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There are two kinds of approaches for termination analysis of logic programs: “transformational”
and “direct” ones. Direct approaches prove termination directly on the basis of the logic program.
Transformational approaches transform a logic program into a Term Rewrite System (TRS) and
then analyze termination of the resulting TRS instead. Thus, transformational approaches make
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by permitting infinite terms. We show that our transformation results in TRSs which are indeed
suitable for automated termination analysis. In contrast to most other methods for termination of
logic programs, our technique is also sound for logic programming without occur check, which is
typically used in practice. We implemented our approach in the termination prover AProVE and
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1. INTRODUCTION
Termination of logic programs is widely studied. Most automated techniques
try to prove universal termination of definite logic programs, that is, one tries
to show that all derivations of a logic program are finite with respect to the
left-to-right selection rule.

Both “direct” and “transformational” approaches have been proposed in
the literature (see, e.g., De Schreye and Decorte [1994] for an overview
and Bruynooghe et al. [2007], Codish et al. [2005, 2006], De Schreye and
Serebrenik [2002], Lagoon et al. [2003], Mesnard and Ruggieri [2003],
Mesnard and Serebrenik [2007], Nguyen and De Schreye [2005, 2007], Nguyen
et al. [2008], Serebrenik and De Schreye [2005a], and Smaus [2004] for more re-
cent work on “direct” approaches). Transformational approaches have been de-
veloped in Aguzzi and Modigliani [1993], Arts and Zantema [1995], Ganzinger
and Waldmann [1993], Krishna Rao et al. [1998], Marchiori [1994, 1996], and
van Raamsdonk [1997] and a comparison of these approaches is given in Ohle-
busch [2001]. Moreover, similar transformational approaches also exist for
other programming languages (e.g., see Giesl et al. [2006b] for an approach
to prove termination of Haskell-programs via a transformation to term rewrit-
ing). Moreover, there is also work in progress to develop such approaches for
imperative programs.

In order to be successful for termination analysis of logic programs, trans-
formational methods:

(I) should be applicable for a class of logic programs as large as possible and
(II) should produce TRSs whose termination is easy to analyze automatically.

Concerning (I), the above existing transformations can only be used for cer-
tain subclasses of logic programs. More precisely, all approaches except Mar-
chiori [1994, 1996] are restricted to well-moded programs. The transformations
of Marchiori [1994, 1996] also consider the classes of simply well-typed and
safely typed programs. However, in contrast to all previous transformations,
we present a new transformation which is applicable for any (definite) logic
program. Like most approaches for termination of logic programs, we restrict
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ourselves to programs without cut and negation. While there are transforma-
tional approaches which go beyond definite programs [Marchiori 1996], it is not
clear how to transform nondefinite logic programs into TRSs that are suitable
for automated termination analysis; see (II).

Concerning (II), one needs an implementation and an empirical evaluation
to find out whether termination of the transformed TRSs can indeed be veri-
fied automatically for a large class of examples. Unfortunately, to our knowl-
edge there is only a single other termination tool available which implements
a transformational approach. This tool TALP [Ohlebusch et al. 2000] is based
on the transformations of Arts and Zantema [1995], and Ganzinger and Wald-
mann [1993] which are shown to be equally powerful in Ohlebusch [2001]. So
these transformations are indeed suitable for automated termination analysis,
but consequently, TALP only accepts well-moded logic programs. This is in con-
trast to our approach which we implemented in our termination prover AProVE
[Giesl et al. 2006a]. Our experiments on large collections of examples in Sec-
tion 7 show that our transformation indeed produces TRSs that are suitable for
automated termination analysis and that AProVE is currently among the most
powerful termination provers for logic programs.

To illustrate the starting point for our research, we briefly review related
work on connecting termination analysis of logic programs and term rewrite
systems: in Section 1.1 we recapitulate the classical transformation of Arts and
Zantema [1995], Ganzinger and Waldmann [1993], and Ohlebusch [2001] and
in Section 1.2 we discuss the approach of adapting TRS techniques to the logic
programming setting (which can be seen as an alternative to our approach of
transforming logic programs to TRSs). Then in Section 1.3 we give an overview
on the structure of the remainder of the article.

1.1 The Classical Transformation
Our transformation is inspired by the transformation of Arts and Zantema
[1995], Chtourou and Rusinowitch [1993], Ganzinger and Waldmann [1993],
and Ohlebusch [2001]. In this classical transformation, each argument position
of each predicate is either determined to be an input or an output position by
a moding function m. So for every predicate symbol p of arity n and every
1 ≤ i ≤ n, we have m(p, i) ∈ {in, out}. Thus, m(p, i) states whether the ith
argument of p is an input (in) or an output (out) argument.

As mentioned, the moding must be such that the logic program is well
moded [Apt and Etalle 1993]. Well-modedness guarantees that each atom se-
lected by the left-to-right selection rule is “sufficiently” instantiated during any
derivation with a query that is ground on all input positions. More precisely, a
program is well moded iff for any of its clauses H :– B1, . . . , Bk with k ≥ 0, we
have

(a) Vout(H) ⊆ Vin(H) ∪ Vout(B1) ∪ . . . ∪ Vout(Bk) and
(b) Vin(Bi) ⊆ Vin(H) ∪ Vout(B1) ∪ . . . ∪ Vout(Bi−1) for all 1 ≤ i ≤ k.

Vin(B) and Vout(B) are the variables in terms on B’s input and output positions.
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Example 1.1. Consider the following variant of a small example from Ohle-
busch [2001].

p(X , X ).
p(f(X ), g(Y )) :– p(f(X ), f(Z )), p(Z , g(Y )).

Let m be a moding with m(p, 1) = in and m(p, 2) = out. Then the program is
well moded: This is obvious for the first clause. For the second clause, (a) holds
since the output variable Y of the head is also an output variable of the second
body atom. Similarly, (b) holds since the input variable X of the first body atom
is also an input variable of the head, and the input variable Z of the second
body atom is also an output variable of the first body atom.

In the classical transformation from logic programs to TRSs, two new function
symbols pin and pout are introduced for each predicate p. We write “p(�s, �t)” to
denote that �s and �t are the sequences of terms on p’s in- and output positions.

—For each fact p(�s, �t), the TRS contains the rule pin(�s) → pout(�t).
—For each clause c of the form p(�s, �t) :– p1(�s1, �t1), . . . , pk(�sk , �tk), the resulting

TRS contains the following rules.

pin(�s) → uc,1(p1in(�s1), V(�s))

uc,1(p1out (�t1), V(�s)) → uc,2(p2in(�s2), V(�s) ∪ V(�t1))

. . .

uc,k(pkout (�tk), V(�s) ∪ V(�t1) ∪ . . . ∪ V(�tk−1)) → pout(�t)

Here, V(�s) are the variables occurring in �s. Moreover, if V(�s) = {x1, . . . , xn}, then
“uc,1(p1in(�s1), V(�s))” abbreviates the term uc,1(p1in(�s1), x1, . . . , xn), etc.

If the resulting TRS is terminating, then the original logic program termi-
nates for any query with ground terms on all input positions of the predicates;
see Ohlebusch [2001]. However, the converse does not hold.

Example 1.2. For the program of Example 1.1, the transformation results
in the following TRS R.

pin(X ) → pout(X )

pin(f(X )) → u1(pin(f(X )), X )

u1(pout(f(Z )), X ) → u2(pin(Z ), X , Z )

u2(pout(g(Y )), X , Z ) → pout(g(Y ))

The original logic program is terminating for any query p(t1, t2) where t1 is a
ground term. However, the preceding TRS is not terminating.

pin(f(X )) →R u1(pin(f(X )), X ) →R u1(u1(pin(f(X )), X ), X ) →R . . .

In the logic program, after resolving with the second clause, one obtains a
query starting with p(f(. . . ), f(. . . )). Since p’s output argument f(. . . ) is already
partly instantiated, the second clause cannot be applied again for this atom.
However, this information is neglected in the translated TRS. Here, one only
regards the input argument of p in order to determine whether a rule can
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be applied. Note that many current tools for termination proofs of logic pro-
grams like cTI [Mesnard and Bagnara 2005], TALP [Ohlebusch et al. 2000],
TermiLog [Lindenstrauss et al. 1997], and TerminWeb [Codish and Taboch 1999]
fail on Example 1.1.

So this example already illustrates a drawback of the classical transforma-
tion: There are several terminating well-moded logic programs which are trans-
formed into nonterminating TRSs. In such cases, one fails in proving the termi-
nation of the logic program. Even worse, most of the existing transformations
are not applicable for logic programs that are not well moded.1

Example 1.3. We modify Example 1.1 by replacing g(Y ) with g(W ) in the
body of the second clause.

p(X , X ).
p(f(X ), g(Y )) :– p(f(X ), f(Z )), p(Z , g(W )).

Still, all queries p(t1, t2) terminate if t1 is ground. But this program is not well
moded, as the second clause violates Condition (a): Vout(p(f(X ), g(Y ))) = {Y } 
⊆
Vin(p(f(X ), g(Y )))∪Vout(p(f(X ), f(Z )))∪Vout(p(Z , g(W ))) = {X , Z , W }. Transform-
ing the program as before yields a TRS with the rule u2(pout(g(W )), X , Z ) →
pout(g(Y )). So non-well-moded programs result in rules with variables like Y in
the right- but not in the left-hand side. Such rules are usually forbidden in term
rewriting and they do not terminate, since Y may be instantiated arbitrarily.

Example 1.4. A natural non-well-moded example is the append-program
with the clauses

append([ ], M , M ).
append([X |L], M , [X |N ]) :– append(L, M , N ).

and the moding m(append, 1) = in and m(append, 2) = m(append, 3) = out,
that is, one only considers append’s first argument as input. Due to the first
clause append([ ], M , M ), this program is not well moded although all queries
of the form append(t1, t2, t3) are terminating if t1 is ground.

1.2 Term Rewriting Techniques for Termination of Logic Programs
Recently, several authors tackled the problem of applying termination tech-
niques from term rewriting for (possibly non-well-moded) logic programs. A
framework for integrating orders from term rewriting into direct termina-
tion approaches for logic programs is discussed in De Schreye and Serebrenik
[2002].2 However, the automation of this framework is nontrivial in general.

1Example 1.3 is neither well moded nor simply well-typed nor safely typed (using the types “Any”
and “Ground”) as required by the transformations of Aguzzi and Modigliani [1993], Arts and Zan-
tema [1995], Ganzinger and Waldmann [1993], Krishna Rao et al. [1998], Marchiori [1994, 1996],
and van Raamsdonk [1997].
2But in contrast to De Schreye and Serebrenik [2002], transformational approaches like the one
presented in this article can also apply more recent termination techniques from term rewriting for
termination of logic programs (e.g., refined variants of the dependency pair method like Giesl et al.
[2005, 2006], Hirokawa and Middeldorp [2005], semantic labeling [Zantema 1995], matchbounds
[Geser et al. 2004], etc.).
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As an instance of this framework, the automatic application of polynomial in-
terpretations (well known in term rewriting) to termination analysis of logic
programs is investigated in Nguyen and De Schreye [2005, 2007]. Moreover,
Nguyen et al. [2008] extend this work further by also adapting a basic version
of the dependency pair approach [Arts and Giesl 2000] from TRSs to the logic
programming setting. This provides additional evidence that techniques devel-
oped for term rewriting can successfully be applied to termination analysis of
logic programs.

Instead of integrating each termination technique from term rewriting sep-
arately, in the current article we want to make all these techniques available
at once. Therefore, unlike De Schreye and Serebrenik [2002], Nguyen and De
Schreye [2005, 2007], and Nguyen et al. [2008], we choose a transformational
approach. Our goal is a method which:

(A) handles programs like Example 1.1 where classical transformations like
the one of Section 1.1 fail,

(B) handles non-well-moded programs like Example 1.3 where most current
transformational techniques are not even applicable,

(C) allows the successful automated application of powerful techniques from
rewriting for logic programs like Example 1.1 and 1.3 where current tools
based on direct approaches fail. For larger and more realistic examples we
refer to our experiments in Section 7.

1.3 Structure of the Article
After presenting required preliminaries in Section 2, in Section 3 we modify
the transformation from logic programs to TRSs to achieve (A) and (B). So re-
strictions like well-modedness, simple well-typedness, or safe typedness are no
longer required. Our new transformation results in TRSs where the notion of
“rewriting” has to be slightly modified: We regard a restricted form of infini-
tary rewriting, called infinitary constructor rewriting. The reason is that logic
programs use unification, whereas TRSs use matching.

To illustrate this difference, consider the logic program p(s(X )) :– p(X ) which
does not terminate for the query p(X ): Unifying the query p(X ) with the head
of the variable-renamed rule p(s(X 1)) :– p(X 1) yields the new query p(X 1). Af-
terwards, unifying the new query p(X 1) with the head of the variable-renamed
rule p(s(X 2)) :– p(X 2) yields the new query p(X 2), etc.

In contrast, the related TRS p(s(X )) → p(X ) terminates for all finite terms.
When applying the rule to some subterm t, one has to match the left-hand
side � of the rule against t. For example, when applying the rule to the term
p(s(s(Y ))), one would use the matcher that instantiates X with s(Y ). Thus,
p(s(s(Y ))) would be rewritten to the instantiated right-hand side p(s(Y )). Hence,
one occurrence of the symbol s is eliminated in every rewrite step. This implies
that rewriting will always terminate. So in contrast to unification (where one
searches for a substitution θ with tθ = �θ ), here we only use matching (i.e., we
search for a substitution θ with t = �θ , but we do not instantiate the term t
that is being rewritten).
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However, the infinite derivation of the preceding logic program corresponds
to an infinite reduction of the preceding TRS with the infinite term p(s(s(. . . )))
containing infinitely many nested s-symbols. So to simulate unification by
matching, we have to regard TRSs where the variables in rewrite rules may be
instantiated by infinite constructor terms. It turns out that this form of rewrit-
ing also allows us to analyze the termination behavior of logic programming
with infinite terms, that is, of logic programming without occur check.

Section 4 shows that the existing termination techniques for TRSs can easily
be adapted in order to prove termination of infinitary constructor rewriting. For
a full automation of the approach, one has to transform the set of queries that
has to be analyzed for the logic program to a corresponding set of terms that has
to be analyzed for the transformed TRS. This set of terms is characterized by a
so-called argument filter and we present heuristics to find a suitable argument
filter in Section 5. Section 6 gives a formal proof that our new transformation
and our approach to automated termination analysis are strictly more powerful
than the classical ones of Section 1.1. We present and discuss an extensive
experimental evaluation of our results in Section 7, which shows that Goal
(C) is achieved as well. In other words, the implementation of our approach
can indeed compete with modern tools for direct termination analysis of logic
programs and it succeeds for many programs where these tools fail. Finally, we
conclude in Section 8.

Preliminary versions of parts of this article appeared in Schneider-Kamp
et al. [2007]. However, the present article extends Schneider-Kamp et al. [2007]
considerably (in particular, by the results of the Sections 5 and 6). Section 6
contains a new formal comparison with the existing classical transformational
approach to termination of logic programs and proves formally that our ap-
proach is more powerful. The new contributions of Section 5 improve the power
of our method substantially as can be seen in our new experiments in Section 7.
Moreover, in contrast to Schneider-Kamp et al. [2007], this article contains the
full proofs of all results and a discussion on the limitations of our approach in
Section 7.2.

2. PRELIMINARIES ON LOGIC PROGRAMMING AND REWRITING
We start with introducing the basics on (possibly infinite) terms and atoms.
Then we present the required notions on logic programming and on term rewrit-
ing in Sections 2.1 and 2.2, respectively.

A signature is a pair (�, �) where � and � are finite sets of function and
predicate symbols. Each f ∈ � ∪ � has an arity n ≥ 0 and we often write f /n
instead of f . We always assume that � contains at least one constant f /0. This
is not a restriction, since enriching the signature by a fresh constant would not
change the termination behavior.

Definition 2.1 (Infinite Terms and Atoms). A term over � is a tree where
every leaf node is labeled with a variable X ∈ V or with f /0 ∈ � and every inner
node with n children (n > 0) is labeled with some f /n ∈ �. We write f (t1, . . . , tn)
for the term with root f and direct subtrees t1, . . . , tn. A term t is called finite if
all paths in the tree t are finite, otherwise it is infinite. A term is rational if it
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only contains finitely many different subterms. The sets of all finite terms, all
rational terms, and all (possibly infinite) terms over � are denoted by T (�, V),
T rat(�, V), and T ∞(�, V), respectively. If �t is the sequence t1, . . . , tn, then �t ∈
�T ∞(�, V) means that ti ∈ T ∞(�, V) for all i. �T (�, V) is defined analogously. For
a term t, let V(t) be the set of all variables occurring in t. A position pos ∈ N∗ in
a (possibly infinite) term t addresses a subterm t|pos of t. We denote the empty
word (and thereby the top position) by ε. The term t[s]pos results from replacing
the subterm t|pos at position pos in t by the term s. So for pos = ε we have t|ε = t
and t[s]ε = s. Otherwise pos = i pos′ for some i ∈ N and t = f (t1, . . . , tn). Then
we have t|pos = t|i pos′ = ti|pos′ and t[s]pos = t[s]i pos′ = f (t1, . . . , ti[s]pos′ . . . , tn).

An atom over (�, �) is a tree p(t1, . . . , tn), where p/n ∈ � and t1, . . . , tn ∈
T ∞(�, V). A∞(�, �, V) is the set of atoms and Arat(�, �, V) (and A(�, �, V),
respectively) are the atoms p(t1, . . . , tn) where ti ∈ T rat(�, V) (and ti ∈ T (�, V),
respectively) for all i. We write A(�, �) and T (�) instead of A(�, �, ∅) and
T (�, ∅).

