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Abstract. Polynomial interpretations are a useful technique for proving
termination of term rewrite systems. In an automated setting, termina-
tion tools are concerned with parametric polynomials whose coefficients
(i.e., the parameters) are initially unknown and have to be instantiated
suitably such that the resulting concrete polynomials satisfy certain con-
ditions. We focus on monotonicity and well-definedness, the two main
conditions that are independent of the respective term rewrite system
considered, and provide constraints on the abstract coefficients for lin-
ear, quadratic and cubic parametric polynomials such that monotonicity
and well-definedness of the resulting concrete polynomials are guaranteed
whenever the constraints are satisfied. Our approach subsumes the abso-
lute positiveness approach, which is currently used in many termination
tools. In particular, it allows for negative numbers in certain coefficients.
We also give an example of a term rewrite system whose termination
proof relies on the use of negative coefficients, thus showing that our
approach is more powerful.

1 Introduction

Polynomial interpretations are a simple yet useful technique for proving termi-
nation of term rewrite systems (TRSs). They come in various flavors. While
originally conceived by Lankford [10] for establishing direct termination proofs,
polynomial interpretations are nowadays often used in the context of the depen-
dency pair (DP) framework [1,6,7]. Moreover, the classical approach of Lankford,
who only considered polynomial algebras over the natural numbers, was extended
by several authors to polynomial algebras over the real numbers [3,11].

This paper is concerned with automatically proving termination of term
rewrite systems by means of polynomial interpretations over the natural num-
bers. In the classical approach, we associate with every n-ary function symbol
f a polynomial Pf in n indeterminates with integer coefficients, which induces
a mapping or interpretation from terms to integer numbers in the obvious way.
In order to conclude termination of a given TRS, three conditions have to be
satisfied. First, every polynomial must be well-defined, i.e., it must induce a
well-defined polynomial function fN : Nn → N over the natural numbers. In ad-
dition, the interpretation functions fN are required to be strictly monotone in
all arguments. Finally, one has to show compatibility of the interpretation with
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the given TRS. More precisely, for every rewrite rule l → r the polynomial Pl

associated with the left-hand side must be greater than Pr, the corresponding
polynomial of the right-hand side, i.e., Pl > Pr, for all values (in N) of the inde-
terminates. These three requirements essentially carry over to the case of using
polynomial interpretations as reduction pairs in the DP framework, but in a
weakened form. Most notably, the interpretation functions are merely required
to be weakly monotone, and for some rules Pl ≥ Pr suffices.

In an automated setting, termination tools are concerned with parametric
polynomials whose coefficients (i.e., the parameters) are initially unknown and
have to be instantiated suitably such that the resulting concrete polynomials
satisfy the above conditions. In this paper, we focus on monotonicity (strict and
weak) and well-definedness of linear, quadratic and cubic parametric polynomi-
als, two conditions that are independent of the respective TRS considered. The
aim is to provide exact constraints in terms of the abstract coefficients of a para-
metric polynomial such that monotonicity and well-definedness of the resulting
concrete polynomial are guaranteed for every instantiation of the coefficients
that satisfies the constraints. For example, given the parametric polynomial
ax2 + bx + c, we identify constraints on the parameters a, b and c such that
the associated polynomial function is both well-defined and (strictly) monotone.
Our approach subsumes the absolute positiveness approach [9], which is currently
used in many termination tools. In contrast to the latter, negative numbers in
certain coefficients can be handled without further ado. Previous work allowing
negative coefficients ensures well-definedness and (weak) monotonicity by ex-
tending polynomials with “max” [8,5]. However, all our interpretation functions
are polynomials and our results do also apply to strict monotonicity. Hence in
the sequel we do not consider these approaches.

The remainder of this paper is organized as follows. In Section 2, we introduce
some preliminary definitions and terminology concerning polynomials and poly-
nomial interpretations. The follow-up section is the main section of this paper
where we present our results concerning monotonicity of linear, quadratic and
cubic parametric polynomials. In Section 4, we give a constructive proof show-
ing that our approach is more powerful than the absolute positiveness approach.
Finally, Section 5 presents some experimental results.

2 Preliminaries

For any ring R, we denote the associated polynomial ring in n indeterminates
x1, . . . , xn by R[x1, . . . , xn]. For example, the polynomial 2x2−x+1 is an element
of Z[x], the ring of all univariate polynomials with coefficients in Z. Let P :=∑n

k=0 akxk be an element of the polynomial ring R[x]. For the largest k where
ak 6= 0, we call akxk the leading term of P , ak its leading coefficient and k its
degree. Moreover, we call a0 the constant coefficient or constant term of P .

A quadratic equation is an equation of the form ax2 + bx + c = 0, where x is
an indeterminate, and a, b and c represent constants, with a 6= 0. The solutions
of a quadratic equation, called roots, are given by the quadratic formula:
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In this formula, the expression d := b2−4ac underneath the square root sign is of
central importance because it determines the nature of the roots; it is also called
the discriminant of a quadratic equation. If all coefficients are real numbers, one
of the following three cases applies:

1. If d is positive, there are two distinct roots, both of which are real numbers.
2. If d is zero, there is exactly one real root, called a double root.
3. If d is negative, there are no real roots. Both roots are complex numbers.

The key concept for using polynomial interpretations to establish (direct)
termination of term rewrite systems is the notion of well-founded monotone
algebras (WFMAs) since they induce reduction orders on terms. Let F be a
signature. A well-founded monotone F-algebra (A, >) is a non-empty algebra
A = (A, {fA}f∈F ) together with a well-founded order > on the carrier A of A
such that every algebra operation fA is strictly monotone in all arguments, i.e.,
if f ∈ F has arity n ≥ 1 then fA(a1, . . . , ai, . . . , an) > fA(a1, . . . , b, . . . , an) for
all a1, . . . , an, b ∈ A and i ∈ {1, . . . , n} with ai > b.

