Increasing Interpretations

314 —>3.15 314 %315 3.15 314 —2-3.15

7{\ k \+2 0(\!71 ! 0(\‘-+2

\) y \ ¥ \)

3.16 0 3.16 3.16 0\3.16
(a) (b) (c) (d)

Figure 3.2: Different parts of (labeled) dependency graphs

into a valid termination proof is to combine the information of the dependency
graph with the interpretation. From the (labeled) dependency graph

—2
3.7~ 34<"-36__"35

+1

it becomes apparent that the two dependency pairs 3.5 and 3.6 are used alter-
nately. The labels of the graph are computed as follows: From Table 3.1 one
infers that an application of rule 3.6 decreases the interpreted value by the con-
stant 2 (hence label —2) whereas rule 3.5 increases the value by the constant 1
(hence label 4+1). Consequently, after performing the cycle once the total value
decreases by at least one. Therefore, the cycle cannot give rise to an infinite
rewrite sequence (because the interpretation of every term is assumed to be
non-negative).

Before moving to more challenging dependency graphs we stress that refine-
ments such as usable rules do not allow linear polynomial interpretations to
succeed on the previous example. The reason is that any interpretation that
might remove one dependency pair must depend on F’s second argument. But
then the rule g(0) — g(1) is usable and the same contradiction can be con-
cluded. Similarly the argumentation is also not affected when changing to
linear polynomials over the real coefficients.

3.2.1 From Cycles to SCCs

The above idea naturally extends from plain cycles to SCCs as described below.
Consequently this allows to formulate a DP processor where DP problems of
arbitrary shape can be handled. Nevertheless some care is needed when the
dependency graph contains more complicated SCCs as the following example
demonstrates. Consider the TRS R consisting of the five rules

f(0,0, 7, g(g(g(g(y))))) — f(0,1,g(g(z)), v) g(0) — g(1)
f(0,1,g(x),y) — f(1,1,z,g(g(y))) g(r) =z
f(1,1,z,y) — f(0,z,z,y)

which admits the single SCC in the dependency graph

F(0,0,z,g(g(s(g(y))))) — F(0,1,8(g(x)),y) (3.14)
F(0,1,g(z),y) — F(1,1,2,8(g(v))) (3.15)
F(1,1,2,y) — F(0,z,z,vy). (3.16)

42

3.2 Towards Increasing Interpretations

314%1315

3.15
\
VT \ v
3.16 3.16
(a) The labeled DG (b) The remaining DG

Figure 3.3: A hypothetically labeled DG

The corresponding part of the dependency graph depicted in Figure 3.2(a)
contains the two cycles [3.14,3.15,3.16, 3.14] and [3.15,3.16,3.15]. The first
one is handled by the increasing interpretation

Fn(z,y, z,w) = w gn(z) =z +1 fn(x,y, z,w) = Oy = 1y = 0.

For the second one we take the same interpretation as above but with a slightly
altered value for Fy, namely Fy(x,y, z,w) = z. Hence for the elementary cycle
[3.14,3.15,3.16, 3.14] the interpreted value decreases by 2 in every loop. Sim-
ilarly there is a decrease of 1 for the elementary cycle [3.15,3.16,3.15]. The
two labeled graphs in Figures 3.2(b) and 3.2(c) describe the symbiosis of the
interpretations and the elementary cycles. The only problem is that

f(0,0,0,g(g(e(g(v)))))

— f(0,1,g(g(0)),y) — f(1,1,8(0),8(g(y)))

— f(0,(0),£(0),8(g(y))) — f(0,&(1), (0),8(g(v)))
— £(0,1,g(0),g(g(y))) — (1,1,0 g(g(g(e(¥)))))
—£(0,0,0,g(g(g(g(v))))) —

constitutes a non-terminating sequence in this TRS. What exactly went wrong
can be seen when considering the whole SCC of the labeled dependency graph
(using the first interpretation, cf. Figure 3.2(d)). In the conventional (non-
increasing) setting it suffices to consider the two cycles separately. This is
the case because a strict decrease in every single cycle ensures a strict de-
crease in larger cyclic paths by combining the partial proofs lexicographically.
The example above shows that this is no longer true for increasing interpre-
tations. The problematic non-terminating sequence corresponds to a path
[3.14,3.15,3.16,3.15, 3.16, 3.14] where the interpreted value is increased in the
elementary cycle [3.15,3.16, 3.15] and the cost of [3.14, 3.15, 3.16, 3.15, 3.16, 3.14]
is zero and there is no decrease. Considering (infinitely many!) possibly non-
elementary cyclic paths is undoable. But if a graph contains no increasing cycles
then the above scenario is not possible. To recognize dangerous cyclic paths, it
suffices to compute the distance for every node. For the graph in Figure 3.2(d)
we have d(3.14) = —2, d(3.15) = 2, and d(3.16) = 2. Only if for every node
the distance is smaller than or equal to zero we know that problematic paths as
demonstrated above cannot occur. Furthermore we know that in such a case we
can delete nodes with negative distance because on every possible cyclic path
containing such a node the interpreted value decreases. If for the SCC under

43

3 Increasing Interpretations

consideration one had managed to find a weakly monotone interpretation with
labeled dependency graph like the one in Figure 3.3(a) (which is of course im-
possible since the system at hand is not terminating) then deleting node 3.14
would have been possible since d(3.14) = —1, d(3.15) = 0, and d(3.16) = 0.
In such a situation one could proceed with the simpler graph depicted in Fig-
ure 3.3(b) with a possibly totally different interpretation.

3.3 Two DP Processors

The example in the preceding section suggests that DP problems that consist
of more than just one cycle need special attention. Before formulating two DP
processors we show how to label the dependency graph by a given interpreta-
tion Z. When considering a root rewrite step which applies a rule s — t, the
change of the interpreted value is [t]z — [s]z. The idea is to label every node by
the constant part of that difference.

Definition 3.6. For a polynomial p we denote the constant (non-constant) part
of p by cp(p) (ncp(p)). For a term ¢ and a polynomial interpretation Z we write
ncpz(t) as ncp([t]z). This notation naturally extends to rules and TRSs, e.g.,
ncpz(s — t) = ncpz(s) — nepz(t) and ncpz(R) = {ncps(s — t) | s — t € R}.
The same notation is freely used for cpz.

Definition 3.7. Let Z be an interpretation and DG a dependency graph. The
labeled dependency graph DGz is defined as (DG, ¢) with labeling /(s — t) =
cp([t]z — [s]z) for every node s — t in DG. By dz(n) we denote the distance of
a node n in DGz.

The above definition does not explicitly mention the set of labels L. This is
not necessary since closing the carrier A under subtraction yields .. The next
definition presents the first DP processor in the setting of increasing interpre-
tations.

Definition 3.8. Let (P,R) be a DP problem, G the corresponding (part of
the) dependency graph with nodes P,? and Z an interpretation. We define the
DP processor Procz as follows: Procz(P,R) returns

o {(P\{peP|dz(p) <0},R)}
if (=7, >7) is a reduction pair, R C >7, ncpz(P) C >, and dz(P) C L<°

e {(P,R)} otherwise.

The above processor formulates that under the condition that no increas-
ing cycles exist (dz(P) € LS?), nodes that are only part of decreasing cycles
(dz(p) < 0) can be removed. Before we present the (first) main theorem we
show that increasing interpretations subsume the conventional non-increasing
ones. Together with the discussion in Section 3.2 this shows that increasing
interpretations based on linear polynomials are really more powerful.

2 Demanding that the nodes of G equal P is no restriction since one can always apply the
dependency graph processor beforehand.

44

3.3 Two DP Processors

Lemma 3.9. The DP processor of Definition 3.8 subsumes the one of Corol-
lary 3.4 for linear polynomial interpretations.

Proof. Assume that the processor of Corollary 3.4 applies. Hence there exists
a reduction pair (>, >7) such that

RC>1 (3.17)
and
PC>2rU>71 (3.18)

We have to show that under the assumption of (3.17) and (3.18) also

RC 21 3.19)
ncpr(P) C > 3.20)

and
dz(P) C LSO (3.21)

holds. Constraint (3.17) is identical to (3.19). That (3.18) implies (3.20) is triv-
ial for linear polynomials. For the other implication note that from (3.18) the
property £(P) C LSC follows which proves (3.21) (cf. Definition 3.7). Further-
more s >7 t implies cpz(t) > cpz(s) which gives dz(s — t) < 0. This ensures
that the processor of Definition 3.8 deletes the same nodes as the processor of
Theorem 1.7. O

Theorem 3.10. The DP processor Procy is sound and complete.

Proof. To shorten notation we abbreviate P\ {p € P | dz(P) < 0} by P? and
P\ P° by P<V. First we show soundness. Suppose the DP problem (P° R)
is finite. We have to show that (P, R) is finite. Suppose to the contrary that
(P, R) is not finite. So there exists a minimal rewrite sequence

so —p to =R S1 —=pt1 =R - (3.22)
We consider two cases:

e A rule s — t € P<U is applied infinitely often in the sequence (3.22).
Then one can extract a sequence

/ ! * ! ! *
So —s—t Lo =PUR S1 —s—t 11 —PpuR

Since >7 is closed under contexts and substitutions, for all terms u, v, and
all rules | — r € RUP with u —;_,. v we get ncpz(u) = ncpz(v). Because
the infinite sequence was chosen such that the rule s — ¢ is used infinitely
often it is obvious that when starting from term s{, one must cycle in the
dependency graph in order to reach sj. The fact that dz(s — t) < 0
together with dz(P) C LS? ensures that every cyclic path containing the

45

3 Increasing Interpretations

node s — t decreases the constant part of the interpretation strictly (note
that cp7(R) C > by definition). Hence, cpz(s() > cpz(s}). Repeating
this argument gives rise to the sequence

cpz(sy) > cpz(sy) > cpz(sy) > cpr(ss) > -

which contradicts the well-foundedness of >. Consequently there cannot
be an infinite sequence (3.22) contradicting the assumption that (P, R)
is not finite.

e No rule s — t € P<U is applied infinitely often in (3.22). Then there
exists a tail of (3.22) such that all P-steps are from PY. By assumption

the sequence (3.22) is minimal. Hence the tail is minimal as well and thus
the DP problem (P, R) is not finite.

Completeness says that if (P%, R) is not finite then (P, R) is not finite. This
is trivial since any minimal sy —po tg —% 1 —po t1 —% - - - sequence is at the
same time a minimal s —p tg —% s1 —p t1 —% - - sequence (because clearly
PO CP). O

Next we show that increasing interpretations can be used to delete single
edges in the dependency graph, resulting in a finer DP processor than the one
of Definition 3.8. Similar as in [79] the dependency graph is added to DP
problems—resulting in the notion of extended DP problems. An extended DP
problem is a triple (P, R,G). So in addition to ordinary DP problems now also
some processing on the third component (the dependency graph) is possible.
Ordinary DP processors remain sound if this third component is added. Fur-
thermore the initial DP problem is now set to (DP(R),R,DG(P,R)) and for
an infinite minimal sequence additionally it is demanded that consecutive P
steps correspond to an edge in G. It makes sense to redefine the processor of
Theorem 1.5 such that for the (extended) DP problem (P, R,G) it returns the
set of extended DP problems {(P;, R, G;)} such that P; are the SCCs of G and
G, is the restriction of G to P;.

The following example motivates why deleting edges can be advantageous.

Example 3.11. In the labeled graph

1 (N
e
+1
all preconditions for applying the processor Procs are satisfied. But it cannot
make progress since for all nodes n the property d(n) = 0 holds. But clearly

there cannot be an infinite run that uses the leftmost edge infinitely often.

Next the improved processor is presented that allows removing edges from the
dependency graph. For this processor (and the discussion in Section 3.4.2) labels
are associated to edges instead of nodes. A node-labeling ¢, is transformed into
an edge-labeling /. as follows: £.((a,b)) = £, (a) for every edge (a,b). Concepts
as cost, distance, etc. carry over naturally from node-labeled to edge-labeled
graphs. For reasons of readability we write .(a,b) instead of £.((a,b)) in the
sequel.

46

3.4 Implementation

Definition 3.12. Let (P,R,G) be an extended DP problem with G = (P, &),
7 an interpretation, and Gz = (G, ¢) the labeled variant of G. We define the DP
processor Proc; as follows: Procz(P,R,G) returns

i {(P7R7 (P7S \ {(a7 b) €& | EI(av b) + dI(ba CL) < 0}))}
if (>7,>7) is a reduction pair, R C >z, ncpz(P) C >, and dz(P) C LS

e {(P,R,G)} otherwise.

The idea of the processor above is that edges that appear on decreasing cycles
only (¢(a,b) +d(b,a) < 0) do not give rise to infinite reductions.

Theorem 3.13. The processor Procy is sound and complete.

Proof. The proof is quite similar to the one of Theorem 3.10. For soundness
we assume a minimal infinite sequence that applies an edge (s — t,u — v)
infinitely often. This means that the minimal sequence applies rule u — v
after s — t infinitely often (with possible R-steps but without any P-steps in
between), i.e.,

* *

80 —s—t 0 7R S1 “u—wv L1 2 puR S2
* *

—s—t 12 =R $3 —u—v 13 =pUR S4

—g—t "

But then the sequence

cpz(s0) > cpr(s2) > cpg(sa) > -+

gives the desired contradiction. This sequence exists because of the condition
dz(P) C LSO and the assumption that the edge (s — t,u — v) appears on
decreasing cycles only (since ¢7(s — t,u — v) +dz(u — v,s — t) < 0).
Completeness is trivial. O

3.4 Implementation

Almost all fast implementations of polynomial interpretations are based on a
transformation to a SAT problem. The major drawback is that one has to work
with abstract encodings all the time. Hence when labeling the dependency
graph one does not have concrete numbers at hand but some arithmetic con-
straints which abstractly encode the range of all possible values. Thus existing
algorithms from graph theory cannot be employed because they require con-
crete numbers. Since encoding polynomials in SAT has already been described
in detail [23], in this thesis we refrain from repeating all implementation issues.
The only part of the encoding which is discussed here deals with graphs that
are labeled by abstract numbers. This includes computing the distance d(n)
for a node n and expressing if an edge (a,b) occurs on decreasing cycles only.
Two methods to tackle this problem are discussed in the sequel. Below is the
first approach. An alternative is presented in Section 3.4.2.

47

3 Increasing Interpretations

3.4.1 Computing the Distance of a Node

The first idea is to compute the distance of a node by means of a transitivity
closure. The numerical variable R,; is —oo if node b is not reachable in at
most 2¢ steps from node a and otherwise this variable keeps the (currently
known) distance from a to b. It is obvious that in a graph (N, E) an elementary
cycle contains at most |N| edges and hence for ¥’ > k := [logy(|N])] one has
reached kind of a fixed point, i.e., Ry = —oc if and only if Ry = —oo for all
a,be N.

More precisely, the variables Rgpo reflect the edges of the graph and hence
b is reachable from a with a cost of £(a) if (a,b) € E and it is unreachable if
(a,b) ¢ E. Thus we initialize these variables as follows:

&wzvm)ﬁm@eE,

—o00 otherwise.

Since R might be —oo, the operations addition and maximum are extended
naturally, i.e., n + —00 = —00 +n = —oo and max(n, —o0) = max(—oo,n) =n
for all n € LU {—o0}. For 0 < i < k we define

Rab(iJrl) = maX{Rabi7 g}gﬁ{Ramz + Rmbl}}

If one first forgets about max then the above formula expresses that b is reach-
able from @ in at most 27! steps with a cost of Rap(i41) if it is already reachable
within 2¢ steps with that cost or there is a mid-point® m and the cost from a to
m and the one from m to b just sum up. Taking the maximum of all possible
costs ensures that we consider a worst case scenario, i.e., a path of maximal cost.
In the end we want to test if R, < 0 for all n € N. Note that it might happen
that the value Ry, does not emerge from an elementary cycle (because maybe
some cyclic path is considered). Nevertheless the idea remains sound because
of the condition that for all nodes R, < 0 there are no increasing cycles. In
such a case the problem sketched here does not occur. For a demonstration
consider the following example.

Example 3.14. In the labeled graph from Example 3.1(a) on page 38 we
compute k = [logy(4)] = 2 and

d(1) =1 d(2) = 0 d(3) = 0 d(a) = 1
Ri12=2 Ro2o =0 R3320 =0 Ry = 2.

The reason for the different values is that Ri12 does not correspond to an
elementary cycle; we have d(1) = 1 (see Example 3.1) but Rjj2 = 2 since
it derives from the cyclic path [1,4,1,4,1]. A similar argument explains the
discrepancy of d(4) and Ry4s.

But nevertheless one can formulate the following two lemmata which allow
to implement the DP processor of Definition 3.8.

3 Fortunately Zeno of Elea was wrong and this approach constitutes a valid method for
computing reachability.

48

3.4 Implementation

Lemma 3.15. Let ((N, E),) be a labeled graph and k = [logy(|N|)|. If for all
nodes n € N the property Rpni < 0 holds then for all nodes n € N the property
d(n) < 0 holds.

Proof. Assume for a contradiction that there is a node n € N with d(n) > 0.
Hence there exists an elementary cycle that is increasing and contains n. But
then clearly this cycle gives Ry, > 0. O

Lemma 3.16. Let ((N, E),) be a labeled graph, k = [logs(|N|)], and for all
n € N d(n) < 0. Then d(a,b) = Rapk for all distinct nodes a,b € N and
d(a) = Rgqk for all a € N.

Proof. We show the first equality, the second one is proved analogously. The
distance from a to b is the maximal cost of an elementary path. Clearly by
construction Ry, > d(a,b) since every elementary path from a to b is covered
by an Rgp; variable. By assumption there are no increasing cycles and hence
non-elementary paths from a to b cannot have a larger cost than an elementary
one. Hence R, represents the maximal cost of an elementary path from a
to b. O

Both DP processors from Section 3.3 can be implemented with the help of
the Rgp; variables. For the processor from Definition 3.8 the formula (in the
sequel referred to as direct_n)

/\ (Bt <0) AN/ (B, < 0)

neN neN

is employed whereas Definition 3.12 amounts to the formula (direct_e)

/\ (Runk <0) A \/ (€(a,b) + Ry, < 0).
neN (a,b)eE

Then from a satisfying assignment the nodes with negative distance or edges
that are just part of decreasing cycles can easily be determined and removed.
Clearly satisfiability of the first formula implies satisfiability of the second for-
mula. The reason why both are presented is that the first one produces a smaller
encoding. That this can be advantageous is demonstrated by experimental data
in Section 3.5.

Special Algorithms

The encoding for computing maximal paths as arithmetic constraints based
on the R, variables from above has complexity O(n?log(n)) where n is the
number of nodes in the underlying SCC of the labeled graph. To get a faster
implementation we can optimize the encoding for SCCs that have a special
shape:

(a) Simple SCCs: An SCC is called simple if it contains exactly one cycle,
i.e., omitting any edge would destroy the property of being an SCC. An
example of this shape is depicted in Figure 3.4(a). Linear time suffices to

49

3 Increasing Interpretations

-3
+1 m
[* s — > &
—1T l+0 +1T +0 /
+1
< c<—k
1 +0
(a) A simple SCC (b) An almost simple SCC

Figure 3.4: Two special shapes of SCCs

decide if a given SCC S is simple (the number of edges equals the number
of nodes). In such a case the encoding specializes to

> (4n) <0)

nes

which expresses that the constant part of the interpretation decreases
when cycling. The encoding is linear in the size of the nodes.

(b) Almost simple SCCs: An SCC is called almost simple if there exists a
node n (called selected node) such that after deleting all outgoing edges
of n there is no non-empty sub-SCC left. Here we will exploit the fact that
in every elementary cycle within this SCC we pass the node n. The nodes
indicated with % in Figure 3.4(b) satisfy this property. In the encoding
we demand that —(¢(nq) +---+£€(ny)) > €(m1)+ - - -+ £(my) holds where
ni,...,n, are the selected nodes and my,...,m, are the (non-selected)
nodes in the SCC that have a positive label. The underlying idea is
that the selected nodes n; decrease the interpretation more than all other
nodes together might increase it. In Figure 3.4(b) the inequality amounts
to —(—3+0+ 1) > 1 which is satisfiable since 2 > 1. The encoding again
is linear in the size of the nodes. Furthermore it specializes exactly to the
one in (a) for simple SCCs.

Case (a) is exact whereas (b) is an approximation, i.e., there are graphs where
a node with negative distance is undetected. E.g., the graph in Figure 3.1(b)
yields —(—2) > 1+ 1 which is not satisfiable although d(2) = —1.

3.4.2 Compressing Graphs

This section presents a solution to implement (a strong heuristic for) the DP
processor of Definition 3.12 by processing the graph. In an iterative manner
nodes are removed from the graph one by one. While removing nodes, infor-
mation about the cycles in the graph is obtained which allows to formulate a
constraint such that satisfiability of this constraint implies the existence of a
decreasing cycle. At the end of this section we discuss how this approach allows
to implement the improved DP processor from the previous section.

For a simpler presentation of the algorithm, labels of non-existing edges are
assumed to be —co. The intuition behind Definition 3.17 is as follows. In step 1

50

3.4 Implementation

3.}4 —3.15 3.15
N R
0 3.16 3.16 3.16
(a) (b) (c)

Figure 3.5: Compressing labeled graphs

cycles of length one are removed from the graph. Then in steps 2 and 3 a graph
(N’, E’) is built that contains all edges of the graph from step 1, except that the
chosen node n is bypassed. The bypass edges are exactly the ones in i(n) x o(n)
where i(n) = {m € N | (m,n) € E} and o(n) = {p € N | (n,p) € E}.
Bypassing nodes might produce a multi-graph. Reasoning about multi-graphs
is prevented by altering the labeling function ¢ which chooses the maximal
edge between two nodes in step 4. Note that if a ¢ i(n) or b ¢ o(n) then
(a,b) =" (a,b).