2.1 Logic Programming
A clause c is a formula H :– B1, . . . , Bk with k ≥ 0 and H, Bi ∈ A(�, �, V). H
is c’s head and B1, . . . , Bk is c’s body. A finite set of clauses P is a definite logic
program. A clause with empty body is a fact and a clause with empty head is a
query. We usually omit “ :– ” in queries and just write “B1, . . . , Bk”. The empty
query is denoted �. In queries, we also admit rational instead of finite atoms
B1, . . . , Bk .

Since we are also interested in logic programming without occur check we
consider infinite substitutions θ : V → T ∞(�, V). Here, we allow θ (X ) 
= X for
infinitely many X ∈ V. Instead of θ (X ) we often write X θ . If θ is a variable
renaming (i.e., a one-to-one correspondence on V), then tθ is a variant of t,
where t can be any expression (e.g., a term, atom, clause, etc.). We write θσ to
denote that the application of θ is followed by the application of σ .

A substitution θ is a unifier of two terms s and t if and only if sθ = tθ . We call
θ the most general unifier (mgu) of s and t if and only if θ is a unifier of s and t
and for all unifiers σ of s and t there is a substitution μ such that σ = θμ.

We briefly present the procedural semantics of logic programs based on SLD-
resolution using the left-to-right selection rule implemented by most Prolog
systems. More details on logic programming can be found in Apt [1997], for
example.

Definition 2.2 (Derivation, Termination). Let Q be a query A1, . . . , Am, let
c be a clause H :– B1, . . . , Bk . Then Q ′ is a resolvent of Q and c using θ (denoted
Q �c,θ Q ′) if θ is the mgu3 of A1 and H, and Q ′ = (B1, . . . , Bk , A2, . . . , Am)θ .

A derivation of a program P and Q is a possibly infinite sequence Q0, Q1, . . .

of queries with Q0 = Q where for all i, we have Qi �ci+1,θi+1 Qi+1 for some
substitution θi+1 and some fresh variant ci+1 of a clause of P. For a derivation
Q0, . . . , Qn as before, we also write Q0 �n

P,θ1...θn
Qn or Q0 �n

P Qn, and we also

3Note that for finite sets of rational atoms or terms, unification is decidable, the mgu is unique
modulo renaming, and it is a substitution with rational terms [Huet 1976].
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write Qi �P Qi+1 for Qi �ci+1,θi+1 Qi+1. The query Q terminates for P if all
derivations of P and Q are finite.

Our notion of derivation coincides with logic programming without an occur
check [Colmerauer 1982] as implemented in recent Prolog systems such as
SICStus or SWI. Since we consider only definite logic programs, any program
which is terminating without occur check is also terminating with occur check,
but not vice versa. So if our approach detects “termination,” then the program
is indeed terminating, no matter whether one uses logic programming with or
without occur check. In other words, our approach is sound for both kinds of logic
programming, whereas most other approaches only consider logic programming
with occur check.

Example 2.3. Regard a programP with the clauses p(X ) :– equal (X , s(X )),
p(X ) and equal(X , X ). We obtain p(X ) �2

P p(s(s(. . . ))) �2
P p(s(s(. . . ))) �2

P . . . ,
where s(s(. . . )) is the term containing infinitely many nested s-symbols. So the
finite query p(X ) leads to a derivation with infinite (rational) queries. While
p(X ) is not terminating according to Definition 2.2, it would be terminating if
one uses logic programming with occur check. Indeed, tools like cTI [Mesnard
and Bagnara 2005] and TerminWeb [Codish and Taboch 1999] report that such
queries are “terminating.” So in contrast to our technique, such tools are in
general not sound for logic programming without occur check, although this
form of logic programming is typically used in practice.

2.2 Term Rewriting
Now we define TRSs and introduce the notion of infinitary constructor rewrit-
ing. For further details on term rewriting we refer to Baader and Nipkow
[1998].

Definition 2.4 (Infinitary Constructor Rewriting). A TRS R is a finite set of
rules � → r with �, r ∈ T (�, V) and � /∈ V.4 We divide the signature into defined
symbols �D = { f | � → r ∈ R, root(�) = f } and constructors �C = � \ �D.
R’s infinitary constructor rewrite relation is denoted →R: for s, t ∈ T ∞(�, V)
we have s →R t if there is a rule � → r, a position pos, and a substitution
σ : V → T ∞(�C, V) with s|pos = �σ and t = s[rσ ]pos. Let →n

R, →≥n
R , →∗

R denote
rewrite sequences of n steps, of at least n steps, and of arbitrary many steps,
respectively (where n ≥ 0). A term t is terminating for R if there is no infinite
sequence of the form t →R t1 →R t2 →R . . . A TRS R is terminating if all terms
are terminating for R.

This definition of →R differs from the usual rewrite relation in two aspects.

(i) We only permit instantiations of rule variables by constructor terms.
(ii) We use substitutions with possibly nonrational infinite terms.

4In standard term rewriting, one usually requires V(r) ⊆ V(�) for all rules � → r. The reason is that
otherwise the standard rewrite relation is never well founded. However, the infinitary constructor
rewrite relation defined here can be well founded even if V(r) 
⊆ V(�).
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In Example 3.2 and 3.3 in the next section, we will motivate these modifica-
tions and show that there are TRSs which terminate with respect to the usual
rewrite relation, but are nonterminating with respect to infinitary constructor
rewriting and vice versa.

3. TRANSFORMING LOGIC PROGRAMS INTO TERM REWRITE SYSTEMS
Now we modify the transformation of logic programs into TRSs from Section 1
to make it applicable for arbitrary (possibly non-well-moded) programs as well.
We present the new transformation in Section 3.1 and prove its soundness in
Section 3.2. Later in Section 6 we will formally prove that the classical trans-
formation is strictly subsumed by our new one.

3.1 The Improved Transformation
Instead of separating between input and output positions of a predicate p/n,
now we keep all arguments both for pin and pout (i.e., pin and pout have
arity n).

Definition 3.1 (Transformation). A logic program P over (�, �) is trans-
formed into the following TRSRP over �P = �∪{pin/n, pout/n | p/n ∈ �}∪{uc,i |
c ∈ P, 1 ≤ i ≤ k, where k is the number of atoms in the body of c }.
—For each fact p(�s) in P, the TRS RP contains the rule pin(�s) → pout(�s).
—For each clause c of the form p(�s) :– p1(�s1), . . . , pk(�sk) in P, RP contains

pin(�s) → uc,1(p1in(�s1), V(�s))

uc,1(p1out (�s1), V(�s)) → uc,2(p2in(�s2), V(�s) ∪ V(�s1))

. . .

uc,k(pkout (�sk), V(�s) ∪ V(�s1) ∪ . . . ∪ V(�sk−1)) → pout(�s).

The following two examples motivate the need for infinitary constructor
rewriting in Definition 3.1, that is, they motivate modifications (i) and (ii) in
Section 2.2.

Example 3.2. For the logic program of Example 1.1, the transformation of
Definition 3.1 yields the following TRS.

pin(X , X ) → pout(X , X ) (1)

pin(f(X ), g(Y )) → u1(pin(f(X ), f(Z )), X , Y ) (2)

u1(pout(f(X ), f(Z )), X , Y ) → u2(pin(Z , g(Y )), X , Y , Z ) (3)

u2(pout(Z , g(Y )), X , Y , Z ) → pout(f(X ), g(Y )) (4)

This example shows why rules of TRSs may only be instantiated with con-
structor terms (modification (i)). The reason is that local variables like Z (i.e.,
variables occurring in the body but not in the head of a clause) give rise to
rules � → r where V(r) 
⊆ V(�) (see Rule (2)). Such rules are never terminating
in standard term rewriting. However, in our setting one may only instantiate
Z with constructor terms. So in contrast to the old transformation in Exam-
ple 1.2, now all terms pin(t1, t2) terminate for the TRS if t1 is finite, since now
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the second argument of pin prevents an infinite application of Rule (2). Indeed,
constructor rewriting correctly simulates the behavior of logic programs, since
the variables in a logic program are only instantiated by “constructor terms.”

For the non-well-moded program of Example 1.3, one obtains a similar TRS
where g(Y ) is replaced by g(W ) in the right-hand side of Rule (3) and the
left-hand side of Rule (4). Again, all terms pin(t1, t2) are terminating for this
TRS provided that t1 is finite. Thus, we can now handle programs where the
classical transformation of Arts and Zantema [1995], Chtourou and Rusinow-
itch [1993], Ganzinger and Waldmann [1993], and Ohlebusch [2001] failed; see
Goals (A) and (B) in Section 1.2.

Derivations in logic programming use unification, while rewriting is defined
by matching. Example 3.3 shows that to simulate unification by matching, we
have to consider substitutions with infinite and even nonrational terms (modi-
fication (ii)).

Example 3.3. Let P be ordered(cons(X , cons (s(X ), XS ))) :– ordered
(cons(s(X ), XS )). If one only considers rewriting with finite or rational
terms, then the transformed TRS RP is terminating. However, the query
ordered(YS ) is not terminating for P. Thus, to obtain a sound approach,
RP must also be nonterminating. Indeed, the term t = orderedin(cons
(X , cons (s(X ), cons(s2(X ),. . .)))) is nonterminating with RP ’s rule
orderedin (cons(X , cons(s(X ), XS ))) → u (orderedin (cons (s(X ), XS )), X ,
XS ). The nonrational term t corresponds to the infinite derivation with the
query ordered(YS ).

3.2 Soundness of the Transformation
We first show an auxiliary lemma that is needed to prove the soundness of
the transformation. It relates derivations with the logic program P to rewrite
sequences with the TRS RP .

LEMMA 3.4 (CONNECTING P AND RP ). Let P be a program, let �t be terms from
T rat(�, V), let p(�t) �n

P,σ Q. If Q = �, then pin(�t)σ →≥n
RP

pout(�t)σ . Otherwise, if Q
is “q(�v), . . . ”, then pin(�t)σ →≥n

RP
r for a term r containing the subterm qin(�v).

PROOF. Let p(�t) = Q0 �c1,θ1 . . . �cn,θn Qn = Q with σ = θ1 . . . θn. We use
induction on n. The base case n = 0 is trivial, since Q = p(�t) and pin(�t) →0

RP

pin(�t).
Now let n ≥ 1. We first regard the case Q1 = � and n = 1. Then c1 is a fact

p(�s) and θ1 is the mgu of p(�t) and p(�s). Note that such mgu’s instantiate all
variables with constructor terms (as symbols of � are constructors of RP ). We
obtain pin(�t)θ1 = pin(�s)θ1 →RP pout(�s)θ1 = pout(�t)θ1 where σ = θ1.

Finally, let Q1 
= �. Thus, c1 is p(�s) :– p1( �s1), . . . , pk( �sk) and Q1 is p1( �s1)θ1, . . . ,
pk( �sk)θ1 where θ1 is the mgu of p(�t) and p(�s). There is an i with 1 ≤ i ≤ k such
that for all j with 1 ≤ j ≤ i − 1 we have pj (�sj )σ0 . . . σ j−1 �nj

P,σ j
�. Moreover, if

Q = � then we can choose i = k and pi(�si)σ0 . . . σi−1 �ni
P,σi

�. Otherwise, if Q is
“q(�v), . . . ”, then we can choose i such that pi(�si)σ0 . . . σi−1 �ni

P,σi
q(�v), . . . Here, n =

n1 + . . .+ni +1, σ0 = θ1, σ1 = θ2 . . . θn1+1, . . . , and σi = θn1+...+ni−1+2 . . . θn1+...+ni+1.
So σ = σ0 . . . σi.
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By the induction hypothesis we have pjin(�sj )σ0 . . . σ j →≥nj

RP
pjout (�sj )σ0 . . . σ j

and thus also pjin(�sj )σ →≥nj

RP
pjout (�sj )σ . Moreover, if Q = � then we also have

piin(�si)σ →≥ni
RP

piout (�si)σ where i = k. Otherwise, if Q is “q(�v), . . . ”, then the
induction hypothesis implies piin(�si)σ →≥ni

RP
r ′, where r ′ contains qin(�v). Thus

pin(�t)σ = pin(�s)σ →RP uc1,1(p1in(�s1), V(�s))σ
→≥n1

RP
uc1,1(p1out (�s1), V(�s))σ

→RP uc1,2(p2in(�s2), V(�s) ∪ V(�s1))σ
→≥n2

RP
uc1,2(p2out (�s2), V(�s) ∪ V(�s1))σ

→≥n3+...+ni−1
RP

uc1,i(piin(�si), V(�s) ∪ V(�s1) ∪ . . . ∪ V(�si−1))σ.

Moreover, if Q = �, then i = k and the rewrite sequence yields pout(�t)σ , since
uc1,i(piin(�si), V(�s) ∪ . . . ∪ V(�si−1))σ →≥ni

RP
uc1,i(piout (�si), V(�s) ∪ . . . ∪ V(�si−1))σ

→RP pout(�s)σ = pout(�t)σ.

Otherwise, if Q is “q(�v), . . . ”, then rewriting yields a term containing qin(�v).

uc1,i(piin(�si), V(�s) ∪ . . . ∪ V(�si−1))σ →≥ni
RP

uc1,i(r ′, V(�s)σ ∪ . . . ∪ V(�si−1)σ ).

For the soundness proof, we need another lemma which states that we can
restrict ourselves to nonterminating queries which only consist of a single atom.

LEMMA 3.5 (NONTERMINATING QUERIES). Let P be a logic program. Then for
every infinite derivation Q0 �P Q1 �P . . . , there is a Qi of the form “q(�v), . . . ”
with i > 0 such that the query q(�v) is also nonterminating.

PROOF. Assume that for all i > 0, the first atom in Qi does not have an
infinite derivation. Then for each Qi there are two cases: Either the first atom
fails or it can successfully be proved. In the former case, there is no infinite
reduction from Qi which contradicts the infiniteness of the derivation from Q0.
Thus for all i > 0, the first atom of Qi is successfully proved in ni steps during
the derivation Q0 �P Q1 �P . . . Let m be the number of atoms in Q1. But then
Q1+n1+...+nm is the empty query � which again contradicts the infiniteness of the
derivation.

We use argument filters to characterize the classes of queries whose termi-
nation we want to analyze. Related definitions can be found in, for example,
Arts and Giesl [2000] and Leuschel and Sørensen [1996].

Definition 3.6 (Argument Filter). A function π : �∪� → 2N is an argument
filter π over a signature (�, �) if and only if π ( f /n) ⊆ {1, . . . , n} for every f /n ∈
�∪�. We extend π to terms and atoms by defining π (x) = x if x is a variable and
π ( f (t1, . . . , tn)) = f (π (ti1 ), . . . , π (tik )) if π ( f /n) = {i1, . . . , ik} with i1 < . . . < ik .
Here, the new terms and atoms are from the filtered signature (�π , �π ) where
f /n ∈ � implies f /k ∈ �π and likewise for �π . For a logic program P we write
(�Pπ

, �Pπ
) instead of ((�P )π , (�P )π ). For any TRS R, we define π (R) = {π (�) →

π (r) | � → r ∈ R}. The set of all argument filters over a signature (�, �) is
denoted by AF (�, �). We write AF (�) instead of AF (�, ∅) and speak of an
argument filter “over �.” We also write π ( f ) instead of π ( f /n) if the arity of f
is clear from the context.

An argument filter π ′ is a refinement of a filter π if and only if π ′( f ) ⊆ π ( f )
for all f ∈ � ∪ �.
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Argument filters specify those positions which have to be instantiated with
finite ground terms. Then, we analyze termination of all queries Q where π (Q)
is a (finite) ground atom. In Example 1.1, we wanted to prove termination for
all queries p(t1, t2) where t1 is finite and ground. These queries are described
by the filter π (h) = {1} for all h ∈ {p, f, g}. Thus, we have π (p(t1, t2)) = p(π (t1)).

Note that argument filters also operate on function instead of just predicate
symbols. Therefore, they can describe more sophisticated classes of queries than
the classical approach of Arts and Zantema [1995], Chtourou and Rusinowitch
[1993], Ganzinger and Waldmann [1993], and Ohlebusch [2001] which only
distinguishes between input and output positions of predicates. For example,
if one wants to analyze all queries append(t1, t2, t3) where t1 is a finite list,
one would use the filter π (append) = {1} and π (•) = {2}, where “•” is the list
constructor (i.e., •(X , L) = [X |L]). Of course, our method can easily prove that
all these queries are terminating for the program of Example 1.4.

Now we show the soundness theorem: To prove termination of all queries Q
where π (Q) is a finite ground atom, it suffices to show termination of all those
terms pin(�t) for the TRS RP where π (pin(�t)) is a finite ground term and where
�t only contains function symbols from the logic program P. Here, π has to be
extended to the new function symbols pin by defining π (pin) = π (p).

THEOREM 3.7 (SOUNDNESS OF THE TRANSFORMATION). Let P be a logic program
and let π be an argument filter over (�, �). We extend π such that π (pin) = π (p)
for all p ∈ �. Let S = {pin(�t) | p ∈ �, �t ∈ �T ∞(�, V), π (pin(�t)) ∈ T (�Pπ

) }. If
all terms s ∈ S are terminating for RP , then all queries Q ∈ Arat(�, �, V) with
π (Q) ∈ A(�π , �π ) are terminating for P.5

PROOF. Assume that there is a nonterminating query p(�t) in the theorem
with p(�t) �P Q1 �P Q2 �P . . . By Lemma 3.5 there is an i1 > 0 with Qi1 =
q1(�v1), . . . and an infinite derivation q1(�v1) �P Q ′

1 �P Q ′
2 �P . . . From p(�t) �i1

P,σ0

q1(�v1), . . . and Lemma 3.4 we get pin(�t)σ0 →≥i1
RP

r1, where r1 contains the subterm
q1in(�v1).