Concerning the use of polynomial interpretations in the context of the DP
framework, the notion of a well-founded weakly monotone algebra (WFWMA)
is sufficient to obtain a reduction pair. A WFWMA is just like a WFMA,
with the exception that weak rather than strict monotonicity is required; i.e.,
fA(a1, . . . , ai, . . . , an) ≥ fA(a1, . . . , b, . . . , an) whenever ai ≥ b. Here ≥ is the
reflexive closure of >.

Given a monotone algebra (A, >), we define the relations ≥A and >A on
terms as follows: s ≥A t if [α]A(s) ≥ [α]A(t) and s >A t if [α]A(s) > [α]A(t), for
all assignments α of elements of A to the variables in s and t ([α]A(·) denotes the
usual evaluation function associated with A). Now if (A, >) is a WFMA, then
>A is a reduction order that can be used to prove termination of term rewrite
systems by showing that >A orients the rewrite rules from left to right. If, on
the other hand, (A, >) is a WFWMA, then (≥A, >A) is a reduction pair that
can be used to establish termination in the context of the DP framework.

3 Parametric Polynomials

Polynomial interpretations over the natural numbers are based on the well-
founded algebra (N , >), where > is the standard order on the natural numbers
N and N = (N, {fN}f∈F ) such that every algebra operation fN is a polyno-
mial with integer coefficients. Depending on whether all algebra operations are
strictly or weakly monotone, (N , >) is either a WFMA or a WFWMA. To be
precise, every n-ary function symbol f ∈ F is associated with a polynomial with
integer coefficients such that the corresponding algebra operation fN : Nn → N
is a well-defined polynomial function which is strictly or weakly monotone in all
arguments. Note, however, that this does not imply that all coefficients of the
polynomials must be natural numbers.
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Example 1. The univariate integer polynomial 2x2−x+1 ∈ Z[x] gives rise to the
polynomial function fN : N → N, x 7→ 2x2−x+1, which is obviously well-defined
over N. Moreover, it is also strictly monotone with respect to N. Note, however,
that monotonicity does not hold if we view 2x2 − x + 1 as a function over the
(non-negative) real numbers.

Summing up, an n-ary polynomial function fN used in a polynomial inter-
pretation is an element of the polynomial ring Z[x1, . . . , xn] and must satisfy:

1. well-definedness: fN(x1, . . . , xn) ≥ 0 for all x1, . . . , xn ∈ N
2. strict (weak) monotonicity : fN(x1, . . . , xi, . . . , xn) >

(−)
fN(x1, . . . , y, . . . , xn) for

all i ∈ {1, . . . , n} and x1, . . . , xn, y ∈ N with xi > y.

Alas, both of these properties are instances of the undecidable problem of check-
ing positiveness of polynomials1 in the polynomial ring Z[x1, . . . , xn] (undecid-
able by reduction from Hilbert’s 10-th problem).

Termination tools face the following problem. They deal with parametric
polynomials, i.e., polynomials whose coefficients are unknowns (e.g., ax2+bx+c),
and the task is to find suitable integer numbers for the unknown coefficients such
that the resulting polynomials induce algebra operations that satisfy both of the
above properties. The solution that is used in practice is to restrict the search
space for the unknown coefficients to the non-negative integers (absolute pos-
itiveness approach [9,2]) because then well-definedness and weak monotonicity
are obtained for free. To obtain strict monotonicity in the i-th argument of a
polynomial function fN(. . . , xi, . . . ), at least one of the terms (ckxk

i )k>0 must
have a positive coefficient ck > 0.

Obviously, this approach is easy to implement and works quite well in prac-
tice. However, it is not optimal in the sense that it excludes certain polyno-
mials, like 2x2 − x + 1, which might be useful to prove termination of certain
TRSs. So how can we do better? To this end, let us observe that in general
termination tools only use restricted forms of polynomials to interpret function
symbols. There are restrictions concerning the degree of the polynomials (linear,
quadratic, etc.) and sometimes also restrictions that disallow certain kinds of
monomials. Now the idea is as follows. Despite the fact that well-definedness
and monotonicity are undecidable in general, it might be the case that they are
decidable for the restricted forms of polynomials used in practice. And indeed,
that is the case, as we shall see shortly.

Remark 2. Checking compatibility of a rewrite rule l → r with a polynomial
interpretation means showing that the rule gives rise to a (weak) decrease; i.e.,
Pl − Pr > 0 (Pl − Pr ≥ 0). In N, both cases reduce to checking non-negativity
of polynomials because x > y if and only if x ≥ y + 1. Since well-definedness of
a polynomial as defined above is equivalent to non-negativity of a polynomial
in N, any method that ensures non-negativity of parametric polynomials can
also be used for checking compatibility. However, we remark that the method
presented in this paper is not ideally suited for this purpose as it also enforces
strict monotonicity, which is irrelevant for compatibility.
1 Given P ∈ Z[x1, . . . , xn], decide P (x1, . . . , xn) > 0 for all x1, . . . , xn ∈ N.
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In the sequel, we analyze parametric polynomials whose only restriction is a
bound on the degree. We will first treat linear parametric polynomials. While
this does not yield new results or insights, it is instructive to demonstrate our ap-
proach in a simple setting. This is followed by an analysis of quadratic and finally
also cubic parametric polynomials, both of which yield new results. The follow-
ing lemmas will be helpful in this analysis. The first one gives a more succinct
characterization of monotonicity, whereas the second one relates monotonicity
and well-definedness.