Definition 3.17 (Compression Algorithm). Given a labeled graph ((V, E),)
the procedure works as follows. Set C = @.

1. Set C =CU{{l(a,a) | l(a,a) # —x}, E" = E\{(a,a) | a € N}, and

g//(a? b) — {E(CL, b) lf a ;é ba

—00 otherwise.

2. If IN| =1 then return C, otherwise choose a node n € N.

3. Set NN =N\ {n}and E' = (E" N N'x N’') U i(n) x o(n).

4. Set ¥'(a,b) = max{¢"(a,b),¢"(a,n) + £"(n,b)}.

5. Repeat step 1 with ((N', E'), ¢').

The next example performs the compression algorithm on a concrete graph.

Example 3.18. Consider the graph depicted in Figure 3.5(a). Step 1 is
easy since there are no cycles of length one. In step 2 we select node 3.14.
Clearly i(3.14) = {3.16} and 0(3.14) = {3.15}. Hence in step 3 we obtain
N’ = {3.15,3.16} and E’ = {(3.15,3.16), (3.16,3.15)}. In step 4 the labeling ¢
looks like ¢(3.15,3.16) = +2 and ¢”(3.16,3.15) = max{0,0 — 4} = 0 and all
other labels are —oco. The result of the algorithm after one iteration is shown
in Figure 3.5(b). In the second iteration there are no changes in step 1. Now
choose n = 3.15. This results in a graph with only one remaining node 3.16 and
¢"(3.16,3.16) = +2, shown in Figure 3.5(c). In the next iteration the algorithm
sets C' = {42}, ¢"(3.16,3.16) = —o0, and terminates in step 2.

The property that all cycles are non-increasing is fulfilled if for all values ¢ € C
we have ¢ < 0 which is not the case in the example above. Here Definition 3.17
was applied to a labeled graph with concrete labels. In the setting of increasing

51

3 Increasing Interpretations

interpretations the algorithm is applied to a labeled dependency graph (with
abstract labels) and thus returns a set of abstract numbers. To demand that
there is no increase in any elementary cycle the expression A\ .-(c < 0) (cor-
rectness) is employed. Furthermore progress (that there is a decreasing cycle)
is achieved by \/ _.-(c < 0). In contrast to the approach with the variables
Rap; one cannot directly determine from a satisfying assignment which nodes
(if any) have negative distance and thus can be removed. But from a satisfying
assignment the concrete labels can be inferred. Afterwards maximal distances
can easily be computed. Additionally edges (a,b) which are just contained in
decreasing cycles (£(a,b) + d(b,a) < 0) can be searched and removed instanta-
neously. This allows to implement the DP processor from Definition 3.12. But
first we prove the correctness of the approach.

Lemma 3.19. One iteration of the algorithm in Definition 3.17 fulfills the
property that there exists a node x € N with d(x) > 0 if and only if there exists
a node &' € N" with d(x’) > 0 or there exists a ¢ € C with ¢ > 0.

Proof. Assume there is a node € N with d(z) > 0. We consider two cases:

e There is a node y with ¢(y,y) > 0. Then in step 1 ¢(y,y) € C and thus
the claim holds.

e There is no y with ¢(y,y) > 0. We again consider two cases.

— The chosen node n is on a cycle involving x with positive distance.
By the assumptions such a cycle must contain at least two different
nodes and since x is existentially quantified we can choose it such
that = # n. Hence we may denote the cycle by [z,...,a,n,b,...,]
But then also d(x) > 0 for the cycle [z,...,a,b,...,x] in N because
by construction ¢'(a,b) > ¢"(a,n) + ¢"(n,b). Hence the result holds
by taking x’ = z.

— If the chosen node n is not on a cycle involving = then we take 2’ = x
and the result trivially holds.

For the other direction again two cases are considered:

e First assume there is a node 2/ € N’ such that d(z’) > 0. Without
loss of generality we can assume that a bypass edge (a,b) is contained
in the cycle [2/,...,a,b,...,2']. By construction ¢(a,b) = ¢"(a,b) or
(a,b) = ¢"(a,n) + ¢"(n,b). Choosing the appropriate edge(s) gives a
cycle in the original graph with d(z) > 0 where z = 2’.

e The other case is if there is a ¢ € C' with ¢ > 0. Then in step 1 there
must be a node z € N with ¢(z,z) > 0 ensuring d(z) > 0.

This concludes the proof.]

The next corollary states that the compression algorithm introduced in Defi-
nition 3.17 is sound and thus can be used to implement the DP processor from
Definition 3.12.

52

3.5 Assessment

+1 +1 -1 C . ﬁﬂ
A

Figure 3.6: Problems of the compression algorithm

Corollary 3.20. Let ((N,E),{) be a labeled graph. The following properties
are equivalent:

e The distance d(x) < 0 for all z € N.

e The conjunction ¢ < 0 for ¢ € C 1is satisfiable where C is the output of
the algorithm in Definition 3.17. O

This means that whenever the conjunction of A .~(c < 0) is satisfiable then
d(n) < 0 for all n € N (which is demanded by Procy). However in order to
ensure progress of the processor there must exist a ¢ € C with ¢ < 0. In the
sequel we abbreviate the conjunction of A c-(c < 0) and \/ (¢ < 0) by C.
Note that one cannot conclude from the satisfiability of C{ the existence of a
node n with d(n) < 0. Example 3.11 shows such a case. But satisfiability of
C{ ensures a decreasing cycle. Thus the removal of edges as in the processor
of Definition 3.12 applies.

To further demonstrate the compression algorithm the labeled graph from
Figure 3.6(a) is considered. Clearly the leftmost edge labeled —1 cannot be
taken indefinitely and could be removed since it is part of decreasing cycles
only. But depending on the selection of the nodes in the compression algo-
rithm, the formula C{) may be satisfiable or not. The reason is that multi-edges
are removed by maximizing over the labels and consequently decreasing cycles
can be overlooked. Figures 3.6(b), 3.6(c), and 3.6(d) show the result of the
algorithm after one step if the left-top, left-bottom, and right-bottom node is
chosen to be eliminated. Hence our implementation provides just a heuristic
for the processor Proc’;. However if there exists a node with negative distance,
then maximizing does not destroy satisfiability of C{} (since all elementary cycles
containing this node are decreasing).

3.5 Assessment

In this chapter we showed that increasing interpretations are strictly more pow-
erful than standard (non-increasing) interpretations over linear polynomials.
Clearly for DP problems (P,R) where P is a singleton set they are of equal
power.

The reason why the TRS of Example 3.5 cannot be proved terminating by
means of linear polynomials is that we cannot differentiate constant 0 from 1
by the interpretation. Hence it is not so astonishing that the problematic SCC

53

3 Increasing Interpretations

can be handled by matrix interpretations [22] of dimension two. Actually all of
the tools (dedicated to proving termination) participating in the TRS category
of the 2007 and 2008 editions of the international termination competition can
handle this system. All the proofs rely on matrix interpretations with dimen-
sion two. As a pre-processing step AProVE [30] and TqT» use dependency pair
analysis whereas Jambox [21] performs a reduction of right-hand sides [97].

It is an easy exercise to construct (larger) TRSs than Example 3.5 such that
all tools of the termination competition fail. To disallow Jambox the rewriting
of right-hand sides we introduce overlaps. To knock-out the matrix method
just increasing the size of the system suffices. Since TyTy can still prove these
examples by bounds [28, 54] we ensure the TRS to be not left-linear which
makes increasing interpretations the only successful method.

Example 3.21. The TRS below resembles a binary counter. The rules behave
in a way such that the counter increments by one (adding a function symbol i
in f’s fourth argument) seven times in a row before the value is decremented by
eight.

£(0,0,0,z) — £(0,0,1,i(z)) £(0,0,1,2) — (0,1,0 i(x))

£(0,1,0,z) — f(0,1,1,i(z)) £(0,1,1,2) — f(1,0,0,i(z))

f(1,0,0,2) — f(1,0,1,i(x)) f(1,0,1,2) — (1, ,0,i(z))

f(1,1,0,2) — (1,1717i(x)) f(y,y, y,1(i(i(i(i(i(i(i(z))))))))) — £(0,0,0,z)
i(i(0)) — i(i(1)) —i(i(0))

None of the current termination tools succeeds in proving termination within
a 60 seconds time limit. Increasing interpretations produce a successful—and
very intuitive—proof for the challenging SCC. It considers the changes of F’s
fourth argument. The general approaches described in Section 3.4.1, the special-
ization (b) from Section 3.4.1, and the compression approach from Section 3.4.2
yield the increasing interpretation

FN(.’E,?/,Z,U)):’U) IN('I)::E+1 fN(xayaZ’w):ON:]-N:O

which ensures that all nodes have a negative distance and hence the whole
problematic SCC can be removed. The only difference between the four ap-
proaches is that it takes the direct methods more than a second whereas the
other approaches succeed within a fraction of a second.

We compare the different approaches from this chapter in Table 3.2. The ex-
act strategies used for generating the table with T7Ty are listed in Section A.4.
In the table direct refers to the direct approach introduced in Section 3.4.1,
where the suffix _n (_e) indicates if the formula to remove nodes (edges) is
employed. Rows a and b indicate the usage of the optimizations (a) and (b)
from Section 3.4.1 and compress the compression algorithm presented in Defini-
tion 3.17. The column labeled yes indicates the number of TRSs that could be
proved terminating. The second column presents the total time in seconds used
by the specific method. If the algorithm could not determine a result within 60

54

3.6 Related and Future Work

Table 3.2: Experimental results

(a) 1391 TRSs (b) 732 SRSs
method | yes time t/o method | yes time tfo
direct.n | 478 18106 255 direct_n 37 5321 54
direct.e | 477 18808 261 direct_e 36 6046 60
a 203 220 0 a 10 14 0
b 223 1726 12 b 13 129 0
compress | 532 9447 123 compress | 47 651 4

seconds, the computation was aborted (column t/0). In Table 3.2 linear poly-
nomials with coefficients from {0,...,3} have been employed. Intermediate
results are restricted to numbers less than 7. Summing up, the compression al-
gorithm performs better than the direct approach in both measurements: time
and termination proving power (due to the time limit). Especially for SRSs
the compression algorithm is much faster as can be inferred from Table 3.2(b).
The tables also show that the optimizations from Section 3.4.1 allow a fast im-
plementation for special cases that appear surprisingly frequent. We conclude
this section with a remark on the compression algorithm. Choosing the node
n to bypass drastically influences performance. Our heuristic prefers nodes n
where i(n) x o(n) is small. Consequently less max operations are needed to
combine labels of multiple edges between two nodes to prevent reasoning about
multi-graphs.

3.6 Related and Future Work

The theory of increasing interpretations as described above directly applies to
other reduction pairs based on interpretations. Both DP processors (Defini-
tions 3.8 and 3.12) are formulated (and proved) for arbitrary reduction pairs
based on interpretations. The only special requirement—needed for labeling the
dependency graph—is that the constant part of the interpretation of a depen-
dency pair is a number. Hence increasing interpretations also admit polynomial
interpretations with rational [64, 25| and real coefficients [64] as well as neg-
ative constants [39]. Furthermore they can also be combined with the matrix
method [22] which is introduced in the next chapter since there the constant
part of the interpretation of a dependency pair amounts to a number (cf. Ex-
ample 4.6). Consequently the dependency graph is labeled in exactly the same
fashion. The recent technique from [24] to allow the maximum operation can
also be used in combination with the method proposed here. The reason is
that the (more complex) max-polynomials only occur in intermediate steps;
when labeling the dependency graph, all occurrences of max have already been
removed.

Generalizing the approach in such a way that not only the constant part of
the interpretation is used as additional information in the dependency graph
but also the non-constant part, is highly desirable. We anticipate that this

95

3 Increasing Interpretations

would make the approach significantly more powerful. The only drawback is
that probably this generalization applies to a very restricted class of TRSs only.
To get a feeling for the problems that arise consider the non-terminating system
consisting of the two rules

f(s(z)) — g(s(x)) g(x) — f(z)
which admits the dependency pairs
F(s(z)) — G(s(x)) G(z) — F().
The increasing interpretation with
Fn(z) =22 Gy(z) ==z fn(z) =0 sn(z) =z +1

would remove both dependency pairs since there is a strict decrease for every
cycle in the labeled dependency graph, which looks like

The problem in this example is that in the two dependency pairs the variable
x does not correspond to the same term. For this example it is obvious that
in any minimal non-terminating sequence, s(x) is substituted for the variable
z in the second rule. Hence, one should not consider the original system but
immediately change the variable z in the second rule on both sides to s(x).
Then increasing interpretations are no longer successful. However such a trans-
formation is not always possible. In the example above for every minimal
non-terminating sequence there are no R-steps and hence one can compute the
substitution for x in the second rule by unification. Similar cases can be dealt
with by instantiation and narrowing [3, 33].

To conclude, we state that increasing interpretations can be extended to allow
an increase also in the variable part if the TRS under consideration satisfies two
properties: (a) all dependency pairs are variable disjoint (this can always be
achieved by renaming) and (b) for every minimal non-terminating sequence
the R-sequences are empty (and hence the values for variables can possibly be
computed by unification). Note that one sufficient condition for (b) is that the
set of usable rules is empty.

3.7 Summary

In this chapter a generalization of (polynomial) interpretations has been intro-
duced. While traditional approaches must orient all rules at least weakly our
approach allows an increase for some rules. This is possible due to a concurrent
search for interpretations while considering the cycles in the dependency graph.
Two DP processors have been proposed based on increasing interpretations.
While the first one is a DP processor in the traditional sense, i.e., it allows to

56

3.7 Summary

remove dependency pairs (nodes from the dependency graph) the second one is
able to eliminate single edges in the dependency graph. Two methods capable
to implement increasing interpretations based on a transformation to arithmetic
constraints have been proposed and evaluated on standard testbeds.

o7

Chapter 4
Matrix Interpretations

Hofbauer and Waldmann proposed matrix interpretations in 2006 [41, 43| for
SRSs. These contributions were (together with [10]) the first which considered
SAT solvers to master the tremendously large search spaces in automated termi-
nation analysis of rewrite systems. In 2007 Endrullis et al. extended the method
to TRSs [22]. Since then matrix interpretations became more and more popular
due to their termination proving power. While the original setting just allows
matrices with natural numbers as coefficients, arctic matrix interpretations also
consider —oo. They have been introduced in [51] based on the max-plus semi-
ring and are especially powerful for SRSs. Furthermore a direct termination
proof by arctic matrices (just possible for SRSs that may additionally contain
constants) which orients all rules strictly implies linear derivational complexity.
Other complexity results on (standard) matrices have been announced in [41]
where it is shown that a TRS admitting a direct matrix proof may allow ex-
ponentially long derivations in the size of the starting term. Recently, [67]
shows that triangular matrices are suitable to prove at most polynomially long
derivations.

This chapter is organized as follows. In Section 4.1 matrix interpretations
are extended to allow non-negative real coefficients. An empirical evaluation
comparing matrix interpretations with coefficients from N, QQ, and R is presented
in Section 4.3. Section 4.4 discusses the benefits when allowing rational and
real coefficients and compares our approach with related work.

4.1 Matrices over the Reals

In this section a DP processor based on matrix interpretations over the real
numbers for TRSs is presented. In other words we combine matrix inter-
pretations as presented in [22] with polynomials over rational and real coef-
ficients [25, 62—64]. Especially the latter has so far only be used for polynomial
interpretations. Although generalizing the theory from linear polynomial inter-
pretations to matrices is straightforward, some tricks are needed to obtain an
efficient implementation.

Formally, matrix interpretations are weakly monotone algebras (M, >, >)
(see Definition 3.2 on page 39) where M is an F-algebra over some carrier
M? for a fixed d € N>0. In the sequel we consider M = R>Y. To fix the
relations > and > that compare elements from M¢, i.e., vectors with non-
negative real entries, we must fix how to compare elements from R>? first. The
obvious candidate > is not suitable because it is not well-founded. But as

99

4 Matrix Interpretations

already suggested in earlier works for the case of polynomials [42, 62-64], one
can approximate >g by >% defined as

TSy = x—y>pé

for z,y € R and any 6 € R>?. The next lemma shows that >]‘f§ has the desired
property.

Lemma 4.1. The order >]‘1§ is well-founded on RZ° for any 6 € R>0,

Proof. Obvious. O

With the help of >% it is now possible to define a well-founded order on
vectors over M similar as in [22].

Definition 4.2. For vectors u and v from M¢ we define
u>v = u; >pv; for 1 <i<d, and
u>'v = >ﬁ$§ v1 and u; =g v; for 2 <@ < d. (4.1)

Next the shape of the interpretations is fixed. For an n-ary function symbol
f € F! we define

fMd(Xl,...,Xn):F1X1+'~—|-ann+f (4.2)

where Fy,...,F, € M%? and f € M?if f € F and Fy,...,F, € M™% and
f e Mif f e FP\ F. As discussed in [22], using matrices of a different shape
for dependency pair symbols reduces the search space while preserving the
power of the method. Before addressing how to compare terms with respect

to some interpretation we fix how to compare matrices. Let m,n € N. For
B,C € M™*" we write

B}C = BZJZRCUforalllgzgm,lgjgn

Because of the linear shape of the interpretations, for a rule I — r with
variables in {z1,...,x;} matrices Lq,..., L, R1,..., Rg, and vectors 1 and r
can be computed, such that

[a]pm(l) = Lyxy + -+ -+ Lpxg + 1 and
[a]M(r) =Rix1 4+ -+ Rgxp +r

where o(z) = x for z € V. The next lemma states how to test s >, t (s > 1),
ie., [a]m(s) >0 [a]m(t) ([a]aa(s) = [a]a(t)) for all assignments o effectively.

Lemma 4.3. Let | — r be a rewrite rule and [a]r(1) and [a]ap(r) be as above.
Then for any 6 € R>°

o I>nrifand only if Li > Ry (1<i<k) and1>r,
o >0, rifand only if Li > R; (1 <i<k) and1>’r.

Proof. Immediate from the proof of Lemma 4 in [22]. O

60

4.1 Matrices over the Reals

Next we show that (M, >, >°) may be used for termination proofs within the
dependency pair setting.

Theorem 4.4. Let F be signature, M = R>Y, and M be an F-algebra over the
carrier M? for some d € N0 with fy;a of the shape as in (4.2) for all f € F.
Then for any § € R>Y the algebra (M, >, >%) is weakly monotone.

Proof. According to Definition 3.2 we have to show that every interpretation

function is monotone with respect to > which is obvious. Next we show that

the relation >° is well-founded. From (4.1) it is obvious that > is well-founded

(on the carrier M?) since > is well-founded on R*° for any 6 € R>?. The

latter holds by Lemma 4.1. The last condition for a weakly monotone algebra

is compatibility, i.e., >° - > C >9 which trivially holds. O
Due to Theorem 3.3 we get the following corollary.

Corollary 4.5. If (M, >,>%) is a weakly monotone algebra then (=4, >‘j\4) is
a reduction pair. O

The concepts introduced so far are demonstrated by the following example.

Example 4.6. Consider the TRS from Example 2.27 on page 24 again. One
proof obligation is the DP problem (P, R) where P consists of the rule

MINUS(s(z),s(y)) — MINUS(z, y)
and R consists of the rules
minus(z,0) — x quot(0,s(y)) — 0
minus(s(z),s(y)) — minus(z,y) quot(s(x),s(y)) — s(quot(minus(z,y),s(y))).

Using dimension 2 and § = 1 the interpretation

MINUS 2 (x,y) = (1 0)x minus2(x,y) = (é ?) x

5172 (x) = (é (1)> X + (f) quot s (x, y) = (é (1’> X

oo ()

orients the dependency pair strictly and the other rules weakly as can be seen
below (where ¢ abbreviates s(quot(minus(z,y),s

[MINUS(s(2),s(y))]m = (1 o)x+\f>M (1 o)x_ [MINUS(z,)] 1

[minus@(x),s(y))]M:(é ?)x (%) 2 (o)= minuste e
st ())
st~ (] -

[quot<s<x>,s<y>>w=<é °> (5 2 (5 D)2 () =

61

4 Matrix Interpretations

To conclude the example we show that above interpretation strictly orients
the dependency pair MINUS(s(z),s(y)) — MINUS(z,y). Due to Lemma 4.3
(1 0)x++v2>},(1 0)xifandonlyif (1 0)> (1 0)and v2 >} 0. The
former is obviously satisfied and the latter holds since V2-0>p 1.

Next we address the problem to find a suitable § automatically. Since §
influences if a rule can be oriented strictly or not it cannot be chosen arbitrarily.
E.g., the interpretation from Example 4.6 with § = 2 can no longer orient the
rule MINUS(s(x),s(y)) — MINUS(z, y) strictly since v/2 #2 0. For DP problems
containing only finitely many rules (which corresponds to the usual setting) a
suitable § can easily be computed. The reason is that for such DP problems only
finitely many rules are involved in the strict comparison, i.e., to test for a rule
s — t if s >% t the comparison s >° t is needed (cf. Lemma 4.3) which boils
down to s >?R t1 (cf. (4.1)). Since s; —t; >R 9 is tested for only finitely many
rules s — t, the minimum of all s; —¢; is well-defined and provides a suitable 9.
But the next lemma (which generalizes the idea from [62] to matrices) states
that actually there is no need to compute J explicitly.

Lemma 4.7. Let (P,R) be a DP problem. If P contains finitely many rules
then § need not be computed explicitly.