By Lemma 3.5 again, there is an i2 > 0 with Q ′
i2 = q2(�v2), . . . and an infinite

derivation q2(�v2) �P Q ′′
1 �P . . . From q1(�v1) �i2

P,σ1
q2(�v2), . . . and Lemma 3.4 we

get pin(�t)σ0σ1 →≥i1
RP

r1σ1 →≥i2
RP

r2, where r2 contains the subterm q2in(�v2).
Continuing this reasoning we obtain an infinite sequence σ0, σ1, . . . of substi-

tutions. For each j ≥ 0, let μ j = σ j σ j+1 . . . result from the infinite composition
of these substitutions.6 Since r j μ j is an instance of r j σ j . . . σn for all n ≥ j , we

5It is currently open whether the converse holds as well. For a short discussion, see Section 7.2.
6The composition of infinitely many substitutions σ0, σ1, . . . is defined as follows. The definition
ensures that tσ0σ1 . . . is an instance of tσ0 . . . σn for all terms (or atoms) t and all n ≥ 0. It suffices
to define the symbols at the positions of tσ0σ1 . . . for any term t. Obviously, pos is a position of
tσ0σ1 . . . iff pos is a position of tσ0 . . . σn for some n ≥ 0. We define that the symbol of tσ0σ1 . . .

at such a position pos is f ∈ � iff f is at position pos in tσ0 . . . σm for some m ≥ 0. Otherwise,
(tσ0 . . . σn)|pos = X 0 ∈ V. Let n = i0 < i1 < . . . be the maximal (finite or infinite) sequence with
σi j +1(X j ) = . . . = σi j+1−1(X j ) = X j and σi j+1 (X j ) = X j+1 for all j . We require X j 
= X j+1, but
permit X j = X j ′ otherwise. If this sequence is finite (i.e., it has the form n = i0 < . . . < im),
then we define (tσ0σ1 . . . )|pos = X m. Otherwise, the substitutions perform infinitely many variable
renamings. In this case, we use one special variable Z∞ and define (tσ0σ1 . . . )|pos = Z∞. So if
σ0(X ) = Y , σ1(Y ) = X , σ2(X ) = Y , σ3(Y ) = X , etc., we define X σ0σ1 . . . = Y σ0σ1 . . . = Z∞.
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obtain that pin(�t)μ0 is nonterminating for RP .

pin(�t)μ0 →≥i1
RP

r1μ1 →≥i2
RP

r2μ2 →≥i3
RP

. . .

As π (p(�t)) ∈ A(�π , �π ) and thus π (pin(�t)) = π (pin(�t)μ0) ∈ T (�Pπ
), this is a

contradiction.

4. TERMINATION OF INFINITARY CONSTRUCTOR REWRITING
One of the most powerful methods for automated termination analysis of rewrit-
ing is the Dependency Pair (DP) method [Arts and Giesl 2000] which is imple-
mented in most current termination tools for TRSs. However, since the DP
method only proves termination of term rewriting with finite terms, its use
is not sound in our setting. Nevertheless, we now show that only very slight
modifications are required to adapt dependency pairs from ordinary rewriting
to infinitary constructor rewriting. So any rewriting tool implementing depen-
dency pairs can easily be modified in order to prove termination of infinitary
constructor rewriting as well. Then, it can also analyze termination of logic
programs using the transformation of Definition 3.1.

Moreover, dependency pairs are a general framework that permits the in-
tegration of any termination technique for TRSs [Giesl et al. 2005, Theorem
36]. Therefore, instead of adapting each technique separately, it is sufficient
only to adapt the DP framework to infinitary constructor rewriting. Then, any
termination technique can be directly used for infinitary constructor rewriting.
In Section 4.1, we adapt the notions and the main termination criterion of the
dependency pair method to infinitary constructor rewriting and in Section 4.2
we show how to automate this criterion by adapting the “DP processors” of the
DP framework.

4.1 Dependency Pairs for InÞnitary Rewriting
Let R be a TRS. For each defined symbol f /n ∈ �D, we extend the set of
constructors �C by a fresh tuple symbol f 	/n. We often write F instead of f 	.
For t = g (�t) with g ∈ �D, let t	 denote g 	(�t).

Definition 4.1 (Dependency Pair [Arts and Giesl 2000]). The set of depen-
dency pairs for a TRS R is DP (R) = {�	 → t	 | � → r ∈ R, t is a subterm of r,
root(t) ∈ �D}.

Example 4.2. Consider again the logic program of Example 1.1 which was
transformed into the following TRS R in Example 3.2.

pin(X , X ) → pout(X , X ) (1)

pin(f(X ), g(Y )) → u1(pin(f(X ), f(Z )), X , Y ) (2)

u1(pout(f(X ), f(Z )), X , Y ) → u2(pin(Z , g(Y )), X , Y , Z ) (3)

u2(pout(Z , g(Y )), X , Y , Z ) → pout(f(X ), g(Y )) (4)
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For this TRS R, we have �D = {pin, u1, u2} and DP (R) is

Pin(f(X ), g(Y )) → Pin(f(X ), f(Z )) (5)

Pin(f(X ), g(Y )) → U1(pin(f(X ), f(Z )), X , Y ) (6)

U1(pout(f(X ), f(Z )), X , Y ) → Pin(Z , g(Y )) (7)

U1(pout(f(X ), f(Z )), X , Y ) → U2(pin(Z , g(Y )), X , Y , Z ) (8)

While Definition 4.1 is from Arts and Giesl [2000], all following definitions
and theorems are new. They extend existing concepts from ordinary to infinitary
constructor rewriting.

For termination, one tries to prove that there are no infinite chains of depen-
dency pairs. Intuitively, a dependency pair corresponds to a function call, and
a chain represents a possible sequence of calls that can occur during rewriting.
Definition 4.3 extends the notion of chains to infinitary constructor rewriting.
To this end, we use an argument filter π that describes which arguments of
function symbols have to be finite terms. So if π does not delete arguments (i.e.,
if π ( f ) = {1, . . . , n} for all f /n), then this corresponds to ordinary (finitary)
constructor rewriting and if π deletes all arguments (i.e., if π ( f ) = ∅ for all f ),
then this corresponds to full infinitary constructor rewriting. In Definition 4.3,
the TRS D usually stands for a set of dependency pairs. (Note that if R is a
TRS, then DP (R) is also a TRS.)

Definition 4.3 (Chain). Let D, R be TRSs and π be an argument fil-
ter. A (possibly infinite) sequence of pairs s1 → t1, s2 → t2, . . . from D
is a (D, R, π )-chain iff:

—for all i ≥ 1, there are substitutions σi : V → T ∞(�C, V) such that tiσi →∗
R

si+1σi+1, and
—for all i ≥ 1, we have π (siσi), π (tiσi) ∈ T (�π ). Moreover, if the rewrite sequence

from tiσi to si+1σi+1 has the form tiσi = q0 →R . . . →R qm = si+1σi+1, then
for all terms in this rewrite sequence we have π (q0), . . . , π (qm) ∈ T (�π ) as
well. So all terms in the sequence have finite ground terms on those positions
which are not filtered away by π .

In Example 4.2, “(6), (7)” is a chain for any argument filter π : If one in-
stantiates X and Z with the same finite ground term, then (6)’s instantiated
right-hand side rewrites to an instance of (7)’s left-hand side. Note that if
one uses an argument filter π which permits an instantiation of X and Z
with the infinite term f(f(. . . )), then there is also an infinite chain “(6), (7), (6),
(7), . . . ”.

In order to prove termination of a programP, by Theorem 3.7 we have to show
that all terms pin(�t) are terminating for RP whenever π (pin(�t)) is a finite ground
term and �t only contains function symbols from the logic program (i.e., �t contains
no defined symbols of the TRS RP ). Theorem 4.4 states that one can prove
absence of infinite (DP (RP ), RP , π ′)-chains instead. Here, π ′ is a filter which
filters away “at least as much” as π . However, π ′ has to be chosen in such a way
that the filtered TRSs π ′(DP (RP )) and π ′(RP ) satisfy the “variable condition”,
V(π ′(r)) ⊆ V(π ′(�)) for all � → r ∈ DP (RP ) ∪ RP . Then the filter π ′ detects
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all potentially infinite subterms in rewrite sequences (i.e., all subterms which
correspond to “nonunification-free parts” of P, that is, to nonground subterms
when “executing” the program P).

THEOREM 4.4 (PROVING INFINITARY TERMINATION). Let R be a TRS over � and
let π be an argument filter over �. We extend π to tuple symbols such that
π (F ) = π ( f ) for all f ∈ �D. Let π ′ be a refinement of π such that π ′(DP (R)) and
π ′(R) satisfy the variable condition.7 If there is no infinite (DP (R), R, π ′)-chain,
then all terms f (�t) with �t ∈ �T ∞(�C, V) and π ( f (�t)) ∈ T (�π ) are terminating for
R.

PROOF. Assume there is a nonterminating term f (�t) in the theorem. Since �t
does not contain defined symbols, the first rewrite step in the infinite sequence is
on the root position with a rule � = f (��) → r where �σ1 = f (�t). Since σ1 does not
introduce defined symbols, all defined symbols of rσ1 occur on positions of r. So
there is a subterm r ′ of r with defined root such that r ′σ1 is also nonterminating.
Let r ′ denote the smallest such subterm (i.e., for all proper subterms r ′′ of r ′,
the term r ′′σ1 is terminating). Then �	 → r′	 is the first dependency pair of the
infinite chain that we construct. Note that π (�σ1) and thus, π (�	σ1) and hence,
also π ′(�	σ1) = π ′(F (�t)) is a finite ground term by assumption. Moreover, as
�	 → r′	 ∈ DP (R) and as π ′(DP (R)) satisfies the variable condition, π ′(r′	σ1) is
finite and ground as well.

The infinite sequence continues by rewriting r ′σ1’s proper subterms repeat-
edly. During this rewriting, the left-hand sides of rules are instantiated by
constructor substitutions (i.e., substitutions with range T ∞(�C, V)). As π ′(R)
satisfies the variable condition, the terms remain finite and ground when ap-
plying the filter π ′. Finally, a root rewrite step is performed again. Repeating
this construction infinitely many times results in an infinite chain.

The following corollary combines Theorem 3.7 and Theorem 4.4. It describes
how we use the DP method for proving termination of logic programs.

COROLLARY 4.5 (TERMINATION OF LOGIC PROGRAMS BY DEPENDENCY PAIRS). Let
P be a logic program and let π be an argument filter over (�, �). We extend π to
�P and to tuple symbols such that π (pin) = π (Pin) = π (p) for all p ∈ �. For all
other symbols f /n that are not from � or �, we define π ( f /n) = {1, . . . , n}. Let
π ′ be a refinement of π such that π ′(DP (RP )) and π ′(RP ) satisfy the variable
condition. If there is no infinite (DP (RP ), RP , π ′)-chain, then all queries
Q ∈ Arat(�, �, V) with π (Q) ∈ A(�π , �π ) are terminating for P.

Example 4.6. We want to prove termination of Example 1.1 for all queries
Q where π (Q) is finite and ground for the filter π (h) = {1} for all h ∈ {p, f, g}. By
Corollary 4.5, it suffices to show absence of infinite (DP (R), R, π ′)-chains. Here,

7To see why the variable condition is needed in Theorem 4.4, let R = {g(X ) → f(X ), f(s(X )) → f(X )}
and π = π ′ where π ′(g) = ∅, π ′(f) = π ′(F) = π ′(s) = {1}. R’s first rule violates the variable
condition: V(π ′(f(X ))) = {X } 
⊆ V(π ′(g(X ))) = ∅. There is no infinite chain, since π ′ does not allow
us to instantiate the variable X in the dependency pair F(s(X )) → F(X ) by an infinite term.
Nevertheless, there is a nonterminating term g(s(s(. . . ))) which is filtered to a finite ground term
π ′(g(s(s(. . . )))) = g.
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R is the TRS {(1), . . . , (4)} from Example 3.2 and DP (R) are rules (5) through (8)
from Example 4.2. The filter π ′ has to satisfy π ′(h) ⊆ π (h) = {1} for h ∈ {f, g} and
moreover, π ′(pin) and π ′(Pin) must be subsets of π (pin) = π (Pin) = π (p) = {1}.
Moreover, we have to choose π ′ such that the variable condition is fulfilled. So
while π is always given, π ′ has to be determined automatically. Of course, there
are only finitely many possibilities for π ′. In particular, defining π ′(h) = ∅ for
all symbols h is always possible. But to obtain a successful termination proof
afterwards, one should try to generate filters where the sets π ′(h) are as large
as possible, since such filters provide more information about the finiteness
of arguments. We will present suitable heuristics for finding such filters π ′

in Section 5. In our example, we use π ′(pin) = π ′(Pin) = π ′(f) = π ′(g) = {1},
π ′(pout) = π ′(u1) = π ′(U1) = {1, 2}, and π ′(u2) = π ′(U2) = {1, 2, 4}. For the non-
well-moded Example 1.3 we choose π ′(g) = ∅ instead to satisfy the variable
condition.

So to automate the criterion of Corollary 4.5, we have to tackle two problems.

(I) We start with a given filter π which describes the set of queries whose ter-
mination should be proved. Then we have to find a suitable argument filter
π ′ that refines π in such a way that the variable condition of Theorem 4.4 is
fulfilled and that the termination proof is “likely to succeed.” This problem
will be discussed in Section 5.

(II) For the chosen argument filter π ′, we have to prove that there is no infinite
(DP (RP ), RP , π ′)-chain. We show how to do this in the following subsection.

4.2 Automation by Adapting the DP Framework
Now we show how to prove absence of infinite (DP (R), R, π )-chains automati-
cally. To this end, we adapt the DP framework of Giesl et al. [2005] to infinitary
rewriting. In this framework, we now consider arbitrary DP problems (D, R, π )
where D and R are TRSs and π is an argument filter. Our goal is to show that
there is no infinite (D, R, π )-chain. In this case, we call the problem finite. Ter-
mination techniques should now be formulated as DP processors which operate
on DP problems instead of TRSs. A DP processor Proc takes a DP problem
as input and returns a new set of DP problems which then have to be solved
instead. Proc is sound if for all DP problems d , d is finite whenever all DP
problems in Proc(d ) are finite. So termination proofs start with the initial DP
problem (DP (R), R, π ). Then this problem is transformed repeatedly by sound
DP processors. If the final processors return empty sets of DP problems, then
termination is proved.

In Theorems 4.9, 4.11, and 4.13 we will recapitulate three of the most impor-
tant existing DP processors [Giesl et al. 2005] and describe how they must be
modified for infinitary constructor rewriting. To this end, they now also have to
take the argument filter π into account. The first processor uses an estimated
dependency graph to estimate which dependency pairs can follow each other in
chains.

Definition 4.7 (Estimated Dependency Graph). Let (D, R, π ) be a DP prob-
lem. The nodes of the estimated (D, R, π )-dependency graph are the pairs of
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D and there is an arc from s → t to u → v iff CAP(t) and a variant u′ of u
unify with an mgu μ where π (CAP(t)μ) = π (u′μ) is a finite term. Here, CAP(t)
replaces all subterms of t with defined root symbol by different fresh variables.

Example 4.8. For the DP problem (DP (R), R, π ′) from Example 4.6 we ob-
tain the following.

For example, there is an arc (6) → (7), as CAP(U1(pin(f(X ), f(Z )), X , Y )) =
U1(V , X , Y ) unifies with U1(pout(f(X ′), f(Z ′)), X ′, Y ′) by instantiating the argu-
ments of U1 with finite terms. But there are no arcs (5) → (5) or (5) → (6), since
Pin(f(X ), f(Z )) and Pin(f(X ′), g(Y ′)) do not unify, even if one instantiates Z and
Y ′ by infinite terms (as permitted by the filter π ′(Pin) = {1}).

Note that filters are used to detect potentially infinite arguments, but these
arguments are not removed, since they can still be useful in the termination
proof. In Example 4.8, they are needed to determine that (5) has no outgoing
arcs.

If s → t, u → v is a (D, R, π )-chain then there is an arc from s → t to u → v
in the estimated dependency graph. Thus, absence of infinite chains can be
proved separately for each maximal Strongly Connected Component (SCC) of
the graph. This observation is used by the following processor to modularize
termination proofs by decomposing a DP problem into subproblems. If there
are n SCCs in the graph and if Di are the dependency pairs of the ith SCC
(for 1 ≤ i ≤ n), then one can decompose the set of dependency pairs D into the
subsets D1, . . . , Dn.

THEOREM 4.9 (DEPENDENCY GRAPH PROCESSOR). For a DP problem (D, R, π ),
let Proc return {(D1, R, π ), . . . , (Dn, R, π )} where D1, . . . , Dn are the sets of nodes
of the SCCs in the estimated dependency graph. Then Proc is sound.

PROOF. We prove that if s → t, u → v is a chain, then there is an arc
from s → t to u → v in the estimated dependency graph. This suffices for
Theorem 4.9, since then every infinite (D, R, π )-chain corresponds to an infinite
path in the graph. This path ends in an SCC with nodes Di and thus, there is
also an infinite (Di, R, π )-chain. Hence, if all (Di, R, π ) are finite DP problems,
then so is (D, R, π ).

Let s → t, u → v be a (D, R, π )-chain. Thus, tσ1 →∗
R uσ2 for some constructor

substitutions σ1, σ2 where π (tσ1) and π (uσ2) are finite. Let pos1, . . . , posn be the
top positions where t has defined symbols. Then CAP(t) = t[Y1]pos1

. . . [Yn]posn

for fresh variables Y j . Moreover, let the variant u′ result from u by replacing ev-
ery X ∈ V(u) by a fresh variable X ′. Thus, the substitution σ with σ (X ′) = σ2(X )
for all X ∈ V(u), σ (X ) = σ1(X ) for all X ∈ V(t), and σ (Y j ) = uσ2|pos j

unifies
CAP(t) and u′. So there is also an mgu μ where σ = μτ for some substitution τ .
Moreover, since π (uσ2) = π (u′σ ) is finite, the term π (u′μ) is finite, too. Hence,
by Definition 4.7 there is indeed an arc from s → t to u → v.
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Example 4.10. In Example 4.8, the only SCC consists of (6) and (7).
Thus, the dependency graph processor transforms the initial DP problem
(DP (R), R, π ′) into ({(6), (7)}, R, π ′), that is, it deletes the dependency pairs (5)
and (8).