Lemma 3. A (not necessarily polynomial) function fN : Nn → Z is strictly
(weakly) monotone in all arguments if and only if

fN(x1, . . . , xi + 1, . . . , xn) >
(−)

fN(x1, . . . , xi, . . . , xn)

for all x1, . . . , xn ∈ N and all i ∈ {1, . . . , n}.

Lemma 4. Let f : Zn → Z be the polynomial function associated with a polyno-
mial in Z[x1, . . . , xn], and let fN : Nn → Z denote its restriction to N. Then fN is
strictly (weakly) monotone and well-defined if and only if it is strictly (weakly)
monotone and fN(0, . . . , 0) ≥ 0.

In these lemmata, as well as in the remainder of the paper, monotonicity and
well-definedness refer to the two properties mentioned at the beginning of this
section. In particular, monotonicity is meant with respect to all arguments.

3.1 Linear Parametric Polynomials

In this section we consider the generic linear parametric polynomial function
fN(x1, . . . , xn) = anxn + an−1xn−1 + · · ·+ a1x1 + a0, and derive constraints on
the coefficients ai that guarantee monotonicity and well-definedness.

Theorem 5. The function fN(x1, . . . , xn) = anxn + . . . + a1x1 + a0 (ai ∈ Z,
0 ≤ i ≤ n) is strictly (weakly) monotone and well-defined if and only if a0 ≥ 0
and ai > 0 (ai ≥ 0) for all i ∈ {1, . . . , n}.

Proof. Easy consequence of Lemmata 4 and 3. ut

Remark 6. Note that all coefficients must be non-negative and that the con-
straints on the coefficients are exactly the ones one would obtain by the absolute
positiveness approach. Furthermore, these constraints are optimal in the sense
that they are both necessary and sufficient for monotonicity and well-definedness.

3.2 Quadratic Parametric Polynomials

Next we apply the approach illustrated by Theorem 5 to the generic quadratic
parametric polynomial function

fN(x1, . . . , xn) = a0 +
n∑

j=1

ajxj +
∑

1≤j≤k≤n

ajkxjxk ∈ Z[x1, . . . , xn] (1)
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Theorem 7. The function fN is strictly (weakly) monotone and well-defined if
and only if a0 ≥ 0, ajk ≥ 0 and aj > −ajj (aj ≥ −ajj) for all 1 ≤ j ≤ k ≤ n.

Proof. By Lemmata 3 and 4, this theorem holds if and only if fN(0, . . . , 0) ≥ 0,
and fN(x1, . . . , xi +1, . . . , xn) >

(−)
fN(x1, . . . , xi, . . . , xn) for all x1, . . . , xn ∈ N and

all i ∈ {1, . . . , n}. Clearly, fN(0, . . . , 0) ≥ 0 holds if and only if a0 ≥ 0, and the
monotonicity condition fN(x1, . . . , xi +1, . . . , xn) > fN(x1, . . . , xi, . . . , xn) yields

ai(xi + 1) + aii(xi + 1)2 +
∑

i<k≤n

aik(xi + 1)xk +
∑

1≤j<i

ajixj(xi + 1)

> aixi + aiix
2
i +

∑
i<k≤n

aikxixk +
∑

1≤j<i

ajixjxi

which simplifies to

ai + aii + 2aiixi +
∑

i<k≤n

aikxk +
∑

1≤j<i

ajixj > 0

This is a linear inequality that holds for all x1, . . . , xn ∈ N if and only if ai+aii >
0 and all other coefficients are non-negative. Taking the quantification over i
into account, this proves the claim for strict monotonicity; the result for weak
monotonicity follows by replacing > with ≥ in the above calculation. ut
Corollary 8. The function fN(x) = ax2 + bx + c is strictly (weakly) monotone
and well-defined if and only if a ≥ 0, c ≥ 0 and b > −a (b ≥ −a).

Hence, in a quadratic parametric polynomial all coefficients must be non-
negative except the coefficients of the linear monomials. They can be negative;
for example, the polynomial 2x2 − x + 1 satisfies the constraints of Corollary 8;
hence, it is both well-defined and strictly monotone.

Remark 9. Not only does our approach improve upon absolute positiveness for
quadratic parametric polynomials, but the constraints derived from it are even
optimal, i.e., necessary and sufficient for monotonicity and well-definedness.

Example 10. The polynomial function fN(x1, x2) = 2x2
1+3x2

2+x1x2−x1−2x2+1
is both well-defined and strictly monotone according to Theorem 7. Yet we can
also infer this result in a more modular and probably more intuitive way by
using Corollary 8. To this end, let fN(x1, x2) = g1(x1) + g2(x2) + x1x2 + 1,
where g1(x1) = 2x2

1−x1 and g2(x2) = 3x2
2− 2x2. Clearly, by Corollary 8, g1(x1)

and g2(x2) are both well-defined and strictly monotone. The same also holds for
their sum, g1(x1) + g2(x2), because g1(x1) and g2(x2) do not share variables.
Finally, we may conclude that fN is then also well-defined and strictly monotone
by observing that the addition of monomials with non-negative coefficients (in
this case: x1x2 and 1) is not harmful.

Another thing that is noteworthy about the previous theorem is that it sub-
sumes the result of Theorem 5. That is to say, if we set the coefficients ajk of
all quadratic monomials in (1) to zero, thereby obtaining the linear parametric
polynomial function f ′N(x1, . . . , xn) = a0 +

∑n
j=1 ajxj , then the constraints gen-

erated by Theorem 7 are in fact the ones Theorem 5 would produce when applied
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to f ′N. In theory, this means that if we want to prove termination of some TRS,
then we do not have to specify a priori whether to interpret a function symbol
by a linear or a quadratic parametric polynomial function; we can always go for
quadratic interpretations, and it is solely determined by the constraint solving
process (i.e., the process that assigns suitable integers to the abstract coefficients
such that all constraints are satisfied) whether the resulting concrete polynomial
function is linear or quadratic. In practice, however, this approach has an im-
portant drawback; that is, it increases both the number of abstract coefficients
and the number of constraints involving these coefficients, which is detrimental
to the performance of the constraint solving process.