Proof. Due to the discussion above one can obtain a § € R>? such that for
every s — t € P we have s; >]‘1§ tq if and only if s; >gr t1. Hence for all strict
comparisons that occur the relations >ﬁSR and >g coincide. Consequently it is
safe if an implementation uses >g instead of >]‘1§ and ignores the exact 6. [

4.2 Implementation

This section first sketches how to encode matrix interpretations as arithmetic
constraints. Then it addresses optimizations that are essential when matrices
of larger dimensions are considered for non-natural matrix coefficients.

Implementing a DP processor based on matrix interpretations is a search
problem. After fixing the dimension d for every n-ary function symbol f € F*
matrices I, ..., I, and a vector f must be computed such that some constraints
(see below) are satisfied. The coefficients of these matrices are existentially
quantified arithmetic variables. Lifting addition and multiplication from coeffi-
cients to matrices as usual allows to interpret terms. The term interpretations
can then be compared using Lemma 4.3, yielding encodings for >mnat and >mnat.
These encodings are parametrized by the dimension d.

Since matrix interpretations have argument filterings automatically built-in
(a zero matrix as coefficient corresponds to a deleting position in the argument
filtering) we sketch an encoding that implements Theorem 1.10 (without an
explicit argument filtering) based on matrix interpretations. The aim is to
define a formula

the satisfiability of which ensures Upn(P,R)UP C > and PN > # @ for
some weakly monotone algebra (M, >, >) based on matrix interpretations.

62

4.2 Implementation

Here Upn (P, R) are the usable rules with respect to the interpretation. The
only difference to U (P, R) is that here it is demanded that the interpretation
depends on the argument (coefficient is non-zero) instead of demanding that
the argument filtering 7 keeps this argument. The formula U(P, R, >mat) is
defined similarly to the one for KBO on page 25 as follows:

/\ (Uroot(l) Al Zmat 7’) A /\ (Uroot(l) — | Zmat T)
l—reP l—reR

and

/\ <Uroot(l) - /\ /\ ﬁzerO(TOOt(T’q)vi)H root(r|p)>>

l-reRUP pEPosg(r) @i iq<p
root(r|p) is defined

where
zero(f,i) = N ((Fi);,=0).
1<j<m
1<k<n

Here Uy is a propositional variable indicating if rules with root f must be
weakly oriented (second conjunct). The encoding demands that all rules from
P must be oriented (first conjunct) and a rule in R must be considered if its
root may affect the interpretation of some right-hand side of a rule that must
be oriented (third conjunct).

Next we address how to represent the matrix coefficients. Natural numbers
are considered in binary notation and expressed as bit-vectors. Rational co-
efficients are implemented as described in Section 6.1.3, i.e., the numerator is
some bit-vector representing a number and the denominator is a fixed positive
integer. Real numbers are encoded as pairs consisting of a non-real and a real
part. For details see Section 6.1.4.

Some relevant issues concerning rational numbers are discussed next. Since
every coefficient has the same denominator no heuristics must be applied to
decide which coefficient might take non-integral values. On the other hand
consecutive multiplications of such fractions give rise to an exponential explo-
sion of the denominator. Due to the large denominators many bits are needed
to represent the numerator in binary which turned out to be the main bottle-
neck. Next we demonstrate this problem by means of a (strongly simplified)
example and propose an elegant escape immediately afterwards.

To ease readability—in contrast to the actual implementation—the examples
within this section have concrete numbers as numerators. This does not affect
the problems that arise. When computing the interpretation of a term various
additions and multiplications are needed. Hence expressions like in the following
example must be computed.

Example 4.8. Without canceling (intermediate) results we get
L4y, 3,1 4 3 1 12 1 16
27272 2 472 2 8 2 8

63

4 Matrix Interpretations

The main reason why we did not cancel the fractions in the example above
is that the same happens in the implementation. Due to the fact that the
numerator is some bit-vector consisting of propositional formulas its concrete
value is unknown and hence no cancellation is possible. Since the encodings of
matrices produce much larger constraints than the one above the numerators
grow rapidly. We propose the following elegant escape which is very easy to
implement and has positive effects on the run-time (cf. Section 4.3). We force
that a fraction is canceled if the denominator exceeds some given value. The
next example shows the positive and negative aspects of this heuristic.

Example 4.9. First we demonstrate the positive aspects. To this end we allow
a maximal denominator of at most 2. Thus after every addition or multiplication
the fraction is canceled whenever the denominator exceeds 2. The single steps
of the computation involving this heuristic are given below:

1x4 ><3+1_2X3+1_3+1_4
272 2 2 272 2 2 2 2

The negative aspects become apparent if the denominator is chosen too small.
Then some computations can no longer be performed, e.g., when allowing a
denominator of 1 the computation gets stuck in the second step since % cannot

be canceled, as can be seen in the sequence below:

1><4 ><3+1—1><3+1—?+1
272 2 2 172 2 1 2

In the implementation, canceling by two is achieved by dividing the denom-
inator by two and dropping the least significant bit of the numerator while
demanding that this bit evaluates to false. Hence in contrast to the example
above computations do not get stuck, but may produce unsatisfiable formulas.
The next section shows that this does not happen very frequently. Further-
more, there also the effectiveness of this very simple but efficient heuristic is
demonstrated.

4.3 Experiments

All tables within this chapter have been produced with TyTy using the SAT
back-end for solving arithmetic constraints (cf. Section 6.1). Due to the fact
that matrix interpretations need non-linear arithmetic, this is the only setting
supported. The exact strategies to call TyTy are listed in Section A.4. Next
we compare the performance of matrix interpretations where matrices have dif-
ferent coefficients, ranging from N via Q to R. For TRSs, the coefficients of
a matrix over dimension d are represented in max{2,5 — d} bits (for reals we
allow max{1,3 — d} bits due to the more expensive pair representation, cf. Sec-
tion 6.1.4). Every rational coefficient is represented as a fraction with fixed
denominator 2. Hence a matrix of dimension two admits natural coefficients
{0,1,...,7}, rational coefficients {0, %, 1, 1%,2,2%,3,3%}, and real coefficients
{0,1,v/2,1 + v/2}. The number of bits for representing intermediate compu-
tations was chosen to be one more than the number of bits allowed for the

64

4.3 Experiments

Table 4.1: Matrices with dependency pairs for 1391 TRSs
1x1 2x2 3x3
yes time tfo yes time tfo yes time tfo
N | 545 8885 83 618 23820 326 627 25055 349
Q | 599 8574 67 597 20238 261 496 19490 252
Q1 | 606 5906 46 655 15279 173 643 14062 164
Q
R

2 | 627 10109 93 651 23102 308 619 23806 330
535 17029 198 630 16517 200 599 29346 415

Table 4.2: Matrices with dependency pairs for 732 SRSs
1x1 2 x2 3x3
yes time t/o yes time t/o yes time t/o
N 69 1795 8 103 20869 225 110 37458 576
Q 62 1089 3 78 10533 81 52 19066 257
Q| 84 1136 3 121 13603 125 117 31040 424
Q
R

o | 92 1717 6 127 18241 193 113 34816 518
58 11256 116 77 31195 382 54 41589 676

coefficients. Restricting the bit-width of computations is essential for perfor-
mance, especially for matrices of larger dimensions. For SRSs we allow one
additional bit for both matrix coefficients and intermediate results.

In Tables 4.1 and 4.2 matrices from dimensions one to three are considered.
The rows labeled N indicate that only natural numbers are allowed as coeffi-
cients whereas Q refers to the naive representation of rationals without canceling
the fractions (for details cf. Section 6.1.3) and R to algebraic coefficients (cf.
Section 6.1.4). Performance of Q is satisfactory for matrices with dimension
one (which correspond to linear polynomial interpretations and confirms the
results in [25]) but poor for larger dimensions due to the reasons discussed in
the previous section. The rows Q,, correspond to the setting where a fraction
is canceled if its denominator exceeds n. The column labeled yes shows the
number of successful termination proofs, while time indicates the total time
needed by the tool in seconds. If no answer was produced within 60 seconds
the execution is killed (column t/0). From these numbers it becomes apparent
that rational coefficients indeed increase termination proving power of matrix
interpretations in practice. Interestingly the overall performance of Q; is sur-
prisingly good where Q; just allows rational values for the matrix coefficients
but not for any intermediate results. The (optimized) approach allowing ratio-
nals does not only increase the total number of systems proved terminating but
additionally reports these results faster than the comparable approach based on
natural numbers. Hence only the benefits of allowing rational numbers remain
as can be witnessed in Tables 4.1 and 4.2.

65

4 Matrix Interpretations

4.4 Assessment

The experimental results from the previous section show that a naive implemen-
tation of rational numbers does not pay off for matrices of larger dimensions.
Hence we developed a heuristic which is very easy to implement while providing
substantial gains in efficiency and termination proving power. Furthermore due
to the design of the constraint solving module (cf. Chapter 6) no changes have
been necessary within the encoding of the matrix method when going from nat-
ural to rational and real coefficients. And if one looks beyond TPDB, then our
implementation can also show its strength for real coefficients. It masters the
TRS Rg from Example 4.10 below. This system stems from [63] where it was
proved that no direct termination proof based on polynomial interpretations
over the natural or rational numbers can exist which orients all rules strictly.
However a proof over the reals is possible and our implementation finds such a
proof fully automatically. We must confess that the interpretation below is not
the first one given by an automatic termination analyzer since MU-TERM [61]
is also capable of reasoning about the real numbers. However, MU-TERM’s con-
straint solving mechanism is not based on SAT which makes our contribution
unique.

Example 4.10. For the TRS R consisting of the seven rules

k(z,2,b1) — k(g(z), b2, b2) g(c(z)) — f(c(f(2)))

k(z,a2,b1) — k(a1 z, bi) f(f(x)) — g(x)

k(ag,z,b1) — k(z,a3,b1) f(f(f(f(z)))) — k(z,z, x)
k(g(), b3, b3) — k(z, z,ba)

T7T> finds the interpretation that orients all rules strictly

aig =0 big =2+ V2 fr(z) = V2z + V2
ar=14+2vV2 bypr=0 gr(z) =2z +1+V2

asg =0 bsg =1+ V2 () =z+1+2V2

asg =1+ V2 bar = V2 ke(z,y,2) =2 +y+ V22 +3V2

within a fraction of a second. However while a direct proof with polynomials
over N is not possible, natural coefficients suffice in the dependency pair set-
ting (after computing the SCCs of the dependency graph). Consequently all
contemporary termination tools can prove this system terminating.

We conclude this section with a comparison to related work. The idea of
allowing rational numbers for matrix interpretations is not new. Already in
2007 a first proposal to consider matrices (for termination proofs of SRSs) with
rational coefficients emerged [27]. In this note evolutionary algorithms [85] are
suggested to tackle the problem how to find suitable rational coefficients.

In [25] polynomial interpretations are extended to rational coefficients. This
work is related since linear polynomial interpretations coincide with matrix
interpretations of dimension one. Our experiments confirm the gains in power

66

4.5 Summary

when using matrices of dimension one. The implementation suggested in [25]
naturally extends to matrices of larger dimensions but the discussion from the
previous section shows that this results in a poor performance without further
ado.

Independently to our research the authors in [1] recently extended the theory
of matrix interpretations to coefficients over the reals. However, in contrast
to T1Ty their (preliminary) implementation can only deal with rationals. Fur-
thermore no benchmarks are given in [27, 1] showing any gains in power by
allowing rationals. Hence the results from this chapter for the first time give
evidence that matrix interpretations over the non-negative reals do really allow
to extend the power of termination provers in practice.

4.5 Summary

This chapter dealt with extending matrix interpretations over the natural num-
bers to non-negative reals. We proved that matrices over the reals yield re-
duction pairs which makes them applicable for termination proofs within the
dependency pair setting. While for small dimensions rational coefficients sub-
stantially increase the yes-score, for higher dimensions the approach does not
pay off in the naive setting. There the key issue is to keep the values of nu-
merators moderate by canceling the fraction if the denominator exceeds some
given limit. Last but not least, unlike many other implementations, we showed
that our tool is capable of finding matrix interpretations over the reals (not
only rationals). To the author’s knowledge, TTp is the first tool supporting
reasoning about algebraic numbers with the help of SAT solvers.

67

Chapter 5

Loops

Surprisingly—compared to the vast amount of methods devoted to proving
termination—only few techniques concerning non-termination are known and
implemented. Nevertheless checking for non-termination is extremely useful,
for instance when debugging programs since methods for non-termination pro-
vide evidence (e.g., a loop) why a system is not terminating, and a concrete
counterexample is helpful to track down a bug. Most non-trivial approaches in
that direction aim to find looping reductions and comprise ancestor graphs [98],
narrowing [32], match-bounds [83], unfoldings [71], and transport systems [84].
The first automated approach [70] dealing with non-looping non-terminating
systems was presented during the 2008 edition of the termination competition.

The increasing complexity of proofs generated by termination tools makes
automated certification of their output more and more important. Since 2007
a certified category is part of the termination competition. Here, the partici-
pating tools are required to generate proofs that can automatically be certified.
Current approaches for automatic certification of termination proofs are Coc-
cinelle/CiME [12, 14], CoLoR/Rainbow [6], and IsaFoR/CeTA [77, 80]. The first
two projects use Coq [5] as theorem prover. Here, Coccinelle and CoLoR are
Cog-libraries on rewriting whereas CiME and Rainbow transform proof output
of some termination tool into Cog-script using the respective library. After-
wards, Coq is used to certify the result. IsaFoR/CeTA uses Isabelle/HOL! as the-
orem prover. IsaFoR (Isabelle Formalization of Rewriting) is an Isabelle-library
on rewriting and CeTA (Certified Termination Analysis) is a Haskell program
that certifies proof output of some termination tool directly (without calling
a theorem prover). It is generated from IsaFoR using Isabelle’s code-generation
facilities [36]. We extend IsaFoR/CeTA by a loop-checker capable to certify loops
which makes it the first certifier supporting non-termination techniques.

The remainder of this chapter is organized as follows: In Section 5.1 we
present a novel method to find loops for the special case of string rewriting.
Afterwards, Sections 5.2 and 5.3 discuss our Isabelle formalization for IsaFoR and
our check-functions for CelA that are used to certify looping non-termination.
Experimental results together with an assessment of our contributions can be
found in Section 5.4 before future work is addressed in Section 5.5.

This chapter heavily contributes to [93].

! In the remainder we use Isabelle instead of Isabelle/HOL.

69

5 Loops

5.1 Finding Loops for String Rewrite Systems

In this section we consider SRSs only. Instead of a(b(c(x))) we write abc (i.e.,
the variable is implicit). For a string s we denote the i-th symbol (1 <@ < ||s]|)
in s by s;, e.g., abca = b. An SRS S is length-preserving if for every rule
| — r € S the condition |I| = |r| holds.

Example 5.1. Consider the SRS & = {ab — bbaa} which admits the looping
reduction

abb — bbaab — bbabbaa

where the initial string abb is reached again after two rewrite steps wrapped in
the context C' = bblJ and instantiated by the substitution ¢ = {z/aa}. Hence
S admits the loop ([abb, bbaab], C, o) of length 2.

The main benefit of the dependency pair approach (for finding loops) is that
leading contexts as in Example 5.1 are automatically removed by construction of
the dependency pairs [32], and as a result a looping reduction in a DP problem
(P,R) takes the form ¢ —>7J5U72 to. Our idea is to encode a looping rewrite
sequence within the DP framework using a matrix of dimension m x n where
(0,0) denotes the top left entry and (m — 1,7 — 1) the bottom right one. Every
row in the matrix corresponds to a string and the intended meaning is that
there is a rewrite step from row i to row ¢ + 1.

Example 5.2. Consider again the SRS from Example 5.1 which gives rise to
the dependency pairs Ab — Aa and Ab — A. Using a 3 x 5 matrix a looping
reduction is possible. The entries marked with - indicate that any symbol might
appear at these positions.

> > >
oo o
o oo

a 4a

In the sequel we describe how to represent such matrices for a DP problem
(P,R) in propositional logic where the following variables are used:?

M, symbol a occurs at position (4, j) of the matrix

Ri-_” in row ¢ of the matrix rule [— r is applied

Pi the position (= column) in row ¢ where the rule is applied
(in Example 5.2 we have pp = 0 and p; = 1)

€; pointing to the last symbol of the i-th string (in the example
ep=2,e; =2, and eg =4)

The variables p; and e; are not Boolean but represent natural numbers. To
distinguish them from proper propositional variables they are denoted in lower
case.

2 The idea of encoding computation as propositional satisfiability goes back to [13].

70

5.1 Finding Loops for String Rewrite Systems

Exactly one function symbol: To get exactly one function symbol at each
matrix position, we ensure at least one symbol per entry and additionally ban
multiple symbols at the same entry. Note that dependency pair symbols (those
in F* \ F) can only appear at column 0 of each row. This is encoded as follows
(where X = F if j > 0 and X = F*\ F otherwise):

ai; =\ My AN (M — N\

acX acX beX\{a}

Rule application: If a rule [— r applies in row i (Ré‘”) the rule must be
applied correctly (appi_”") and entries unaffected by the rule application must
be copied from row 7 to row i+ 1 (cpij_"") The position of the rule application is
fixed by p; and satisfying cplﬁr has the side effect that only one rule is applied.

Hence
g = R appltt A /\cpl_”"

0y<n
where in case of | — r € R we have
l—r _ lj+1 /\ Tj+1
app; = Ml(p) A MZ+1 Ypits)
o<g<||f 0y <|Ir|l

A e+ Il = ei + 7]l A e = pi+ [l

and if [— r € P then p; specializes to 0. The first (second) conjunct of appﬁHT
applies the left-hand side in row 7 (right-hand side in row i + 1) at the abstract
position p;. The last but one conjunct demands that the end pointer in line
i+ 1 takes the value of e; — ||I|| 4+ ||7||. To ensure that the contracted redex fits
the string in line ¢ the last conjunct must be satisfied.

The formula for cplﬂ” is defined as T if j + max{||l||, ||7||} = n (these entries
would be outside of the matrix), as

(5 <pi A /E((M% o MG)) v (=P A /> G < MGG
ac ac

(where X = F*\ F if j =0 and X = F otherwise) if | — r € R, and as

/\ (Mia(jJrlllH) = (1+1)(J+||7"H))
aceF

ifl —-rep.

All entries in the matrix before the position where the rule is applied are
copied from row ¢ to ¢4 1. The second disjunct copies the entries after p; which
are unaffected when applying the rule. The positions of these entries change if
the applied rule is not length-preserving. For rules | — r € P we know that
pi = 0 and hence the formula simplifies to the one shown above.

71

5 Loops

Initial string is reached again: To recognize a loop, the string in some row
i > 0 has to match the one in row zero. Furthermore the end pointer for this
row is not allowed to be smaller than the one of row zero.

v o= \/ < /\ (MSOHM%) A /\ (ngHM%)/\ei>eo>
0<i<m NqeFI\F 0<j]<__n
a€

Putting everything together: For a DP problem (P,R) the formula loop}

is defined as
/\ (/\aij/\ei<nAﬂi> Ay

0<i<m N0g<n
with
_ l—r l—r
fr= N BT AN B
l—-rePUR l—-rePUR

expressing that one rule has to apply in row ¢ (and that it is applied properly).
The condition e; < n ensures that all strings in the loop stay within the allowed
matrix dimensions.

There are two types of variables keeping track of function symbols—concrete
(M) and abstract ones (MJ;) where z is an arithmetical expression repre-
senting a natural number. The latter are needed when a rule is applied at
the abstract position p;. In the current encoding, abstract variables M3, and
M3, denote two different expressions (since the expressions z and y differ) and
hence may take different values. If the expressions x and y evaluate to the same
number, we want to enforce that the variables take identical values. In the im-
plementation we test for every such abstract variable M} whether it matches
a concrete one M and we identify them if that is the case in order to obtain
consistent results:

Pcons = /\ /\ ($ =] (Mz%' A Mz%c))
Mg 0<j<n

Next the main theorem for finding loops is formulated.

Theorem 5.3. A DP problem (P, R) admits a loop of length at most m involv-
m+1,n

ing strings of size at most n+1 if the formula loopp 5" Apcons s satisfiable. [
The above theorem allows to implement a DP processor for non-termination
similar to the one in [32, Theorem 26| of the following shape.

Theorem 5.4. The DP processor that returns for a DP problem (P,R) “no”
if PUR admits a loop and {(P,R)} otherwise is sound and complete. O

Although the above DP processor is complete, the approach is incomplete in
a different sense. In [32] it is shown that a TRSs R is looping if and only if the
DP problem (DP(R),R) admits a loop with empty context. But this loop need
not be minimal. The following example shows that there exist TRSs that are
looping but only admit non-looping minimal sequences.

72

5.1 Finding Loops for String Rewrite Systems

Example 5.5. Consider the SRS (from [16]) consisting of the following three
rules

bc — dc bd — db ad — abb

which was proved non-looping in [29]. Nevertheless it admits a non-terminating
sequence since for every i > 0 we have ab’c —* ab™*lc. Now consider the single
rule eabc — eabc which obviously allows a looping reduction. Let & denote
the union of all four rules. Then using the DP problem (DP(S),S), the term
Eabc does not start a looping minimal sequence since the subterm abc is not
terminating with respect to S. Furthermore one can easily verify that actually
all minimal infinite sequences are non-looping. However, our encoding from
Theorem 5.3 is “complete” in the sense that it easily finds the looping reduction
Eabc —pp(s)us Eabc.

Next we show that any loop found within the DP framework can be trans-
formed into a loop in the original rewrite system. This is of interest since the
formalization in the next section does only support such loops. We do not
expect major difficulties for lifting the formalization of loops into the DP set-
ting but due to Lemma 5.7 below we see no need in doing so. Besides, for the
purpose of debugging, it is more useful to get a counterexample in the original
system than in some transformed system (where the connection between the
counterexample and the corresponding bug may not be obvious). Furthermore,
to certify loops within the DP setting, all DP processors employed before the
loop processor must be formalized and proved complete (whereas for termina-
tion proofs soundness suffices).

