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Abstract. Recently, many techniques have been introduced that allow
the (automated) classification of the runtime complexity of term rewrite
systems (TRSs for short). In this paper we show that polynomial (in-
nermost) runtime complexity of TRSs induces polytime computability
of the functions defined. In this way we show a tight correspondence
between the number of steps performed in a given rewrite system and
the computational complexity of an implementation of rewriting. The
result uses graph rewriting as a first step towards the implementation
of term rewriting. In particular, we prove the adequacy of (innermost)
graph rewriting for (innermost) term rewriting.

1 Introduction

We study techniques to analyse the complexity of programs automatically. In-
stead of studying programs of a particular programming language directly, we
focus on the complexity analysis of term rewrite systems instead. The reason
is that term rewriting is a very simple formalism underlying many program-
ming languages. Recently, many techniques to automatically assess the runtime
complexity of term rewrite systems (TRSs for short) have been introduced. For
example in [1,3] we introduced the polynomial path order POP∗and extensions
of it. POP∗ is a restriction of the multiset path order [13] and whenever com-
patibility of a TRS R with POP∗ can be shown then the runtime complexity
of R is polynomially bounded. Here the runtime complexity of a TRS measures
the maximal number of rewrite steps as a function in the size of the initial term.

We have successfully implemented this technique.1 Thus we can automat-
ically verify for a given TRS R that it admits at most polynomial runtime
complexity. This opens the way to automatically verify for a given (functional)
program P that its runtime complexity is polynomial (in the input size). The
only restrictions in the applicability of the result are that (i) the program P is
transformable into a term rewrite system R and (ii) a feasible (i.e., polynomial)
runtime complexity with respect to R gives rise to a feasible runtime complex-
ity of P. In short the transformation has to be non-termination and complexity
preserving.
? This research is supported by FWF (Austrian Science Fund) projects P20133.
1 The here mentioned polynomial path orders are one complexity technique imple-

mented in the Tyrolean Complexity Tool, a complexity tool to analyse the runtime
complexity of TRSs. The program is open-source and freely available at
http://cl-informatik.uibk.ac.at/software/tct/.

http://cl-informatik.uibk.ac.at/software/tct/


As an example of the technique consider the following rendering of insert
sort as TRS R1 given in [11]. Observe that for a list xs build from constructors
cs and nil, sort(xs, len(xs)) returns xs sorted.

if(true, x, y)→ x 0 < s(x)→ true

if(false, x, y)→ y ins(0, x, ys)→ cs(x, ys)
len(nil)→ 0 ins(s(n), x, cs(y, ys))→ if(x < y, cs(x, cs(y, ys)),

len(cs(x, xs))→ s(len(xs)) cs(y, ins(n, x, ys)))
x < 0→ false sort(nil, 0)→ nil

s(x) < s(y)→ x < y sort(cs(x, xs), s(n))→ ins(n, x, sort(xs, n))

It is not difficult to see that the innermost runtime complexity of the TRS
R1 is polynomially bounded. Moreover this fact can be verified automatically
by showing that R1 ⊆ >pop∗ for a suitable instance >pop∗ of POP∗, cf. [1].

Once we have established a bound on the (innermost) runtime complexity
of a TRS, it is natural to direct our attention to the computational complexity
of the functions defined by the TRS. In particular with respect to TRS R1 we
also want to verify (automatically if possible) that insertion sort is polytime
computable. Due to the restrictive definition of >pop∗ this is not difficult as the
signature of R1 is simple. (See [2] for a proof.) Here a simple signature [11]
essentially means that the size of any constructor term depends polynomially on
its depth.

Unfortunately the restriction to a simple signature is rather restrictive. Con-
sider the following TRS R2. (This is Example 8 in [9].)

D(c)→ 0 D(x + y)→ D(x) + D(y)
D(t)→ 1 D(x − y)→ D(x) − D(y)
D(x × y)→ y × D(x) + x × D(y)

Employing runtime complexity techniques developed in [10], we can automati-
cally verify that the runtime complexity ofR2 is polynomially bounded. However
the signature of R2 is not simple and thus we cannot directly conclude polytime
computability of the function computed. The main obstacle here is that due to
the last rule, a single step may copy arbitrary large subterms.

In this paper we show that polynomial runtime complexity of TRSs induces
polytime computability of the functions defined. The only restriction is that we
consider an eager evaluation strategy, i.e., we base our study on an innermost
rewriting strategy. We show the precise correspondence between the number of
steps performed in a given rewrite system and the computational complexity of
an implementation of rewriting.

In order to overcome the problem of copying we use graph rewriting—here
copying is replaced by sharing—as a first step towards the implementation of
term rewriting. We re-prove the adequacy of innermost graph rewriting for in-
nermost term rewriting, compare for example [12,13]. A new proof becomes
necessary as we need to control the resources needed in the simulation. This



pedantry is then used to establish the tight correspondence between the com-
plexity of a given TRS R and the intrinsic computational complexity of the
functions computed by R.

The rest of the paper is organised as follows. In Section 2 we present basic
notions and recall (briefly) the central concepts of graph rewriting. The adequacy
theorem is provided in Section 3 and in Section 4 we show how innermost graph
rewriting can be encoded efficiently. Finally we conclude in Section 5, where we
also relate our work to recent work. Due to space limitations, we omit some
proofs in the presentation. Those are available in the technical report [4].

2 Preliminaries

We assume familiarity with term rewriting [5,13], but no familiarity with graph
rewriting (see [13]) is assumed. The purpose of this section is to fix the term
rewriting notions and introduce a formulation of graph rewriting that is sufficient
for our purposes.