3.3 Cubic Parametric Polynomials

Next we apply our approach to cubic parametric polynomials. First, we consider
the univariate polynomial function fN(x) = ax3 + bx2 + cx + d ∈ Z[x], for which
the monotonicity condition fN(x + 1) >

(−)
fN(x) for all x ∈ N simplifies to

∀x ∈ N 3ax2 + (3a + 2b)x + (a + b + c) >
(−)

0 (2)

In the interesting case, where a 6= 0, the polynomial P := 3ax2 + (3a + 2b)x +
(a + b + c) is a quadratic polynomial in x whose geometric representation is
a parabola in two-dimensional space, which has a global minimum at xmin :=
−(3a + 2b)/(6a). Since a is involved in the leading coefficient of P , a must neces-
sarily be positive in order for (2) to hold. Next we focus on strict monotonicity,
that is, the solution of the inequality

∀x ∈ N 3ax2 + (3a + 2b)x + (a + b + c) > 0 (3)

Now this inequality holds if and only if either xmin < 0 and P (0) > 0 or xmin ≥ 0
and both P (bxminc) > 0 and P (dxmine) > 0. However, these constraints use
the floor and ceiling functions, but we would rather have a set of polynomial
constraints in a, b and c (which can easily be encoded in SAT or SMT). It is
possible, however, to eliminate the floor and ceiling functions from the above
constraints, but only at the expense of introducing new variables; e.g., bxminc =
n for some n ∈ Z if and only if n ≤ xmin < n + 1. Thus one obtains a set of
polynomial constraints in a, b, c and the additional variables. But one can also
avoid the introduction of new variables with the following approach. To this end,
we examine the roots of P and distinguish two possible cases:

Case 1 P has no roots in R (both roots are complex numbers),

Case 2 both roots of P are real numbers.

In the first case, (3) trivially holds. Moreover, this case is completely charac-
terized by the discriminant of P being negative, i.e., 4b2 − 3a2 − 12ac < 0. In
the other case, when both roots r1 and r2 are real numbers, the discriminant
is non-negative and (3) holds if and only if the closed interval [r1, r2] does not
contain a natural number, i.e., [r1, r2]∩N = ∅. While this condition can be fully
characterized with the help of the floor and/or ceiling functions, we can also
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obtain a polynomial characterization as follows. We require the larger of the two
roots, that is, r2, to be negative because then (3) is guaranteed to hold. This
observation leads to the constraints

4b2 − 3a2 − 12ac ≥ 0 and r2 =
−(3a + 2b) +

√
4b2 − 3a2 − 12ac

6a
< 0

which can be simplified to

4b2 − 3a2 − 12ac ≥ 0 (4)√
4b2 − 3a2 − 12ac < 3a + 2b (5)

Due to (4), (5) holds if and only if 4b2−3a2−12ac < (3a+2b)2 and 3a+2b ≥ 0,
which simplifies to a + b + c > 0 and 3a + 2b ≥ 0. Putting everything together,
we obtain the following theorem.

Theorem 11. The function fN(x) = ax3 +bx2 +cx+d is strictly monotone and
well-defined if a ≥ 0, d ≥ 0 and either 4b2−3a2−12ac < 0 or 4b2−3a2−12ac ≥ 0,
a + b + c > 0 and 3a + 2b ≥ 0.

Note that these constraints are only sufficient for monotonicity and well-
definedness, they are not necessary. However, they are very close to necessary
constraints, as will be explained below.

Remark 12. Weak monotonicity of ax3 + bx2 + cx+d is obtained by similar rea-
soning. The only difference is that in case 2 we differentiate between distinct real
roots r1 6= r2 and a double root r1 = r2. In the latter case, which is character-
ized algebraically by the discriminant of P being zero, (2) holds unconditionally,
whereas in the former case, where the discriminant of P is positive, it suffices to
require the larger of the two roots to be negative or zero.

Theorem 13. The function fN(x) = ax3 +bx2 +cx+d is weakly monotone and
well-defined if a ≥ 0, d ≥ 0 and either 4b2−3a2−12ac ≤ 0 or 4b2−3a2−12ac > 0,
a + b + c ≥ 0 and 3a + 2b ≥ 0.

In case a = 0, i.e., fN(x) = bx2 + cx + d, Theorem 11 yields exactly the
same constraints as Corollary 8, that is, necessary and sufficient constraints.
One possible interpretation of this fact is that the simplification we made on our
way to Theorem 11 did not cast away anything essential. Indeed, that is the case.
To this end, we observe that the only case where (3) holds that is not covered
by the constraints of Theorem 11 is when both roots r1 and r2 are positive and
[r1, r2] ∩ N = ∅; e.g., the polynomial 2x3 − 6x2 + 5x is both strictly monotone
and well-defined, but does not satisfy the constraints of Theorem 11. However,
it turns out that this case is very rare; for example, empirical investigations
reveal that in the set of polynomials {3ax2 + (3a + 2b)x + (a + b + c) | 1 ≤ a ≤
7,−15 ≤ b, c ≤ 15 (a, b, c ∈ Z)} 3937 out of a total of 6727 polynomials satisfy
(3), but only 25 of them are of this special kind. In other words, the constraints of
Theorem 11 comprise 3912 out of 3937, hence almost all, polynomials; and this is
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way more than the 1792 (= 7×16×16) polynomials that the absolute positiveness
approach, where a, b and c are restricted to the non-negative integers, can handle.
The following table summarizes all our experiments with varying ranges for a, b
and c:

a b, c Theorem 11
[1, 7] [−15, 15] 3912 of 3937
[1, 7] [−31, 31] 14055 of 14133
[1, 15] [−31, 31] 34718 of 34980