The next example gives the intuition how loops are transformed.

Example 5.6. Consider the loop
Abb —pp(s) Aab —s Abbaa
from Example 5.2. The corresponding loop in the original system is

abb — g bbaab — s bbabbaa.

This is obvious since the dependency pair Ab — Aa employed in the first step
derived from the rule ab — bbaa.

Hence for every step involving a dependency pair I — uf one must determine
a (not necessarily unique) rule [— r from the original system that gave rise to
I* — uf. The additional context is then C satisfying r = C[u].

Lemma 5.7. Every sequence t% —DP(R)UR tﬁ2 —DP(R)UR tg —DP(R)UR " CaM
be transformed into a sequence t; —gr Ci[ta] —r Calts] —r -+ involving only
the original system.

Proof. Obvious due to soundness of the dependency pair transformation [3]. [
The next result combines Theorem 5.3 and Lemma 5.7. Strings in the trans-
formed loop might be of size larger than n + 1 due to the additional contexts.

Corollary 5.8. An SRS R admits a loop of length at most m if the formula

/oopgg(% = /\ Peons is satisfiable. O

73

5 Loops

u()a X)a)setll
"(’f,’v)term list x (Cf,’v)ctxt x (°f,’v)sub"

types ’a brel
types (°f,’v)loop

definition SN_elt where
"SN_elt A a = —(3s. sp = a A (Vi. (Si:SH—l) e A))H"

definition SN where "SN(A) = Va. SN_elt A a"

fun rsteps :: "(°f,’v)term list = (°f,’v)term brel = bool"
where "rsteps [t] R = True"
| "rsteps (s#t#ts) R = (s —»r t A rsteps (t#ts) R)"

fun is_loop :: "(’f,’v)loop = (’f,’v)term brel = bool" where
"is_loop (t#ts,C,0) R = rsteps (t#ts@[C[tcl]l) R"

fun ith :: "(’f,’v)loop = nat = (’f,’v)term" where
"ith(t#ts,C,0); = (if i < length(t#ts)
then (t#ts)!d
else CL(ith(t#ts,C,0); 1engtn(téts))o1)"

Figure 5.1: Basic definitions

5.2 Formalizing Loops

In this and the following section we assume some basic knowledge of the theorem
prover Isabelle [69]. All lemmas and theorems within these sections have been
formally proved in IsaFoR.

In contrast to finding loops, which is restricted to the setting of string rewrit-
ing, for the formalization in IsaFoR we again consider full term rewriting. What
follows is a sketch on how we formalized looping reductions in Isabelle. Fig-
ure 5.1 gives an overview of the most important function definitions and types
we used. (Note however that in order to increase readability, we do not strictly
follow the Isabelle syntax of IsaFoR, e.g., the application of a substitution would
be t-o rather than to in IsaFoR.) A binary relation is represented as a set of pairs
over some domain. A loop is a triple consisting of a list of terms, a context,
and a substitution. For a given relation .4, an element a is strongly normalizing
(SN_elt) if there does not exist an infinite sequence s such that sy = a and
for all ¢ we have (s;,s;+1) € A. Strong normalization of a relation (SN) is de-
fined via the property that all elements of the domain are strongly normalizing
with respect to the relation. To guarantee that our definition of SN is suitable
we proved an easy lemma stating equivalence to the built-in Isabelle notion of
well-foundedness (wf), i.e., SN(A) = wf(A~1). The rewrite relation induced by
a TRS R (—r) is a binary relation on terms that is closed under contexts and
substitutions. The latter two concepts are defined by inductive sets but details
are omitted here. The function rsteps checks for a list of terms if between
two consecutive terms there is a rewrite step. Note that this function is partial
(undefined for the empty list of terms). Then a function is_loop can easily be
defined with the help of rsteps.

74

5.3 Certifying Loops

Up to now the basic ingredients for the formalization have been introduced.
What follows is an explanation on how to show that a loop indeed gives rise
to non-termination. The key idea is to explicitly construct a sequence s that
contradicts the definition of SN_elt, i.e., we need to define a function that takes
a loop as input and generates for every i the i-th term in the non-terminating
sequence defined by the loop. Hence, if ts = [t1,...,t,] loops with context C
and substitution o then there exists an infinite rewrite sequence of the following
shape:

t1 — to — -+ — ty, —
Cltio] — Clteo] — -+ — Cltpo] — (5.1)
C[C[tio]o] — C[Clteo)o] — -+ — C[Cltypolo] — -

The function ith is employed to return on input ¢ the i-th element of this
sequence. Note that ith is undefined for empty lists but this does not pose a
problem since obviously a loop has to involve at least one term. If the list of
terms ts loops with context C' and substitution o then between two consecutive
terms in the sequence (5.1) there clearly must be a rewrite step. The reason
is that the relation —% is closed under contexts and substitutions. However,
in the theorem prover, separate lemmas are necessary stating that ith fulfills
these properties to construct the desired sequence s. In IsaFoR, the main task
was to prove the following lemma:

Lemma 5.9. Ifis_loop ¢ R then for all i we have ith(¢); —g ith({);y;. O
Then we obtain the main theorem for the abstract formalization:
Theorem 5.10. If is_loop ¢ R then —x is not terminating.

Proof. From is_loop ¢ R we obtain an infinite sequence s by defining s; =
ith(¢);. This sequence satisfies Vi. s; —r s;+1 due to Lemma 5.9. Hence, for
the first term ¢ of the loop £ we obtain —-SN_elt —p t and thus by definition
of SN, —SN(—x). O

5.3 Certifying Loops

In contrast to the formalization above where we proved that looping reductions
are non-terminating (which has been well-known for years), this section aims
at certification, i.e., an automatic check if a suspected loop indeed is a loop.
Nevertheless the formalization above was a necessary step for proving the check-
functions to be correct. To obtain the executable check-functions we use the
code-generation [36] facilities of Isabelle which allow to generate verified code
for several functional programming languages. However, in our development
we had to be careful, since not all Isabelle constructs admit a transformation
into executable code. We provide an implementation of the predicate is_loop
from the previous section by the check-function check_loop that tests if a list
of terms, a context, and a substitution form a loop. Before taking a closer look
at this function we state our main theorem for certifying loops:

Theorem 5.11. If check_loop £ R then —gey(Rr) @5 not terminating (where
set transforms a list into a set). O

75

5 Loops

types (°f,’v)rule "(Of,’v)term X (Cf,’v)term"
types (°f,’v)trsL = "(°f,’v)rule list"

fun rewrites where
"rewrites (s,t) Co (1,r) R = (s = C[lo]l] ANt = Clro]l] A (1,r) mem R)"

fun rewrites_to
where "rewrites_to [(s,C,o,rule)] t R = rewrites (s,t) C o rule R"
| "rewrites_to ((s,C,o,rule)#(t,C’,0’,rule’)#xs) u R = (
rewrites (s,t) C o rule R A
rewrites_to ((t,C’,0’,rule’)#xs) u R)"

fun check_loop_d
where "check_loop_d [] _ _ _ = False"
| "check_loop_d ts C 0 R = rewrites_to ts C[(fst(hd ts))o]l R"

Figure 5.2: Checking a loop with all details provided

This closely resembles Theorem 5.10, only on a constructive (meaning exe-
cutable) level. The reason why R was chosen as a list, is that for lists executable
code can be generated unlike for sets. Before actually considering the function
check_loop we focus on a simpler task, namely a function check_loop_d where
more details about the loop are supplied to the function, i.e., for every rewrite
step s —x t the context C, the substitution o, and the rewrite rule [— r such
that s = Cllo] —r C[ro| =t are explicitly available. Since for this setting, no
information has to be computed by the theorem prover, the implementation of
check_loop_d is based on just the few functions depicted in Figure 5.2.

At this point certification of a candidate loop is already possible:

Lemma 5.12. If check_loop_d xs C' 0 R then —gey(r) is not terminating.
Proof. The abstract formalization can be linked to the concrete implementation:
If rewrites_to xs t R then rsteps (map fst xsQ[t]) (set(R)).

By unfolding the definitions of check_loop_d and is_loop, and using Theo-
rem 5.10, the proof concludes. O

The main drawback of the function check_loop_d is that it requires explicit
information about the rewrite steps. To our knowledge not a single termination
prover provides all these details. To make the certification of loops more ap-
pealing and user-friendly we turn our focus on the function check_loop again.
Here for every rewrite step s —x t the context C| the substitution o, and the
rewrite rule | — r € R such that s = C[lo] and t = C[ro] are computed by the
theorem prover.

The function get s ¢ R computes Some(C, o, (I,r)) if there is a rewrite step
from s to ¢ involving C, o, and | — r € R. Hence get has to test for all rules
[— r € R if for any context C in s there is a substitution o satisfying s = C[lo]

76

5.4 Experiments

and t = C[ro].> To find this substitution we had to implement matching.
With the help of get a function get_list returns the necessary information
for a sequence of rewrite steps and get_loop computes all details for a looping
reduction. Finally the function check_loop just calls check_loop_d on the
output of get_loop.

5.4 Experiments

This section is separated into two parts. In the first part (Section 5.4.1) we
show the power of the method proposed in Section 5.1 for SRSs. The second
part (Section 5.4.2) then considers more approaches for finding loops since the
emphasis is put on certifying as many loops as possible.

5.4.1 Finding Loops

We integrated the encoding from Section 5.1 into T7Ty. Solving the (proposi-
tional) formulas by MiniSat [20] produced slightly better results than employing
Yices [18] as back-end.

The actual implementation of the encoding differs a bit from the presentation
in Section 5.1 for reasons of readability. Our experiments showed that non-
termination proving power can be slightly (i.e., a gain of about 10%) extended
by addressing the following issues. Mutual exclusion of the M;; variables can
be expressed more concisely. After fixing an order on the variables, the prop-
erty that at most one of the variables x1,...,x, can be satisfied, is expressed
by x; — —xip1 A Az for all 1 < ¢ < n. Due to mutual exclusion of
the MZC; variables, all bi-implications occurring in subformulas of Ioopg’% can
safely be replaced by implications. In the constraint e;1q1 + ||I|| = e; + |||
the “=" could be weakened to “<”. (This corresponds to cutting parts of
the substitution.) However, our experiments revealed that due to the in-
creased search space the more restrictive version performs much better. To
reduce the search space our implementation employs a heuristic for p;. Fixing
pi < min{2 + ¢ x max;_,.er{||l||,||7]|},n} ensures that for the first few rows
rewrite rules are applied close to the root. In addition to the DP processor for
non-termination we employ termination methods like matrix interpretations [22]
which allow to pre-process DP problems. Sometimes these single termination
methods already suffice to prove termination. But more importantly, DP prob-
lems are often decreased in size before being handed over to the loop finder.
The heuristic for encoding loops tries matrices of different dimensions ranging
from 4 x 4 up to 25 x 25. Most successful proofs only take a few seconds.

We compare our implementation with three powerful non-termination ana-
lyzers (the latter two completely devoted to non-termination), namely Match-
box [83], nonloop [70], and NTI [71]. These tools participated in the Standard
SRS categories of the 2007 or 2008 termination competitions and were (apart

3 For TRSs the latter condition is automatically fulfilled by the requirement that all variables
in r also occur in . Since our test set (cf. Section 1.4) contains systems that violate this
restriction we demand both conditions in our implementation. Consequently we can certify
loops that are due to fresh variables in right-hand sides.

7

5 Loops

Table 5.1: Finding loops for 732 SRSs

‘ Matchbox nonloop NTI Ty
no 119 94 21 87
total time 16981 37860 35929 24051

from T7Ty) the most powerful ones concerning non-termination in this division.
Table 5.1 presents a comparison of the different provers (on the 732 SRSs used
in the latest edition of the competition) where the row labeled no shows the
number of successful non-termination proofs and the total time is measured in
seconds. The strategy used for TyTy is listed in Section A.4. When compar-
ing the power of the tools one should not forget that the algorithm underlying
NTI performs much better for terms than for strings (cf. Section 5.4.2 and [71])
and that nonloop and TyTy use just a single non-termination method whereas
Matchbox employs an enumeration of forward closures, match-bounds of inverse
systems [83], reversing, and transport systems [84]. The last method is espe-
cially suitable for detecting long loops (which our approach typically misses).
However, it is not (yet) possible to certify loops due to transport systems which
is in contrast to the loops found by TyTy. A similar argument holds for nonloop;
It claims several systems to be non-looping and non-terminating but certifica-
tion of these claims is currently not possible.

5.4.2 Certifying Loops

Our contribution amounts to approximately 500 lines of Isabelle code that where
added to IsaFoR (theory Loop). This includes the abstract formalization of loops
and both approaches for certifying loops (the detailed one using check_loop_d
and the user-friendly one based on check_loop). As already mentioned the
key concept for the way of certification presented here, is the code-generation
mechanism of Isabelle which allows to export wverified Haskell code. Thus the
whole certifier consists of a bunch of Haskell sources automatically generated
by lIsabelle, plus a main file that just calls the check function on a given problem
and proof, i.e., when calling CeTA, two arguments have to be supplied, namely
the input problem and the proof attempt. The tool then tests if the specified
proof attempt corresponds to a loop and terminates with exit code 0 in case of
success and exit code 1 if the input could not be proved to be a loop.

Table 5.2 contains separate empirical data for 1391 TRSs and 732 SRSs where
we configured T7Ty such that it searches for loops with the method proposed
in [71] (TRSs) and the approach introduced in Section 5.1 (SRSs). Furthermore
two trivial methods are employed (test for fresh variables on right-hand sides
and test if a rule is self-embedding). Within the table, the row TqTy refers to
finding a looping reduction and CeTA to certifying it. The columns labeled no
indicate the number of successfully proved non-terminating (T7T) and certified
(CeTA) systems and total time resembles the accumulated time in seconds for
finding/certifying loops. The numbers in parentheses denote the average time

78

5.5 Future Work

Table 5.2: Certifying loops

TRSs SRSs
‘ no total time ‘ no total time
TrTr | 212 118(0.56) 87 1244 (14.29)
CelTA| 212 9(0.04) 87 4(0.04)

that was needed per system for proving/certifying non-termination which shows
that the computational effort for certification is negligible. CeTA could certify
all 212 TRSs and 87 SRSs non-terminating for which TTy provided a loop.

Since no official release of Rainbow/ColLoR and CiME/A3PAT currently sup-
ports certification of non-termination we do not consider them for comparison
with our work.

5.5 Future Work

Both contributions presented in this chapter may be further investigated. One
interesting question concerning Section 5.1 is whether the encoding can be
lifted from strings to terms. Concerning the formalization of loops one could
try to incorporate the approach from [70] and also formalize non-looping non-
termination. It has to be clarified if from the output provided by nonloop one
can extract the i-th term in a non-terminating sequence easily. This issue will
then make the task either easy or undoable. Other ideas concerning the for-
malization affect loops within the dependency pair framework. Our approach
currently cannot handle DP loops but due to Lemma 5.7 this is no real re-
striction. Another point of interest is to certify loops under specific rewrite
strategies [81].

5.6 Summary

This chapter described a new method dedicated to finding loops for SRSs. Since
the encoding for loops takes parameters for the length of looping sequences
and the maximal size of strings occurring within the reduction it is especially
suitable to find short(est) looping evidence. This eases the task of debugging
since the reason for non-termination is concisely represented. In the second part
we formalized strong normalization in the theorem prover Isabelle and sketched
how our contribution allows to generate verified code capable of certifying loops.
The thereby generated check-function was incorporated into CeTA. This makes
our work the first contribution for certifying non-termination in the field of
rewriting. Experimental results show the power of our loop-finder and the
efficiency of the check-functions we contributed to CeTA.

79

Chapter 6
Solving Arithmetic Constraints

This chapter gives some insight into the basic ideas on which the constraint
solving module of T7Ty relies. Within TyTy constraints are encoded in a language
similar to the one from Definition 1.11 on page 10. Just at the time of solving the
constraints it is decided which solver has to do the job. For arbitrary arithmetic
constraints only the SAT back-end is suitable whereas for the linear arithmetic
fragment both, SAT and SMT solvers, can be employed. In Section 6.1 we
explain how to reduce arithmetic over N (Z, Q, R) to SAT whereas Section 6.2
provides some pieces of information on the SMT back-end. Independent from
the solver, already at the time of encoding obvious simplifications like

AT — @ TAp—@ pNANL— L1 1Ap— L1

are performed which help to reduce the size of the encoding. Section 6.3 stresses
the main benefit of the stand-alone constraint solving module.

6.1 Transforming Arithmetic Constraints to SAT

In the case of SAT one must fix the domain of arithmetic expressions, i.e., N, Z,
Q, or R. Furthermore, to get formulas of finite size, every arithmetic variable
must be bounded from above, i.e., must be represented by a given number of
bits. Then operations such as +, —, X, >, and = can be unfolded according
to their definitions using circuits. Such definitions have already been presented
n [22] for bit-vectors of a fixed width. In contrast, we take overflows into
account. The resulting constraint is propositional and can be solved by a SAT
solver (after a satisfiability preserving transformation, e.g., [82, 72]).

In the sequel we start defining operations over bit-vectors (representing nat-
ural numbers) and lift them to integers, rationals, and finally (a fragment of)
reals. The propositional encodings of >n and = for bit-vectors given below
are similar to the ones in [10] (apart from some slight optimizations).

6.1.1 Arithmetic over N

We fix the number k of bits that is available for representing natural numbers in
binary. Let a < 2¥. We denote by aj = (ay, ..., a;) the binary representation of
a where ay, is the most significant bit. Whenever k is not essential we abbreviate
ay to a. Furthermore the operation (-); on bit-vectors is used to drop bits, i.e.,

<6L4, az, az, CL1>2 = <a27 a1>-

81

6 Solving Arithmetic Constraints

Definition 6.1. For natural numbers given in binary representation, the oper-
ations >n and =y are defined as follows:

a, >n by — {al/\—'bl ifk=1
(ak VAN ﬂbk) V ((bk — ak) Nag_1 >N bk—l) ifk>1
k
ap =N by = /\(ai < b;)
=1

For addition one has to take overflows into account. Since two k-bit integers
might sum up to a (k+ 1)-bit number an additional bit is needed for the result.
Consequently the case arises when two summands are not of equal bit-width.
Thus, before adding a; and by the shorter one is padded with |k — k'| L’s. To
keep the presentation simple we assume that | -padding is implicitly performed
before the operations +n, >N, and =N.

Definition 6.2. We define aj; +n by as {(ck, sg, ..., s1) for 1 <i < k with

Cco — 1
$; =a; ®b; ® i
c; = (ai A bl) \Y (CLZ' A Ci—l) V (bz A Ci—l)

were @ denotes exclusive or.

Note that although theoretically not necessary, in practice it is essential to
introduce new variables for the carry and the sum. The reason is that in
consecutive additions each bit a; and b; is duplicated (twice for the carry and
once for the sum) and consequently using fresh variables for the sum prevents
an exponential blowup of the resulting formula.

A further method to keep formulas small is to give an upper bound on the
bit-width when representing naturals. This can be accomplished after addition
(or multiplication) by fixing a maximal number m of bits. To restrict a; to m
bits we just demand that all a; for m + 1 < i < k are L as a side constraint.
Then it is safe to continue any computations with a,, instead of a;. Here safe
means that restricting bits cannot produce incorrect results. However, in the
worst case the side constraint can make the whole formula unsatisfiable.

The next example demonstrates addition. To ease readability we do not
use arbitrary propositional variables in the following examples but just the
constants | and T and immediately perform obvious simplifications.

Example 6.3. We compute 3 +y 14 = 17, ie., (T, T) +n (T, T,T,L1) =
(T,L,1,1,T). In the sequence below the first step extends both operands
to equal bit-width. Afterwards Definition 6.2 applies.
(T, Ty 4+n (T, T, T, L) =(L, L, T,)+~ (T, T, T, L)
=(T,L,L,1,T)

82

6.1 Transforming Arithmetic Constraints to SAT

Multiplication is formulated by repeated addition and bit-shifting. The latter
is denoted by << where a << n denotes a left-shift of a by n bits, e.g., the
expression (x,y) << 3 yields (x,y, L, L, 1). Another useful operation is (-)
taking a bit-vector and a Boolean variable as input and performing a scalar
multiplication, i.e., a; - = (ax A x,...,a; A z). In the sequel the operator (-)
binds stronger than <<, i.e., a-z << 2 is an abbreviation for (a-z) << 2.

In the definition below two bit-vectors with m and n bits are multiplied. Note
that the result occupies at most m + n bits.

Definition 6.4. For two bit-vectors a,, and b,, we define:

am XNbp = ((am- b <0)+N -+~ (am by < (n—1)))

m—+n

In the following example we demonstrate multiplication.
Example 6.5. Let a= (T, L, T) and b= (T, T, L). Hence the example com-
putes 5 X6 = 30. In the computation below the first step unfolds Definition 6.4.

Then the scalar multiplications are evaluated before shifting is performed. After
addition (using +n) the sum is restricted to six bits.

axnb=(a-L<0)+n(a - T<<1)+n(a- T < 2))
(L1, 1) <0)+n (a << 1) +n (a < 2)),

(a
(<
(L, L, Ly +n (T, L, T, L)+ (T, L, T, L, 1)) (%)
(
(
(

L, L) 4+ (T, L T, L)+ (T, L, T, L,)
LT, LT, L)+~ (T, L, T, 1, 1))

LT, T,T,T,1)),

1, T,T,T,T,1)

(
(
(
(
(
(
=

Note that it is preferable to add the summands in the row marked (%) from
left to right since otherwise the (intermediate) results occupy more bits due to
superfluous | -padding for addition, i.e.,

axnyb=---
= (L, L, L) 4+~ (T, L, T, L) +n (T, L, T, L, 1))
= (L, L, L) 4+~ (L, T, L, T, L)+ (T, L, T, L,)
= (L, L, L)+~ (L, T, T, T, T, 1)),
= (L, L, L, L, L, L)+~ (LT, T, T, T, 1)),
= (L, L,T,T,7,T, 1)),
=(L,T,T,T,T,1)

demonstrates such a case.