The next processor is based on reduction pairs (�, �) where � and � are
relations on finite terms. Here, � is reflexive, transitive, monotonic (i.e., s � t
implies f (. . . s . . . ) � f (. . . t . . . ) for all function symbols f ), and stable (i.e., s � t
implies sσ � tσ for all substitutions σ ) and � is a stable well-founded order
compatible with � (i.e., � ◦ � ⊆ � or � ◦ � ⊆ �). There are many techniques
to search for such relations automatically (recursive path orders, polynomial
interpretations, etc. [Dershowitz 1987]).

For a DP problem (D, R, π ), we now try to find a reduction pair (�, �) such
that all filteredR-rules are weakly decreasing (with respect to �) and all filtered
D-dependency pairs are weakly or strictly decreasing (with respect to � or �).8

Requiring π (�) � π (r) for all � → r ∈ R ensures that in chains s1 → t1, s2 →
t2, . . . with tiσi →∗

R si+1σi+1 as in Definition 4.3, we have π (tiσi) � π (si+1σi+1).
Hence, if a reduction pair satisfies the preceding conditions, then the strictly
decreasing dependency pairs (i.e., those s → t ∈ D where π (s) � π (t)) cannot
occur infinitely often in chains. So the following processor deletes these pairs
from D. For any TRS D and any relation �, let D�π

= {s → t ∈ D | π (s) � π (t)}.
THEOREM 4.11 (REDUCTION PAIR PROCESSOR). Let (�, �) be a reduction

pair. Then the following DP processor Proc is sound. For (D, R, π ), Proc returns

—{(D \ D�π
, R, π )}, if D�π

∪ D�π
= D and R�π

= R
—{(D, R, π )}, otherwise

PROOF. We prove this theorem by contradiction, that is, we assume that
(D, R, π ) is infinite and then proceed to show that (D \ D�π

, R, π ) has to be
infinite, too.

From the assumption that (D, R, π ) is infinite, we know that there is an
infinite (D, R, π )-chain s1 → t1, s2 → t2, . . . with tiσi →∗

R si+1σi+1. For any term
t we have π (tσ ) = π (t)π (σ ) where π (σ )(x) = π (σ (x)) for all x ∈ V. So by stability
of � and �, D�π

∪ D�π
= D implies

π (siσi) = π (si)π (σi) (�) π (ti)π (σi) = π (tiσi). (9)

Note that π (siσi) and π (tiσi) are finite. Thus, comparing them with � is possible.
Similarly, by the observation π (tσ ) = π (t)π (σ ) we also get that tiσi →∗

R si+1σi+1

implies π (tiσi) →∗
π (R) π (si+1σi+1). As R�π

= R means that π (R)’s rules are
decreasing with respect to �, by monotonicity and stability of � we get π (tiσi) �
π (si+1σi+1). With (9), this implies π (s1σ1) (�)π (t1σ1) � π (s2σ2) (�)π (t2σ2) � . . . As
� is compatible with � and well founded, π (siσi) � π (tiσi) only holds for finitely
many i. So sj → t j , sj+1 → t j+1, . . . is an infinite (D \D�π

, R, π ) chain for some
j and thus, the DP problem (D \ D�π

, R, π ) is infinite.

8We only consider filtered rules and dependency pairs. Thus, � and � are only used to compare
those parts of terms which remain finite for all instantiations in chains.
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Example 4.12. For the DP problem ({(6), (7)}, R, π ′) in Example 4.10, one
can easily find a reduction pair9 where the dependency pair (7) is strictly de-
creasing and where (6) and all rules are weakly decreasing after applying the
filter π ′.

Pin(f(X )) � U1(pin(f(X )), X ) pin(X ) � pout(X , X )
U1(pout(f(X ), f(Z )), X ) � Pin(Z ) pin(f(X )) � u1(pin(f(X )), X )

u1(pout(f(X ), f(Z )), X ) � u2(pin(Z ), X , Z )
u2(pout(Z , g(Y )), X , Z ) � pout(f(X ), g(Y ))

Thus, the reduction pair processor can remove (7) from the DP problem which
results in ({(6)}, R, π ′). By applying the dependency graph processor again, one
obtains the empty set of DP problems, since now the estimated dependency
graph only has the node (6) and no arcs. This proves that the initial DP problem
(DP (R), R, π ′) from Example 4.6 is finite and thus, the logic program from
Example 1.1 terminates for all queries Q where π (Q) is finite and ground.
Note that termination of the non-well-moded program from Example 1.3 can
be shown analogously since finiteness of the initial DP problem can be proved
in the same way. The only difference is that we obtain g instead of g(Y ) in the
last inequality.

As in Theorems 4.9 and 4.11, many other existing DP processors [Giesl et al.
2005] can easily be adapted to infinitary constructor rewriting as well. Finally,
one can also use the following processor to transform a DP problem (D, R, π )
for infinitary constructor rewriting into a DP problem (π (D), π (R), id ) for ordi-
nary rewriting. Afterwards, any existing DP processor for ordinary rewriting
becomes applicable.10 Since any termination technique for TRSs can immedi-
ately be formulated as a DP processor [Giesl et al. 2005, Theorem 36], now any
termination technique for ordinary rewriting can be directly used for infinitary
constructor rewriting as well.

THEOREM 4.13 (ARGUMENT FILTER PROCESSOR). Let Proc ( (D, R, π ) ) = {(π (D),
π (R), id )} where id ( f ) = {1, . . . , n} for all f /n. Then Proc is sound.

PROOF. If s1 → t1, s2 → t2, . . . is an infinite (D, R, π )-chain with the sub-
stitutions σi as in Definition 4.3, then π (s1) → π (t1), π (s2) → π (t2), . . . is an
infinite (π (D), π (R), id )-chain with the substitutions π (σi). The reason is that
tiσi →∗

R si+1σi+1 implies π (ti)π (σi) = π (tiσi) →∗
π (R) π (si+1σi+1) = π (si+1)π (σi+1).

Moreover, by Definition 4.3, all terms in the rewrite sequence π (tiσi) →∗
π (R)

π (si+1σi+1) are finite.

9For example, one can use the polynomial interpretation |Pin(t1)| = |pin(t1)| = |U1(t1, t2)| =
|u1(t1, t2)| = |u2(t1, t2, t3)| = |t1|, |pout (t1, t2)| = |t2|, |f(t1)| = |t1| + 1, and |g(t1)| = 0.
10If (D, R, π ) results from the transformation of a logic program, then for (π (D), π (R), id ) it is even
sound to apply the existing DP processors for innermost rewriting [Giesl et al. 2005, 2006c]. These
processors are usually more powerful than those for ordinary rewriting. The framework presented
in Giesl et al. [2005] even supports constructor rewriting.
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5. REFINING THE ARGUMENT FILTER
In Section 3 we introduced a new transformation from logic programs P to
TRSs RP and showed that to prove the termination of a class of queries for P,
it is sufficient to analyze the termination behavior of RP . Our criterion to prove
termination of logic programs was summarized in Corollary 4.5.

The transformation itself is trivial to automate and, as shown in Section 4,
existing systems implementing the DP method can easily be adapted to prove
termination of infinitary constructor rewriting. The missing part in the au-
tomation is the generation of a suitable argument filter from the user input;
see Task (I) at the end of Section 4.1. After presenting the general algorithm to
refine argument filters in Section 5.1, we introduce suitable heuristics in Sec-
tions 5.2 and 5.3. Finally, we extend the general algorithm for the refinement
of argument filters by integrating a mode analysis based on argument filters
in Section 5.4. This allows us to handle logic programs where a predicate is
used with several different modes (i.e., where different occurrences of the same
predicate have different input and output positions). The usefulness of the dif-
ferent heuristics from Sections 5.2 and 5.3 and the power of our extension in
Section 5.4 will be evaluated empirically in Section 7.

5.1 ReÞnement Algorithm for Argument Filters
In our approach of Corollary 4.5, the user supplies an initial argument filter π to
describe the set of queries whose termination should be proved. There are two
issues with this approach. First, while argument filters provide the user with
a more expressive tool to characterize classes of queries, termination problems
are often rather posed in the form of a moding function for compatibility reasons.
Fortunately, it is straightforward to extract an appropriate initial argument
filter from such a moding function m: We define π (p) = {i | m(p, i) = in} for all
p ∈ � and π ( f /n) = {1, . . . , n} for all function symbols f /n ∈ �.

Second, and less trivially, the variable condition V(π (r)) ⊆ V(π (�)) for all
rules � → r ∈ DP (RP ) ∪ RP does not necessarily hold for the argument filter
π . Thus, a refinement π ′ of π must be found such that the variable condition
holds for π ′. Then, our method from Corollary 4.5 can be applied.

Unfortunately, there are often many refinements π ′ of a given filter π such
that the variable condition holds. The right choice of π ′ is crucial for the suc-
cess of the termination analysis. As already mentioned in Example 4.6, the
argument filter that simply filters away all arguments of all function symbols
in the TRS, that is, that has π ′( f ) = ∅ for all f ∈ �P , is a refinement of ev-
ery argument filter π and it obviously satisfies the variable condition. But of
course, only termination of trivial logic programs can be shown when using this
refinement π ′.

Example 5.1. We consider the logic program of Example 1.1. As shown in
Example 3.2, the following rule results (among others) from the translation of
the logic program.

pin(f(X ), g(Y )) → u1(pin(f(X ), f(Z )), X , Y ) (2)
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Suppose that we want to prove termination of all queries p(t1, t2) where both
t1 and t2 are (finite) ground terms. This corresponds to the moding m(p, 1) =
m(p, 2) = in, that is, to the initial argument filter π with π (p) = {1, 2}.

In Corollary 4.5, we extend π to pin and Pin by defining it to be {1, 2} as well.
In order to prove termination, we now have to find a refinement π ′ of π such
that π ′(DP (RP )) and π ′(RP ) satisfy the variable condition and such that there
is no infinite (DP (RP ), RP , π ′)-chain.

Let us first try to define π ′ = π . Then π ′ does not filter away any arguments.
Thus, π ′(pin) = {1, 2}, π ′(u1) = {1, 2, 3}, and π ′(f) = π ′(g) = {1}. But then clearly,
the variable condition does not hold as Z occurs in π ′(r) but not in π ′(�) if � → r
is Rule (2).

So we have to choose a different refinement π ′. There remain three choices
how we can refine π to π ′ in order to filter away the variable Z in the right-hand
side of Rule (2): We can filter away the first argument of f by defining π ′(f) = ∅,
we can filter away pin’s second argument by defining π (pin) = {1}, or we can
filter away the first argument of u1 by defining π (u1) = {2, 3}.

The decision which of the three choices should be taken must be done by a
suitable heuristic. The following definition gives a formalization for such heuris-
tics. Here we assume that the choice only depends on the term t containing a
variable that leads to a violation of the variable condition and on the position
pos of the variable. Then a refinement heuristic ρ is a function such that ρ(t, pos)
returns a function symbol f /n and an argument position i ∈ {1, . . . , n} such that
filtering away the ith argument of f would erase the position pos in the term t.
For instance, if t is the right-hand side u1(pin(f(X ), f(Z )), X , Y ) of Rule (2) and
pos is the position of the variable Z in this term (i.e., pos = 121), then ρ(t, pos)
can be either (f, 1), (pin, 2), or (u1, 1).

Definition 5.2 (Refinement Heuristic). A refinement heuristic is a mapping
ρ : T (�P , V) × N∗ → �P × N such that whenever ρ(t, pos) = ( f , i), then there is
a position pos′ with pos′ i being a prefix of pos and root(t|pos′ ) = f .

Given a TRS RP resulting from the transformation of a logic program P
and a refinement heuristic ρ, Algorithm 1 computes a refinement π ′ of a
given argument filter π such that the variable condition holds for DP (RP )
and RP .

Termination of this algorithm is obvious as RP is finite and each change of
the argument filter in Step 2.2 reduces the number of unfiltered arguments.
Note also that ρ(r, pos) is always defined since pos is never the top position ε.
The reason is that the TRS RP is noncollapsing (i.e., it has no right-hand side
consisting just of a variable). The algorithm is correct as it only terminates if
the variable condition holds for every dependency pair and every rule.

Note that if π ′(F ) = π ′( f ) for every defined function symbol f and if we do
not filter away the first argument position of the function symbols uc,i, that
is, 1 ∈ π ′(uc,i), then the satisfaction of the variable condition for RP implies
that the variable condition for DP (RP ) holds as well. Thus, for heuristics that
guarantee these properties, we only have to consider RP in Algorithm 1.
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Algorithm 1. General Refinement Algorithm

Input: argument filter π , refinement heuristic ρ, TRS RP
Output: refined argument filter π ′ such that π ′(DP (RP )) and π ′(RP ) satisfy the variable

condition

1. π ′ := π

2. If there is a rule � → r from DP (RP ) ∪ RP
and a position pos with r|pos ∈ V(π ′(r)) \ V(π ′(�)), then:

2.1. Let ( f , i) be the result of ρ(r, pos), that is, ( f , i) := ρ(r, pos).

2.2. Modify π ′ by removing i from π ′( f ), that is, π ′( f ) := π ′( f ) \ {i}.
For all other symbols from �P , π ′ remains unchanged.

2.3. Go back to Step 2.

5.2 Simple ReÞnement Heuristics
The following definition introduces two simple possible refinement heuristics.
If a term t has a position pos with a variable that violates the variable condi-
tion, then these heuristics filter away the respective argument position of the
innermost, respectively, the outermost function symbol above the variable.

Definition 5.3 (Innermost/Outermost Refinement Heuristic). Let t be a
term and let “pos i” respectively “i pos” be a position in t. The innermost re-
finement heuristic ρim is defined as follows.

ρim(t, pos i) = (root(t|pos), i)

The outermost refinement heuristic ρom is defined as follows:

ρom(t, i pos) = (root(t), i)

So if t is again the term u1(pin(f(X ), f(Z )), X , Y ), then the innermost refine-
ment heuristic would result in ρim(t, 121) = (f, 1) and the outermost refinement
heuristic gives ρom(t, 121) = (u1, 1).

Both heuristics are simple but problematic, as shown in
Example 5.4. Filtering the innermost function symbol often results in
the removal of an argument position that is relevant for termination of
another rule. Filtering the outermost function symbol excludes the possibility
of filtering the arguments of function symbols from the signature � of the
original logic program. Moreover, the outermost heuristic also often removes
the first argument of some uc,i-symbol. Afterwards, a successful termination
proof is hardly possible anymore.

Example 5.4. Consider again the logic program of Example 1.1 which was
transformed into the following TRS in Example 3.2.

pin(X , X ) → pout(X , X ) (1)

pin(f(X ), g(Y )) → u1(pin(f(X ), f(Z )), X , Y ) (2)

u1(pout(f(X ), f(Z )), X , Y ) → u2(pin(Z , g(Y )), X , Y , Z ) (3)

u2(pout(Z , g(Y )), X , Y , Z ) → pout(f(X ), g(Y )) (4)

ACM Transactions on Computational Logic, Vol. 11, No. 1, Article 2, Publication date: October 2009.



2:24 • P. Schneider-Kamp et al.

As shown in Example 4.2 we obtain the following dependency pairs for the
preceding rules.

Pin(f(X ), g(Y )) → Pin(f(X ), f(Z )) (5)

Pin(f(X ), g(Y )) → U1(pin(f(X ), f(Z )), X , Y ) (6)

U1(pout(f(X ), f(Z )), X , Y ) → Pin(Z , g(Y )) (7)

U1(pout(f(X ), f(Z )), X , Y ) → U2(pin(Z , g(Y )), X , Y , Z ) (8)

As in Example 5.1 we want to prove termination of p(t1, t2) for all ground terms
t1 and t2. Hence, we start with the argument filter π that does not filter away any
arguments, that is, π ( f /n) = {1, . . . , n} for all f ∈ �P . We will now illustrate
Algorithm 1 using our two heuristics.

Using the innermost refinement heuristic ρim in the algorithm, for the second
DP (6) we get ρim(U1(pin(f(X ), f(Z )), X , Y ), 121) = (f, 1). This requires us to filter
away the only argument of f, that is, π ′(f) = ∅. Now Z is contained in the right-
hand side of the third DP (7), but not in the filtered left-hand side anymore.
Thus, we now have to filter away the first argument of Pin, that is, π ′(Pin) = {2}.
Due to the DP (6), we now also have to remove the second argument X of U1,
that is, π ′(U1) = {1, 3}. Consequently, we lose the information about finiteness
of p’s first argument and therefore cannot show termination of the program
anymore. More precisely, there is an infinite (DP (RP ), RP , π ′)-chain consisting
of the dependency pairs (6) and (7) using a substitution that instantiates the
variables X and Z by the infinite term f(f(. . . )). This is indeed a chain since all
infinite terms are filtered away by the refined argument filter π ′. Hence, the
termination proof fails.

Using the outermost refinement heuristic ρom instead, for the second DP
(6) we get ρom(U1(pin(f(X ), f(Z )), X , Y ), 121) = (U1, 1), that is, π ′(U1) = {2, 3}.
Considering the third DP (7) we have to filter away the first argument of Pin,
that is, π ′(Pin) = {2}. Due to the DP (6), we now also have to remove the second
argument of U1, that is, π ′(U1) = {3}. So we obtain the same infinite chain
as before since we lose the information about finiteness of p’s first argument.
Hence, we again cannot show termination.

A slightly improved version of the outermost refinement heuristic can be
achieved by disallowing the filtering of the first arguments of the symbols uc,i

and Uc,i.

Definition 5.5 (Improved Outermost Refinement Heuristic). Let t be a term
and pos be a position in t. The improved outermost refinement heuristic ρom′ is
defined as:

ρom′ (t, i pos) =
{

ρom′ (t|i, pos) if i = 1 and either root(t) = uc,i or root(t) = Uc,i

(root(t), i) otherwise.