By design, our approach covers two out of the three possible scenarios mentioned
above. But which of these scenarios can the absolute positiveness approach deal
with? Just like our method, it fails on all instances of the scenario where the
polynomial P := 3ax2 +(3a+2b)x+(a+ b+ c) has two positive roots r1 and r2,
which gives rise to the factorization P = k(x−r1)(x−r2), k > 0. This expression
is equivalent to kx2 − k(r1 + r2)x + kr1r2, the linear coefficient −k(r1 + r2)
of which should be equal to 3a + 2b. Now this gives rise to a contradiction
because a and b are restricted to the non-negative integers whereas −k(r1 + r2)
is a negative number. Concerning the two remaining scenarios, the absolute
positiveness approach can handle only some instances of the respective scenarios
while failing at others. We present one failing example for either scenario:

– If a = 1, b = −1 and c = 1, then P = 3x2 + x + 1, which has no real roots.
Clearly, P is positive for all x ∈ N; in fact this is even true for all x ∈ R.
However, the absolute positiveness approach fails because b is negative.

– If a = 3, b = −1 and c = −1, then P = 9x2 +7x+1, both roots of which are
negative real numbers. Clearly, P is positive for all x ∈ N, but the absolute
positiveness approach fails because b and c are negative.

Generalization to Multivariate Cubic Parametric Polynomials

In this subsection, we elaborate on the question how to generalize the result of
Theorem 11 to the multivariate case. In general, this is always possible by a
very simple approach that we already introduced in Example 10. To this end, let
fN(x1, . . . , xn) denote the n-variate generic cubic parametric polynomial func-
tion, and let us note that we can write it as

fN(x1, . . . , xn) =
n∑

j=1

gj(xj) + r(x1, . . . , xn) (6)

where gj(xj) denotes the univariate generic cubic parametric polynomial func-
tion in xj without constant term and r(x1, . . . , xn) contains all the remaining
monomials. Now, let us assume that all the gj(xj) are both strictly monotone
and well-defined. Then the same also holds for their sum,

∑n
j=1 gj(xj), because

they do not share variables. But when is this also true of fN? By Lemma 3, fN is
strictly monotone in its i-th argument if and only if fN(x1, . . . , xi + 1, . . . , xn)−
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fN(x1, . . . , xn) > 0 for all natural numbers x1, . . . , xn. With the help of (6), this
simplifies to: ∀x1, . . . , xn ∈ N

gi(xi + 1)− gi(xi) + r(x1, . . . , xi + 1, . . . , xn)− r(x1, . . . , xi, . . . , xn) > 0 (7)

By assumption, gi(xi +1)−gi(xi) > 0 for all xi ∈ N, such that (7) is guaranteed
to hold if the second summand, r(x1, . . . , xi+1, . . . , xn)−r(x1, . . . , xi, . . . , xn), is
non-negative for all x1, . . . , xn ∈ N, that is, if r(x1, . . . , xn) is weakly monotone in
all arguments. In other words, strict monotonicity of the functions (gj(xj))1≤j≤n

implies strict monotonicity of fN, provided that r(x1, . . . , xn) is weakly mono-
tone in all arguments. Moreover, if all the functions (gj(xj))1≤j≤n are strictly
monotone and well-defined, and if r(x1, . . . , xn) is weakly monotone and well-
defined, then fN is strictly monotone and well-defined; and note that we can
easily make r(x1, . . . , xn) weakly monotone and well-defined by restricting all
its coefficients to be non-negative. Hence, the n-variate generic cubic parametric
polynomial function fN(x1, . . . , xn) is strictly monotone and well-defined if

– all the gj(xj) satisfy the constraints of Theorem 11, and
– all coefficients of r(x1, . . . , xn) are non-negative.

Example 14. Consider the bivariate generic cubic parametric polynomial func-
tion fN(x1, x2) = ax3

1 +bx2
1x2 +cx1x

2
2 +dx3

2 +ex2
1 +fx1x2 +gx2

2 +hx1 + ix2 +j =
g1(x1)+g2(x2)+r(x1, x2), where g1(x1) = ax3

1 +ex2
1 +hx1, g2(x2) = dx3

2 +gx2
2 +

ix2 and r(x1, x2) = bx2
1x2 + cx1x

2
2 + fx1x2 + j. This function is both strictly

monotone and well-defined if ax3
1 + ex2

1 + hx1 and dx3
2 + gx2

2 + ix2 satisfy the
constraints of Theorem 11, and the coefficients of r(x1, . . . , xn) are non-negative,
i.e., b, c, f, j ≥ 0.

4 Negative Coefficients in Polynomial Interpretations

In the previous section, we have seen that in principle we may use polynomial in-
terpretations with (some) negative coefficients for proving termination of TRSs.
Now the obvious question is the following: Does there exist a TRS that can be
proved terminating by a polynomial interpretation with negative coefficients ac-
cording to Theorems 7 and 11, but cannot be proved terminating by a polynomial
interpretation where the coefficients of all polynomials are non-negative?