Before considering arithmetic over Z we focus on the if-then-else operator
(-7 -:-) from Definition 1.11. It can be implemented using scalar multiplication
and addition, i.e.,

x7a:b = (a-z)+nN(b-—x).

83

6 Solving Arithmetic Constraints

Hence above expression returns the value of a if x evaluates to true and the
value of b otherwise. Since this operator serves just as an abbreviation we do
not give its straight-forward redefinitions when considering arithmetic over Z,
@, and R. Note that this operator is very useful to encode the maximum of
two numbers, i.e., max(a,b) amounts toa >nx b 7 a: b.

6.1.2 Arithmetic over Z

For dealing with integers an obvious choice is to represent numbers in two’s com-
plement. The main benefit is the rather simple implementation for arithmetic
operations. Here, for a k-bit number the most significant bit resembles the sign,
e.g., a = (ag,...,a1) with sign a; and bits ag_1,...,a;. As usual, a sign T
indicates negative values. Again some definitions expect both operands to be of
equal bit-width. This is accomplished by implicitly sign-extending the shorter
operand beforehand. The operation (-)j is abused for both, sign-extending and
discarding bits, e.g., (L, T)y = (L, L, L, T)and (T, T)y =(T,T, T, T). Hence
the integer represented by the bit-vector does not change when sign-extending.
Similar to the case for N a bit-vector a; can be restricted to m bits. If the
dropped bits take the same value as the sign, then a; and a,,, denote the same
number (this operation can be seen as the converse of sign-extending, i.e., sign-
dropping). Hence if a side constraint ay < a; is added for m < i < k then it is
safe to proceed any computations with a,, instead of ay.
Comparisons are defined based on the corresponding operations over N.

Definition 6.6. For two bit-vectors a; and by we define:

ap >z by = (—\ak A bk) V ((ak — bk) N ag—1 >N bkfl)
ap =z by = a;=nbs
The interesting case is >z where a separate check for the sign is needed,
i.e., a is greater than b if b is negative while a is non-negative and in case of

identical signs the bits are just compared using >n.
Next we define +z and xz.

Definition 6.7. Addition and multiplication are defined as follows:
aptzbr = (a1 +N br1)in
am Xz b, = (am+n XN bm+n)m+n

The basic idea for +z and Xz is to first sign-extend the numbers and then use
the corresponding operation over the naturals. Superfluous bits are discarded
afterwards.

Before demonstrating addition and multiplication by means of an example
we stress that subtraction is obtained for free when using two’s complement
representation, i.e., a—zb = a+ztc(b) where tc(b) computes two’s complement
of b which we introduce next.

Definition 6.8. For a bit-vector a; we define ones’ complement as

oc(ak) = <—|ak, ey —\a1>

84

6.1 Transforming Arithmetic Constraints to SAT

and two’s complement as

te(ag) = (oc(ar1) +n (1)), g

Basically ones’ complement flips all bits and two’s complement computes
ones’ complement incremented by one. The definition of two’s complement is a
bit more challenging here than usual due to bit-vectors of non-constant width.
The main trick to avoid a case distinction depending on the sign is to first sign-
extend the bit-vector by one auxiliary bit. After computing ones’ complement,
one is added and then the overflow bit is discarded. The following example
demonstrates this procedure in more detail.

Example 6.9. First we show that the most significant bit must be disregarded
after computing two’s complement. This is important for 0, since two’s com-
plement of 0 should again return 0. We demonstrate this with 0 represented by
two bits, using an additional bit for the sign. In the sequence below the first
step unfolds Definition 6.8. After sign-extending oc’s operand by one additional
bit ones’ complement is computed. The result is incremented by one and the
overflow bit is discarded afterwards.

te((L, 1, 1)) = (oc({L, L, L)4) +n (T))

(oc(s
= (oc((L, L, L, 1))+~ (T)),
(T, T, T, T)+n (T))
(¢
=(L

4

(T,L,1,1,1)),
L, L, 1)

Next we show that sign-extending is important before performing ones’ com-
plement. To this end we calculate two’s complement of —8 which correctly
evaluates to 8.

= (oc((T, L, L, L)s5) +n~ (T))4
= (oc((T, T, L, L, 1)) +x (T)),
= (L, L, T, T, T) +n (T)),

= (L, L,T,1L,1,1)),

=

LT,
The next example focuses on addition/subtraction and multiplication.

Example 6.10. We compute 5 —z 2 = 3, ie., (L, T, L, T) —z (L, T, 1) =
(L, 1,1, T, T). The sequence below translates subtraction (—z) into addition
(+z) in the first step. Then two’s complement of 2 is calculated. Afterwards
addition for integers is performed by first sign-extending both operands by one
additional bit and then performing addition for naturals (+n). After this step

85

6 Solving Arithmetic Constraints

the superfluous carry bit is disregarded, i.e.,

(LT, L, T) =z (L, T, L)y = (L, T, L, T) 4z tc((L, T, L))
LT, LT +2 (T,T,T, 1)
J_TJ_75+N<TTTJ_))

(
= (
(¢
(J_J_TJ_T>+N<TTTTJ_>)
(¢
=

T,LLLT,T),
1,1, L, T,T).

Multiplication is similar, i.e., both operands a,, and b,, are first sign-extended
to have m + n bits. After the multiplication (xn) only the relevant m + n bits
are taken. We demonstrate multiplication by computing 5 xz —2 = —10, i.e.,
(L, T, LTy xg (T, T,L)=(T,T,T,L,T,T,L):

(L, T, L, T) xz (T, T, L)
= (L, T, L, Ty xn (T, T, L)7),
= (L, L, L, L, T, L,T) xn (T, T, T,T,T,T, 1)),
= (L, L, L, L, T, L, L, T,T,T,L,T,T,1)),
=(T,T,T,L,T,T,1)

6.1.3 Arithmetic over Q

Rationals are represented as a pair of numerator and denominator. The numer-
ator is a bit-vector representing an integer whereas the denominator is a positive
integer (negative denominators would demand a case analysis for >q). All op-
erations with the exception of Xq require identical denominators. This can
easily be established by expanding the fractions beforehand (as demonstrated
in Example 6.13).

Comparisons using rationals are just like for integers if the denominators of
the two operands coincide.

Definition 6.11. For (a,d) and (b, d) representing rationals we define:
,d) >Q (b,d) = a>zb
,d)=q (b,d) = a=zb

The operations +q and xq are inspired from the corresponding operations
over fractions.

Definition 6.12. Addition and multiplication are defined as follows:

(a,d) +q (b,d) = (a+zb,d)
(a,d) xq (b,d) = (axzb,dxd)

The next example demonstrates addition for rational numbers. Multiplica-
tion is easier since the operands’ denominators need not be equal and is thus
not considered in the example.

86

6.1 Transforming Arithmetic Constraints to SAT

Example 6.13. Consider 2 +¢ £ = 2, ie, ((L,T,T),2) +q (T, T),4) =
((L,L,T,1,T),4). In the computation below, first both denominators are
made equal. Afterwards addition of the numerators is performed using +z:

(LT, T),2) + ((T, T), 4)

(L, T,T,1),4) +q ((T,T),4)
(L, T,T,L)+z(T,T),4)
((L, L, T,1,T),4)

6.1.4 Arithmetic over R

It turned out that arithmetic over R is most challenging. First of all in contrast
to N, Z, and Q it is not so clear how numbers from R can be represented
using bit-vectors. To allow a finite representation we only deal with a subset
of R using a pair (c,d) where ¢ and d denote numbers from Q. Such a pair
(c,d) has the intended semantics of ¢ +dv/2. But further problems arise when
comparing two such abstract numbers. Therefore the definition of >gr given
below is just an approximation of the actual order >g. The idea is to under-
approximate dy/2 on the left-hand side while over-approximating it on the right-
hand side since the value of v/2 cannot be finitely represented as a bit-vector.
We under-approximate dv/2 by (5,4) xq d if d is not negative and similarly
dv2 by (3,2) xq d if d is negative.! Note that 2 = 1.25 <g 1.41 ~ /2 and
—% = —1.5 <g —1.41 ~ —+/2 which justifies the approach. An analogous
reasoning yields the over-approximation. This trick allows to implement >gr
(an approximation of >g) based on >q. The advantage is that >q can be
expressed in SAT (cf. Definition 6.11).

Next we formally define the under- and over-approximation for abstract num-
bers a from Q depending on their sign (denoted sign(a) with obvious definition)
using the if-then-else operator. Recall that a sign T indicates negative numbers.

Definition 6.14. For a number a from Q we define:

3,2) : (5,4)) xqa
over(a) = (sign(a)? (5,4):(3,2)) xqa

under(a) = (sign(a)?

—~~

With the over- and under-approximations we are now ready to define the
comparisons >gr and =gR.

Definition 6.15. For the pairs (c,d) and (e, f) we define:
(c,d) >r (e,f) = c+qunder(d) >q e+qover(f)
(c,d)=r (e,f) = c=qe ANd=qf

To increase readability, in the following examples we unravel the pair notation
(c,d) using the intended semantics to ¢ +g dv/2 whenever convenient. Hence
(3,1) amounts to 3 +gr V2.

! Here and in the sequel we abbreviate numbers from Z and Q by denoting them in bold-
face, i.e., 5 represents the number (L, T, L, T) from Z and at the same time the number
(L, T,L,T)1) from Q. The context clarifies which one is meant.

87

6 Solving Arithmetic Constraints

Example 6.16. The expression (1,1) >r (2,0) approximates the comparison

1+v2 >r 2. Next V2 on the left-hand side is under-approximated by %

This allows us to replace >gr by >@. Hence 1 +% >q 2, ie., % >0 % shows

that the above comparison is valid. Note that (0,6) >g (0,5) does not hold.

The expression resembles 6v/2 >r 5v/2. Approximating v/2 as described above
15

yields 6 x % > 5 X %, ie., % >q % which does not hold and thus demonstrates

that the order is just an approximation.
The ideas for +r and xR are directly inspired from the semantics of pairs.

Definition 6.17. We define addition and multiplication for pairs (c,d) and

(e,f) as:
(c,d)+r (e,f) = (c+qe,d+qf)
(C,d)XR(e,f) = (CXQe+Q2quXQf,cXQf—l—deQe)

The next example demonstrates addition and multiplication for reals.

Example 6.18. The equality (1,2) +r (5,3) = (6,5) is justified since the
left-hand side amounts to 1 +gr 2v/2 +r 5 +r 3v/2 which simplifies to 6 +g 5v/2
corresponding to the right-hand side. The product (1,2) xg (5,3) = (17,13) is
similarly justified: (1+g2v/2) xR (5+r3v2) = 5+r 10v/2 4R 3v2+R 6122 =
17 +g 13V2.

6.2 Transforming Arithmetic Constraints to SMT

The benefit of SMT solvers is that due to the richer input format they provide
built-in support for arithmetic. Although current SMT solvers are equipped
with highly efficient solving mechanisms for linear arithmetic they lack any
useful support for non-linear arithmetic. Hence for the operator x from Defini-
tion 1.11 it is required that at least one of the operands is a concrete number.
Recently [8] showed how SMT solvers that just support linear arithmetic can be
used to also handle non-linear constraints. The key idea there is to restrict every
arithmetic variable to a finite domain and then linearize the constraints by an
explicit case analysis. A (slight) disadvantage of the SMT back-end is the lack
of support for real numbers. Actually all SMT solvers currently restrict them-
selves to rationals and also the approach from [8] does not give any information
on how to employ SMT solvers for arithmetic over the real numbers.

6.3 Constraint Solving Module

T7To’s constraint solving module is addressed in this section. One nice aspect
is the stand-alone design which also allows other applications (and other ter-
mination tools) to use it. However, currently only an interface to OCaml is
provided. Furthermore, when encoding a (non-)termination method the inter-
mediate format from Definition 1.11 is used. Hence just before solving the
constraints the user has to specify the desired back-end, i.e., SAT, SMT, or
PB. (We admit that PB is suitable for constraints of a very special shape only.)

88

6.3 Constraint Solving Module

To accomplish this, arithmetic variables keep information on their type (N, Z,
Q, or R) and an upper bound they may take (i.e., for SAT it is essential how
many bits are used to represent them). Internally all numbers have type R. To
represent rationals in SAT the non-real part of a number is fixed to zero, e.g.,
(c,0) (representing ¢ +g 0v/2) obviously denotes the rational number c. Inte-
gers are rationals with fixed denominator one and naturals are integers where
the sign bit is the constant 1. The slight computational overhead caused by
the incremental design is negligible. Furthermore this drawback is more than
compensated by the gains in flexibility, i.e., this design allowed us to switch
from matrices over the naturals to matrices over the rationals/reals without
any adjustment of the encoding.

This chapter is concluded with some comments on solving arithmetic con-
straints. Although Tarski [78] showed that the first-order theory over R is
decidable, the underlying decision procedure is not very suitable for implemen-
tation. Since for termination analysis usually rather small domains suffice we
anticipate that the SAT approach outperforms Tarski’s method for this special
application.

89

Chapter 7
SAT via Termination

Encoding termination in SAT currently is a very popular and competitive re-
search topic. As already discussed for many traditional termination criteria SAT
allows concise and easy implementations beating dedicated algorithms. This is
especially surprising for KBO (cf. Chapter 2) since KBO orientability is known
to be decidable in polynomial time [53] whereas SAT is NP-complete [13]. In
other words, reducing KBO to SAT and applying the sophisticated algorithms
for solving the computationally harder (unless P = NP) problem SAT outper-
form the dedicated methods for KBO [17, 53]. This chapter will enlighten the
question whether a similar result also holds when translating the NP-complete
SAT problem into the undecidable termination property of TRSs. However, the
experiments reveal that at least for our translations the results are as expected.
Concerning the transformation from SAT to termination, the dedicated SAT
approaches perform much better. Even further, only the most simple proposi-
tional formulas produce TRSs which can be shown terminating by state-of-the-
art termination provers. Therefore the translations can be used to generate a
large set of difficult termination problems automatically.

The rest of this chapter is organized as follows: In Section 7.1 propositional
formulas are introduced and many-sorted rewriting is defined. In Section 7.2
we define TRSs U¥ that are terminating if and only if ¢ is unsatisfiable. In Sec-
tion 7.3 the dual problem is considered for many-sorted TRSs §¥ and 7% that
are terminating if and only if ¢ is satisfiable. That even simple propositional
formulas produce TRSs where termination analysis is challenging is demon-
strated in Section 7.4 where it also becomes apparent that narrowing [31] is one
method which can handle small instances.

The contribution of this chapter appeared in [94].

7.1 Preliminaries

In this section we fix basic notation concerning propositional logic, introduce
many-sorted TRSs and define the model variant of semantic labeling [96] in a
many-sorted setting. Aoto and Yamada [2] already generalized semantic label-
ing to many-sorted rewriting but just for the quasi-model case.

7.1.1 Propositional Logic

Let A be a set of propositional variables (atoms). Sometimes we find it conve-
nient to abbreviate the set of atoms p1, ..., p, by A,. The set of propositional

91

7 SAT via Termination

formulas P(A) is inductively defined by the following BNF:

pu=peAl(pNp)]| (—p)

Note that we do not allow disjunction (which does not pose a restriction but
allows to keep the presentation concise). The following convention is used to
reduce the number of parentheses: (i) Outermost parenthesis are omitted, (ii)
‘A’ is left-associative, and (iii) ‘=’ binds stronger than ‘A’

Let B := {0,1}. An assignment is a mapping «o: A — B. It is lifted to an
interpretation of formulas: [a]: P(A) — B with

a(p) if ¢ = p for some p € A,
[a](p) = [a](¥) - [(x) ife=1Arx,
al(¥) if o = .

Here (-): B x B — B is defined as x -y = 1 if and only if x = y = 1 and
for @: B — B we have T = 1 if and only if x = 0. A formula ¢ is sat-
isfiable (unsatisfiable) if an (no) assignment « exists such that [a](p) = 1.
This problem is known as the satisfiability problem (SAT). For a proposi-
tional formula ¢ its depth is defined as follows: depth(p) = 0 for p € A,
depth(p A 9) = 1 + max(depth(y), depth(¢)), and depth(—¢) = 1 + depth(yp).
Similarly the set of variables Var(y) is defined recursively by: Var(p) = {p} for
p € A, Var(p A1) = Var(p) U Var(yh), and Var(—p) = Var(p). The well-known
coincidence lemma states that when testing ¢ for satisfiability only the (finitely
many) variables that actually occur in ¢ have to be considered which makes
SAT decidable because the search space becomes finite. Furthermore, this al-
lows us to relate assignments to substitutions (whose domain must be finite
by definition) in the next section. Despite the fact that the search space for a
satisfying assignment is finite, deciding SAT is difficult, more precisely, SAT is
an NP-complete problem [13].

7.1.2 Many-Sorted Semantic Labeling

Let S be a non-empty set of sorts. An S-sorted signature is a set of function
symbols F, where each f € F of arity n is associated with the function signa-
ture sig: F — S™*1. Here the first n components of sig(f) give the sort (type)
of each argument and the last gives the sort of the function’s result. In the
following, we write f : s X --+ X S, — Sp+1, to express that f has (function)
signature (s1,...,Sn+1)-

An S-sorted set A is a family of sets {As}ses. For an S-sorted set V of
variables (where Vs NV, = & for s # t), let T(F,V)s denote the set of terms
with sort s over F and V, which is defined inductively by the rules

T €V feEF fisix--xs,—s t;eT(F,V)
x flte, ... tn) '

This yields the S-sorted set 7 (F,V) = {7 (F,V)s}ses. Associated with every
term ¢t € 7 (F,V) is its sort, i.e., if t € T(F,V)s then sort(t) = s. An S-sorted

92

7.1 Preliminaries

TRS R is an S-sorted set of pairs (I,r) € Rs—the so called rewrite rules—
written as [— r, such that there exists an s € S with [, r € 7(F, V), and the
usual restrictions that [is not a variable and all variables in r also occur in [
are satisfied. In the sequel we identify one-sorted TRSs with unsorted ones and
feel free to omit sort information where it is not essential.

Let F be an S-sorted signature. An S-sorted F-algebra A consists of an
S-sorted carrier A (where each As € A is non-empty) and a set of interpreta-
tions {fa}ser, such that for each function symbol f : s1 X -+ X s, — Sp41
there is an interpretation fa: As, x --- x A, — A, ;. An S-sorted sub-
stitution o:V — T(F,V) is a set of mappings os: Vs — T (F,V)s for every
s € § such that o(x) # x only for finitely many = € V. An S-sorted assign-
ment «: V — A is a set of mappings ay: Vs — A; for every s € S. For every
S-sorted term ¢ and assignment a: V — A, a mapping [a]4: T(F,V) — A is
defined inductively

as(z) if t = x and sort(t) = s,

fa([a]a(ty), ..., [a]a(tn)) ift= f(ti,..., tn).

An S-sorted F-algebra is a model of an S-sorted TRS, if for all S-sorted
assignments « and rewrite rules | — r € R it holds that [a]4(]) = [a]a(r). A

labeling L chooses for every f € F a set of labels Ly. The labeled signature is
defined by

[a]a(t) = {

-7:Iab:{f|f€]:aLf:®}U{fa|f€-7:,a€Lf}

where the arity and function signature of f, and f coincide. A labeling £
for an S-sorted algebra A consists of a labeling L together with a labeling
function lp: Ag, % --- x Ag, — Ly for every f € F with Ly # @ and sig(f) =
§1 X -+ X S8 — Sp41. Let AY denote the set of all S-sorted assignments from
V to A. Let ¢ be a labeling for A. For every assignment a@ € AY a mapping
laby: T(F,V) — T (Fiab, V) is defined inductively as follows

T ift=u,
lab,,(t) = flaba(t1),. .. laba(ty)) if t = f(t1,...,t,) and Ly=0,
fa(laba(tl), RN Iaba(tn)) ift = f(tl, e ,tn) and Lf * O

with a = ¢¢([a]a(t1), ..., [a]a(tn)). For any S-sorted TRS R over F, together
with an F-algebra A and a labeling ¢, the S-sorted TRS Ryap over Fiap, is given
by

Riab = {laba (1) — laby(r) |l = 7 € R, € AV},

An S-sorted TRS R is terminating if it does not admit an infinite rewrite
sequence t; —g ta —g - - starting at some t; € 7 (F,V)s for some s € S.

Theorem 7.1. Let R be an S-sorted TRS. Let the algebra A be a model of
R and let £ be a labeling for A. Then R is terminating if and only if Ry is
terminating. O

93

7 SAT via Termination

For the TRSs we are dealing with in the subsequent sections, many-sorted
termination is equivalent to the one-sorted case since the systems are non-
collapsing [95]. A TRS is collapsing if it contains a rule [— z for some vari-
able x. Restricting to many-sortedness simplifies the proofs of Theorems 7.6
and 7.10 considerably.

7.2 Transforming Unsatisfiability to Termination

In the following we want to express SAT as a termination problem in rewriting,
i.e., given a formula ¢, we construct a TRS R¥ that is terminating if and only
if ¢ is satisfiable. This transformation is addressed in the next section. First
we focus on the simpler dual problem, namely the construction of a TRS R¥
that is terminating if and only if ¢ is unsatisfiable.