Let V denote a countably infinite set of variables and F a finite signature.
The set of terms over F and V is denoted by T . The arity of a function symbol
f is denoted as ar(f). Var(t) denotes the set of variables occurring in a term t.
The size of a term t, i.e., the number of symbols appearing in t, is denoted as
|t|. We write t|p for the subterm of t at position p.

A term rewrite system (TRS for short) R (over a signature F) is a finite set
of rewrite rules l→ r, such that l /∈ V and Var(l) ⊇ Var(r). The root symbols of
left-hand sides of rewrite rules are called defined, while all other function symbols
are called constructors. Constructor symbols are collected in C ⊆ F . The smallest
rewrite relation, i.e., closed under contexts and substitutions, that contains R
is denoted by −→R. We write −→∗R for the transitive and reflexive closure of −→R.
Let s and t be terms. If exactly n steps are performed to contract s to t we write
s −→n

R t. A term s ∈ T is called a normal form if there is no t ∈ T such that
s −→R t. With NF(R) we denote the set of all normal forms of a term rewrite
system R. We write s −→!

R t if s −→∗R t and t ∈ NF(R). A term t is called
argument normalised (with respect to R) if every proper subterm t|p ∈ NF(R).

Let 2 be a fresh constant. Terms over F ∪ {2} and V are called contexts.
The empty context is denoted as 2. For a context C with n holes, we write
C[t1, . . . , tn] for the term obtained by replacing the holes from left to right in
C with the terms t1, . . . , tn. The innermost rewrite relation i−→R of a TRS R is
defined on terms as follows: s i−→R t if there exists a rewrite rule l → r ∈ R,
a context C, and a substitution σ such that s = C[lσ] and t = C[rσ] for lσ
argument normalised.

A TRS is called confluent if for all s, t1, t2 ∈ T with s −→∗R t1 and s −→∗R t2
there exists a term t3 such that t1 −→∗R t3 and t2 −→∗R t3.

In the sequel we introduce the central concepts of term graph rewriting or
graph rewriting for short. We concentrate on standard approaches in the context
of rewriting, compare also [12,13].



A graph G = (VG, succG, LG) over the set L is a structure such that VG is a
finite set, the nodes or vertexes, succG : VG → V∗G is a mapping that associates a
node n with an (ordered) sequence of nodes, called the successors of n. Finally
LG : VG → L is a mapping that associates each node n with its label LG(n).
Often we drop the reference to the graph G from VG, succG, and LG, i.e., we
write G = (V, succ, L). If possible, we will omit references to the constituents of
the structure G; in particular we often write n ∈ G instead of n ∈ V. Note that
the sequence of successors of n may be empty: succ(n) = []. Typically the set of
labels L is clear from context and not explicitly mentioned.

Definition 1. Let G = (V, succ, L) be a graph and let n ∈ V. Consider succ(n) =
[n1, . . . , nk]. We call ni the i-th successor of n (denoted as n i

⇀ ni). If there exists
i such that n i

⇀ m, then we simply write n ⇀ m. A node m is called reachable
from n if n ∗

⇀ m, where ∗
⇀ denotes the reflexive and transitive closure of ⇀.

We write +
⇀ for ⇀ · ∗⇀.

A graph G is acyclic if n +
⇀m implies n 6= m and G is rooted if there exists a

unique node n such that every other node in G is reachable from n. The node n
is called the root rt(G) of G. The size of G, i.e. the number of nodes, is denoted
as |G|. We write G�n for the subgraph of G reachable from n.

Definition 2. A term graph (with respect to F and V) is an acyclic and rooted
graph G = (V, succ, L) over F∪V. Let n ∈ V and suppose L(n) = f ∈ F such that
f is k-ary (k > 0). Then succ(n) = [n1, . . . , nk]. On the other hand if L(n) ∈ V,
then succ(n) = []. We demand that any variable node is shared, i.e., for n ∈ V
with L(n) ∈ V, if L(n) = L(m) for m ∈ V then n = m.

We set Var(G) := {n | n ∈ G, L(n) ∈ V} to denote the set of variable nodes in
G. Let R be a TRS over a signature F . We keep R and F fixed for the remainder
of this paper. We write Graph for the set of all term graphs with respect to F
and V.

Example 3. Consider the graph G = ({1, 2}, succ, L) where succ(1) = [2, 2] and
L(1) = f ∈ F and L(2) = x ∈ V. Then G is a term graph. Intuitively G represents
the term f(x, x) such that the variable x is shared.

We define the term t := term(G) represented by G as follows:

t :=

{
x if L(rt(G)) = x ∈ V
f(t1, . . . , tk) if L(rt(G)) = f ∈ F and succ(rt(G)) = [n1, . . . , nk] .

Here ti := term(G�ni) for i = 1, . . . , k. We write Term(G) for the set of subterms
of term(G).

Let G ∈ Graph. A position in G is a finite sequence of positive integers. The
position of rt(G) is the empty sequence (denoted as ε). For positions p and q we
write pq for their concatenation. The set of positions PosG(n) of n ∈ G is defined
as PosG(n) := {ε} if n = rt(G) and PosG(n) := {i1 . . . ik | rt(G) i1⇀ . . .

ik⇀ n}.



Note that for any node n: PosG(n) 6= ∅. It is easy to see that for p ∈ PosG(n),
term(G�n) = term(G)|p.

We say that n ∈ G is shared, if n represents more than one subterm of
term(G). Note that n is shared if the set of positions PosG(n) of n is not a
singleton. If PosG(n) is a singleton, then n is unshared.