To elaborate on this question, let us consider the following scenario. Assume
we have a TRS whose signature contains (amongst others) the successor symbol
s, the constant 0 and another unary symbol f, and assume that the interpreta-
tions associated with the former two are the natural interpretations sN(x) = x+1
and 0N = 0, whereas f is supposed to be interpreted by fN(x) = ax2 + bx + c.
Now the idea is to add rules to the TRS which enforce fN(x) = 2x2−x+1. This
can be achieved as follows.

First, note that by polynomial interpolation the coefficients a, b and c of the
polynomial function fN(x) = ax2 + bx + c are uniquely determined by the image
of fN at three pairwise different locations; for example, the constraints fN(0) = 1,

10



fN(1) = 2 and fN(2) = 7 enforce fN(x) = 2x2 − x + 1, as desired. Next we encode
these three constraints in terms of the TRS R1:

s2(0) → f(0) s3(0) → f(s(0)) s8(0) → f(s2(0))

f(0) → 0 f(s(0)) → s(0) f(s2(0)) → s6(0)

Every constraint gives rise to two rewrite rules; e.g., the constraint fN(0) = 1 is
expressed by f(0) → 0 and s2(0) → f(0). The former encodes fN(0) > 0, whereas
the latter encodes fN(0) < 2. So these rewrite rules are polynomially terminating
by construction, with fN(x) = 2x2 − x + 1.

Moreover, we can use R1 to prove a more general statement that does away
with one of the above assumptions. That is to say that any feasible interpretation
fN must necessarily contain at least one monomial with a negative coefficient. To
this end, let us observe that no linear interpretation for f is feasible because the
set of points {(i, fN(i))}i∈{0,1,2} is not collinear. The case when fN is quadratic
was dealt with above. So let us consider interpretations of degree at least three.
Then the leading term of fN has the shape axk, where a ≥ 1 and k ≥ 3. Since
fN(2) = 7 must be satisfied, the claim follows immediately because for x = 2 the
leading term alone contributes a value of at least 8.

Finally, a thorough inspection of the constraints imposed by R1 reveals that
we can also relax the restrictions concerning the interpretations of s and 0.

Lemma 15. In any polynomial interpretation compatible with R1 that satisfies
sN(x) = x + d for some d ∈ N, fN must contain at least one monomial with a
negative coefficient. In particular, fN is not linear.

Proof. Without loss of generality, let f be interpreted by fN(x) =
∑n

i=0 aix
i

(an ≥ 1) and 0 by some natural number z. Then the compatibility requirement
with respect to R1 gives rise to the following constraints:

z < fN(z) < z + 2d
z + d < fN(z + d) < z + 3d

z + 6d < fN(z + 2d) < z + 8d

Hence, d must be a positive integer, i.e., d ≥ 1. Moreover, no linear interpretation
fN(x) = a1x+a0 satisfies these constraints. To this end, observe that by the first
four constraints a1 = fN(z+d)−fN(z)

d < 3, whereas by the last four constraints
a1 = fN(z+2d)−fN(z+d)

d > 3, which contradicts the former. In other words, the
set of points {(z + id, fN(z + id))}i∈{0,1,2} is not collinear. Next we focus on
fN(z + 2d) < z + 8d. Clearly, if the value of the leading term anxn at x = z + 2d
is greater than or equal to z + 8d, then fN must contain at least one monomial
with a negative coefficient in order to satisfy fN(z + 2d) < z + 8d. So, when is
an(z + 2d)n ≥ z + 8d? Considering the worst case, i.e. an = 1, let us investigate
for which integers n ≥ 2, z ≥ 0 and d ≥ 1 the inequality (z + 2d)n ≥ z + 8d
holds. If n ≥ 3, then it holds for all z ≥ 0 and d ≥ 1 by the following reasoning
(z + 2d)n ≥ zn + (2d)n ≥ z + 8d. For n = 2, (z + 2d)2 ≥ z + 8d is equivalent to
z2 + (4d− 1)z + 4d(d− 2) ≥ 0 which holds for all z ≥ 0 and d ≥ 1 except z = 0

11



and d = 1. The latter case corresponds to using the natural interpretations for
the symbols s and 0, namely, sN(x) = x+1 and 0N = 0. But then the six rewrite
rules require the constraints fN(0) = 1, fN(1) = 2 and fN(2) = 7, which uniquely
determine the coefficients of fN(x) = a2x

2 + a1x + a0 as a2 = 2, a1 = −1 and
a0 = 1 by polynomial interpolation. Hence, fN has a negative coefficient. ut

The result of Lemma 15 relies on the assumption that the function symbol s
is interpreted by a linear polynomial sN(x) = x + d. Our next goal is to do away
with this assumption by adding rules that enforce such an interpretation for s.

Lemma 16. In any polynomial interpretation that is compatible with the rewrite
rules g(s(x)) → s(s(g(x))) and f(g(x)) → g(g(f(x))), sN and gN must be linear
polynomials. Moreover, sN(x) = x + d, for some d > 0, and fN is not linear.

Proof. Without loss of generality, let us assume that the leading terms of sN(x)
and gN(x) are kxi and mxj , respectively, with k, i,m, j ≥ 1. Then the leading
term of the polynomial Plhs := gN(sN(x)) associated with the left-hand side of the
first rule is m(kxi)j = mkjxij . Likewise, the leading term of the corresponding
polynomial Prhs := sN(sN(gN(x))) is k(k(mxj)i)i = ki+1mi2xi2j . Compatibility
demands that the degree of the former must be greater than or equal to the
degree of the latter, i.e., ij ≥ i2j. This condition holds if and only if i = 1.
Repeating this reasoning for the second rule yields j = 1. Substituting these
values into the leading terms of Plhs and Prhs, we get mkx and k2mx, respec-
tively. Hence, Plhs and Prhs have the same degree, such that, in order to ensure
compatibility, the leading coefficient of the former must be greater than or equal
to the leading coefficient of the latter, i.e., mk ≥ k2m. Since m > 0 and k > 0,
this condition is equivalent to k ≤ 1 and hence k = 1. Therefore sN(x) = x + d.
Clearly, d 6= 0. Finally, let us assume that f is interpreted by a linear polynomial
fN. Repeating the above reasoning for the second rule yields gN(x) = x + d′.
However, such an interpretation is not compatible with the first rule. Hence, fN
cannot be linear. ut

Having all the relevant ingredients at hand, we are now ready to state the
main theorem of this section, which also gives an affirmative answer to the
question posed at the beginning of the section; that is, there are TRSs that can
be proved terminating by a polynomial interpretation with negative coefficients,
but cannot be proved terminating by a polynomial interpretation where the
coefficients of all polynomials are non-negative.