For this purpose we consider a {bool}-sorted signature F = {x, —} containing
a binary function symbol (%) : bool x bool — bool and a unary function symbol
— : bool — bool. Furthermore we assume that the propositional atoms in A are
contained in the set of term variables Vpoo. Although ‘x’ will represent (on the
term level) the same as ‘A’ does on formulas, we use different function symbols
because we want to clearly separate between the two different concepts. The
same holds for the symbols ‘—" and ‘=’. The obvious encoding ™': P(A) —
7T ({*,—},V) transforms formulas into terms as follows: p' = p for p € A,
Fo AT =TT and ™' = —Tp'. Now every well-formed formula in P(A)
has a corresponding term representation in 7 (F, V).

The next goal is to mimic the task of assignments for formulas on the term
level. Thus the signature F is extended by two constant symbols of sort bool,
namely ‘1’ and ‘T’. We say that an assignment «: A,, — B and a substitution
o:V, — {L, T} are corresponding if a(p;) = 0 if and only if o(p;) = L for all
1 <i<n(here V, = A,).

In order to perform the work [a] does on formulas the six rewrite rules

Ixl—1 1xT—>1 Txl—ol TxT—>T —1-5T —-T—o1

referred to as the TRS Simp are employed. The next lemma formalizes the
interplay of assignments and substitutions.

Lemma 7.2. Let ¢ € P(A,) and t € T(F,V) such that "' = t. If the

assignment o and the substitution o are corresponding, then
e [a(p) = 0 implies to —75;,, L and dually
e [a](p) =1 implies to —>§imp T

Proof. By induction on the structure of . O

The following example already contains the main idea for constructing non-
terminating sequences.

Example 7.3. Consider the formula ¢ = p; A—po with the corresponding term
t ="p'=p1; x (—p2). Then the TRS Simp together with the rewriting rule

unsat(p1, p2, T) — unsat(p1, p2, p1 * (— p2))

94

7.2 Transforming Unsatisfiability to Termination

admits the cyclic reduction
t =unsat(T,L, T) —unsat(T, L, Tx(—L)) —unsat(T, L, T*T)—t

which proves non-termination of this TRS. The reason for non-termination is
that for a satisfying assignment « (in this case a(p;) = 1 and a(p2) = 0) there
is a corresponding substitution o such that the term "p'oc = to rewrites to T
by Lemma 7.2.

The next theorem formally establishes the relation between satisfiable for-
mulas and non-termination of corresponding TRSs.

Theorem 7.4. Let p € P(A,). The generic TRS U? that consists of all rules
in Simp and

unsat(pi,...,pn, 1) — unsat(pi,...,pn, @) (7.1)

is terminating if and only if ¢ is unsatisfiable.

Proof. For the direction from left to right assume U to be terminating and ¢
to be satisfiable to arrive at a contradiction. Since ¢ is satisfiable there must be
a satisfying assignment o and a corresponding substitution . But then there
is the cyclic reduction

t = unsat(o(p1),...,0(pn), T) — unsat(o(p1),...,0(pn),@lo) ="t

where the first rewrite step is an application of rule 7.1 and the rest of the
sequence holds by Lemma 7.2 since "p'o —g;., T. Contradiction.

For the direction from right to left we assume unsatisfiability of ¢ and show
termination of U¥. For this purpose we apply semantic labeling. Note that we
consider U¥ as one-sorted. The idea is to label the symbol unsat by the value
which ¢ evaluates to—under all possible assignments. To obtain a model, the
function symbols are interpreted in the Boolean algebra. The interpretation B
over the carrier B satisfying 1g = 0, T = 1, *g(z,y) = = -y, —g(x) = 7,
and unsatg(pi,...,pn,y) = 0 is a model for Y¥. Next the labeling for U¥ is
defined. For this purpose only the function symbol unsat gets labeled, i.e.,
L, = L_ = @' and Lynsat = B. The labeling function fypsat: B"T' — B is
defined as: lynsat(P1,-- -, Pn,y) = y. By assumption the formula ¢ evaluates to
0 under all assignments. Hence the labeled variant of rule 7.1 looks like

unsaty (pi1,...,Pn, 1) — unsato(p1,...,on,). (7.2)

Termination of the labeled system can then easily be shown by some basic
method, e.g., LPO; choosing the precedence unsat; > unsatg,*, — allows to
orient rule 7.2 from left to right and — > 1, T handles the rules in Simp. So
Z/{Ifb is terminating. Theorem 7.1 yields the termination of U%. 0

! Labeling constants is superfluous and hence we implicitly set L, = LT = @.

95

7 SAT via Termination

7.3 Transforming Satisfiability to Termination

In the previous section the task was somehow simpler since there it sufficed to
construct a non-terminating sequence if there exists a satisfying assignment.
Hence by guessing a satisfying assignment for ¢ one could construct an infi-
nite sequence in the TRS U¥. In this section the endeavor is more challenging,
because one has to guarantee that one cycles if no satisfying assignment ex-
ists. Hence, the parametrized TRS will have to test all assignments before
entering a loop if none of them satisfied the formula ¢. Thus we have to
provide the possibility to generate all assignments successively. The following
three rules, referred to as Mext do this job by representing assignments as bit-
lists (consequently the signature F is extended by the binary function symbol
(::) : bool x list — list, the constant nil : list, and the unary function symbol
next : list — list):

next(nil) — nil
next(L::xs) — T as
next(T :: xs) — L :: next(zs)

To ease notation we will encode lists over | and T as natural numbers. There-
fore, lists are interpreted as little endian representation of binary numbers where
1 corresponds to 0 and T to 1. Let G be the signature { L, T, ::, nil}. The map-
ping enc: 7(G) — N x N, enc(nil) = (0,0) and enc(z::zs) = (x4 24,1+ 1) where
enc(zs) = (i,1), uniquely associates lists with entries L or T to pairs. The first
component of the pair is the little endian representation of the bit-list whereas
the second component is the length of the list. For convenience we denote (i,1)
by i;. Furthermore if [is irrelevant or fixed we feel free to omit it. Taking the
above conventions into account the bit-list [T; L; T; T]? can be written as 134
or more sloppily as 13. But we do not only identify these bit-lists with natural
numbers, they also encode substitutions. Hence, a bit-list [¢1;...;t,] gives rise
to a substitution o with o(p;) = ¢; for 1 < i < n. Using this convention a term ¢
indexed with a bold face integer denotes the result of applying the substitution
to the term, i.e., (p1 * ((—p2) * p3))13 denotes T x ((— L) * T).

Lemma 7.5. For a bit-list t, next(t) rewrites to the successor of t:
If enc(t) = ij then next(t) — i t' with enc(t) = (i+1 mod 2");.
Proof. By induction on the structure of ¢ and unfolding the definition of iy. [

To proceed we explicitly state the function signature sig, i.e., the sort for
each function symbol, in the left column of Table 7.1. In the theorem below
the variables p1,...,p, are of sort bool and xs is of sort list.

Theorem 7.6. Let ¢ € P(Ay,). Then the generic {bool,list}-sorted TRS S¥
that contains all rules of Simp, Next, and additionally

sat([p1;...;pnl, L) — sat(next([p1;...;pn)), ") (7.3)

is terminating if and only if the formula ¢ is satisfiable.

2 To ease readability, lists « :: (y :: (2 :: nil)) are abbreviated by [z;y; 2].

96

7.3 Transforming Satisfiability to Termination

Table 7.1: A model for the {bool, list}-sorted TRS S¥

L : bool 14=0

T : bool Tga=1

* : bool x bool — bool *Alz,y) =z -y

— : bool — bool —Alx) ==

nil : list nil4 = (0,0)

i - bool x list — list sz, (3,0) = (24 24,04+ 1)

next : list — list next4((4,1)) = (z + 1 mod 2,1)

sat : list X bool — bool sata((¢,1),b) =

Proof. For the direction from left to right assume for the sake of a contradiction
unsatisfiability of ¢. The cyclic reduction

sat(0, L) — sat(next(0), p'y) —" sat(1,"py) —" sat(1, L) =" ---
—" sat(next(2™ — 1),"@'9n_1) — sat(0, Y 'on_1)

—* sat(0, 1)
proves non-termination of S¥ where next(in) —}e (i + 1 mod 27), follows
from Lemma 7.5 and since we assumed that ¢ is unsatisfiable o'y = —%; ., L

by Lemma 7.2, for all 0 < i < 2.

For the direction from right to left we will again give a proof using semantic
labeling. The difference this time is that we exploit the many-sorted version
of semantic labeling. Now for every sort s € {bool, list} we have to specify a
carrier. The choices are Apyo = B and Ajisy = P := {(i,]) € N x N | i < 2}.
Then the interpretation in the right column of Table 7.1 is a model for §¥. We
show this for the Mext-rules. Let us fix an arbitrary value (i,1) € P for xs. The
three Next-rules generate the three equalities

(0 + 1 mod 2°,0) = (0,0) (7.4)
((0+2i) + 1mod 27 1 +1) = (1 + 24,1+ 1) :
(1 +2i) +1mod 271 1 +1) = (0 +2(i + 1 mod 2'),1 + 1) (7.6)

Equation (7.4) is trivially valid. Since i < 2! by definition of P equation (7.5)
holds since the modulo operation can be omitted. Validity of equation (7.6) is
shown by case distinction. Considering the case when i = 2! — 1 it simplifies to
14+2(2' —1) 4+ 1 mod 2! = 0 +2(2! — 1 +1 mod 2') where both sides evaluate
to 0. For the other case we know that i < 2! —1 and consequently 2i+2 < 2!+,
Hence, the modulo operation does no harm and both sides evaluate to the same
value.

The following sets of labels are employed: Ly = L_ = L.. = Lyt = @
and Lsyt = N x B. Then, the labeling function fg:: P x N — N x B with

97

7 SAT via Termination

lsat((3,1),b) = (i,b) is used which produces the following labeled variants of
rule 7.3

satio([p1;---;pnl, L) — Sat(i4+1 mod 27),¢5, (next([p1;---5pnl), @) (7.7)

where 0 < ¢ < 2". In the right-hand side of the generic rule 7.7 the expression
i, means that ¢ is evaluated by the assignment corresponding to the bit-list ij.

If for at least one assignment ¢ evaluates to 1 then the system can be proved
terminating. Assume that the j-th assignment satisfies (. Then the precedence

sat(j11),0 > sat(j42)0 > ... > satgn_1) 9 > satg,p > sat1 o > ... > satjo
sat;0 > sat(iy1 mod2n),1 (0 <@ <2")
satjo > next,%,— > 1, T

is well-founded and allows LPO to orient all rules of the labeled TRS Slfb from
left to right. Termination of §¥ follows from Theorem 7.1. O

As an example consider the transformation of the formula pq A —ps below.

Example 7.7. The system SP1\7P2 gives rise to the labeled rules

satgo([p1; p2], L) — saty o(next([p1; p2]), p1 * (— p2))
saty o([p1; p2], L) — sata1(next([p1; p2]), p1 * (= p2))
satz o([p1;p2], L) — satso(next([p1;p2]), p1 * (—p2))
sat3 o([p1:p2], L) — satgo(next([p1:p2]), p1 * (—p2))-

Note that because in the second line the term (p; x (— p2))1 is interpreted as
1, the system can easily be proved terminating by LPO with the precedence

saty o > sat3 o > satgo > saty o > satg 1, next,x, — —>1,T.

In this translation the TRS S, gets exponentially larger (in the number of
variables in) than the original unlabeled system. More precisely, rule 7.3 gives
rise to 2" different labeled variants due to the n Boolean variables in the list
[p1;-..;pn). But the resulting TRS is still finite, in contrast to the one from
the next subsection.

7.3.1 An Alternative Transformation

In the transformation S¥ the formula ¢ gets assigned the values implicitly by
pattern matching because the same variables pq, ..., p, are used in the formula
and in the assignment. One not so nice side-effect is that in rule 7.3 the list
of variables occurring in ¢ must be specified as the first argument to sat. Here
we present a different translation where the variables pq, ..., p, are considered
as constants vi,...,v, in the signature F. For terms that represent formulas
on the syntactic level, the sort formula is used, i.e., v; : formula for 1 < i < n.
Furthermore a close inspection of the systems U¥ and S¥ reveals that there is no
clear separation between syntax and semantics when formulas are represented

98

7.3 Transforming Satisfiability to Termination

as terms. To differentiate these two concepts we employ different function
symbols for the two layers. Once more the signature F is augmented by a binary
function symbol and : formula x formula — formula and a unary function symbol

t : formula — formula. Consequently also the encoding "' must now map
formulas to their syntactic representation on the term level. Hence the function
T is redefined accordingly, i.e., ™': P(A,) — T({vl,.. ,Vn,and, not}) with
i'=vifor 1 <i<n, "Ny =and("p',""), and ¢ = not("yp"). Thus, for
the formula p; A —py the (syntactic) term representatlon "o is and(v1, not(vp)).

In the TRS S§% the assignment was applied automatically by pattern matching
of the variables. Now we employ separate rewrite rules that perform that step.
Note that these rules at the same time execute the transformation from the
syntactic to the semantic level. The TRS Assign

assign(xs, and(z,y)) — assign(zs,z) * assign(zs,y)

)
assign(zs, not(x) — assign(xs, x)

)
) —
assign(xs,vj) — nth(acs s'(0)) 1<i<n
nth(L ::xs,0) —
nth(T ::xs,0) —
nth(b:: zs,s(j)) — nth(xs J)

performs the task of [a] on the term representation of propositional formulas.
The way how assignments were generated in the previous subsection is no longer
suitable. There all variables occurring in ¢ had to be specified in sat’s first
argument. Since we want to get rid of that requirement the idea is to start with
an empty assignment (empty list) and increase its length repeatedly. Hence in
this section the assignments are no longer computed modulo some length but
the overflow is simply taken into account by increasing the length of the list.
The three rules below are referred to as the TRS MNext2:

next(nil) — T :: nil
next(L:xs) — T s
next(T ::xs) — L :: next(zs)

Similar to before a more readable notation for bit-lists is employed, i.e., they
are identified with natural numbers as follows: enc: 7(G) — N with enc(nil) =
enc(L) =0, enc(T) =1, and enc(x :: xs) = enc(x) + 2enc(xs). This encoding is
not injective because the lists [T; L; L] and [T] are both denoted by 1. In our
setting these (more or less) leading zeros do not pose a problem.

Lemma 7.8. For a bit-list t, next(t) rewrites to the successor of t:
If enc(t) = i then next(t) — ke t' with enc(t') =i+ 1.
Proof. By induction on the structure of ¢ and unfolding the definition of i. [

The desired property that the rules in Assign evaluate the term representation
"' for a given bit-list i is formalized in the lemma below.

99

7 SAT via Termination

Table 7.2: A model for the {bool, formula, list, nat}-sorted TRS 7%

1 : bool Ta=1
T : bool 1la=0
* : bool x bool — bool *A(z,y) =z -y
— : bool — bool —Alx) ==
nil : list nily =0
i : bool x list — list ca(x,i) =+ 21
next : list — list nextq(i) =i+ 1
vi:formula 1<i<n Vid = Di
and : formula x formula — formula andg(z,y) =x Ay
not : formula — formula not4(z) = —x
0: nat 04=0
s : nat — nat sa(z) =z +1
assign : list x formula — bool assign 4 (i, @) = [as](p)
nth : list X nat — bool nth4(i,j) = ai(p;)
sat : list x bool — bool sat4(i,b) =0

Lemma 7.9. Let ¢ € P(A,,) and let i be the encoding of an assignment o with
[a](¢) = 0. Then assign(i, ") —>j455ignU$imp 1.

Proof. By induction on the structure of "¢' and unfolding the definition of i. [

Now, we will establish a theorem similar to Theorem 7.6. Again, we prove the
theorem in a many-sorted setting. The full information is depicted in Table 7.2.
The variables in the TRS are associated to sorts as follows: b € Vpool, 5 € Vist,
J € Vnat, and , ¥ € Viormula-

Theorem 7.10. Let ¢ € P(A;,). Then the generic {bool, formula, list, nat}-
sorted TRS T¥ consisting of the Simp-, Next2-, and Assign-rules plus addi-
tionally

sat(xs, L) — sat(next(xs), assign(xs, ¢")) (7.8)
is terminating if and only if ¢ is satisfiable.

Proof. Concerning the direction from left to right one can again construct a
non-terminating reduction for any unsatisfiable formula ¢. In order not to get
stuck while evaluating assign(i, ") a sufficiently large i is taken (e.g., i = 27+1).
Then there is the infinite sequence
sat(i, L) — sat(next(i), assign(i, "))
—*sat(i+1,1) — sat(next(i+ 1),assign(i+ 1,7"))
—"sat(i+ 2, 1) — sat(next(i + 2),assign(i+ 2, ¢")) =" ---

100

7.4 Experiments

where the —-steps are applications of rule 7.8 and the —*-steps can be per-
formed because of Lemmata 7.8 and 7.9.

For the direction from right to left again a semantic labeling approach is
followed. The interpretation from Table 7.2 models the {bool, formula, list, nat}-
sorted TRS 7%. What remains to be defined is an enumeration «o; of assign-
ments as follows: «;(p;) = f7(i) mod 2 with f0(i) =i and f771(i) = f/([i=2]).
Checking that A models 7% is straightforward.

Again, only the function symbol sat is labeled. Note that the labeled TRS Tlfb
is infinite since all possible instances of bit-lists are considered (compared to
finitely many bit-lists of a specified length in the previous subsection). The
labeling function fsa(i,b) = (i,b) gives rise to infinitely many rules of the
following structure

sat; o(zs, L) — sat(i1),[a;](¢) (Next(ws), assign(zs, ¢")).

Similar to before a precedence of the shape sat; o > sat(; ;1) if [i](¢) = 0 and
sat;o > sat(j11),1 if [i](p) = 1 for all 4 > 0 is needed which in general might
not be well-founded since it can contain the infinite sequence

satg,0 > saty o > satgg > - --

but due to the assumption that ¢ is satisfiable, not all of these precedence
comparisons are necessary. If [a;](¢) = 1 then there is no labeled rule which
demands satjo > sat(j;1),0. Without any loss of generality we can assume
0 < j < 2" Due to the construction of a; also ajyon, ajiont1, ... satisfy ¢
and hence removing all superfluous comparisons sat(; on+m) o > sat(jon+mi1) o
for all m € N produces a well-founded precedence (because for any i € N one
can find a k € N such that ¢ < j +2""). It follows that 7,7 is terminating.
Termination of 7% follows from Theorem 7.1. O

Although the transformations S¥ and 7% look very similar at first, they are
quite different. Concerning the number of rewrite rules, S¥ does not depend
on ¢ whereas 7% depends linearly on the number of variables in ¢. On the
other hand, the list of variables p1,...,p, must be given as an argument to
sat in S¥. In Section 7.4 it becomes apparent that proving (non-)termination
automatically is much more challenging for 7% than for S¥. The main reason
is that by separating syntax from semantics, there is less structure that can
be exploited by termination tools. The non-termination proofs become more
challenging because for S¥ an infinite rewrite sequence can be captured by con-
sidering cyclic reductions of ground terms, i.e., t —1 ¢ for a ground term ¢
(cf. the proof of Theorem 7.6). In contrast 7% really demands looping reduc-
tions, i.e., t —T C[to]| where the context C' is empty but ¢ may no longer be
ground since the lengths of the bit-lists are increased.

7.4 Experiments

For experimental results we considered all automated (non-)termination ana-
lyzers that participated in the 2007 or 2008 editions of the international ter-
mination competition for term rewrite systems augmented with TPA [49], a

101

7 SAT via Termination

Table 7.3: Experimental Results

2 vars, depth 3 3 vars, depth 4 4 vars, depth 5

S¥ T% U SY T U¥ S§¢ TY U*
T/NT/N T/N T/N T/N T/N T/N T/N T/N
AProVE | 81/19 0/0 19/81 34/0 0/0 10/88 14/0 0/0 5/79
Jambox | 16/ 0 0/0 19/ 0 24/0 0/0 12/ 0 15/0 0/0 11/ 0
NTI 0/19 0/0 0/81 0/5 0/0 0/74 0/0 0/0 0/11
TPA 0/0 0/0 1/0 0/0 0/0 0/ 0 0/0 0/0 0/ 0
TrTh 10/ 0 0/0 0/ 0 6/0 0/0 0/ 0 5/0 0/0 0/ 0

tool with strong support for termination proofs via semantic labeling. To our
knowledge none of these tools supports analysis of sorted TRSs. Consequently
we provide our examples unsorted. As already stated in the beginning, drop-
ping sorts does not affect termination of the TRSs we propose. Furthermore
we stress that the proofs of Theorems 7.6 and 7.10 can be modified to work on
unsorted TRSs. For the TRS §% this means that the interpretations range over
the set of pairs P whereas the proof of Theorem 7.10 can be generalized to one
sort by using the natural numbers as a carrier and representing formulas via a
Godel encoding [35].

It turned out that even for rather small formulas (some of) our transforma-
tions produce rewrite systems whose termination analysis is challenging. We
considered 100 randomly generated formulas of different shapes. Table 7.3
summarizes the results, e.g., formulas of depth three using two different propo-
sitional variables are considered in the leftmost block, etc. Every tool was run
on all TRSs resulting from transforming the formula ¢ to S¥, 7%, and U%¥
for at most 60 seconds to analyze termination (T) or non-termination (N) of
each system. Globally speaking, for TRSs originating from very small formulas
AProVE [30] performs best. This is due to its support for narrowing which al-
lows to exploit the structure of S¥ and U¥. Jambox [21] solves some instances
by semantic labeling over Boolean models (which is very close to the way how
we proved termination) and by the matrix method. The latter systems could
also be handled by T7Ty [56]. NTI [71] supports only non-termination analysis,
using an unfolding operator. Semantic labeling based on Boolean models and
(quasi-)models over the naturals is implemented in TPA [52, 50] which usually
performs very well on standard examples. The experiments reveal that the lat-
ter is not powerful for the systems obtained from the transformations proposed
in this chapter.