Definition 4. A node n is minimally shared if it is a variable node or unshared.
We say n is maximally shared if for all m ∈ G such that term(G�m) = term(G�n)
implies n = m. A term graph G is normal form sharing (with respect to R) if
for all nodes n ∈ G, if term(G�n) ∈ NF(R) then n is maximally shared and
minimally shared otherwise. Let t be a term. We write 4(t) (♦(t)) for the set
of minimally (normal form) sharing term graphs that represent t.

Example 5. Reconsider the TRS R2 from the introduction. Let t = D(x + x) ×
D(x + x), represented by the term graphs Tmin, Tnf and Tmax depicted as follows:

×

D D

+ +

x Tmin

×

D D

+

x Tnf

×

D

+

x Tmax

Then Tmin ∈ 4(t) as only variable nodes are shared. Further Tnf ∈ ♦(t) since
the subterms {x + x, x} = Term(Tnf) ∩ NF(R) are represented by unique nodes
whereas all other nodes are unshared. Tmax contains only maximally shared
nodes.

Let G and H be two graphs, possibly sharing nodes. We write G ∪ H for
their union. We say that G and H are properly sharing if n ∈ G ∩ H implies
LG(n) = LH(n) and succG(n) = succH(n). For two properly sharing graphs G
and H, G ∪H is again a graph (but possibly not a term graph).

Definition 6. Let G be a term graph and H a rooted graph over F ∪ V. We
denote by G[H]n the graph obtained by replacing the subgraph at node n in G
by H: G[H]n := (G[n←− rt(H)] ∪H)�m where m := rt(H) if n = rt(G) and
m := rt(G) otherwise. Here G[n←− m] denotes the redirection of n to m in G:
Set VG′ := (VG ∪ {m}) \ {n} and for all p ∈ VG′ , succG′(p) := r∗(succG(p)).
Here r replaces n by m: r(n) = m and r(p) = p for all p ∈ VG′ . Further r∗

denotes the standard extension of r to sequences. Finally, set G[n←− m] := G′ =
(VG′ , succG′ , LG).

Observe that for properly sharing term graphs G and H such that n 6∈
H and H acyclic, G[H]n is again a term graph. Let G and H be two term
graphs. A morphism (denoted m : G → H) is a function m : VG → VH such
that m(rt(G)) = rt(H), and for all n with LG(n) ∈ F , LG(n) = LH(m(n))
and m∗(succG(n)) = succH(m(n)). The next lemma follows directly from the
definition.



Lemma 7. Suppose m : G→ H and m′ : G→ H.

1) For any n ∈ G we have m : G�n→ H�m(n).
2) For any n ∈ G we have m(n) = m′(n).

We write G >m H (or G > H for short) if there exists a surjective morphism
m : G → H that preservers labels from V. In this case we have for all n ∈ VG:
LG(n) = LH(m(n)). When the graph morphism m is non-injective we write
G >m H (or G > H for short). If m is injective and surjective then m is an
isomorphism. Conclusively G and H are called isomorphic (denoted as G ∼= H).

The next lemma follows by a simple inductive argument.

Lemma 8. For all term graph G and H, G >m H implies term(G) = term(H).

Definition 9. Let L,R be two properly sharing term graphs. Suppose Var(R) ⊆
Var(L), L(rt(L)) ∈ F and rt(L) 6∈ R. Then the graph L ∪ R is called a graph
rewrite rule ( rule for short). A rule is denoted as L → R, where L, R denotes
the left-hand, right-hand side of L → R, respectively. A graph rewrite system
(GRS) G is a set of graph rewrite rules.

Note that for a rule L → R, the graphs L and R share at least all variable
nodes. A rule L′ → R′ is called a renaming of L → R with respect to S if
L′ → R′ ∼= L→ R and VS ∩VL′→R′ = ∅. Let G be a GRS, let S ∈ Graph and let
L→ R be a rule. A redex of S with L→ R is a node u ∈ S such that there exists
a renaming L′ → R′ of (L→ R) ∈ G with respect to S such that m : L′ → S�u
is a morphism and T = S[m(R′)]u. Here m(R′) denotes the structure obtained
by replacing in R′ every node v ∈ L′ ∩ R′ by m(v) ∈ S, where the labels of
m(v) ∈ m(R′) are the labels of m(v) ∈ S. From m : L′ → S�v we obtain that T
is a term graph.

Definition 10. We say S rewrites to T if there exists a rule (L→ R) ∈ G such
that n ∈ S is a redex with this rule. This is denoted as S =⇒G,n,L→R T . We set
S =⇒G T if S =⇒G,n,L→R T for some n ∈ S and (L → R) ∈ G. The relation =⇒G
is called the graph rewrite relation induced by G.

We denote the set of normal forms with respect to =⇒G as NF(G). The in-
nermost graph rewrite relation i=⇒G is the restriction of =⇒G where arguments
need to be in normal form, i.e. S i=⇒G,n,L→R T if S =⇒G,n,L→R T and for all
m ∈ succS(n), S�m ∈ NF(G).

3 Adequacy of Graph Rewriting for Term Rewriting

In this section we show that graph rewriting is adequate for term rewriting
if we restrict our attention to innermost (graph) rewriting. This holds without
further restrictions on the studied TRSR. (However, we assume thatR is finite.)
The here presented adequacy theorem (see Theorem 19) is not essentially new.
Related results can be found in the extensive literature, see for example [13]. In



particular in [12] the adequacy theorem is even generalised to full rewriting. As
this approach involves copying, it is currently not clear whether it applies in our
context. Still our treatment of innermost rewriting for unrestricted TRSs is new.
(See [8] for strongly related work on orthogonal constructor TRSs.) Furthermore
the detailed analysis given in this section is a necessary foundation for the precise
characterisation of the implementation of graph rewriting, presented in Section 4.