Theorem 17. Consider the TRS R1 extended with the rewrite rules g(s(x)) →
s(s(g(x))) and f(g(x)) → g(g(f(x))). In any compatible polynomial interpreta-
tion, fN must contain at least one monomial with a negative coefficient.

Proof. By Lemmata 15 and 16. ut

Specifying Interpretations by Interpolation

Now let us revisit the motivating scenario presented at the beginning of this
section, in which we leveraged polynomial interpolation to create the TRS R1

in such a way that it enforces the function symbol f to be interpreted by fN(x) =
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2x2 − x + 1, a polynomial of our choice. The construction presented there was
based on three assumptions:

1. the successor symbol s had to be interpreted by sN(x) = x + 1,
2. the constant 0 had to be interpreted by 0N = 0,
3. the function symbol f had to be interpreted by a quadratic polynomial.

Next we show how one can enforce all these assumptions by adding suitable
rewrite rules to R1. This results in a TRS that is polynomially terminating,
but only if the symbols s, f and 0 are interpreted accordingly (cf. Theorem 23).
However, much to our surprise, most of the current termination tools with all
their advanced termination techniques fail to prove this TRS terminating (cf.
Section 5) in their automatic mode.

Concerning the first two of the above assumptions, it turns out that the
constraints imposed by R1 alone suffice to do away with them, provided that
the successor symbol is interpreted by a linear polynomial of the form x + d
(which poses no problem according to Lemma 16). This is the result of the next
lemma.

Lemma 18. In any polynomial interpretation compatible with R1 such that
sN(x) = x + d and the degree of fN is at most two, the constant 0 must be
interpreted by 0. Moreover, d = 1 and fN is not linear.

Proof. Without loss of generality, fN(x) = ax2 +bx+c subject to the constraints
a, c ≥ 0 and a + b > 0 (cf. Corollary 8). By Lemma 15, fN is not linear; hence
a ≥ 1. Writing z for 0N, the compatibility requirement yields

z < fN(z) < z + 2d
z + d < fN(z + d) < z + 3d

z + 6d < fN(z + 2d) < z + 8d

Hence, d must be a positive integer, i.e., d ≥ 1. Next we focus on the constraint
fN(z + d) < z + 3d and try to derive a contradiction assuming z ≥ 1. We reason
as follows: fN(z+d)− fN(z) = d(2az+ad+b) ≥ d(2az+a+b) ≥ d(2az+1) ≥ 3d.
Hence, fN(z + d) ≥ fN(z) + 3d, which contradicts fN(z + d) < z + 3d together
with the first of the above constraints fN(z) > z. As a consequence, z = 0N = 0.
Finally, it remains to show that d must be 1. We already know that d must
be at least 1. So let us assume that d ≥ 2 and derive a contradiction with
respect to the constraint fN(z + 2d) < z + 8d. This can be achieved as follows:
fN(z +2d) = fN(2d) = 4ad2 +2bd+ c ≥ 4ad2 +2bd = d(4ad+2b) = d((4d−2)a+
2(a + b)) ≥ d(6a + 2(a + b)) ≥ d(6a + 2) ≥ 8d = z + 8d. ut

Next we will elaborate on how to get rid of the assumption that the function
symbol f has to be interpreted by a polynomial fN of degree at most two. Again,
the idea is to enforce this condition by some additional rewrite rules based on
the following observation. If fN is at most quadratic, then the function fN(x+d)−
fN(x) is at most linear; i.e., there is a linear function rN(x) such that rN(x) >
fN(x + d)− fN(x), or equivalently, fN(x) + rN(x) > fN(x + d), for all x ∈ N. This
can be encoded in terms of the rewrite rule h(f(x), r(x)) → f(s(x)), as soon as
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the interpretation of h corresponds to the addition of two natural numbers. Yet
this does not pose a major problem, as will be shown shortly.

Remark 19. Note that the construction motivated above is actually more general
than it seems at first sight. That is, it can be used to set arbitrary upper bounds
on the degree of an interpretation (cf. proof of Lemma 20). Moreover, it can
easily be adapted to establish lower bounds.

Lemma 20. Consider the rewrite rule h(f(x), r(x)) → f(s(x)). In any compat-
ible polynomial interpretation where sN(x) = x + d (d ≥ 1), rN is some linear
polynomial, and hN(x, y) = x + y + p (p ∈ N), the degree of fN is at most two.

Proof. Without loss of generality, let fN(x) =
∑n

i=0 aix
i (an > 0). By compati-

bility with the single rewrite rule, the inequality

fN(x) + rN(x) + p > fN(x + d) (8)

must be satisfied for all x ∈ N. Using Taylor’s theorem,

fN(x + d) =
n∑

k=0

dk

k!
f
(k)
N (x) = fN(x) + d f′N(x) +

d2

2
f′′N(x) + . . . +

dn

n!
f
(n)
N (x)

we can simplify (8) to

rN(x) + p > d f′N(x) +
n∑

k=2

dk

k!
f
(k)
N (x) (9)

As d ≥ 1, the right-hand side of this inequality is a polynomial of degree n − 1
whose leading coefficient dnan is positive, whereas the degree of the left-hand
side is one. But by compatibility, the former must be greater than or equal to
n− 1; i.e., n ≤ 2. ut

It remains to show how the interpretation of h can be fixed to addition.