But narrowing is expensive which can be seen by comparing the different
blocks of Table 7.3. AProVE can handle all TRSs resulting from the S¥ trans-
lation if formulas are of depth three but for depth four (five) the performance
decreases to 34% (14%). For the other translations the effect is not so tremen-
dous, well, for 7% the surprising outcome is that no tool could handle any
system at all and the systems in U¥ are generally a bit easier since they do
not iterate over the assignments. Needless to say, the formulas ¢ which are

102

7.5 Summary

considered for our experiments are a very trivial task for any SAT solver.

We conclude this section by a sketch of how AProVE solves many instances by
considering the TRS S¥ for ¢ = p; A ps. After some preliminary analysis based
on dependency pairs, AProVE concludes that any infinite sequence applies the
rule

sat([p1; pa), L) — sat(next([p1;p2]), p1 * p2)

indefinitely. Narrowing the above rule at position 1 allows to replace it by the
two rules

sat([L; po], L) — sat(next([L; p2]), L x p2)
sat([T;pal, L) — sat(next([T; pa]), T * p2)

and narrowing these rules at position 1 gives

sat([L; L], L) — sat(next(][L; L]), L+ 1)
sat([L; T], L) — sat(next([L; T]), Lx T)
sat([T; L], L) — sat(next([T;L]), T x L)
sat([T; T], L) — sat(next([T; T]), T+ T)

After this state is reached the right-hand sides can be rewritten [31] using the
Simp and MNext rules which allows the dependency graph processor to conclude
termination.

7.5 Summary

In this chapter we proposed three different transformations from propositional
formulas ¢ to confluent—since orthogonal—term rewrite systems S¥, 7%, and
U? such that ¢ is satisfiable (unsatisfiable) if and only if §¥, 7% (U?) is ter-
minating. Although the systems can be proved (non-)terminating by semantic
labeling using intuitive models, state-of-the-art termination tools fail even on
very small and simple TRSs. Especially the transformation 7% produces un-
solvable rewrite systems which might be due to the fact that it preserves much
less structure than S¥ does. If tool authors investigate the reasons why the
generated problems are that hard, new termination techniques could emerge.

103

Conclusion

This thesis showed that SAT solving—or more general, constraint solving, since
also PB and SMT are considered—can be used very successfully for termina-
tion analysis in rewriting. One benefit of employing constraint solvers is that
traditional methods can not only be implemented with much less effort but
additionally these encodings outperform dedicated algorithms in performance.

This tremendous speedup was shown in Chapter 2 by means of KBO where
additionally the flexibility of the encodings is stressed, i.e., it is possible to
produce easily human readable proofs by, e.g., minimizing weights. Additionally
we introduced a method to compute upper bounds for the weights which yields
an alternative decision procedure for KBO.

Another major advantage of employing constraint solvers is that due to the
expressiveness of their input language completely new termination criteria can
be invented and implemented. Increasing interpretations have been demon-
strated to be such a case where in parallel suitable polynomial interpretations
are searched while performing a cycle analysis in the dependency graph. Need-
less to say, increasing interpretations subsume the setting of traditional poly-
nomial interpretations.

The chapter devoted to matrix interpretations generalized the underlying
theory to allow also non-natural coefficients in the matrices. Constraint solving
was also employed there to find these—possibly real-valued—coefficients. To
the author’s knowledge this is the first work that considers (a fragment of) real
numbers in SAT. Experimental results demonstrate the applicability of the
approach.

That not only termination analysis is in the reach of constraint solvers was
demonstrated in Chapter 5. Here, a looping reduction within an SRS is repre-
sented as a set of constraints and from a satisfying assignment a loop can easily
be reconstructed. Additionally in this chapter we formalized non-termination
in the theorem prover Isabelle and integrated the corresponding check-functions
into CeTA which is now capable of certifying loops.

Chapter 6 addressed how to solve arithmetic constraints efficiently by means
of SAT and SMT solvers.

And finally—after all these (non-)termination encodings in SAT, PB, or
SMT—we investigated the other direction, i.e., encoding propositional satis-
fiability as a termination problem in rewriting. The resulting transformations
yield termination problems which are out of the reach of state-of-the-art termi-
nation tools, hence they are suitable of providing large testbeds of challenging
problems.

105

Bibliography

1]

Alarcén, B., Lucas, S., Navarro-Marset, R.: Proving termination with
matrix interpretations over the reals. In: Proc. of the 10th International
Workshop on Termination (WST 2009), pp. 12-15 (2009)

Aoto, T., Yamada, T.: Termination of simply typed term rewriting by
translation and labelling. In: Proc. of the 14th International Conference
on Rewriting Techniques and Applications (RTA 2003), volume 2706 of
Lecture Notes in Computer Science, pp. 380-394 (2003)

Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
Theoretical Computer Science 236(1-2), 133-178 (2000)

Baader, F., Nipkow, T..: Term Rewriting and All That. Cambridge
University Press, Cambridge (1998)

Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program De-
velopment; Coq’Art: The Calculus of Inductive Constructions. TCS Texts
in Theoretical Computer Science. An EATCS Series. Springer, Berlin-
Heidelberg (2004)

Blanqui, F., Delobel, W., Coupet-Grimal, S., Hinderer, S., Koprowski,
A.: ColoR, a Coq library on rewriting and termination. In: Proc. of
the 8th International Workshop on Termination (WST 2006), pp. 69-73
(2006)

Borralleras, C., Ferreira, M., Rubio, A.: Complete monotonic seman-
tic path orderings. In: Proc. of the 17th International Conference on
Automated Deduction (CADE 2000), volume 1831 of Lecture Notes in
Artificial Intelligence, pp. 346-364 (2000)

Borralleras, C., Lucas, S., Navarro-Marset, R., Rodriguez-Carbonell, E.,
Rubio, A.: Solving non-linear polynomial arithmetic via SAT modulo
linear arithmetic. In: Proc. of the 22nd International Conference on
Automated Deduction (CADE 2009), volume 5663 of Lecture Notes in
Artificial Intelligence, pp. 294-305 (2009)

Bryant, R.: Symbolic Boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys 24(3), 293-318 (1992)

Codish, M., Lagoon, V., Stuckey, P.: Solving partial order constraints
for LPO termination. In: Proc. of the 17th International Conference
on Rewriting Techniques and Applications (RTA 2006), volume 4098 of
Lecture Notes in Computer Science, pp. 4-18 (2006)

107

Bibliography

[11]

[16]

[17]

[18]

108

Codish, M., Schneider-Kamp, P., Lagoon, V., Thiemann, R., Giesl, J.:
SAT solving for argument filterings. In: Proc. of the 13th International
Conference on Logic for Programming, Artificial Intelligence and Reason-
ing (LPAR 2006), volume 4246 of Lecture Notes in Artificial Intelligence,
pp. 3044 (2006)

Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Certifica-
tion of automated termination proofs. In: Proc. of the 6th International
Symposium on Frontiers of Combining Systems (FroCoS 2007), volume
4720 of Lecture Notes in Artificial Intelligence, pp. 148-162 (2007)

Cook, S.: The complexity of theorem-proving procedures. In: Proc. of
the 3rd Annual ACM Symposium on Theory of Computing (STOC 1971),
pp. 151-158 (1971)

Courtieu, P., Forest, J., Urbain, X.: Certifying a termination criterion
based on graphs, without graphs. In: Proc. of the 21st International
Conference on Theorem Proving in Higher Order Logics (TPHOLSs 2008),
volume 5170 of Lecture Notes in Computer Science, pp. 183-198 (2008)

Danzig, G.: Linear Programming and Extensions. Princeton University
Press, Princeton (1963)

Dershowitz, N.: Termination of rewriting. Journal of Symbolic Compu-
tation 3(1-2), 69-116 (1987)

Dick, J., Kalmus, J., Martin, U.: Automating the Knuth-Bendix ordering.
Acta Informatica 28, 95-119 (1990)

Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T).
In: Proc. of the 18th International Conference on Computer Aided Veri-
fication (CAV 2006), volume 4144 of Lecture Notes in Computer Science,
pp. 81-94 (2006)

Eén, N., Sorensson, N.: Translating pseudo-boolean constraints into SAT.
Journal on Satisfiability, Boolean Modeling and Computation 2(1-4),
1-26 (2006)

Eén, N., Sorensson, N.: An extensible SAT-solver. In: Proc. of the
6th International Conference on Theory and Applications of Satisfiability
Testing (SAT 2004), volume 2919 of Lecture Notes in Computer Science,
pp. 502-518 (2004)

Endrullis, J.: (Jambox). Available from http://joerg.endrullis.de.

Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for
proving termination of term rewriting. Journal of Automated Reasoning
40(2-3), 195-220 (2008)

http://joerg.endrullis.de

Bibliography

23]

[24]

[25]

[28]

[29]

[30]

[31]

[32]

Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R.,
Zankl, H.: SAT solving for termination analysis with polynomial inter-
pretations. In: Proc. of the 10th International Conference on Theory and
Applications of Satisfiability Testing (SAT 2007), volume 4501 of Lecture
Notes in Computer Science, pp. 340-354 (2007)

Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R.,
Zankl, H.: Maximal termination. In: Proc. of the 19th International Con-
ference on Rewriting Techniques and Applications (RTA 2008), volume
5117 of Lecture Notes in Computer Science, pp. 110-125 (2008)

Fuhs, C., Navarro-Marset, R., Otto, C., Giesl, J., Lucas, S., Schneider-
Kamp, P.: Search techniques for rational polynomial orders. In: Proc. of
the 9th International Conference on Artificial Intelligence and Symbolic
Computation (AISC 2008), volume 5144 of Lecture Notes in Artificial
Intelligence, pp. 109-124 (2008)

Gale, D.: The theory of linear economic models. McGraw-Hill, New York
(1960)

Gebhardt, A., Hofbauer, D., Waldmann, J.: Matrix evolutions. In: Proc.
of the 9th International Workshop on Termination (WST 2007), pp. 4-8
(2007)

Geser, A., Hofbauer, D., Waldmann, J., Zantema, H.: On tree automata
that certify termination of left-linear term rewriting systems. Information
and Computation 205(4), 512-534 (2007)

Geser, A., Zantema, H.: Non-looping string rewriting. RAIRO — Theo-
retical Informatics and Applications 33(3), 279-302 (1999)

Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic
termination proofs in the dependency pair framework. In: Proc. of the 3rd
International Joint Conference on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pp. 281-286 (2006)

Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair
framework: Combining techniques for automated termination proofs. In:
Proc. of the 11th International Conference on Logic for Programming, Ar-
tificial Intelligence and Reasoning (LPAR 2004), volume 3452 of Lecture
Notes in Artificial Intelligence, pp. 301-331 (2005)

Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving
termination of higher-order functions. In: Proc. of the 5th International
Symposium on Frontiers of Combining Systems (FroCoS 2005), volume
3717 of Lecture Notes in Artificial Intelligence, pp. 216-231 (2005)

Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and
improving dependency pairs. Journal of Automated Reasoning 37(3),
155-203 (2006)

109

Bibliography

[34]

[41]

110

Giesl, J., Swiderski, S., Schneider-Kamp, P., Thiemann, R.: Automated
termination analysis for Haskell: From term rewriting to programming
languages. In: Proc. of the 17th International Conference on Rewriting
Techniques and Applications (RTA 2006), volume 4098 of Lecture Notes
in Computer Science, pp. 297-312 (2006)

Godel, K.: Uber formal unentscheidbare Sétze der Principia Mathematica
und verwandter Systeme. Monatshefte fiir Mathematik und Physik 38(1),
173-198 (1931)

Haftmann, F.: Code generation from Isabelle/HOL theories (2008). Avail-
able from http://isabelle.in.tum.de/doc/codegen.pdf.

Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative
coefficients. In: Proc. of the 7th International Conference on Artificial
Intelligence and Symbolic Computation (AISC 2004), volume 3249 of Lec-
ture Notes in Artificial Intelligence, pp. 185-198 (2004)

Hirokawa, N., Middeldorp, A.: Automating the dependency pair method.
Information and Computation 199(1-2), 172-199 (2005)

Hirokawa, N., Middeldorp, A.: Tyrolean Termination Tool: Techniques
and features. Information and Computation 205(4), 474-511 (2007)

Hofbauer, D., Lautemann, C.: Termination proofs and the length of
derivations (preliminary version). In: Proc. of the 3rd International Con-
ference on Rewriting Techniques and Applications (RTA 1989), volume
355 of Lecture Notes in Computer Science, pp. 167-177 (1989)

Hofbauer, D., Waldmann, J.: Termination of string rewriting with ma-
trix interpretations. In: Proc. of the 17th International Conference on
Rewriting Techniques and Applications (RTA 2006), volume 4098 of Lec-
ture Notes in Computer Science, pp. 328-342 (2006)

Hofbauer, D.: Termination proofs by context-dependent interpretations.
In: Proc. of the 12th International Conference on Rewriting Techniques
and Applications (RTA 2001), volume 2051 of Lecture Notes in Computer
Science, pp. 108-121 (2001)

Hofbauer, D., Waldmann, J.: Termination of aa — bc,bb — ac,cc — ab.
Information Processing Letters 98, 156-158 (2006)

Hong, H., Jakus, D.: Testing positiveness of polynomials. Journal of
Automated Reasoning 21(1), 23-38 (1998)

Kamin, S., Lévy, J.: Two generalizations of the recursive path ordering.
Unpublished manuscript, University of Illinois (1980)

Karmarkar, N.: A new polynomial-time algorithm for linear program-
ming. Combinatorica 4, 373-395 (1984)

http://isabelle.in.tum.de/doc/codegen.pdf

Bibliography

[47]

[48]

[49]

[51]

Khachiyan, L.: A polynomial algorithm in linear programming. Doklady
Akademia Nauk SSSR 244, 1093-1096 (1979)

Knuth, D., Bendix, P.: Simple word problems in universal algebras. In:
Leech, J. (ed.) Computational Problems in Abstract Algebra. Pergamon
Press, New York, 263-297 (1970)

Koprowski, A.: TPA: Termination proved automatically. In: Proc. of the
17th International Conference on Rewriting Techniques and Applications
(RTA 2006), volume 4098 of Lecture Notes in Computer Science, pp.
257-266 (2006)

Koprowski, A., Middeldorp, A.: Predictive labeling with dependency
pairs using SAT. In: Proc. of the 21st International Conference on Auto-
mated Deduction (CADE 2007), volume 4603 of Lecture Notes in Artifi-
cial Intelligence, pp. 410-425 (2007)

Koprowski, A., Waldmann, J.: Arctic termination ... below zero. In:
Proc. of the 19th International Conference on Rewriting Techniques and
Applications (RTA 2008), volume 5117 of Lecture Notes in Computer
Science, pp. 202-216 (2008)

Koprowski, A., Zantema, H.: Automation of recursive path ordering
for infinite labelled rewrite systems. In: Proc. of the 3rd International
Joint Conference on Automated Reasoning (IJCAR 2006), volume 4130
of Lecture Notes in Artificial Intelligence, pp. 332-346 (2006)

Korovin, K., Voronkov., A.: Orienting rewrite rules with the Knuth-
Bendix order. Information and Computation 183(2), 165-186 (2003)

Korp, M., Middeldorp, A.: Proving termination of rewrite systems using
bounds. In: Proc. of the 18th International Conference on Rewriting
Techniques and Applications (RTA 2007), volume 4533 of Lecture Notes
in Computer Science, pp. 273-287 (2007)

Korp, M., Middeldorp, A.: Beyond dependency graphs. In: Proc. of the
22nd International Conference on Automated Deduction (CADE 2009),
volume 5663 of Lecture Notes in Artificial Intelligence, pp. 339-354 (2009)

Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termina-
tion Tool 2. In: Proc. of the 20th International Conference on Rewriting
Techniques and Applications (RTA 2009), volume 5595 of Lecture Notes
in Computer Science, pp. 295-304 (2009)

Kurihara, M., Kondo, H.: Efficient BDD encodings for partial order con-
straints with application to expert systems in software verification. In:
Proc. of the 17th International Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Expert Systems (IEA/AIE
2004), volume 3029 of Lecture Notes in Artificial Intelligence, pp. 827-837
(2004)

111

Bibliography

[58]

[59]

[68]

112

Lankford, D.: On proving term rewrite systems are noetherian. Technical
Report MTP-3, Louisiana Technical University, Ruston, LA, USA (1979)

Lepper, I.: Derivation lengths and order types of Knuth-Bendix orders.
Theoretical Computer Science 269(1-2), 433-450 (2001)

Lochner, B.: Things to know when implementing KBO. Journal of Au-
tomated Reasoning 36(4), 289-310 (2006)

Lucas, S.: MU-TERM: A tool for proving termination of context-sensitive
rewriting. In: Proc. of the 15th International Conference on Rewriting
Techniques and Applications (RTA 2004), volume 3091 of Lecture Notes
in Computer Science, pp. 200-210 (2004)

Lucas, S.: Polynomials over the reals in proofs of termination: From
theory to practice. RAIRO — Theoretical Informatics and Applications
39(3), 547-586 (2005)

Lucas, S.: On the relative power of polynomials with real, rational,
and integer coefficients in proofs of termination of rewriting. Applicable
Algebra in Engineering, Communication and Computing 17(1), 49-73
(2006)

Lucas, S.: Practical use of polynomials over the reals in proofs of termi-
nation. In: Proc. of the 9th International Conference on Principles and
Practice of Declarative Programming (PPDP 2007), pp. 39-50 (2007)

Middeldorp, A.: Approximations for strategies and termination. Elec-
tronic Notes in Theoretical Computer Science 70(6), 1-20 (2002)

Moser, G.: Derivational complexity of Knuth-Bendix orders revisited. In:
Proc. of the 13th International Conference on Logic for Programming, Ar-
tificial Intelligence and Reasoning (LPAR 2006), volume 4246 of Lecture
Notes in Artificial Intelligence, pp. 75-89 (2006)

Moser, G., Schnabl, A., Waldmann, J.: Complexity analysis of term
rewriting based on matrix and context dependent interpretations. In:
Proc. of the 28th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2008), volume 2
of Leibniz International Proceedings in Informatics, pp. 304-315 (2008)

Nguyen, M., De Schreye, D.: Polynomial interpretations as a basis for
termination analysis of logic programs. In: Proc. of the 17th International
Conference on Logic Programming (ICLP 2005), volume 3668 of Lecture
Notes in Computer Science, pp. 311-325 (2005)

Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assis-
tant for Higher-Order Logic. Volume 2283 of Lecture Notes in Computer
Science. Springer, Berlin-Heidelberg (2002)

Bibliography

[70]

[71]

[72]

[76]

[78]

[79]

Oppelt, M.: Automatische Erkennung von Ableitungsmustern in nicht-
terminierenden Wortersetzungssystemen. Master’s thesis, HTWK Leipzig
(2008). In German.

Payet, E.: Loop detection in term rewriting using the eliminating unfold-
ings. Theoretical Computer Science 403(2-3), 307-327 (2008)

Plaisted, D., Greenbaum, S.: A structure-preserving clause form transla-
tion. Journal of Symbolic Computation 2(3), 293-304 (1986)

Sato, H., Kurihara, M.: Implementation and performance evaluation of
multi-completion procedures for term rewriting systems with recursive
path orderings with status. IEICE Transactions on Information and Sys-
tems J89-D(4), 624-631 (2006). In Japanese.

Schneider-Kamp, P., Giesl, J., Serebrenik, A., Thiemann, R.: Automated
termination proofs for logic programs by term rewriting. ACM Transac-
tions on Computational Logic 236(1-2), 133-178 (2009)

Schneider-Kamp, P., Thiemann, R., Annov, E., Codish, M., Giesl, J.:
Proving termination using recursive path orders and SAT solving. In:
Proc. of the 6th International Symposium on Frontiers of Combining
Systems (FroCoS 2007), volume 4720 of Lecture Notes in Artificial In-
telligence, pp. 267-282 (2007)

Steinbach, J.: Extensions and comparison of simplification orders. In:
Proc. of the 3rd International Conference on Rewriting Techniques and
Applications (RTA 1989), volume 355 of Lecture Notes in Computer Sci-
ence, pp. 434-448 (1989)

Sternagel, C., Thiemann, R., Winkler, S., Zankl, H.: CelA — A tool
for certified termination analysis. In: Proc. of the 10th International
Workshop on Termination (WST 2009), pp. 56-59 (2009)

Tarski, A.: A Decision Method for Elementary Algebra and Geometry.
2nd edition. University of California Press, Berkeley (1957)

Thiemann, R.: The DP Framework for Proving Termination of Term
Rewriting. PhD thesis, RWTH Aachen (2007). Available as technical
report AIB-2007-17.

Thiemann, R., Sternagel, C.: Certification of termination proofs using
CeTA. In: Proc. of the 22nd International Conference on Theorem Proving
in Higher Order Logics (TPHOLs 2009), volume 5674 of Lecture Notes
in Computer Science, pp. 452-468 (2009)

Thiemann, R., Sternagel, C.: Loops under strategies. In: Proc. of the
20th International Conference on Rewriting Techniques and Applications
(RTA 2009), volume 5595 of Lecture Notes in Computer Science, pp.
17-31 (2009)

113

Bibliography

[82]

[89]

[90]

[91]

[92]

[93]

114

Tseitin, G.: On the complexity of derivation in propositional calculus.
In: Studies in Constructive Mathematics and Mathematical Logic, Part 2,
115-125 (1968)

Waldmann, J.: Matchbox: A tool for match-bounded string rewriting.
In: Proc. of the 15th International Conference on Rewriting Techniques
and Applications (RTA 2004), volume 3091 of Lecture Notes in Computer
Science, pp. 85-94 (2004)

Waldmann, J.: Compressed loops (2007). Draft, available from http:
//dfa.imn.htwk-leipzig.de/matchbox/methods/loop.pdf.