Definition 11. The simulating graph rewrite system G(R) of R contains for
each rule l→ r ∈ R some rule L → R such that L ∈ 4(l) and R ∈ 4(r) have
only variable-nodes in common, i.e. VL ∩ VR = Var(R).

Below L, R, S and T denote term graphs. Suppose m : L→ S is a morphism.
Then m induces a substitution σm : V → Term(S): For any n ∈ S such that
L(n) = x ∈ V we set σm(x) := term(S�m(n)).

Lemma 12. Let L and S be term graphs. Suppose m : L → S for some mor-
phism m. Then for each node n ∈ L, term(L�n)σm = term(S�m(n)). In particu-
lar, term(L)σm = term(S).

Proof. We prove the lemma by induction on l := term(L�n). We write σ instead
of σm. If l ∈ V, then by definition L�n consists of a single (variable-)node and
lσ = term(S �m(n)) follows by the definition of the induced substitution σ. If
l = f(l1, . . . , lk), then we have succL(n) = [n1, . . . , nk] for some n1, . . . , nk ∈ L.
As m : L → S holds, Lemma 7 yields m : L�ni → S�m(ni) for all i = 1, . . . , k.
And induction hypothesis becomes applicable so that liσ = term(S�m(ni)). Thus

lσ = f(l1σ, . . . , lkσ) = f(term(S�m(n1)), . . . , term(S�m(nk))) .

By definition of m, LS(m(n)) = LL(n) = f and succS(m(n)) = m∗(succL(n)) =
[m(n1), . . . ,m(nk)]. Hence f(term(S �m(n1)), . . . , term(S �m(nk))) = term(S �
m(n)).

Finally, in order to conclude term(L)σ = term(S), it suffices to observe that
by definition of m: m(rt(L)) = rt(S) holds. ut

Lemma 13. Let L→ R be a graph rewrite rule and let S be a term graph such
that S∩R = ∅ and m : L→ S for some morphism m. Let m′ denote the standard
extension of m to all nodes in R, i.e., m′(n) := m(n) if n is in the domain of
m and m′(n) := n otherwise. Set T := (m′(R) ∪ S)�rt(m′(R)). Then for each
n ∈ R, term(R�n)σm = term(T�m′(n)). In particular, term(R)σm = term(T ).

Proof. We write σ instead of σm. Suppose n ∈ R ∩ L. Then R�n = L�n as L,
R are properly shared. By definition of the morphism m: m(n) ∈ S. Thus by
definition of T we have term(T �m′(n)) = term(S�m(n)). Moreover, employing
Lemma 12, we have term(R�n)σ = term(L�n)σ = term(S�m(n)). From this the
assertion follows.

Thus suppose n ∈ R \ L. This subcase we prove by induction on r =
term(R �n). The base case r ∈ V follows as variables are shared in L → R.
For the inductive step, let r = f(r1, . . . , rk) with succR(n) = [n1, . . . , nk]. The



induction hypothesis yields riσ = term(T �m′(ni)) for i = 1, . . . , k. By defini-
tion of m′: m′(n) = n ∈ m′(R) ⊆ T . Hence succT (m′(n)) = succm′(R)(n) =
m′
∗(succR(n)) = [m′(n1), . . . ,m′(nk)]. Moreover LT (n) = Lm′(R)(n) = f by def-

inition. We conclude rσ = f(r1σ, . . . , rkσ) = f(term(T �m′(n1)), . . . , term(T �
m′(nk))) = term(T�m′(n)). This concludes the inductive argument.

Finally, in order to conclude term(R)σm = term(T ) observe that m(rt(T )) =
rt(R) holds. ut

Below we also write 2 for the unique (up-to isomorphism) graph representing
the constant 2.

Lemma 14. Let S and T be two properly sharing term graphs, let n ∈ S \ T .
Then term(S[T ]n) = C[term(T ), . . . , term(T )] where C = term(S[2]n) and the
number of occurrences of the term term(T ) equals |PosS(n)|.

Proof. We proceed by induction on the size of S. In the base case S consists of
a single node n. Hence the context C is empty and the lemma follows trivially.
For the induction step we can assume without loss of generality that n 6= rt(S).

We assume LS(rt(S)) = f ∈ F and succS(rt(S)) = [m1, . . . ,mk]. For all i
(1 6 i 6 k) such that mi = n set Ci = 2 and for all i such that mi 6= n but
(S[T ]n)�mi = (S�mi)[T ]n we set Ci = term((S�mi)[2]n). In the latter sub-case
induction hypothesis is applicable to conclude

term
((
S[T ]n

)
�mi

)
= Ci[term(T ), . . . , term(T )] .

Finally we set C := f(C1, . . . , Ck) and obtain C = term(S[2]n). In sum we have
term(S[T ]n) = f

((
S[T ]n

)
�m1, . . . ,

(
S[T ]n

)
�mk

)
= C[term(T )], where term(T )

denotes the sequences of terms term(T ) of the required length |PosS(n)|. ut

Lemma 15. Let R be a TRS, l be a term and let σ : V → NF(R) be a substi-
tution such that s = lσ is argument normalised with respect to R. If L ∈ 4(l)
and S ∈ ♦(s), then there exists a morphism m : L→ S such that for all variable
nodes n ∈ Var(L) with LL(n) = x, xσ = term(S�m(n)).