Lemma 21. Consider the TRS R2 consisting of the rules

g(x) → h(x, x) s(x) → h(x, 0) s(x) → h(0, x)

Any compatible polynomial interpretation that interprets s by sN(x) = x + d and
g by a linear polynomial satisfies hN(x, y) = x+y+p, p ∈ N. Moreover, if d = 1,
then p = 0 and 0N = 0.

Proof. Without loss of generality, let 0N = z for some z ∈ N. Because gN is linear,
compatibility with the first rule constrains the function h′ : N → N, x 7→ hN(x, x)
to be at most linear. This can only be the case if hN contains no monomials of
degree two or higher. In other words, hN(x, y) = px · x + py · y + p, where p ∈ N
(because of well-definedness), px ≥ 1 and py ≥ 1 (because of strict monotonicity).
Then compatibility with the second rule translates to x + d > px · x + py · z + p
for all x ∈ N, which holds if and only if px ≤ 1 and d > py · z + p. Hence, px = 1,
and by analogous reasoning with respect to the third rule, py = 1. Finally, if
d = 1 then the condition d > py · z + p simplifies to 1 > z + p, which holds if and
only if z = 0 and p = 0 (because both z and p are non-negative). ut
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Corollary 22. Consider the TRS R3 consisting of the rules

f(g(x)) → g(g(f(x))) g(s(x)) → s(s(g(x))) h(f(x), g(x)) → f(s(x))

Any polynomial interpretation compatible with R2 ∪ R3 requires degree at most
two for fN.

Proof. By Lemma 16, sN(x) = x+d (d ≥ 1) and gN(x) is linear. Hence, hN(x, y) =
x+ y +p (p ∈ N) according to Lemma 21. Finally, Lemma 20 applied to the rule
h(f(x), g(x)) → f(s(x)) proves the claim. ut

Now, combining Lemma 18 and Corollary 22 yields natural semantics for the
symbols 0 and s and fixes fN(x) = 2x2 − x + 1, as originally desired.

Theorem 23. Any polynomial interpretation compatible with R1 ∪ R2 ∪ R3

interprets 0 by 0 and s by sN(x) = x + 1. Moreover, fN(x) = 2x2 − x + 1.

Proof. From Lemmata 18 and 16 and Corollary 22, we infer that 0N = 0, sN(x) =
x + 1 and fN is a quadratic polynomial. Without loss of generality, fN(x) =
ax2 + bx + c. Next we observe that R1 gives rise to the constraints fN(0) = 1,
fN(1) = 2 and fN(2) = 7, which uniquely determine the coefficients a = 2, b = −1
and c = 1 of fN by polynomial interpolation. ut

In order for Theorem 23 to be relevant, it remains to show that there actually
exists a compatible polynomial interpretation. This is achieved, e.g., by defining
0N = 0, sN(x) = x + 1, fN(x) = 2x2−x + 1, hN(x, y) = x + y and gN(x) = 4x + 5.

Remark 24. One can show that any polynomial interpretation compatible with
the TRS S := R2 ∪ R3 ∪ { s(s(0)) → f(s(0)) } must interpret 0 by 0 and s by
sN(x) = x + 1. Thus we can take our favourite univariate polynomial P , which
must of course be both strictly monotone and well-defined, and design a TRS
such that the interpretation of some unary function symbol k is fixed to it. To
this end, we extend S by suitable rewrite rules encoding interpolation constraints
for the symbol k and additional rules that set an upper bound on the degree of
the interpretation of k, which corresponds to the degree of P .

5 Experimental Results

We implemented the criterion from Theorem 7 in the termination prover TTT2.2

The problem of finding suitable coefficients for the polynomials is formulated as a
set of diophantine constraints (as in [4]) which are solved by a transformation to
SAT. Simple heuristics are applied to decide which symbols should be interpreted
by non-linear polynomials (e.g., defined function symbols, symbols that appear
at most once on every left and right-hand side, symbols that do not appear
nested). Using coefficients in {−8, . . . , 7} and either of the latter two heuristics,
TTT2 finds a compatible interpretation (i.e., the one mentioned at the end of

2 See http://termination-portal.org/wiki/Category:Tools.
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Section 4) for the TRS in Theorem 23 fully automatically within five seconds.
We remark that implementing Theorems 7 and 11 is about as expensive as
the absolute positiveness approach, since the size of the search space is mainly
determined by the degree of the polynomials.

Despite the tremendous progress in automatic termination proving during the
last decade, it is remarkable that the other powerful termination tools AProVE2

and JAMBOX2 cannot prove this system terminating within ten minutes. The
same holds for TTT2 without the criterion from Theorem 7. Surprisingly, the 2006
version of TPA2 finds a lengthy termination proof based on semantic labeling.
However, it is straightforward to generate a variant of the TRS from Theorem 23
that is orientable if fN(0) = 0, fN(1) = 1, and fN(2) = 8, suggesting fN(x) =
3x2−2x. While TTT2 can still prove this system terminating, TPA now also fails.
Moreover, due to Remark 24 one can generate myriads of TRSs that can easily
be shown to be polynomially terminating but where an automated termination
proof is out of reach for current termination analyzers.

Acknowledgements. We thank the anonymous referees for their helpful com-
ments.
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