Example 5.6. Reconsider Example 5.4. Using the improved outermost re-
finement heuristic, for the second rule (2) we get ρom′ (u1 (pin (f(X ), f(Z )),
X , Y ), 121) = ρom′ (pin (f(X ), f(Z )), 21) = (pin, 2) requiring us to filter away
the second argument of pin, that is, π ′(pin) = {1}. Consequently, the algorithm
filters away the third arguments of both u1 and u2, that is, π ′(u1) = {1, 2} and
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π ′(u2) = {1, 2, 4}. Now the variable condition holds for RP . Therefore, by defin-
ing π ′(Pin) = π ′(pin), π ′(u1) = π ′(U1), and π ′(u2) = π ′(U2), the variable condition
also holds for DP (RP ). (As mentioned at the end of Section 5.1, by filtering
tuple symbols F in the same way as the original symbols f and by ensuring
1 ∈ π ′(uc,i), it suffices to check the variable condition only for the rules RP and
not for the dependency pairs DP (RP ).) This argument filter corresponds to the
one chosen in Example 4.6 and as shown in Section 4.2 one can now easily prove
termination.

5.3 Type-Based ReÞnement Heuristic
The improved outermost heuristic from Section 5.2 only filters symbols of the
form pin, pout , Pin, and Pout . Therefore, the generated argument filters are sim-
ilar to modings. However, there are cases where one needs to filter function
symbols from the original logic program, too. In this section we show how to
obtain a more powerful refinement heuristic using information from inferred
types.

There are many approaches to (direct) termination analysis of logic programs
that use type information in order to guess suitable “norms” or “ranking func-
tions”, for example, Bossi et al. [1992], Bruynooghe et al. [2007], Decorte et al.
[1993], and Martin et al. [1996]. In contrast to most of these approaches, we
do not consider typed logic programs, but untyped ones and we use types only
as a basis for a heuristic to prove termination of the transformed TRS. To our
knowledge, this is the first time that types are considered in the transforma-
tional approach to termination analysis of logic programs.

Example 5.7. Now we regard the logic program from Example 1.3. The
rules after the transformation of Definition 3.1 are

pin(X , X ) → pout(X , X ) (1)

pin(f(X ), g(Y )) → u1(pin(f(X ), f(Z )), X , Y ) (2)

u1(pout(f(X ), f(Z )), X , Y ) → u2(pin(Z , g(W )), X , Y , Z ) (10)

u2(pout(Z , g(W )), X , Y , Z ) → pout(f(X ), g(Y )). (11)

Using the improved outermost refinement heuristic ρom′ we start off as in Exam-
ple 5.6 and obtain π ′(pin) = {1}, π ′(u1) = {1, 2}, and π ′(u2) = {1, 2, 4}. However,
due to the last rule (11) we now get ρom′ (pout(f(X ), g(Y )), 21) = (pout , 2), that is,
π ′(pout) = {1}. Considering the third rule (10), we have to filter pin once more
and obtain π ′(pin) = ∅. So we again lose the information about finiteness of
p’s first argument and cannot show termination. Similar to Example 5.4, the
innermost refinement heuristic which filters away the only argument of f also
fails for this program.

So in the previous example, neither the innermost nor the (improved) out-
ermost refinement heuristic succeed. We therefore propose a better heuristic
which is like the innermost refinement heuristic, but which avoids the filtering
of certain arguments of original function symbols from the logic program. Close
inspection of the cases where filtering such function symbols is required reveals
that it is not advisable to filter away “reflexive” arguments. Here, we call an
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argument position i of a function symbol f reflexive (or “recursive”), if the ar-
guments on position i have the same “type” as the whole term f (. . . ) itself; see
Walther [1994]. A type assignment associates a predicate p/n with an n-tuple
of types for its arguments and, similarly, a function f /n with an (n + 1)-tuple
where the last element specifies the result type of f .

Definition 5.8 (Types). Let � be a set of types (i.e., a set of names). A type
assignment τ over a signature (�, �) and a set of types � is a mapping τ :
� ∪ � → �∗ such that τ (p/n) ∈ �n for all p/n ∈ � and τ ( f /n) ∈ �n+1 for all
f /n ∈ �.

Let f /n ∈ � be a function symbol and τ be a type assignment with τ ( f ) =
(θ1, . . . , θn, θn+1). Then the set of reflexive positions of f /n is Reflexiveτ ( f /n) =
{i | 1 ≤ i ≤ n and θi = θn+1}.

To infer a suitable type assignment for a logic program, we use the follow-
ing simple algorithm. However, since we only use types as a heuristic to find
suitable argument filters, any other type assignment would also yield a cor-
rect method for termination analysis. In other words, the choice of the type
assignment only influences the power of our method, not its soundness. So, un-
like Bruynooghe et al. [2007], the correctness of our approach does not depend
on the logic program or the query being well-typed. More sophisticated type
inference algorithms were presented in Bruynooghe et al. [2005], Charatonik
and Podelski [1998], Gallagher and Puebla [2002], Janssens and Bruynooghe
[1992], Lu [2000], and Vaucheret and Bueno [2002], for example.

In our simple type inference algorithm, we define � as the reflexive and tran-
sitive closure of the following “similarity” relation on the argument positions:
Two argument positions of (possibly different) function or predicate symbols
are “similar” if there exists a program clause such that the argument positions
are occupied by identical variables. Moreover, if a term f (. . . ) occurs in the ith
position of a function or predicate symbol p, then the argument position of f ’s
result is similar to the ith argument position of p. (For a function symbol f /n
we also consider the argument position n + 1 which stands for the result of
the function.) After having computed the relation �, we then use a type assign-
ment which corresponds to the equivalence classes imposed by �. So our simple
type inference algorithm is related to sharing analysis [Bruynooghe et al. 1996;
Cortesi and Filé 1999; Lagoon and Stuckey 2002], that is, the program analy-
sis that aims at detecting program variables that in some program execution
might be bound to terms having a common variable.

Example 5.9. As an example, we compute a suitable type assignment for
the logic program from Example 1.3.

p(X , X ).
p(f(X ), g(Y )) :– p(f(X ), f(Z )), p(Z , g(W )).

Let pi denote the ith argument position of p, etc. Then due to the first clause we
obtain p1 � p2, since both argument positions are occupied by the variable X .
Moreover, since Z occurs both in the first argument positions of f and p in the
second clause, we also have p1 � f1. Finally, since an f-term occurs in the first
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and second argument of p and since a g-term occurs in the second argument of
p we also have f2 � p1 � p2 and g2 � p2. In other words, the relation � imposes
the two equivalence classes {p1, p2, f1, f2, g2} and {g1}. Hence, we compute a type
assignment with two types a and b where a and b correspond to {p1, p2, f1, f2, g2}
and {g1}, respectively. Thus, the type assignment is defined as τ (p) = τ (f) = (a, a)
and τ (g) = (b, a).

Note that the first argument of f has the same type a as its result and hence,
this argument position is reflexive. On the other hand, the first argument of
g has a different type than its result and is therefore not reflexive. Hence,
Reflexiveτ (f) = {1} and Reflexiveτ (g) = ∅.

Now we can define the following heuristic based on type assignments. It
is like the innermost refinement heuristic of Definition 5.3, but now reflexive
arguments of function symbols from � (i.e., from the original logic program)
are not filtered away.

Definition 5.10 (Type-Based Refinement Heuristic). Let t be a term, let
“pos i” be a position in t, and let τ be a type assignment. The type-based re-
finement heuristic ρτ

tb is defined as follows.

ρτ
tb(t, pos i) =

{
(root(t|pos), i) if root(t|pos) /∈ � or i /∈ Reflexiveτ (root(t|pos))
ρτ
tb(t, pos) otherwise

Note that the heuristic ρτ
tb never filters away the first argument of a symbol

uc,i or Uc,i from the TRSs DP (RP ) and RP . Therefore, as mentioned at the end
of Section 5.1, we only have to check the variable condition for the rules of RP ,
but not for the dependency pairs.

Example 5.11. We continue with the logic program from Example 1.3 and
use the type assignment computed in Example 5.9. The rules after the trans-
formation of Definition 3.1 are the following, see Example 5.7.

pin(X , X ) → pout(X , X ) (1)

pin(f(X ), g(Y )) → u1(pin(f(X ), f(Z )), X , Y ) (2)

u1(pout(f(X ), f(Z )), X , Y ) → u2(pin(Z , g(W )), X , Y , Z ) (10)

u2(pout(Z , g(W )), X , Y , Z ) → pout(f(X ), g(Y )) (11)

Due to the occurrence of Z in the right-hand side of the second rule (2), we
compute:

ρτ
tb(u1(pin(f(X ), f(Z )), X , Y ), 121)

= ρτ
tb(u1(pin(f(X ), f(Z )), X , Y ), 12) as f ∈ � and 1 ∈ Reflexiveτ (f)

= (pin, 2) as pin 
∈ �.

Thus, we filter away the second argument of pin, that is, π ′(pin) = {1}. Conse-
quently, we obtain π ′(u1) = {1, 2} and π ′(u2) = {1, 2, 4}.

Considering the fourth rule (11) we compute

ρτ
tb(pout(f(X ), g(Y )), 21)

= (g, 1) as 1 
∈ Reflexiveτ (g).
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Thus, we filter away the only argument of g, that is, π ′(g) = ∅. By filtering the
tuple symbols in the same way as the corresponding “lower-case” symbols, now
the variable condition holds for RP and therefore also for DP (RP ). Indeed, this
is the argument filter chosen in Example 4.6. With this filter, one can easily
prove termination of the program; see Section 4.2.

For the previous example, it is sufficient only to avoid the filtering of reflex-
ive positions. However, in general one should also avoid the filtering of all “un-
bounded” argument positions. An argument position of type θ is “unbounded” if
it may contain subterms from a recursive data structure, that is, if there exist
infinitely many terms of type θ . The decrease of the terms on such argument
positions might be the reason for the termination of the program and there-
fore, they should not be filtered away. To formalize the concept of unbounded
argument positions, we define the set of constructors of a type θ to consist of
all function symbols whose result has type θ . Then an argument position of a
function symbol f is unbounded if it is reflexive or if it has a type θ with a con-
structor that has an unbounded argument position. For the sake of brevity, we
also speak of just unbounded positions when referring to unbounded argument
positions.

Definition 5.12 (Unbounded Positions). Let θ ∈ � be a type and τ be a type
assignment. A function symbol f /n with τ ( f /n) = (θ1, . . . , θn, θn+1) is a con-
structor of θ iff θn+1 = θ . Let Constructorsτ (θ ) be the set of all constructors of
θ .

For such a function symbol f /n, we define the set of unbounded positions as
the smallest set such that Reflexiveτ ( f /n) ⊆ Unboundedτ ( f /n) and such that
i ∈ Unboundedτ ( f /n) if there is a g/m ∈ Constructorsτ (θi) and a 1 ≤ j ≤ m
with j ∈ Unboundedτ (g/m).

In the logic program from Examples 1.3 and 5.9, we had τ (p) = τ (f) = (a, a)
and τ (g) = (b, a). Thus, Constructorsτ (a) = {f, g} and Constructorsτ (b) = ∅.
Since the first argument position of f is reflexive, it is also unbounded. The first
argument position of g is not unbounded, since it is not reflexive and there is no
constructor of type b with an unbounded argument position. So in this example,
there is no difference between reflexive and unbounded positions.

However, we will show in Example 5.14 that there are programs where these
two notions differ. For that reason, we now improve our type-based refinement
heuristic and disallow the filtering of unbounded (instead of just reflexive)
positions.

Definition 5.13 (Improved Type-Based Refinement Heuristic). Let t be a
term, let “pos i” be a position in t, and let τ be a type assignment. The improved
type-based refinement heuristic ρτ

tb ′ is defined as follows.

ρτ
tb′ (t, pos i) =

{
(root(t|pos), i) if root(t|pos) /∈ � or i /∈ Unboundedτ (root(t|pos))
ρτ
tb ′ (t, pos) otherwise.

Example 5.14. The following logic program inverts an integer represented
by a sign (neg or pos) and by a natural number in Peano notation (using s and
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0). So the integer number 1 is represented by the term pos(s(0)), the integer
number −1 is represented by neg(s(0)), and the integer number 0 has the two
representations pos(0) and neg(0). Here nat(t) holds iff t represents a natural
number (i.e., if t is a term containing just s and 0) and inv simply exchanges
the function symbols neg and pos. The main predicate safeinv performs the de-
sired inversion where safeinv(t1, t2) only holds if t1 really represents an integer
number and t2 is its inversion.

nat(0).
nat(s(X )) :– nat(X ).
inv(neg(X ), pos(X )).
inv(pos(X ), neg(X )).
safeinv(X , neg(Y )) :– inv(X , neg(Y )), nat(Y ).
safeinv(X , pos(Y )) :– inv(X , pos(Y )), nat(Y ).

The rules after the transformation of Definition 3.1 are as follows.

natin(0) → natout(0) (12)

natin(s(X )) → u1(natin(X ), X ) (13)

u1(natout(X ), X ) → natout(s(X )) (14)

invin(neg(X ), pos(X )) → invout(neg(X ), pos(X )) (15)

invin(pos(X ), neg(X )) → invout(pos(X ), neg(X )) (16)

safeinvin(X , neg(Y )) → u2(invin(X , neg(Y )), X , Y ) (17)

u2(invout(X , neg(Y )), X , Y ) → u3(natin(Y ), X , Y ) (18)

u3(natout(Y ), X , Y ) → safeinvout(X , neg(Y )) (19)

safeinvin(X , pos(Y )) → u4(invin(X , pos(Y )), X , Y ) (20)

u4(invout(X , pos(Y )), X , Y ) → u5(natin(Y ), X , Y ) (21)

u5(natout(Y ), X , Y ) → safeinvout(X , pos(Y )) (22)

Let us assume that the user wants to prove termination of all queries
safeinv(t1, t2) where t1 is ground. So we use the moding m(safeinv, 1) = in and
m(safeinv, 2) = out. Thus, as initial argument filter π we have π (safeinv) = {1}
and hence π (safeinvin) = π (SAFEINVin) = {1}, while π ( f /n) = {1, . . . , n} for
all f /∈ {safeinv, safeinvin, SAFEINVin}. In Rule (17) one has to filter away
the second argument of invin or the only argument of neg in order to re-
move the “extra” variable Y on the right-hand side. From a type inference
for these rules we obtain the type assignment τ with τ (s) = (b, b), τ (0) = (b),
and τ (neg) = τ (pos) = (b, a). So “a” corresponds to the type of integers and
“b” corresponds to the type of naturals. The constructors of the naturals are
Constructorsτ (b) = {s, 0}. This is a recursive data structure since s has an
unbounded argument: 1 ∈ Reflexiveτ (s) ⊆ Unboundedτ (s). Thus, while neg’s
first argument position of type b is not reflexive, it is still unbounded, that is,
1 ∈ Unboundedτ (neg). Hence, our improved type-based heuristic decides to fil-
ter away the second argument of invin (as invin is not from the original signature
�). Now termination is easy to show.
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If one had considered the original type-based heuristic instead, then the
nonreflexive first argument of neg would be filtered away. Due to Rule (17),
then also the last argument of u2 has to be removed by the filter. But then the
variable Y would not occur anymore in the filtered left-hand side of Rule (18).
So to satisfy the variable condition for Rule (18), we would have to filter away
the only argument of natin. Similarly, the only argument of the corresponding
tuple symbol NATin would also be filtered away, blocking any possibility for a
successful termination proof.

5.4 Mode Analysis Based on Argument Filters and an Improved
ReÞnement Algorithm

In logic programming, it is not unusual that a predicate is used with different
modes (i.e., that different occurrences of the predicate have different input and
output positions). Uniqueness of moding can then be achieved by creating ap-
propriate copies of these predicate symbols and their clauses for every different
moding.

Example 5.15. Consider the following logic program for rotating a list
taken from Codish [2007]. Let P be the append-program consisting of the
clauses from Example 1.4 and the new clause

rotate(N , O) :– append(L, M , N ), append(M , L, O) (23)

with the moding m(rotate, 1) = in and m(rotate, 2) = out. For this moding, the
program is terminating.

But while the first use of append in Clause (23) supplies it with a ground
term only on the last argument position, the second use in (23) is with ground
terms only on the first two argument positions. Although the append-clauses
are even well moded for both kinds of uses, the whole program is not.

The logic program is transformed into the following TRS. As before, “[X |L]”
is an abbreviation for •(X , L), that is, • is the constructor for list insertion.

appendin([ ], M , M ) → appendout([ ], M , M ) (24)

appendin(•(X , L), M , •(X , N )) → u1(appendin(L, M , N ), X , L, M , N )
(25)

u1(appendout(L, M , N ), X , L, M , N ) → appendout(•(X , L), M , •(X , N )) (26)

rotatein(N , O) → u2(appendin(L, M , N ), N , O) (27)

u2(appendout(L, M , N ), N , O) → u3(appendin(M , L, O), L, M , N , O)
(28)

u3(appendout(M , L, O), L, M , N , O) → rotateout(N , O) (29)

Due to the “extra” variables L and M in the right-hand side of Rule (27) and
the “extra” variable O in the right-hand side of Rule (28),11 the only refined

11In the left-hand side of Rule (27), the variable O in the second argument of rotatein is removed
by the initial filter that describes the desired set of queries given by the user. Consequently, one
also has to filter away the last argument of u2. Hence, then O is indeed an “extra” variable in the
right-hand side of Rule (28).
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argument filter which would satisfy the variable condition of Corollary 4.5 is
the one where π (appendin) = ∅.12 As we can expect, for the queries described by
this filter, the append-program is not terminating and, thus, our new approach
fails, too.