Proof. We prove the lemma by induction on l. It suffices to consider the in-
duction step. Let l = f(l1, . . . , lk) and s = f(l1σ, . . . , lkσ). Let succL(rt(L)) =
[p1, . . . , pk], let succS(rt(S)) = [q1, . . . , qk], and let i ∈ {1, . . . , k}. By induction
hypothesis there exist morphisms mi : L�pi → S�qi of the required form. Either
mi(n) = mj(n) or n 6∈ (dom(mi) ∩ dom(mj)).

Otherwise suppose n ∈ (dom(mi) ∩ dom(mj)). We show mi(n) = mj(n).
Since L ∈ 4(l), only variable nodes are shared, hence n needs to be a variable
node. Suppose LL(n) = x. Then term(S �mi(n)) = xσ = term(S �mj(n)). As
S ∈ ♦(s) and xσ ∈ NF(R), mi(n) = mj(n) has to hold.

Define a function m : VL → VS as follows. Set m(rt(L)) = rt(S) and for
p 6= rt(L) define m(p) = mi(p) if p ∈ dom(mi). By the above observation, m is
well-defined and a morphism. ut

Lemma 16. Let t be a term and let T be a normal form sharing term graph
such that t = term(T ). Then t ∈ NF(R) if and only if T ∈ NF(G(R)).



Let T be a term graph; a node n ∈ T is an R-redex if term(T�n) 6∈ NF(R). We
call T redex-unsharing if none of its R-redexes are shared.

Lemma 17. Suppose T is redex-unsharing. Then T is normal form sharing if
and only if it is not possible to find distinct nodes p, q ∈ T such that (i) term(T�
p) ∈ NF(R), (ii) L(p) = L(q) and (iii) succ(p) = succ(q).

Proof. It suffices to consider the direction from right to left as the other is trivial.
Thus suppose T is not normal form shared. We show that there exist nodes p, q
fulfilling the properties stated.

We pick some node p ∈ T with term(T�p) ∈ NF(R) and there exists a distinct
node q ∈ T with term(T�p) = term(T�q). For that we assume that p is ⇀-minimal
in the sense that there is no node p′ with p

+
⇀ p′ such that p′ would fulfil the

above properties. The node p exists as T is not normal form shared. By definition
property (i) holds and property (ii) follows from term(T�p) = term(T�q). To show
property (iii) we assume succ(p) = [p1, . . . , pl] and succ(q) = [q1, . . . , ql] where
for at least for one i ∈ {1, . . . , l}, pi 6= qi. But this contradicts the minimality of
p. We conclude succ(p) = succ(q) as desired. ut

The next lemma follows from the above using a simple inductive argument.

Lemma 18. Let S be redex-unsharing. Then for all T ∈ ♦(term(S)), S > T .

Theorem 19 (Adequacy). Let R be a TRS and let G(R) denote the simulating
GRS. Suppose s is a term and S ∈ ♦(s). Then s i−→R t if and only if S i=⇒G(R)

· > T , where T ∈ ♦(t).

Proof. First we consider the direction from right to left. Suppose S i=⇒G(R),p T
such that (L→ R) ∈ G(R), p ∈ S, m : L → S�p and T = S[m(R)]p. Moreover,
S�n ∈ NF(G) for all n ∈ succ(p). Define the context C = term(S[2]p), we write
σ for the induced substitution σm and prove

term(S) = C[term(L)σ] i−→R C[term(R)σ] = term(T ) .

Observe that S = S[S�p]p. By Lemma 12, term(S � p) = term(L)σ. Due to
Lemma 14 we see

term(S) = term(S[S�p]p) = C[term(S�p)] = C[term(L)σ] .

By definition T = S[m(R)]p = S[(m(R) ∪ S)�rt(m(R))]p. Due to Lemma 13 we
have term(T ) = C[term(R)σ]. In order to show term(S) i−→R term(T ) it suffices
to verify that term(L)σ = term(S�p) is argument normalised with respect to R.
Note that lσ 6∈ NF(R) and S is a normal form sharing graph. Hence the context
C contains only one hole. Let u be a proper subterm of term(S�p). As for all
n ∈ succS(p), S�n ∈ NF(G), and S�p is argument normalised, u ∈ NF(R) follows
from Lemma 16. Hence term(l)σ is argument normalised.

Finally, we prove the direction from left to right. Suppose s = C[lσ] i−→R
C[rσ] = t with l→ r ∈ R and lσ argument normalised. Let p ∈ S be the



node corresponding to lσ. As lσ is not a normal form, p is unique. Clearly
S �p ∈ ♦(lσ). Let (L → R) ∈ G(R). According to Lemma 15, there exists a
morphism m : L→ S�p such that xσ = term(S�m(n)) where LS(n) = x ∈ V. As
lσ is argument normalised, S i=⇒G(R) S[m(R)]p follows from Lemma 16.

It remains to prove that T ′ := S[m(R)]p > T ∈ ♦(t). We claim term(T ′) =
C[rσ] = t. For this, let U := (m(R) ∪ S)�rt(m(R)) and observe T ′ = S[m(R)]p =
S[U ]p. Due to Lemma 13, term(U) = rσ. Moreover, it is easy to see that C =
term(S[2]p). Hence by Lemma 14, term(S[U ]p) = C[term(U)] and the claim
follows. Let T ∈ ♦(t). We want to apply Lemma 18 to conclude T ′ > T . For
that we have to prove that T ′ is redex-unshared. Suppose there exists q ∈ T ′

such that u := term(T ′�q) is reducible with respect to R. We show that PosT ′(q)
is a singleton set.