Weicker, K.: Evolutiondre Algorithmen. Teubner, Stuttgart (2002)

Weiermann, A.: Termination proofs for term rewriting systems by lexico-
graphic path orderings imply multiply recursive derivation lengths. The-
oretical Computer Science 139(1-2), 355-362 (1995)

Zankl, H.: BDD and SAT techniques for precedence based orders. Mas-
ter’s thesis, University of Innsbruck (2006)

Zankl, H., Hirokawa, N., Middeldorp, A.: Constraints for argument filter-
ings. In: Proc. of the 33rd International Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2007), volume 4362
of Lecture Notes in Computer Science, pp. 579-590 (2007)

Zankl, H., Middeldorp, A.: Satisfying KBO constraints. In: Proc. of the
18th International Conference on Rewriting Techniques and Applications
(RTA 2007), volume 4533 of Lecture Notes in Computer Science, pp.
389-403 (2007)

Zankl, H., Middeldorp, A.: Increasing interpretations. In: Proc. of the
9th International Conference on Artificial Intelligence and Symbolic Com-
putation (AISC 2008), volume 5144 of Lecture Notes in Artificial Intelli-
gence, pp. 191-205 (2008)

Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. Journal of
Automated Reasoning 43(2), 173-201 (2009)

Zankl, H., Middeldorp, A.: Increasing interpretations. Annals of Mathe-
matics and Artificial Intelligence 56(1), 87-108 (2009)

Zankl, H., Sternagel, C., Hofbauer, D., Middeldorp, A.: Finding and
certifying loops. In: Proc. of the 36th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2010),
Number 5901 in Lecture Notes in Computer Science, pp. 755-766 (2010)

Zankl, H., Sternagel, C., Middeldorp, A.: Transforming SAT into ter-
mination of rewriting. Electronic Notes in Theoretical Computer Science
246, 199-214 (2009)

http://dfa.imn.htwk-leipzig.de/matchbox/methods/loop.pdf
http://dfa.imn.htwk-leipzig.de/matchbox/methods/loop.pdf

Bibliography

[95]

[96]

[97]

[100]

Zantema, H.: Termination of term rewriting: Interpretation and type
elimination. Journal of Symbolic Computation 17(1), 23-50 (1994)

Zantema, H.: Termination of term rewriting by semantic labelling. Fun-
damenta Informaticae 24(1-2), 89-105 (1995)

Zantema, H.: Reducing right-hand sides for termination. In: Processes,
Terms and Cycles: Steps on the Road to Infinity, Essays Dedicated to
Jan Willem Klop, on the Occasion of his 60th Birthday, volume 3838 of
Lecture Notes in Computer Science, pp. 173-197 (2005)

Zantema, H.: Termination of string rewriting proved automatically. Jour-
nal of Automated Reasoning 34(2), 105-139 (2005)

Zantema, H., Waldmann, J.: Termination by quasi-periodic interpre-
tations. In: Proc. of the 18th International Conference on Rewriting
Techniques and Applications (RTA 2007), volume 4533 of Lecture Notes
in Computer Science, pp. 404418 (2007)

Zantema, H.: Termination. In: TeReSe (ed.) Term Rewriting Systems.
Cambridge University Press, Cambridge, 181-259 (2003)

115

Appendix

117

Appendix A
T

All (non-)termination methods presented in this thesis have successfully been
implemented into the Tyrolean Termination Tool 2 (T7Ty) available from

http://cl-informatik.uibk.ac.at/software/ttt2/.

T7T5 is open source (under LGPL version 3)! and written in OCaml. It inter-
faces the SAT solver MiniSat [20], the PB solver MiniSat+ [19], and the SMT
solver Yices [18]. For a full system description please consider [56]. This chap-
ter explains the syntax (Section A.1) and the semantics (Section A.2) of the
strategy language which allows to flexibly configure TTy. Section A.3 then ex-
plains how to call the tool on user-defined strategies while Section A.4 presents
the strategies which have been employed for T7Ty to produce the experimental
results listed in the tables within this thesis.

A.1 Syntax

The operators provided by the strategy language can be divided into three
classes: combinators, iterators, and specifiers. Combinators are used to combine
two strategies whereas iterators are used to repeat a given strategy a designated
number of times. In contrast, specifiers are used to control the behavior of
strategies. The most common combinators are the infixes ;’, ‘1’, and ‘| |’. The
most common iterators are the postfixes ‘?’, ‘4+’, and ‘*’. The most common
specifier is ‘[f]’ (also written postfix), where f denotes some floating point
number. In order to obtain a well-formed strategy s, these operators have to
be combined according to the grammar

su=m | (8) |s;s|sls|slls|s?]s+]|sx]|slf]

where m denotes any available method of TTy (possibly followed by some flags).
The best way to get a complete and up-to-date list of all methods supported
by TtT is to ask the tool itself. The command ./ttt2 --processors returns
a list of all processors available. A processor can also comment its parameters,
ie., ./ttt2 -s ’matrix -h’ <file> explains all flags the matrix method may
take.

In order to avoid unnecessary parentheses, the following precedence is used:
7,405 0f1 > 5 > |11

! GNU Lesser General Public License, see http://www.gnu.org/licenses/1gpl.html.

119

http://cl-informatik.uibk.ac.at/software/ttt2/
http://www.gnu.org/licenses/lgpl.html

A TqTH

A.2 Semantics

In the remainder of this section we use the notion termination problem to denote
a TRS, DP problem, or relative termination problem. We call a termination
problem terminating if the underlying TRS (DP problem, relative termination
problem) is terminating (finite, relative terminating). A strategy works on
a termination problem. Whenever TTTy executes a strategy, internally, a so
called proof object is constructed which represents the actual termination proof.
Depending on the shape of the resulting proof object after applying a strategy s,
we say that s succeeded or s failed.

This should not be confused with the possible answers of the prover: YES, NO,
and MAYBE. Here YES means that termination could be proved, NO indicates a
successful non-termination proof, and MAYBE refers to the case when termination
could neither be proved nor disproved. On success of a strategy s it depends
on the internal proof object whether the final answer is YES or NO. On failure,
the answer always is MAYBE. Based on the two possibilities success or failure,
the semantics of the strategy operators is as follows:

The combinator ¢;’ denotes sequential composition. Given two strategies s
and s’ together with a termination problem P, s;s’ first tries to apply s to P. If
this fails, then also s; s’ fails, otherwise s’ is applied to the resulting termination
problem, i.e., the strategy s;s’ fails, whenever one of s and s’ fails. The combi-
nator ‘|’ denotes choice. Different from sequential composition, the choice s|s’
succeeds whenever at least one of s or s’ succeeds. More precisely, given the
strategy s|s’, TTTo first tries to apply s to P. If this succeeds, its result is the
result of s|s’, otherwise s’ is applied to P. The combinator ‘| |’ is quite similar
to the choice combinator and denotes parallel execution. That means given the
strategy sl||s’, TyTo runs s and s in parallel on the termination problem P.
As soon as at least one of s and s’ succeeds, the resulting termination problem
is returned. This can be seen as a kind of non-deterministic choice, since on
simultaneous success of both s and s’, it is more or less random whose result is
taken.

Next we describe the iterators ‘?’, ‘+’, and ‘*’. The strategy s7 tries to apply
the strategy s to a termination problem P. On success its result is returned,
otherwise P is returned unmodified, i.e., s? applies s once or not at all to P
and always succeeds. The iterators ‘+’ and ‘*’ are used to apply s recursively
to P until P cannot be modified any more. The difference between ‘+’ and ‘*’
is that sx always succeeds whereas s+ only succeeds if it can prove or disprove
termination of P. In other words, sx is used to simplify problems, since it
applies s until no further progress can be achieved and then returns the latest
problem. In contrast ‘+’ requires the proof attempt to be completed.

At last we explain the specifier ‘[f]’ which denotes timed execution. Given
a strategy s and a timeout f, s[f] tries to modify a given termination problem
P for at most f seconds. If s does not succeed or fail within f seconds (wall
clock time), s[f] fails. Otherwise s[f] succeeds and returns the termination
problem that remains after applying s to P.

Most strategy operators are demonstrated in the following example.

120

A.3 Specification and Configuration

Example A.1. Consider the following strategy:

(var | uncurry?;poly -ib 2 -ob 4x;
dp;edg;sccs; (matrix -dim 2 -dp[1.5] || kbo -dp)=*) [5]

To (dis-)prove termination of a TRS R, T7Ty performs the following steps. First
the method var (a test if there exists a rewrite rule where the right-hand side
contains a variable that is not present in its left-hand side) is applied. On
success of this method non-termination is reported and the tool exits. If var
fails then uncurrying is tried next. Since this method works only for applicative
TRSs, the iterator ‘7’ is added in order to avoid that the whole strategy fails if
R is not an applicative system. After that polynomial interpretations with two
input bits (coefficients) and four output bits (intermediate results) are used to
simplify the given TRS. (Restricting the values for intermediate computations
results in efficiency gains.) The iterator ‘*’ ensures that a maximal number of
rewrite rules is removed by applying the method as often as possible. Finally,
after computing the dependency pairs, the estimated dependency graph, and
the SCCs in the graph, TTT» tries to prove finiteness of the current DP problems,
by applying the strategy (matrix -dim 2 -dp[1.5] || kbo -dp) recursively.
This strategy searches (in parallel) for compatible matrix interpretations (of
dimension two) and KBOs. The flag -dp indicates that the respective method
is applied in the DP setting (where strict monotonicity is not needed).

The specifier ‘[56]" ensures that TTTy runs for at most five seconds. In addition
we limit the time the matrix technique spends on a single DP problem to at
most 1.5 seconds.

A.3 Specification and Configuration

The flag —--strategy (or short -s) tells TTTp to use the specified strategy.
If the -s flag is omitted a predefined strategy is used (for details execute
./ttt2 --help). The tool does not check if the strategy is sound, e.g., pro-
cessors are applied in correct order. Calling TyTy in a shell with the strategy
from Example A.1, i.e., ./ttt2 -s ’(var | uncurry?; ...)[5]’ <file> is
already a bit inconvenient. Hence TyTo supports to specify a configuration
file which allows to abbreviate and connect different strategies. By convention
strategy abbreviations are written in capital letters. To tell T1Ty which config-
uration file it should use, the flag -=—conf (or the short form -c) followed by
the file name has to be set.

Example A.2. To call TqTy using the strategy from Example A.1 we write a
configuration file ttt2.conf containing the following lines:

PRE = uncurry?;poly -ib 2 -ob 4x*
PARALLEL = (matrix -dim 2 -dp[1.5] || kbo -dp)
AUTO = (var | PRE;dp;edg;sccs;PARALLEL%) [5]

Abbreviations are not implicitly surrounded by parentheses since this allows
more freedom in abbreviating expressions. To specify that the strategy AUTO
from the configuration file ttt2.conf should be used amounts to the following
command: ./ttt2 -c ttt2.conf -s AUTO <file>.

121

A TqTH

A.4 TqT, Strategies

This section lists the strategies employed for TyTy to produce the experimental
data shown in the various tables. Some clarifications are in order. For any
strategy s below, actually ./ttt2 -s ’var | s’ <file> is executed. Here
var filters out systems that are not TRSs (cf. Example A.1). Only the essential
parts are listed in the table entries below. Replacing the [in the corresponding

strategy skeleton yields the exact strategy.

Strategies for Chapter 2

For Table A.1 the strategy skeleton kbo [was used.

Table A.1: Strategies for Table 2.1

method(#bits) | strict precedence quasi-precedence
sat/pbc(2) -sat/-pbc -ib 2 -quasi -sat/-pbc -ib 2
sat/pbc(3) -sat/-pbc -ib 3 -quasi -sat/-pbc -ib 3
sat/pbc(4) -sat/-pbc -ib 4 -quasi -sat/-pbc -ib 4
sat/pbc(10) -sat/-pbc -ib 10 -quasi -sat/-pbc -ib 10
smt; -smt -quasi -smt

smt, -smt -real -quasi -smt -real

Table A.2 employs the skeleton kbo [.

Table A.2: Strategies for Table 2.2

method(#bits) | strict precedence quasi-precedence
sat/pbc(3) -sat/-pbc -ib 3 -quasi -sat/-pbc -ib 3
sat/pbc(4) -sat/-pbc -ib 4 -quasi -sat/-pbc -ib 4
sat/pbc(6) -sat/-pbc -ib 6 -quasi -sat/-pbc -ib 6
sat/pbc(8) -sat/-pbc -ib 8 -quasi -sat/-pbc -ib 8
smt; -smt -quasi -smt
smt, -smt -real -quasi -smt -real
Table A.3 adopts the skeleton dp;edg; (sccs;ur;kbo -dp -ur [)*.

122

Table A.3: Strategies for Table 2.3

method(#bits) TRSs SRSs
sat(2) -sat -ib 2 -sat -ib 2
sat(3) -sat -ib 3 -sat -ib 3
sat(4) -sat -ib 4 -sat -ib 4
sat(5) -sat -ib 5 -sat -ib 5
sat(6) -sat -ib 6 -sat -ib 6
sat(10) -sat -ib 10 -sat -ib 10
smt; —-smt -smt

smt, -smt -real -smt -real

A .4 T7Ty Strategies

Strategies for Chapter 3

The strategy skeleton dp;edg; (sccs;ur;matrix -dp -ur -ib 2 -ob 3 [*

was used for Table A.4.

Table A.4: Strategies for Table 3.2

(a) TRSs (b) SRSs
method method
direct_n -incn direct_n -incn
direct_e -ince direct_e -ince
a -inca a -inca
b -incb b -incb
compress | —incc compress | —incc

Strategies for Chapter 4

The strategy skeleton dp;edg; (sccs;ur;matrix -dp -ur -dim [)* was ap-

plied for Tables A.5 and A.6.

We omit the strategies for 2 x 2 due to the

similarity with the other dimensions. The exact values for -ib and -ob are
obtained by subtracting one from the table entries in the columns labeled 1 x 1.

Table A.5: Strategies for Table 4.1

1x1 3x3
N 1 -ib 4 -ob 5 3 -ib 2 -ob 3
Q 1 -ib 4 -ob 5 -rat 2 3 -ib 2 -ob 3 -rat 2
Q1|1 -ib 4 -ob 5 -rat 2 -db 0 3 -ib 2 -ob 3 -rat 2 -db O
Q2|1 -ib 4 -ob 5 -rat 2 -db 1 3 -ib 2 -ob 3 -rat 2 -db 1
R |1 -ib 2 -ob 3 -real 3 -ib 1 -ob 2 -real

Table A.6: Strategies for Table 4.2

1x1 3x3
N 1 -ib 5 -ob 6 3 -ib 3 -ob 4
Q |1 -ib 5 -ob 6 -rat 2 3 -ib 3 -ob 4 -rat 2
Q1|1 -ib 5 -ob 6 -rat 2 -db O 3 -ib 3 -ob 4 -rat 2 -db 0O
Q2|1 -ib 5 -0ob 6 -rat 2 -db 1 3 -ib 3 -ob 4 -rat 2 -db 1
R |1 -ib 3 -ob 4 -real 3 -ib 2 -ob 3 -real

123

A T4y

Strategies for Chapter 5

For Table 5.2 the strategy from Listing A.1 (TRSs) and the configuration file
presented in Listing A.2 (SRSs) have been used.

Listing A.1: Finding loops for TRSs

var | con | poly -ib 3 -ob 4[10]x*;(\
unfold || unfold -fwd || unfold -bwd || \
dp;edg; (sccs;ur; (poly -dp -ur -ib 2 -ob 4))*)

Listing A.2: Finding loops for SRSs

PRE = (\
matrix -dim 1 -ib 3 -ob 5 || \
matrix -dim 2 -ib 3 -ob 3 || \
matrix -dim 3 -ib 2 -ob 3 || \
matrix -dim 4 -ib 2 -ob 2 || \
arctic -dim 1 -ib 3 -ob 4 || \
arctic -dim 2 -ib 2 -ob 2 || \
arctic -dim 3 -ib 1 -ob 2)

SIMP = (\

matrix -dp -ur -dim 1 -ib 3 -ob 6[2] || \
matrix -dp -ur -dim 2 -ib 2 -ob 3[2] || \
matrix -dp -ur -dim 3 -ib 2 -ob 2[2] || \
matrix -dp -ur -dim 4 -ib 1 -ob 2[5] || \
arctic -dp -ur -dim 2 -ib 2 -ob 2[2] || \
arctic -dp -ur -dim 3 -ib 2 -ob 2[3] || \
arctic -dp -ur -dim 4 -ib 1 -ob 2[5])
NONTERM = (\

loop -dp -sat -r 4 -c 5 || \

loop -dp -sat -r 6 -c 25 || \

loop -dp -sat -r 12 -c 12 || \

loop -dp -sat -r 15 -c 12 || \

loop -dp -sat -r 15 -c 15 || \

loop -dp -sat -r 15 -c 18 || \

loop -dp -sat -r 18 -c 15 || \

loop -dp -sat -r 18 -c 18 || \

loop -dp -sat -r 15 -c 20 || \

loop -dp -sat -r 20 -c 15 || \

loop -dp -sat -r 20 -c 20 || \

loop -dp -sat -r 15 -c 22 || \

loop -dp -sat -r 22 -c 15 || \

loop -dp -sat -r 25 -c 15 || \

loop -dp -sat -r 22 -c 22 || \

loop -dp -sat -r 20 -c 25 || \

loop -dp -sat -r 25 -c 20)
LOOPSAT = \

(PRE[2]*;dp;edg;(sccs;ur; (SIMP || NONTERM))=*)

124

Index

algebra, 38 cycle, 38
carrier, 38 decreasing, 38
sorted, 93 elementary, 38
weakly monotone, 39 increasing, 38
argument filtering, 8 distance, 38
consistent, 25 node, 38
arithmetic constraint, 10 edges, 37
assignment, 39 labeled, 37
nodes, 37
certification, 69 path, 38
Ce-compatibility, 9 cost, 38
context, 5 cyclic, 38
hole, 5 elementary, 38
empty, 38
dependency graph, 8 length, 38
labeled, 44
dependency pair, 6 increasing interpretations, 37
framework, 6 compression algorithm, 51
minimal sequence, 7
problem, 7 Knuth-Bendix order, 14
extended, 46 labeling, 93
finite, 7 function, 93
processor, 7 loop, 6
complete, 7 length, 6
sound, 7 looping, 69
symbol, 6
derivational complexity, 35, 59 method of complete description, 17
model, 93
embedding, 26 monotone, 39
formula non-termination, 69
assignment, 92 numbers
corresponding, 94 integer, 5
depth, 92 natural, 5
function symbol, 5 rational, 5
arity, 5 real, 5
capitalize, 6
defined, 6 PB, 11
constraint, 20
graph, 37 PBC, 20

125

Index

polynomial interpretation, 39
precedence, 14

reduction pair, 8
processor, 9

rewrite relation, 5

rewrite rule, 5

SAT, 10
CNF, 11
satisfiable, 92
signature, 5
labeled, 93
SMT, 10
solution, 15
principal, 15
string rewrite system, 5
strongly connected component, 8
almost simple, 50
simple, 49
substitution, 5

term, 5
depth, 16
positions, 5
root, 5
size, 5
subterm, 5
variables, 5
term rewrite system, 5
collapsing, 94
duplicating, 5
length-preserving, 70
terminating, 6
test environment, 12
Tyrolean Termination Tool 2, 11, 119

usable rules, 9
Ce-compatibility, 9

variables, 5

weight, 14
bound, 15
function, 14

admissible, 14

126

	Introduction
	Preliminaries
	Term Rewriting
	Dependency Pair Framework
	Encodings
	Test Environment and Testbenches

	Knuth-Bendix Order
	Preliminaries
	A Bound on Weights
	Direct Encodings
	KBO in (Linear) Arithmetic
	KBO in Pseudo-Boolean

	Encodings with Dependency Pairs
	Representing Argument Filterings
	Embedding
	Knuth-Bendix Order

	Experiments
	Results for TRSs
	Results for SRSs
	Results with Dependency Pairs

	Assessment
	Summary

	Increasing Interpretations
	Preliminaries
	Graphs
	Polynomial Interpretations

	Towards Increasing Interpretations
	From Cycles to SCCs

	Two DP Processors
	Implementation
	Computing the Distance of a Node
	Compressing Graphs

	Assessment
	Related and Future Work
	Summary

	Matrix Interpretations
	Matrices over the Reals
	Implementation
	Experiments
	Assessment
	Summary

	Loops
	Finding Loops for String Rewrite Systems
	Formalizing Loops
	Certifying Loops
	Experiments
	Finding Loops
	Certifying Loops

	Future Work
	Summary

	Solving Arithmetic Constraints
	Transforming Arithmetic Constraints to SAT
	Arithmetic over Natural Numbers
	Arithmetic over Integers
	Arithmetic over Rational Numbers
	Arithmetic over Real Numbers

	Transforming Arithmetic Constraints to SMT
	Constraint Solving Module

	SAT via Termination
	Preliminaries
	Propositional Logic
	Many-Sorted Semantic Labeling

	Transforming Unsatisfiability to Termination
	Transforming Satisfiability to Termination
	An Alternative Transformation

	Experiments
	Summary

	Conclusion
	Bibliography
	Appendix
	TTT2
	Syntax
	Semantics
	Specification and Configuration
	TTT2 Strategies

	Index