The common solution [Apt 1997] is to produce two copies of the append-
clauses and to rename them apart. This is often referred to as “mode-
splitting.” First, we create labeled copies of the predicate symbol append and
label the predicate of each append-atom by the input positions of the mod-
ing in which it is used. Then, we extend our moding to m(append{3}, 3) =
m(append{1,2}, 1) = m(append{1,2}, 2) = in and m(append{3}, 1) = m(append{3}, 2)
= m(append{1,2}, 3) = out. In our example, termination of the resulting logic
program can easily be shown using both the classical transformation from Sec-
tion 1.1 or our new transformation.

rotate(N , O) :– append{3}(L, M , N ), append{1,2}(M , L, O).
append{3}([ ], M , M ).
append{3}([X |L], M , [X |N ]) :– append{3}(L, M , N ).
append{1,2}([ ], M , M ).
append{1,2}([X |L], L, [X |N ]) :– append{1,2}(L, M , N ).
In the preceding example, a preprocessing based on modings was sufficient

for a successful termination proof. In general, though, this is insufficient to
handle queries described by an argument filter. The following example demon-
strates this.

Example 5.16. Consider again the logic program P from Example 5.15
which is translated to the TRS RP = {(24), . . . , (29)}. This time we want to
show termination for all queries of the form rotate(t1, t2) where t1 is a finite
list (possibly containing nonground terms as elements). So t1 is instantiated by
terms of the form •(r1, •(r2, . . . •(rn, [ ]) . . . )) where the ri can be arbitrary terms
possibly containing variables.13

To specify these queries, the user would provide the initial argument filter π

with π (rotate) = {1} and π (•) = {2}. Now our aim is to prove termination of all
queries that are ground under the filter π . Thus, the first argument of rotate is
not necessarily a ground term (it is only guaranteed to be ground after filtering
away the second argument of •).

Therefore, if one wanted to preprocess the program using modings, then one
could not assume that the first argument of rotate were ground. Instead, one
would have to use the moding m(rotate, 1) = m(rotate, 2) = out. Therefore, in

12Alternatively, one could also filter away the first arguments of u2 and u3. But then one would
also have to satisfy the variable condition for the dependency pairs and one would obtain
π (APPENDin) = ∅. Hence, the termination proof attempt would fail as well.
13Such a termination problem can also result from an initial termination problem that was de-
scribed by modings. To demonstrate this, we could extend the program by the following clauses.

p(X , O) :– s2�(X , N ), rotate(N , O).
s2�(0, [ ]).
s2�(s(X ), [Y |N ]) :– s2�(X , N ).

To prove termination of all queries described by the moding m(p, 1) = in and m(p, 2) = out, one
essentially has to show termination for all queries of the form rotate(t1, t2) where t1 is a finite list.
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the calls to append, all argument positions would be considered as “out.” As
a consequence, no renamed-apart copies of clauses would be created and the
termination proof would fail.

In general, our refinement algorithm from Section 5.1 (Algorithm 1) aims to
compute an argument filter that filters away as few arguments as possible while
ensuring that the variable condition holds. In this way we make sure that the
maximal amount of information remains for the following termination analysis.

But as Examples 5.15 and 5.16 demonstrate, there are cases where we need
to create renamed-apart copies of clauses for certain predicates in order to
obtain a viable refined argument filter. To this end, a first idea might be to
combine an existing mode inference algorithm with Algorithm 1. However, it is
not clear how to do such a combination. The problem is that we already need to
know the refined argument filter in order to create suitable copies of clauses. At
the same time, we already need the renamed-apart copies of the clauses in order
to compute the refined argument filter. Thus, we have a classical “chicken-and-
egg” problem. Moreover, such an approach would always fail for programs like
Example 5.16 where there exists no suitable preprocessing based on modings.

Therefore, we replace Algorithm 1 by the following new Algorithm 2 that
simultaneously refines the argument filter and creates renamed-apart copies
on demand.

The idea of the algorithm is the following. Whenever our refinement heuristic
suggests to filter away an argument of a symbol pin, then instead of changing
the argument filter appropriately, we introduce a new copy of the symbol pin.
To distinguish the different copies of the symbols pin, we label them by the
argument positions that are not filtered away.

In general, a removal of argument positions of pin can already be performed
by the initial filter π that the user provides in order to describe the desired set
of queries. Therefore, if π (p) does not contain all arguments {1, . . . , n} for some
predicate symbol p/n, then we already introduce a new symbol pπ (p)

in and new
copies of the rewrite rules originating from p. In these rules, we use the new
symbol pπ (p)

in instead of pin.
Let us reconsider Example 5.16. To prove termination of all queries

rotate(t1, t2) with a finite list t1, the user would select the argument filter π

that eliminates the second argument of rotate and the first argument of the list
constructor •. So we have π (rotate) = {1}, π (•) = {2}, and π (append) = {1, 2, 3}.
Then in addition to the Rules (27) through (29) for the symbol rotatein we also in-
troduce the symbol rotate{1}

in . Moreover, in order to ensure that rotate{1}
in does the

same computation as rotatein, we add the following copies of the rewrite Rules
(27) through (29) originating from the predicate rotate. Here, all root symbols
of left- and right-hand sides are labeled with {1}.

rotate{1}
in (N , O) → u{1}

2 (appendin(L, M , N ), N , O) (30)

u{1}
2 (appendout(L, M , N ), N , O) → u{1}

3 (appendin(M , L, O), L, M , N , O)
(31)

u{1}
3 (appendout(M , L, O), L, M , N , O) → rotate{1}

out(N , O) (32)
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Algorithm 2. Improved Refinement Algorithm

Input: argument filter π , refinement heuristic ρ, TRS RP
Output: refined argument filter π ′ and modified TRS R′

P
such that π ′(R′

P ) satisfies the variable condition

1. R′
P := RP ∪ {�π (p) → rπ (p) | � → r ∈ RP (p), p/n ∈ �, π (p) � {1, . . . , n}}

2. π ′( f ) :=

⎧⎪⎨
⎪⎩

π ( f ), for all f ∈ � (i.e., for functions of P)
I, for all f = pI

in with p ∈ �

{1, . . . , n}, for all other symbols f /n

3. If there is a rule � → r from R′
P

and a position pos with r|pos ∈ V(π ′(r)) \ V(π ′(�)), then:

3.1. Let ( f , i) be the result of ρ(r, pos), that is, ( f , i) := ρ(r, pos).

3.2. We perform a case analysis depending on whether f has the form pI
in

for some p ∈ �. Here, unlabeled symbols of the form pin/n are treated
as if they were labeled with I = {1, . . . , n}.
• If f = pI

in, then we must have r = u(pI
in(...), . . . ) for some symbol

u. We introduce a new function symbol pI\{i}
in with π ′(pI\{i}

in ) = I \{i}
if it has not yet been introduced. Then:

◦ We replace pI
in by pI\{i}

in in the right-hand side of � → r:

R′
P := R′

P \ {� → r} ∪ {� → r},
where r = u(pI\{i}

in (...), . . . ).

◦ R′
P := R′

P ∪ {sI\{i} → t I\{i} | s → t ∈ R′
P (p)}.

If this introduces new labeled function symbols f /n where π ′

was not yet defined on, we define π ′( f ) = {1, . . . , n}.
◦ Let �′ → r ′ be the rule in R′

P with �′ = u(pI
out(...), . . . ). We now

replace pI
out by pI\{i}

out in the left-hand side of �′ → r ′:

R′
P := R′

P \ {�′ → r ′} ∪ {�′ → r ′},
where �′ = u(pI\{i}

out (...), . . . ).

• Otherwise (i.e., if f does not have the form pin or pI
in), then modify

π ′ by removing i from π ′( f ), that is, π ′( f ) := π ′( f ) \ {i}.
3.3. Go back to Step 3.

So in Step 1 of the algorithm, we initialize R′
P to contain all rules of RP .

But in addition, R′
P contains labeled copies of the rules resulting from those

predicates p/n where π (p) � {1, . . . , n}. In these rules, the root symbols of left-
and right-hand sides are labeled with π (p).

Formally, for every predicate symbol p ∈ �, let RP (p) denote those rules of
RP which result from p-clauses (i.e., from clauses whose head is built with the
predicate p). So RP (rotate) consists of the rule for rotatein and the rules for u2

and u3, that is, RP (rotate) = {(27), (28), (29)}.
Then for a term t = f (t1, . . . , tn) and a set of argument positions I ⊆ N,

let t I denote f I (t1, . . . , tn). So for t = rotatein(N , O) and I = {1}, we have
t I = rotate{1}

in (N , O). Hence if π (rotate) = {1}, then we extend R′
P by copies of
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the rules in RP (rotate) where the root symbols are labeled by {1}. In other words,
we have to add the rules {�π (p) → rπ (p) | � → r ∈ RP (rotate)} = {(30), (31), (32)}.

In Step 2, we initialize our desired argument filter π ′. This filter does not yet
eliminate any arguments except for original function symbols from the logic
program and for symbols of the form pI

in. Since, in our example, the initial
argument filter π of the user is π (rotate) = {1}, we have π ′(rotatein) = {1, 2}, but
π ′(rotate{1}

in ) = {1}. So for symbols pI
in, the label I describes those arguments that

are not filtered away. However, this does not hold for the other labeled symbols.
So the labeling of the symbols u{1}

2 , u{1}
3 , and append{1}

out only represents that they
“belong” to the symbol rotate{1}

in . But the argument filter for these symbols can be
determined arbitrarily. Initially, π ′ would not filter away any of their arguments,
that is, π ′(u{1}

2 ) = {1, 2, 3}, π ′(u{1}
3 ) = {1, 2, 3, 4, 5}, and π ′(rotate{1}

out) = {1, 2}. The
filter for original function symbols of the logic program is taken from the user-
defined argument filter π . So since the user described the desired set of queries
by setting π (•) = {2}, we also have π ′(•) = {2}.

In Steps 3 and 3.1, we look for rules violating the variable condition as in
Algorithm 1. Again, we use a refinement heuristic ρ to suggest a suitable func-
tion symbol f and an argument position i that should be filtered away. As before,
we restrict ourselves to refinement heuristics ρ which never select the first ar-
gument of a symbol uc,i. In this way, we only have to examine the rules (and
not also the dependency pairs) for possible violations of the variable condition.

If f is not a (possibly labeled) symbol of the form pin or pI
in, then we proceed

in Step 3.2 as before (i.e., as in Step 2.2 of Algorithm 1). But if f is a (possibly
labeled) symbol of the form pin or pI

in, then we do not modify the filter for f . If I
are the nonfiltered argument positions of f , then we introduce a new function
symbol labeled with I \ {i} instead and replace f by this new function symbol
in the rule that violated the variable condition.

In our example, we had R′
P = {(24), . . . , (29), (30), (31), (32)} and π ′ was the

filter that does not eliminate any arguments except for π ′(rotate{1}
in ) = {1} and

π ′(•) = {2}.
The Rules (25), (27), and (30) violate the variable condition. In the following,

we mark the violating variables by boxes. Let us regard Rule (25) first.

appendin(•(X , L), M , •(X , N )) → u1(appendin(L, M , N ), X , L, M , N ) (25)

To remove the variable X from the right-hand side, in Step 3.1 any refinement
heuristic must suggest to filter away the second argument of u1. As u1 does
not have the form pI

in, we use the second case of Step 3.2. Thus, we change π ′

such that π ′(u1) = {1, 2, 3, 4, 5} \ {2} = {1, 3, 4, 5}. Indeed, now this rule does not
violate the variable condition anymore.

We reach Step 3.3 and, thus, go back to Step 3 where we again choose a rule
that violates the variable condition. Let us now regard Rule (30).

rotate{1}
in (N , O) → u{1}

2 (appendin( L , M , N ), N , O ) (30)

To remove the first violating variable L, in Step 3.1 our refinement heuris-
tic suggests to filter away the first argument of the symbol appendin. But in-
stead of changing π ′(appendin), we introduce a new symbol append{2,3}

in with
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π ′(append{2,3}
in ) = {2, 3}. Moreover, we replace the symbol appendin in the

right-hand side of Rule (30) by the new symbol append{2,3}
in . Thus, Rule (30)

is modified to

rotate{1}
in (N , O) → u{1}

2 (append{2,3}
in (L, M , N ), N , O ). (33)

To make sure that append{2,3}
in has rewrite rules corresponding to the rules of

appendin, we now have to add copies of all rules that result from the append-
predicate. However, here we label every root symbol by {2, 3}. In other words,
we have to add the following rules to R′

P .

append{2,3}
in ([ ], M , M ) → append{2,3}

out ([ ], M , M ) (34)

append{2,3}
in (•(X , L), M , •(X , N )) → u{2,3}

1 (appendin(L, M , N ), X , L, M , N ) (35)

u{2,3}
1 (appendout(L, M , N ), X , L, M , N ) → append{2,3}

out (•(X , L), M , •(X , N )) (36)

Now the result of rewriting a term append{2,3}
in (. . . ) will always be a term of the

form append{2,3}
out (. . . ). Therefore, we have to replace appendout by append{2,3}

out in
the left-hand side of Rule (31) (since (31) is the rule that always “follows” (30)).
So the original Rule (31)

u{1}
2 (appendout(L, M , N ), N , O) → u{1}

3 (appendin(M , L, O), L, M , N , O) (31)

is replaced by the modified rule

u{1}
2 (append{2,3}

out (L, M , N ), N , O) → u{1}
3 (appendin(M , L, O), L, M , N , O). (37)

Thus, after the execution of Step 3.2, we have R′
P = {(24)−(29), (33)−(36), (37),

(32)}. In this way, we have introduced three new labeled symbols append{2,3}
in ,

u{2,3}
1 , and append{2,3}

out . On the unlabeled symbols, the argument filter π ′ did
not change, but we now additionally have π ′(append{2,3}

in ) = {2, 3}, π ′(u{2,3}
1 ) =

{1, 2, 3, 4, 5}, and π ′(append{2,3}
out ) = {1, 2, 3}.

We reach Step 3.3 and, thus, go back to Step 3 where we again choose a rule
that violates the variable condition. Let us again regard Rule (30), albeit in its
modified form as Rule (33). The variable M still violates the variable condition.
In Step 3.1, the refinement heuristic suggests to filter away the second argu-
ment of the symbol append{2,3}

in . Instead of changing π ′, we again introduce a
new symbol, namely append{3}

in with π ′(append{3}
in ) = {3}, and replace the symbol

append{2,3}
in in the right-hand side of Rule (33) by append{3}

in . Thus, we obtain a
further modification of Rule (33).

rotate{1}
in (N , O) → u{1}

2 (append{3}
in (L, M , N ), N , O ) (38)

Again, we have to ensure that append{3}
in has rewrite rules corresponding to

the rules of appendin. Thus, we add copies of all rules that result from the
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append-predicate where every root symbol is labeled by {3}.
append{3}

in ([ ], M , M ) → append{3}
out([ ], M , M ) (39)

append{3}
in (•(X , L), M , •(X , N )) → u{3}

1 (appendin(L, M , N ), X , L, M , N )
(40)

u{3}
1 (appendout(L, M , N ), X , L, M , N ) → append{3}

out(•(X , L), M , •(X , N )) (41)

We also have to replace append{2,3}
out by append{3}

out in the left-hand side of Rule
(37) (since (37) is the rule that always “follows” (33)). So Rule (37) is replaced
by the modified rule

u{1}
2 (append{3}

out(L, M , N ), N , O) → u{1}
3 (appendin(M , L, O), L, M , N , O). (42)

Thus, after the execution of Step 3.2, we have R′
P = {(24)−(29), (38)−

(41), (34)−(36), (42), (32)}. Again we have introduced three new labeled sym-
bols append{3}

in , u{3}
1 , and append{3}

out. On the unlabeled symbols, the argument
filter π ′ did not change, but we now additionally have π ′(append{3}

in ) = {3},
π ′(u{3}

1 ) = {1, 2, 3, 4, 5}, and π ′(append{3}
out) = {1, 2, 3}.

We reach Step 3.3 and, thus, go back to Step 3 where we again choose a rule
that violates the variable condition. We again regard Rule (30), albeit in its
modified form as Rule (38). The variable O still violates the variable condition.
In Step 3.1, any refinement heuristic must suggest to filter away the third
argument of the symbol u{1}

2 . As u{1}
2 does not have the form pI

in, we use the second
case of Step 3.2. Thus, we change π ′ such that π ′(u{1}

2 ) = {1, 2, 3} \ {3} = {1, 2}.
Indeed, now Rule (38) does not violate the variable condition anymore.

We reach Step 3.3 and, thus, go back to Step 3 where we again choose a rule
that still violates the variable condition. Let us now regard Rule (42).

u{1}
2 (append{3}

out(L, M , N ), N , O) → u{1}
3 (appendin(M , L, O ), L, M , N , O )

(42)

Here our refinement heuristic suggests to filter away the third argument
of the symbol appendin in order to remove the extra variable O. Instead
of changing π ′, we again introduce a new symbol, namely append{1,2}

in with
π ′(append{1,2}

in ) = {1, 2}, and replace the symbol appendin in the right-hand side
of Rule (42) by append{1,2}

in . Thus, we obtain a further modification of Rule (42).

u{1}
2 (append{3}

out(L, M , N ), N , O) → u{1}
3 (append{1,2}

in (M , L, O), L, M , N , O )
(43)

Again, we have to ensure that append{1,2}
in has rewrite rules corresponding to

the rules of appendin. Thus, we add copies of all rules that result from the
append-predicate where every root symbol is labeled by {1, 2}.

append{1,2}
in ([ ], M , M ) → append{1,2}

out ([ ], M , M ) (44)

append{1,2}
in (•(X , L), M , •(X , N )) → u{1,2}

1 (appendin(L, M , N ), X , L, M , N ) (45)

u{1,2}
1 (appendout(L, M , N ), X , L, M , N ) → append{1,2}

out (•(X , L), M , •(X , N )) (46)
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We also have to replace appendout by append{1,2}
out in the left-hand side of Rule

(32) (since (32) is the rule that always “follows” (42)). So Rule (32) is replaced
by the modified rule

u{1}
3 (append{1,2}

out (M , L, O), L, M , N , O) → rotate{1}
out(N , O). (47)

Thus, after the execution of Step 3.2, we now have R′
P = {(24)−(29), (38)−

(41), (34)−(36), (43)−(46), (47)}. Again we have introduced three new labeled
symbols append{1,2}

in , u{1,2}
1 , and append{1,2}

out . On the unlabeled symbols, the argu-
ment filter π ′ did not change, but we now additionally have π ′(append{1,2}

in ) =
{1, 2}, π ′(u{1,2}

1 ) = {1, 2, 3, 4, 5}, and π ′(append{1,2}
out ) = {1, 2, 3}.