We distinguish two cases: Either q is reachable from rt(m(R)) in T ′ or it
is not reachable from rt(m(R)). If q is reachable, then we can even conclude
that q ∈ m(R). For this, suppose there exists a variable node n ∈ R such that
rt(m(R)) +

⇀m(n) ∗⇀ q. Then term(T ′�m(n)) = xσ for some variable x ∈ Var(r).
But xσ ∈ NF(R) as lσ is argument normalised. This contradicts the assumption
that term(T ′�q) is reducible. Hence suppose q ∈ m(R). By Definition 9 in L, R
only variables are shared and in S only normal forms are shared. Hence q can only
be shared in m(R) if it represents a normal form, contrary to our assumption.
Hence it is unshared. Finally consider the case that q is not reachable from
rt(m(R)) in T ′. This implies that q ∈ S and thus q is unshared in T ′ if q is
unshared in S. Suppose u = term(S�q), i.e., the term represented by node q is
unchanged by the (graph) rewrite step. Then q is unshared as by assumption u

is reducible and S ∈ ♦(s). Otherwise if u 6= term(S�q), then q ∗⇀ p for the redex
p ∈ S. Hence term(S�q) is reducible and again not shared in S. ut

Sometimes it is convenient to combine graph rewrite and collapse steps into
one relation. Thus we define S ≥=⇒G T if and only if S i=⇒G · > T . Employing this
notion we can rephrase the conclusion of the theorem as: s i−→R t if and only if
S
≥=⇒G T , whenever the conditions of the theorem are fulfilled.

4 Complexity Considerations

We now prove a polynomial relationship between the number of rewrite steps
admitted by R and the computational complexity of the functions defined. We
give semantics to R in the most natural way. Let Val, the set of values, denote
the set of terms generated from constructors C and variables V. Further, suppose
R is a confluent and terminating TRS. An n-ary partial function f : Valn → Val
is computable by R if there exists a defined function symbol f ∈ F such that for
all s1, . . . , sn, t ∈ Val:

f(s1, . . . , sn) −→!
R t⇐⇒ f(s1, . . . , sn) = t ,

where f is defined. Note that this is well defined as R is confluent and termi-
nating. We say that R computes f , if the function f : Valn → Val is defined by



the above equation. We define the derivation length of a term s with respect to
a terminating TRS R and rewrite relation →: dl(s,→) = max{n | ∃t s →n t}.
The (innermost) runtime complexity (with respect to R) is defined as follows:

rci
R(n) = max{dl(s, i−→R) | s = f(s1, . . . , sn), s1, . . . , sn ∈ Val and |s| 6 n} .

Suppose R admits polynomial runtime complexity, i.e. rci
R is bounded poly-

nomially. To conclude polytime computability of a function f computed byR, we
implement f using graph rewriting. More precisely, to evaluate s := f(s1, . . . , sn)
for values s1, . . . , sn, we normalise the graph S corresponding to s under ≥=⇒G(R).
This is admissible by the Adequacy Theorem (Theorem 19). At most polyno-
mially many reduction steps (in |s|) need to be performed. Below we show that
each such intermediate step can be performed in time polynomial in the size
of s.

Lemma 20. Let G denote a GRS, set c := max{|R| | (L→ R) ∈ G}. If S ≥=⇒G T
then |T | 6 |S|+ c.

Hence, sizes of intermediate graphs are polynomially related to the size of
S and s. (Note that |S| 6 |s|). From this we derive that polynomial innermost
runtime complexity induces polytime computability.

In the following, we fix the set of nodes V := N. We represent S ∈ Graph as
a pair 〈rt(S), spec〉 where spec is a sequence containing for each node n ∈ S the
triple 〈n, LS(n), succS(n)〉. Following [6], we call such triples node specifications.
We say that a term graph S is normalised if VS = {1, . . . , |S|}. Representing
normalised term graphs S requires space O(log(|S|) ∗ |S|) on any reasonable
model of computation: Each node n ∈ S requires space at most log(|S|). Con-
sequently, each node specification 〈n, LS(n), succS(n)〉 is representable in space
O(log(|S|)). Here we employ that for a fixed signature F , arities are bounded
by some constant, moreover each label LS(n) requires just constant space. As
we have to store at most |S| specifications (and the root node), the assertion
follows.

We define ‖S‖ := O(log(|S|) ∗ |S|). Below we also employ the notation ‖·‖
for the space required to represent different data-types like nodes or lists. In the
following, we tacitly assume that term graphs are normalised. This is justified as
normalisation introduces negligible overhead as can be seen in the next lemma.

Lemma 21. Let S be a term graph. The function that maps S to an isomorphic
and normalised term graph is computable in time O(‖S‖2).

Proof. We traverse over S and replace each encountered node n ∈ S by the node
m(n), where m is a graph morphism normalising S to be constructed. To obtain
m, we start the overall procedure using a counter c := 1 and initialise m as the
morphism that is undefined everywhere. At each call m(n) we check whether m
is defined on n. If so, we return m(n), otherwise we set m(n) := c, c := c + 1
and return m(n) afterwards. When the procedure stops, m will be an injective
graph morphism, and m(S) a normalised term graph isomorphic to S.



While traversing S in time O(‖S‖), we replace the root node, and for each
node specification encountered we replace at most a constant number of nodes.
I.e., in total O(|S|) calls m(n) have to be performed. We can represent m in space
‖m‖ = O(‖S‖). From this we obtain that m(n) is computable in time O(‖S‖).
Overall, the procedure finished after at most O(‖S‖2) steps. ut

The implementation of a graph rewrite step S =⇒G T is developed step-
wise in the following. The function match : (Graph × Graph × V) → (V →
V) ∪ {⊥} computes morphisms between term graphs. Here ⊥ is a designator
indicating that no morphism can be found. More precisely, for m : L → S �n
we set match(L, S, n) := m; otherwise match(L, S, n) := ⊥. The definition of
match is well-formed as m : L → S is unique, cf. Lemma 7. Second, we use
the function apply : (Graph × V × Graph × (V → V)) → Graph defined by
apply(S, n,R,m) := S[m(R)]n. Here we suppose m : L → S�n for some graph
rewrite rule L→ R. Let Rule denote the set of (normalised) graph rewrite rules
over labels F ∪ V. A step S =⇒G,n,L→R T is thus computed by the function
step : (Graph× V × Rule)→ Graph ∪ {⊥} given by

step(S, n, L→ R) := apply(S, n,R′,match(L′, S, n))
where L′ → R′ = rename(S,L→ R) .

Here we suppose step(S, n, L → R) = ⊥ if match(L′, S, n) = ⊥. The function
rename : (Graph × Rule) → Rule is defined such that rename(S,L → R) is a
renaming of the rule L→ R with respect to the term graph S.

We give bounds on the computational complexity of match, rename and apply.
Here we essentially translate the definition into programs and prove that those
programs operate under the desired bounds, c.f. [4]. We implement match(L, S, n)
by recursion on the term representation of L, which explains why match(L, S, n)
operates in time exponential in |L|. For R fixed, 2O(‖L‖) is constant and thus
harmless for our concerns.

Lemma 22. Let S be a term graph and L→ R a graph rewrite rule. Then

1) match(L, S, n) is computable in time 2O(‖L‖) ∗ ‖S‖2, and
2) rename(S,L→ R) is computable in time O(‖S‖+ ‖L→ R‖), and
3) apply(S, n,R,m) is computable in time O((‖S‖+ ‖L→ R‖)3).

Lemma 23. Let S be a term graph, L → R a graph rewrite rule and n ∈ L be
a node. Then step(S, n, L→ R) is computable in time O(2O(‖L→R‖) ∗ ‖S‖3).

Proof. Employing ‖L‖ < ‖L→ R‖, the lemma follows from Lemma 22. ut

Remark 24. Note that for G fixed and (L → R) ∈ G, the bound O(2O(‖L→R‖) ∗
‖S‖3) reduces to O(‖S‖3).

Let S and T be term graphs such that S ≥=⇒G T . To show that T is efficiently
computable from S, it remains to verify that collapsing to normal form sharing
graphs is feasible. We introduce the function share : Graph → Graph that maps
(redex-unsharing) term graphs S to their normal form sharing counterparts. To
be more precise, S > share(S) with share(S) normal form sharing.



Lemma 25. Let S be redex-unsharing and let p ∈ S be some ⇀-minimal node
such that there exists a distinct node q ∈ S with (i) L(p) = L(q) and (ii) succ(p) =
succ(q). Then S�p is normal form sharing.

Proof. For a proof by contradiction, suppose S�p is not normal form sharing. By
Lemma 17, there exist distinct nodes p′, q′ ∈ S�p such that labels and successor
function coincide in S�p for p′ and q′. By definition p ∗⇀ p′ and p ∗⇀ q′ such that
in at least one case the path considered in S�p has non-zero length. Suppose we
have p +

⇀ p′. Then the node p′ is a counter example to minimality of p. ut

Lemma 26. Let S be redex-unsharing. share(S) is computable in time O(‖S‖4).

Proof. We compute share(S) by computing term graphs S1, . . . , Sn with S =
S1 > · · · > Sn = S′ such that for all i = 1, . . . , n, the graph Si is redex-
unsharing. Lemma 18 guarantees that the above sequence is well-defined. Since
Si > Si+1 implies |Si| > |Si+1|, the number of iterations is bound by |S|.

It suffices to show one iteration. We show that the computation of Si+1 from
Si, can be performed in time O(‖S‖3). Including normalisation (operating in
time O(‖S‖2), cf. Lemma 21), we obtain that share(S) is computable in time
|S| ∗ O(‖S‖3) + O(‖S‖2) 6 O(‖S‖4).

Suppose we have constructed the redex-unsharing graph Si. To obtain Si+1

from Si, we search for two distinct nodes p and q such that succSi
(p) = succSi

(q),
LSi(p) = LSi(q) and term(Si�p) ∈ NF(R). By Lemma 17, nodes p and q exist
if and only if Si is normal form shared. If p and q exist we obtain Si+1 by
identifying nodes p and q in Si. Otherwise Si is normal form shared, we set
Si+1 := Si and the procedure stops.

Set R := {p | ∃q. p 6= q ∧ succSi
(p) = succSi

(q) ∧ LSi
(p) = LSi

(q)}. Thus,
reformulating the above approach, we search for p ∈ R with term(Si�p) ∈ NF(R).
To this extend, let Rmin ⊆ R be the restriction of R to ⇀-minimal nodes;
Rmin := {p | p ∈ R∧¬∃p′ ∈ R. p′ +

⇀ p}. Clearly p′ +
⇀ p and term(Si�p′) ∈ NF(R)

implies term(Si�p) ∈ NF(R). It is thus sufficient to search for some p ∈ Rmin

with term(Si�p) ∈ NF(R), or equivalently Si�p ∈ NF(G). The latter observation
results from Lemma 16, since by Lemma 25 the subgraph Si�p is normal form
sharing due to the definition of Rmin.

Suppose p ∈ Rmin with term(Si �p) ∈ NF(R). By definition of Rmin there
exists a distinct node q ∈ Si such that term(Si �p) = term(Si � q). To obtain
Si+1 from Si, we identify p and q, i.e. we set Si+1 := m(Si) where the graph
morphism m : Si → Si+1 is defined by m(q) = p and m(n) = n for n ∈ VSi \{q}.
Then Si+1 is redex-unsharing, moreover Si >m Si+1 as desired.