Note that now we have indeed separated the two copies of the append-rules
where append{3}

in corresponds to the version of append that has the third argu-
ment as input and append{1,2}

in is the version where the first two arguments serve
as input. This copying of predicates works although the initial argument filter
already filtered away arguments of function symbols like “•” (i.e., the initial
argument filter was already beyond the expressivity of modings).

Step 3 is repeated until the variable condition is not violated anymore. Note
that Algorithm 2 always terminates since there are only finitely many possible
labeled variants for every symbol. In our example, we obtain the following set
of rules R′

P .

appendin([ ], M , M ) → appendout([ ], M , M ) (24)

appendin(•(X , L), M , •(X , N )) → u1(appendin(L, M , N ), X , L, M , N ) (25)

u1(appendout(L, M , N ), X , L, M , N ) → appendout(•(X , L), M , •(X , N )) (26)

rotatein(N , O) → u2(append{3}
in (L, M , N ), N , O) (48)

u2(append{3}
out(L, M , N ), N , O) → u3(appendin(M , L, O), L, M , N , O) (49)

u3(appendout(M , L, O), L, M , N , O) → rotateout(N , O) (29)

rotate{1}
in (N , O) → u{1}

2 (append{3}
in (L, M , N ), N , O) (38)

u{1}
2 (append{3}

out(L, M , N ), N , O) → u{1}
3 (append{1,2}

in (M , L, O), L, M , N , O) (43)

u{1}
3 (append{1,2}

out (M , L, O), L, M , N , O) → rotate{1}
out(N , O) (47)

append{2,3}
in ([ ], M , M ) → append{2,3}

out ([ ], M , M ) (34)

append{2,3}
in (•(X , L), M , •(X , N )) → u{2,3}

1 (append{2,3}
in (L, M , N ), X , L, M , N ) (50)

u{2,3}
1 (append{2,3}

out (L, M , N ), X , L, M , N ) → append{2,3}
out (•(X , L), M , •(X , N )) (51)

append{3}
in ([ ], M , M ) → append{3}

out([ ], M , M ) (39)

append{3}
in (•(X , L), M , •(X , N )) → u{3}

1 (append{3}
in (L, M , N ), X , L, M , N ) (52)

u{3}
1 (append{3}

out(L, M , N ), X , L, M , N ) → append{3}
out(•(X , L), M , •(X , N )) (53)

append{1,2}
in ([ ], M , M ) → append{1,2}

out ([ ], M , M ) (44)

append{1,2}
in (•(X , L), M , •(X , N )) → u{1,2}

1 (append{1,2}
in (L, M , N ), X , L, M , N ) (54)

u{1,2}
1 (append{1,2}

out (L, M , N ), X , L, M , N ) → append{1,2}
out (•(X , L), M , •(X , N )) (55)
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The refined argument filter π ′ is given by

π ′(appendin) = {1, 2, 3} π ′(rotate{1}
in ) = {1} π ′(append{2,3}

in ) = {2, 3}
π ′(appendout) = {1, 2, 3} π ′(u{1}

2 ) = {1, 2} π ′(append{2,3}
out ) = {1, 2, 3}

π ′(•) = {2} π ′(u{1}
3 ) = {1, 2, 3, 4} π ′(u{2,3}

1 ) = {1, 4, 5}
π ′(u1) = {1, 3, 4, 5} π ′(append{1,2}

in ) = {1, 2} π ′(u{3}
1 ) = {1, 5}

π ′(rotatein) = {1, 2} π ′(append{1,2}
out ) = {1, 2, 3} π ′(u{1,2}

1 ) = {1, 3, 4}
π ′(u2) = {1, 2, 3} π ′(rotate{1}

out) = {1, 2}
π ′(append{3}

in ) = {3}
π ′(append{3}

out) = {1, 2, 3}
π ′(u3) = {1, 2, 3, 4, 5}
π ′(rotateout) = {1, 2}.

Termination for R′
P with respect to the terms specified by π ′ is now easy to

show using our results from Section 4.
If one is only interested in termination of queries rotate(t1, t2) for a specific

predicate symbol like rotate, then one can remove superfluous (copies of) rules
from the TRS before starting the termination proof. For example, if one only
wants to prove termination of queries rotate(t1, t2) for finite lists t1, then it now
suffices to prove termination of the TRS for those “start terms” rotate{1}

in (. . . ) that
are finite and ground under the filter π ′ and where the arguments of rotate{1}

in
do not contain any function symbols except • and [ ]. Since the rules for rotatein,
appendin, and append{2,3}

in (i.e., the rules (24) through (26), (29), (34), and (48)
through (51)) are not reachable from these “start terms,” they can immediately
be removed. In other words, for the queries rotate(t1, t2) we indeed need rules
for rotate{1}

in , append{1,2}
in , and append{3}

in , but the rules for rotatein, appendin, and
append{2,3}

in are superfluous.
Note, however, that such superfluous copies of rules are never problematic

for the termination analysis. If the rules for append{3}
in are terminating for terms

that are finite and ground under the filter π ′, then this also holds for the
append{2,3}

in - and the appendin-rules, since here π ′ filters away less arguments.
A corresponding statement holds for the connection between the rotate{1}

in - and
the rotatein-rules.

The following theorem proves the correctness of Algorithm 2. More pre-
cisely, it shows that one can use π ′ and R′

P instead of π and RP in Theo-
rem 3.7. So it is sufficient to prove that all terms in the set S′ = {pπ (p)

in (�t) |
p ∈ �, �t ∈ �T ∞(�, V), π ′(pπ (p)

in (�t)) ∈ T (�Pπ ′ ) } are terminating with respect to the
modified TRSR′

P . In Example 5.16, S′ would be the set of all terms rotate{1}
in (t1, t2)

that are ground after filtering with π ′. Hence, this includes all terms where the
first argument is a finite list.

If all terms in S′ are terminating with respect to R′
P , we can conclude that

all queries Q ∈ Arat(�, �, V) with π (Q) ∈ A(�π , �π ) are terminating for the
original logic program. Since π ′ satisfies the variable condition for the TRS R′

P
(and also for DP (R′

P ) if 1 ∈ π ′(uc,i) for all symbols of the form uc,i), one can also
use π ′ and R′

P for the termination criterion of Corollary 4.5. In other words,
then it is sufficient to prove that there is no infinite (DP (R′

P ), R′
P , π ′)-chain.
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THEOREM 5.17 (SOUNDNESS OF ALGORITHM 2). Let P be a logic program and
let π be an argument filter over (�, �). Let π ′ and R′

P result from π and RP
by Algorithm 2. Let S = {pin(�t) | p ∈ �, �t ∈ �T ∞(�, V), π (pin(�t)) ∈ T (�Pπ

) }.
Furthermore, let S′ = {pπ (p)

in (�t) | p ∈ �, �t ∈ �T ∞(�, V), π ′(pπ (p)
in (�t)) ∈ T (�Pπ ′ ) }.

All terms s ∈ S are terminating for RP if all terms s′ ∈ S′ are terminating forR′
P .

PROOF. We first show that every reduction of a term from S with RP can
be simulated by the reduction of a term from S′ with R′

P . More precisely, we
show the following proposition where Sn = {t | pin(�t) →n

RP
t for some p ∈ �,

�t ∈ �T ∞(�, V), and π (pin(�t)) ∈ T (�Pπ
) } and S′ = {t | pπ (p)

in (�t) →∗
R′

P
t for some

p ∈ �, �t ∈ �T ∞(�, V), and π ′(pπ (p)
in (�t)) ∈ T (�Pπ ′ ) }.

If s ∈ Sn and s′ ∈ S′ with Unlab(s′) = s, then s →RP t implies
that there is a t ′ with Unlab(t ′) = t and s′ →R′

P
t ′. (56)

Here, Unlab removes all labels introduced by Algorithm 2.

Unlab(s) =
{

f (Unlab(s1), . . . , Unlab(sn)), if s = f I (s1, . . . , sn)

s, otherwise

We prove (56) by induction on n. There are three possible cases for s and for
the rule that is applied in the step from s to t.

Case 1: n = 0 and thus, s = pin(�s). So s ∈ S and there is a rule � → r ∈ RP
with � = pin(��) such that s = �σ and t = rσ for some substitution σ with terms
from T ∞(�, V).

Let s′ ∈ S′ with Unlab(s′) = s. Thus, we also have s′ ∈ S′ where s′ = pπ (p)
in (�s)

(since a term with a root symbol pI
in cannot be obtained from S′ if one has

performed at least one rewrite step with R′
P ). Due to the construction of R′

P ,
there exists a rule �π (p) → r ′ ∈ R′

P where Unlab(r ′) = r. We define t ′ to be r ′σ .
Then we clearly have s′ = �π (p)σ →R′

P
r ′σ = t ′ and Unlab(t ′) = t.

Case 2: n ≥ 1 and s = uc,i(s, �q), s →RP t, t = uc,i(t, �q). Since s ∈ Sn, there
exists a pin(�s) with �s ∈ �T ∞(�, V) such that pin(�s) →∗

RP
s, namely, s ∈ Sm for

some m ∈ N. Since the reduction from pin(�s) to s is shorter than the overall
reduction that led to s, we obtain that m < n.

Let s′ ∈ S′ with Unlab(s′) = s. Hence, we have s′ = uI
c,i(s′, �q) for some label

I and Unlab(s′) = s. Since s′ ∈ S′, there exists a pJ
in(�s) with �s ∈ �T ∞(�, V)

such that pJ
in(�s) →∗

R′
P

s′. Hence, s′ ∈ S′ as well. Now the induction hypothesis

implies that there exists a t ′ such that s′ →R′
P

t ′ and Unlab(t ′) = t. We define
t ′ = uI

c,i(t ′, �q). Then we clearly have s′ →R′
P

t ′ and Unlab(t ′) = t.
Case 3: n ≥ 1 and s = uc,i(pout(�s), �q). Here, there exists a rule � → r ∈ RP

with � = uc,i(pout(��), �x) such that s = �σ and t = rσ .
Let s′ ∈ S′ with Unlab(s′) = s. Hence, we have s′ = uI

c,i(pJ
out(�s), �q) for some

labels I and J . Since s′ ∈ S′, s′ resulted from rewriting the term uI
c,i(pJ

in(�s), �q)
which must be an instantiated right-hand side of a rule from R′

P . Due to
the construction of R′

P , then there also exists a rule �′ → r ′ ∈ R′
P where

�′ = uI
c,i(pJ

out(��), �x) and Unlab(r ′) = r. We define t ′ = r ′σ . Then we have
s′ = �′σ →R′

P
r ′σ = t ′ and clearly Unlab(t ′) = t.
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We now proceed to prove the theorem by contradiction. Assume there is
a term s0 ∈ S that is nonterminating with respect to RP , that is, there is
an infinite sequence of terms s0, s1, s2, . . . with si →RP si+1. We must have
s0 = pin(�t) with �t ∈ �T ∞(�, V) and π (pin(�t)) ∈ T (�Pπ

). Let s′
0 = pπ (p)

in (�t). Then
s′
0 ∈ S′, since π ′(pπ (p)

in (�t)) ∈ T (�Pπ ′ ). The reason is that π ′(pπ (p)
in ) = π (p) = π (pin)

and for all f ∈ � we have π ′( f ) ⊆ π ( f ).
So by (56), s′

0 ∈ S′ and Unlab(s′
0) = s0 imply that there is an s′

1 with
Unlab(s′

1) = s1 and s′
0 →R′

P
s′
1. Clearly, this also implies s′

1 ∈ S′. By applying
(56) repeatedly, we therefore obtain an infinite sequence of labeled terms
s′
0, s′

1, s′
2, . . . with s′

i →R′
P

s′
i+1.

6. FORMAL COMPARISON OF THE TRANSFORMATIONAL APPROACHES
In this section we formally compare the power of the classical transforma-
tion from Section 1.1 with the power of our new approach. In the classical
approach, the class of queries is characterized by a moding function, whereas
in our approach it is characterized by an argument filter. Therefore, the fol-
lowing definition establishes a relationship between modings and argument
filters.

Definition 6.1 (Argument Filter Induced by Moding). Let (�, �) be a signa-
ture and let m be a moding over the set of predicate symbols �. Then for every
predicate symbol p ∈ � we define the induced argument filter πm over �P as
πm(pin) = πm(Pin) = {i | m(p, i) = in} and πm(pout) = {i | m(p, i) = out}.
All other function symbols f from �P are not filtered, that is, πm( f /n) =
{1, . . . , n}.

Example 6.2. Regard again the well-moded logic program from
Example 1.1.

p(X , X ).
p(f(X ), g(Y )) :– p(f(X ), f(Z )), p(Z , g(Y )).

We used the moding m with m(p, 1) = in and m(p, 2) = out. Thus, for the
induced argument filter πm we have πm(pin) = πm(Pin) = {1} and πm(pout) = {2}.

As the classical approach is only applicable to well-moded logic pro-
grams, we restrict our comparison to this class. For non-well-moded pro-
grams, our new approach is clearly more powerful, since it can often prove
termination (see Section 7), whereas the classical transformation is never
applicable.

Our goal is to show the connection between the TRSs resulting from the
two transformations. If one refines πm to a filter π ′

m by Algorithm 1 using
any arbitrary refinement heuristic, then the TRS of the classical transfor-
mation corresponds to the TRS of our new transformation after filtering it
with π ′

m.
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Example 6.3. We continue with Example 6.2. The TRS RP resulting from
our new transformation was given in Example 3.2.

pin(X , X ) → pout(X , X ) (1)

pin(f(X ), g(Y )) → u1(pin(f(X ), f(Z )), X , Y ) (2)

u1(pout(f(X ), f(Z )), X , Y ) → u2(pin(Z , g(Y )), X , Y , Z ) (3)

u2(pout(Z , g(Y )), X , Y , Z ) → pout(f(X ), g(Y )) (4)

If we apply the induced argument filter πm, then we obtain the TRS πm(RP ).

pin(X ) → pout(X )

pin(f(X )) → u1(pin(f(X )), X , Y )

u1(pout(f(Z )), X , Y ) → u2(pin(Z ), X , Y , Z )

u2(pout(g(Y )), X , Y , Z ) → pout(g(Y ))

The second rule has the “extra” variable Y on the right-hand side, that is, it
does not satisfy the variable condition. Thus, we have to refine the filter πm to
a filter π ′

m with π ′
m(u1) = π ′

m(U1) = {1, 2} and π ′
m(u2) = π ′

m(U2) = {1, 2, 4}. The
resulting TRS π ′

m(RP ) is identical to the TRS Rold
P resulting from the classical

transformation; see Example 1.2.

pin(X ) → pout(X )

pin(f(X )) → u1(pin(f(X )), X )

u1(pout(f(Z )), X ) → u2(pin(Z ), X , Z )

u2(pout(g(Y )), X , Z ) → pout(g(Y ))

The following theorem shows that our approach (with Corollary 4.5) succeeds
whenever the classical transformation of Section 1.1 yields a terminating TRS.

THEOREM 6.4 (SUBSUMPTION OF THE CLASSICAL TRANSFORMATION). Let P be a
well-moded logic program over a signature (�, �) with respect to the moding
m. Let Rold

P be the result of applying the classical transformation of Section 1.1
and let RP be the result of our new transformation from Definition 3.1. Then
there is a refinement of π ′

m of πm such that: (a) π ′
m(RP ) and π ′

m(DP (RP )) satisfy the
variable condition and (b) if Rold

P is terminating (with ordinary rewriting), then
there is no infinite (DP (RP ), RP , π ′

m)-chain. Thus, in particular, termination of
Rold

P implies that RP is terminating (with infinitary constructor rewriting) for
all terms pin(�t) with p ∈ �, �t ∈ �T ∞(�, V), and π (pin(�t)) ∈ T (�Pπ

).

PROOF. Let π ′
m result from Algorithm 1 using any refinement heuristic ρ

which does not filter away the first argument of any uc,i.
We now analyze the structure of the TRS π ′

m(RP ). For any predicate symbol
p ∈ �, let “p(�s, �t)” denote that �s and �t are the sequences of terms on p’s in- and
output positions with respect to the moding m.

When Algorithm 1 is applied to compute the refinement π ′
m of πm, one looks

for a rule � → r from πm(RP ) such that V(r) 
⊆ V(�). Such a rule cannot result
from the facts of the logic program. The reason is that for each fact p(�s, �t),
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πm(RP ) contains the rule

pin(�s) → pout(�t)

and by well-modedness, we have V(�t) ⊆ V(�s).
For each rule c of the form p(�s, �t) :– p1(�s1, �t1), . . . , pk(�sk , �tk) in P, the TRS

πm(RP ) contains

pin(�s) → uc,1(p1in (�s1), V(�s) ∪ V(�t))
uc,1(p1out (�t1), V(�s) ∪ V(�t)) → uc,2(p2in (�s2), V(�s) ∪ V(�t) ∪ V(�s1) ∪ V(�t1))

...
uc,k(pkout (�tk), V(�s) ∪ V(�t) ∪ V(�s1) ∪ V(�t1) ∪ . . . ∪ V(�sk−1) ∪ V(�tk−1)) → pout(�t).

For the first rule, by well-modedness we have V(�s1) ⊆ V(�s) and thus, the
only “extra” variables on the right-hand side of the first rule must be from V(�t).
There is only one possibility to refine the argument filter in order to remove
them: One has to filter away the respective argument positions of uc,1. Hence,
the filtered right-hand side of the first rule is uc,1(p1in (�s1), V(�s)) and the filtered
left-hand side of the second rule is uc,1(p1out (�t1), V(�s)).