One easily verifies that R is computable in time O(‖Si‖2) 6 O(‖S‖2). The
cardinality of R is bound by |Si| 6 |S|, as S is normalised we see that ‖R‖ 6
O(‖S‖). Using a quadratic reachability-algorithm to check p′ +

⇀ p, Rmin is com-
putable from R in time ‖R‖∗O(‖Si‖2) 6 O(‖S‖3). As Rmin ⊆ R we have to check
Si�p ∈ NF(G) at most |Si| 6 |S| times. For this, we check match(L, Si, p) = ⊥ for
all rules (L→ R) ∈ G(R). The latter can be done in time O(‖Si‖2) 6 O(‖S‖2)
(cf. Lemma 22). We conclude that p ∈ Rmin with term(Si�p) ∈ NF(R) can be



found in time O(‖S‖2) + O(‖S‖3) + |S| ∗ O(‖S‖2) 6 O(‖S‖3). Searching the
corresponding node q ∈ Si and applying the morphism m can be done in time
O(‖S‖). Overall, the runtime for computing Si+1 from Si is bound by O(‖S‖3)
as desired. ut

Theorem 27. Let R be a confluent and terminating TRS, moreover suppose
rci
R(n) = O(nk) for all n ∈ N and some k ∈ N. The functions computed by R

are computable in time O(n5∗(k+1)).

Proof. To compute the functions defined by R, we encode terms as graphs and
perform graph rewriting using the simulating GRS G := G(R). Let f be a func-
tion computed by R, let f ∈ F be the associated function symbol. Fix val-
ues s1, . . . , sn such that f(s1, . . . , sn) = t is defined. Let s = f(s1, . . . , sn) and
S ∈ ♦(s). By definition and confluence of R, we obtain s i−→!

R t. We show that
f(s1, . . . , sn) is computable in time |s|5∗(k+1). For this, consider some derivation

S = T0
≥=⇒G . . .

≥=⇒G Tl = T (†)

with T ∈ NF(G). By Theorem 19 we conclude term(T ) = t.

We first analyse a single step Ti
≥=⇒G Ti+1 from the derivation (†). In order

to compute Ti+1 from Ti, we identify the corresponding redex in Ti. Define
redex(n) := Ti �n 6∈ NF(G) ∧ ∀nj ∈ succTi

(n). Ti �nj ∈ NF(G). Then the node
n ∈ Ti is an innermost redex if and only if redex(n) holds. In order to check Ti�q ∈
NF(G) for node q ∈ Ti, as before we apply the function match a constant number
of times. Due to Lemma 22 we see that redex(n) is computable in time O(‖Ti‖2)
overall. We find the desired redex in Ti in time O(‖Ti‖3): we traverse Ti and
return the first n ∈ Ti encountered satisfying redex(n). Without loss of generality,
we can assume n is the redex in Ti

≥=⇒G Ti+1 (otherwise, we adapt the derivation
(†) appropriately). Let T ′i+1 = step(s, n, L→ R) for the first applicable rule
(L→ R) ∈ G. By Lemma 23, since we have to check only a constant number of
rules L→ R, T ′i+1 is computable from Ti in time O(‖Ti‖3). As observed in the
proof of Theorem 19, the graph T ′i+1 is redex-unsharing. Using Lemma 26, we
finally obtain Ti+1 = share(T ′i+1) in time O(‖T ′i+1‖4). Summing all up, employing
‖T ′i+1‖ 6 ‖Ti‖+ c for some fixed c ∈ N (cf. Lemma 20), Ti+1 is computable from
Ti in time O(‖Ti‖4).

We return to the derivation (†). Note s ∈ B and further Ti
≥=⇒G Ti+1 implies

term(Ti) i−→R term(Ti+1). Thus we conclude l = O(|s|k) for some k ∈ N. Let
j ∈ {0, . . . , l − 1}. Lemma 20 implies |Tj | 6 |S| + j ∗ c 6 O(|s|k) for some
fixed c ∈ N. Here we employ that |S| 6 |s|. Recall ‖Tj‖ = O(log(|Tj |) ∗ |Tj |).
Thus ‖Tj‖ 6 O(log(|s|k)∗|s|k) 6 O(|s|k+1). And so each step Tj

≥=⇒G Tj+1 can be
performed in time O(‖Tj‖4) 6 O(|s|4∗(k+1)) using the above observation. In total,
we obtain that S ∈ ♦(s) can be ≥=⇒G-normalised in time O(|s|k) ∗O(|s|4∗(k+1)) 6
O(|s|5∗(k+1)). We conclude the theorem. ut



5 Conclusion

Recently, many techniques have been introduced that allow the (automated)
classification of the runtime complexity of TRS. In this paper we show that poly-
nomial innermost runtime complexity of TRSs induces polytime computability
of the functions defined. As a side-result we present a simulation between (in-
nermost) term rewriting and (innermost) graph rewriting.

The latter result is related to implicit computational complexity and in par-
ticular to a recent result by Dal Lago and Martini. In [8] Dal Lago and Martini
establish that orthogonal constructor TRSs and lambda calculus with weak call-
by-value reduction simulate each other with linear overhead. The proof of this
[8] (compare also [7]) provides a variant of Theorem 19 for the restricted case
that the TRS in question is constructor and orthogonal. By augmenting the in-
nermost graph rewrite relation by collapse steps, our result prevail also in the
general case.
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