Similarly, for the second rule, well-modedness implies V(�s2) ∪ V(�s) ∪ V(�s1) ∪
V(�t1) ⊆ V(�t1) ∪ V(�s). So the only “extra” variables on the right-hand side of the
second rule are again from V(�t). As before, to remove them one has to filter
away the respective argument positions of uc,2. Moreover, since V(�s1) ⊆ V(�s)
we obtain the filtered right-hand side uc,2(p2in (�s2), V(�s) ∪ V(�t1)) for the second
rule and the filtered left-hand side uc,2(p2out (�t2), V(�s) ∪ V(�t1)) side in the third
rule.

An analogous argument holds for the other rules. The last rule has no extra
variables, since V(�t) ⊆ V(�s) ∪ V(�t1) ∪ . . . ∪ V(�tk) by well-modedness.

So for any rule c of the logic program P, π ′
m(RP ) has the following rules.

pin(�s) → uc,1(p1in (�s1), V(�s))
uc,1(p1out (�t1), V(�s)) → uc,2(p2in (�s2), V(�s) ∪ V(�t1))

...
uc,k(pkout (�tk), V(�s) ∪ V(�t1) ∪ . . . ∪ V(�tk−1)) → pout(�t)

Hence, π ′
m(RP ) = Rold

P . Since the refined argument filter π ′
m does not filter

away the first argument of any uc,i, by defining π ′
m(Uc,i) := π ′

m(uc,i), then the
variable condition is satisfied for both π ′

m(RP ) and π ′
m(DP (RP )) and, thus, (a) is

fulfilled.
Now to prove (b), we assume that Rold

P is terminating. We have to show
that then there is no infinite (DP (RP ), RP , π ′

m)-chain. By the soundness of the
argument filter processor (Theorem 4.13), it suffices to show that there is no
infinite (π ′

m(DP (RP )), π ′
m(RP ), id )-chain.

Note that π ′
m(DP (RP )) = DP (π ′

m(RP )). The reason is that all uc,i only occur on
the root level in RP . Moreover, all pin-symbols only occur in the first argument
of a uc,i and 1 ∈ π ′

m(uc,i). In other words, occurrences of defined function symbols
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are not removed by the filter π ′
m. So we have the following.

u → v ∈ π ′
m(DP (RP ))

iff there is a rule � → r ∈ RP with u = π ′
m(�	), v = π ′

m(t	)
for a subterm t of r with defined root

iff there is a rule � → r ∈ RP with u = (π ′
m(�))	, v = (π ′

m(t))	

for a subterm π ′
m(t) of π ′

m(r) with defined root

iff there is a rule � → r ∈ π ′
m(RP ) with u = �	, v = t	

for a subterm t of r with defined root
iff u → v ∈ DP (π ′

m(RP )).

Hence, π ′
m(RP ) = Rold

P and π ′
m(DP (RP )) = DP (π ′

m(RP )) = DP (Rold
P ). Thus,

it suffices to show absence of infinite (DP (Rold
P ), Rold

P , id )-chains. But this fol-
lows from termination of Rold

P ; refer to Arts and Giesl [2000, Theorem 6], since
(P, R, id )-chains correspond to chains for ordinary (noninfinitary) rewriting.

Hence by Theorem 4.4, termination of Rold
P also implies that all terms pin(�t)

with p ∈ �, �t ∈ �T ∞(�, V), and π (pin(�t)) ∈ T (�Pπ
) are terminating with respect

to RP (using infinitary constructor rewriting).

The reverse direction of the previous theorem does not hold, though. As
a counterexample, regard again the logic program from Example 1.1; see
Example 6.3. As shown in Example 1.2, the TRS resulting from the classi-
cal transformation is not terminating. Still, for the filter π ′

m from Example 6.3,
there is no infinite (DP (RP ), RP , π ′

m)-chain and thus, our method of Corollary
4.5 succeeds with the termination proof. In other words, our new approach is
strictly more powerful than the classical transformation, even on well-moded
programs.

Thus, a termination analyzer based on our new transformation should be
strictly more successful in practice, too. That this is in fact the case will be
demonstrated in the next section.

7. EXPERIMENTS AND DISCUSSION
We integrated our approach (including all refinements presented) in the termi-
nation tool AProVE [Giesl et al. 2006a] which implements the DP framework.
To evaluate our results, we tested AProVE against four other representative
termination tools for logic programming: TALP [Ohlebusch et al. 2000] is the
only other available tool based on transformational methods (it uses the clas-
sical transformation of Section 1.1), whereas Polytool [Nguyen and De Schreye
2007], TerminWeb [Codish and Taboch 1999], and cTI [Mesnard and Bagnara
2005] are based on direct approaches. Section 7.1 describes the results of our
experimental evaluation and in Section 7.2 we discuss the limitations of our
approach.
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7.1 Experimental Evaluation
We ran the tools on a set of 296 examples in fully automatic mode.14 This set
includes all logic programming examples from the Termination Problem Data
Base [TPDB 2007] which is used in the annual international Termination Com-
petition [Marché and Zantema 2007]. It contains collections provided by the de-
velopers of several different tools including all examples from the experimental
evaluation of Bruynooghe et al. [2007]. However, to eliminate the influence of
the translation from Prolog to logic programs, we removed all examples that use
nontrivial built-in predicates or that are not definite logic programs after ignor-
ing the cut operator. All tools were run locally on an AMD Athlon 64 at 2.2 GHz
under GNU/Linux 2.6. For each example we used a time limit of 60 seconds.
This is similar to the way that tools are evaluated in the annual competitions
for termination tools.

AProVE Polytool TerminWeb cTI TALP
Successes 232 204 177 167 163
Failures 57 82 118 129 112
Timeouts 7 10 1 0 21

As shown in the preceding table, AProVE succeeds on more examples than
any other tool. The comparison of AProVE and TALP shows that our approach
improves significantly upon the previous transformational method that TALP is
based on; see goals (A) and (B). In particular, TALP fails for all non-well-moded
programs.

While we have shown our technique to be strictly more powerful than the
previous transformational method, due to the higher arity of the function sym-
bols produced by our transformation, proving termination could take more time
in some cases. However, in the experiments this did not affect the practical
power of our implementation. In fact, AProVE is able to prove termination well
within the time limit for all examples where TALP succeeds. Further analysis
shows that while AProVE never takes more than 15 seconds longer than TALP,
there are indeed 6 examples where AProVE is more than 15 seconds faster than
TALP.

The comparison with Polytool, TerminWeb, and cTI demonstrates that our
new transformational approach is not only comparable in power, but usually
more powerful than direct approaches. In fact, there is only a single example
where one of the other tools (namely Polytool) succeeds and AProVE fails. This
is the rather contrived example from (2) in Section 7.2 which we developed
to demonstrate the limitations of our method. Polytool is only able to handle
this example via a preprocessing step based on partial evaluation [Nguyen
et al. 2006; Serebrenik and De Schreye 2003; Tamary and Codish 2004]. In this

14We combined termsize and list-length norm for TerminWeb and allowed 5 iterations before widen-
ing for cTI. Apart from that, we used the default settings of the tools. For both AProVE and Polytool
we used the (fully automated) original executables from the Termination Competition 2007 [Marché
and Zantema 2007]. To refine argument filters, this version of AProVE uses the refinement heuristic
ρtb′ from Definition 5.13. For a list of the main termination techniques used in AProVE, we refer
to Giesl et al. [2005, 2006c]. Of these techniques, only the ones in Section 4.2 were adapted to
infinitary constructor rewriting.
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example, this preprocessing step results in a trivially terminating logic pro-
gram. Thus, if one combined this preprocessing with any of the other tools,
then these tools would also be able to prove termination of this particular
example.15 Integrating some form of partial evaluation into AProVE might
be an interesting possibility for further improvement. For all other examples,
AProVE can show termination whenever at least one of the other tools suc-
ceeds. Moreover, there are several examples where AProVE succeeds whereas
no other tool shows the termination. These include examples where the ter-
mination proof requires more complex orders. For instance, termination of the
example SGST06/hbal tree.pl can be proved using recursive path orders with
status and termination of talp/apt/mergesort ap.pl is shown using matrix
orders.16

Note that 52 examples in this collection are known to be nonterminating,
that is, there are at most 244 terminating examples. In other words, there are
only at most 12 terminating examples where AProVE did not manage to prove
termination. With this performance, AProVE won the Termination Competition
with Polytool being the second most powerful tool. The best tool for nontermi-
nation analysis of logic programs was NTI [Payet and Mesnard 2006].

However, from our experiments one should not draw the conclusion that
the transformational approach is always better than the direct approach to
termination analysis of logic programs. There are several extensions (e.g., ter-
mination inference [Codish and Taboch 1999; Mesnard and Bagnara 2005],
nontermination analysis [Payet and Mesnard 2006], handling numerical data
structures [Serebrenik and De Schreye 2004, 2005b]) that can currently only
be handled by direct techniques and tools.

Regarding the use of term rewriting techniques for termination analysis
of logic programs, it is interesting to note that the currently most powerful
tool for direct termination analysis of logic programs (Polytool) implements the
framework of Nguyen and De Schreye [2005, 2007] for applying techniques from
term rewriting (most notably polynomial interpretations) to logic programs
directly. This framework forms the basis for further extensions to other TRS
termination techniques. For example, it can be extended further by adapting
also basic results of the dependency pair method to the logic programming
setting [Nguyen et al. 2008]. Preliminary investigations with a prototypical
implementation indicate that in this way, one can prove termination of several
examples where the transformational approach with AProVE currently fails.

So transformational and direct approaches both have their advantages and
the most powerful solution might be to combine direct tools like Polytool with
a transformational prover like AProVE which is based on the contributions of
this article. But it is clear that it is indeed beneficial to use termination tech-
niques from TRSs for logic programs, both for direct and for transformational
approaches.

15Similarly, with such a preprocessing the existing “direct” tools would also be able to prove termi-
nation of the program in Example 1.1.
16For recursive path orders with status and matrix orders, see Lescanne [1983] and
Endrullis et al. [2006].
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In addition to the experiments described earlier (which compare different
termination provers), we also performed experiments with several versions of
AProVE in order to evaluate the different heuristics and algorithms for the
computation of argument filters from Section 5. The following table shows that,
indeed, our improved type-based refinement heuristic (tb′) from Section 5.3
significantly outperforms the simple improved outermost (om′) and innermost
(im) heuristics from Section 5.2. In fact, all examples that could be proved
terminating by any of the simple heuristics can also be proved terminating by
the type-based heuristic.

AProVE tb′ AProVE om′ AProVE im
Successes 232 218 195
Failures 57 76 98
Timeouts 7 2 3

So far, for all experiments we used Algorithm 2 (from Section 5.4) in or-
der to compute a refined argument filter from the initial one. To evaluate the
advantage of this improved algorithm over Algorithm 1 (from Section 5.1),
we performed experiments with the two algorithms (again using the type-
based refinement heuristic tb′ from Section 5.3). The following table shows that
Algorithm 2 is indeed significantly more powerful than Algorithm 1.

AProVE Algorithm 2 AProVE Algorithm 1
Successes 232 212
Failures 57 74
Timeouts 7 10

As mentioned in Section 1.3, preliminary versions of parts of this article ap-
peared in Schneider-Kamp et al. [2007]. However, the next table clearly shows
that the results of Section 5 (which are new compared to Schneider-Kamp et al.
[2007]) improve the power of termination analysis substantially. To this end,
we compare our new implementation that uses the improved type-based re-
finement heuristic (tb′) and the improved refinement algorithm (Algorithm 2)
from Section 5 with the version of AProVE from the Termination Competition
2006 that only contains the results of Schneider-Kamp et al. [2007]. To find
argument filters, it uses a simple ad hoc heuristic which turns out to be clearly
disadvantageous to the new sophisticated techniques from Section 5.

AProVE tb′ AProVE [Schneider-Kamp et al. 2007]
Successes 232 208
Failures 57 69
Timeouts 7 19

To run AProVE, for details on our experiments, and to access our col-
lection of examples, we refer to http://aprove.informatik.rwth-aachen.de/
eval/TOCL/.
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7.2 Limitations
Our experiments also contain examples which demonstrate the limitations of
our approach. Of course, our implementation in AProVE usually fails if there
are features outside of pure logic programming (e.g., built-in predicates, nega-
tion as failure, meta-programming, etc.). We consider the handling of meta-
logical features such as cuts and meta-programming as future work. We think
that techniques from term rewriting are especially well suited to handle meta-
programming as term rewriting does not rely on a distinction between predicate
and function symbols.

In the following, we discuss the limitations of the approach when applying it
for pure logic programming. In principle, there could be three points of failure.

(1) The transformation of Theorem 3.7 could fail, that is, there could be a logic
program which is terminating for the set of queries, but not all correspond-
ing terms are terminating in the transformed TRS. We do not know of any
such example. It is currently open whether this step is in fact complete.

(2) The approach via dependency pairs (Theorem 4.4) can fail to prove termina-
tion of the transformed TRS, although the TRS is terminating. In particular,
this can happen because of the variable condition required for Theorem 4.4.
This is demonstrated by the following logic program P.

p(X ) :– q(f(Y )), p(Y ).
p(g(X )) :– p(X ).
q(g(Y )).

The resulting TRS RP is

pin(X ) → u1(qin(f(Y )), X )

u1(qout(f(Y )), X ) → u2(pin(Y ), X , Y )

u2(pout(Y ), X , Y ) → pout(X )

pin(g(X )) → u3(pin(X ), X )

u3(pout(X ), X ) → pout(g(X ))

qin(g(Y )) → qout(g(Y ))

and there are the following dependency pairs.

Pin(X ) → Qin(f(Y )) (57)

Pin(X ) → U1(qin(f(Y )), X ) (58)

U1(qout(f(Y )), X ) → Pin(Y ) (59)

U1(qout(f(Y )), X ) → U2(pin(Y ), X , Y ) (60)

Pin(g(X )) → Pin(X ) (61)

Pin(g(X )) → U3(pin(X ), X ) (62)

We want to prove termination of all queries p(t) where t is finite and ground
(i.e., m(p, 1) = in). Looking at the logic programP, it is obvious that they are
all terminating. However, there is no argument filter π such that π (RP ) and
π (DP (RP )) satisfy the variable condition and such that there is no infinite
(DP (RP ), RP , π )-chain.
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To see this, note that if π (Pin) = ∅ or π (g) = ∅ then we can build an infinite
chain with the last dependency pair where we instantiate X by the infinite
term g(g(. . . )). So, let π (Pin) = π (g) = {1}. Due to the variable condition
of the dependency pair (59) we know π (f) = π (qout) = {1} and 1 ∈ π (U1).
Hence, to satisfy the variable condition in dependency pair (58) we must
set π (qin) = ∅. But then the last rule of π (RP ) does not satisfy the variable
condition.

(3) Finally it can happen that the resulting DP problem of Theorem 4.4 is finite,
but that our implementation fails to prove it. The reason can be that one
should apply other DP processors or DP processors with other parameters.
After all, finiteness of DP problems is undecidable. This is shown by the
following example where we are interested in all queries f(t1, t2) where t1

and t2 are ground terms.

f(X , Y ) :– g(s(s(s(s(s(X ))))), Y ).
f(s(X ), Y ) :– f(X , Y ).
g(s(s(s(s(s(s(X )))))), Y ) :– f(X , Y ).

Termination can (for example) be proved if one uses a polynomial order with
coefficients from {0, 1, 2, 3, 4, 5}. But the current automation does not use
such polynomials and thus, it fails when trying to prove termination of this
example.

While the DP method can also be used for nontermination proofs if one consid-
ers ordinary rewriting, this is less obvious for infinitary constructor rewriting.
The reason is that the main termination criterion is “complete” for ordinary
rewriting, but incomplete for infinitary constructor rewriting (see the coun-
terexample (2) to the completeness of Theorem 4.4). Therefore, in order to also
prove nontermination of logic programs, a combination of our method with a
loop-checker for logic programs would be fruitful. As mentioned before, a very
powerful nontermination tool for logic programs is NTI [Payet and Mesnard
2006]. Our collection of 296 examples contains 233 terminating examples (232
of these can be successfully shown by AProVE), 52 nonterminating examples,
and 11 examples whose termination behavior is unknown. NTI can prove non-
termination of 42 of the 52 nonterminating examples. Hence, a combination of
AProVE and NTI would successfully analyze the termination behavior of 274 of
the 296 examples.

8. CONCLUSION
In this article, we developed a new transformation from logic programs P to
TRSs RP . To prove the termination of a class of queries for P, it is now suf-
ficient to analyze the termination behavior of RP on a corresponding class of
terms with respect to infinitary constructor rewriting. This class of terms is
characterized by a so-called argument filter and we showed how to generate
such argument filters from the given class of queries for P. Our approach is
even sound for logic programming without occur check. To prove termination
of infinitary rewriting automatically, we showed how to adapt the DP frame-
work of Arts and Giesl [2000], Giesl et al. [2005, 2006c] from ordinary term
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rewriting to infinitary constructor rewriting. Then the DP framework can be
used for termination proofs of RP and thus for automated termination analy-
sis of P. Since any termination technique for TRSs can be formulated as a DP
processor [Giesl et al. 2005], now any such technique can also be used for logic
programs.

In addition to the results presented in Schneider-Kamp et al. [2007], we
showed that our new approach subsumes the classical transformational ap-
proach to termination analysis of logic programs. We also provided new heuris-
tics and algorithms for refining the initial argument filter that improve the
power of our method (and hence also of its implementation) substantially.

Moreover, we implemented all contributions in our termination prover
AProVE and performed extensive experiments which demonstrate that our re-
sults are indeed applicable in practice. More precisely, due to our contributions,
AProVE has become the currently most powerful automated termination prover
for logic programs.
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