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While there are many approaches for automatically proving termination of term rewrite systems,
up to now there exist only few techniques to disprove their termination automatically. Almost all
of these techniques try to find loops, where the existence of a loop implies non-termination of the
rewrite system. However, most programming languages use specific evaluation strategies, whereas
loop detection techniques usually do not take strategies into account. So even if a rewrite system has
a loop, it may still be terminating under certain strategies.

Therefore, our goal is to develop decision procedures which can determine whether a given loop
is also a loop under the respective evaluation strategy. In earlier work, such procedures were pre-
sented for the strategies of innermost, outermost, and context-sensitive evaluation. In the current
paper, we build upon this work and develop such decision procedures for important strategies like
leftmost-innermost, leftmost-outermost, (max-)parallel-innermost, (max-)parallel-outermost, and for-
bidden patterns (which generalize innermost, outermost, and context-sensitive strategies). In this
way, we obtain the first approach to disprove termination under these strategies automatically.

1 Introduction

Termination is an important property of term rewrite systems (TRSs). Therefore, much effort has been
spent on developing and automating techniques for showing termination of TRSs. However, in order
to detect bugs, it is at least as important to prove non-termination. Note that for rewriting under a
strategy, the strategy has to be taken into account when checking for non-termination. The reason is that
a TRS which is non-terminating when ignoring the strategy may still be terminating when considering
the strategy. Thus, it is important to develop automated techniques to disprove termination of TRSs under
strategies.

Most of the techniques for showing non-termination detect loops (for example, [4,7,8,9,13,20,21]).
For a TRS R, a loop is a derivation of the form t→+

R C[tµ] for some context C and some substitution
µ . To prove non-termination under a strategy S, we may use a complete transformation TS (e.g., [2,
14, 18]) where a TRS R terminates under the strategy S iff the TRS TS(R) terminates when ignoring
the strategy. After applying such a transformation, we may try to find a loop in the transformed system
TS(R). However, there are some drawbacks: The first problem is an increased search space, as loops
of R are often transformed into much longer loops in TS(R). Moreover, the complete transformations
from [2, 14, 18] translate a loop t →+

R C[tµ] into a non-looping infinite derivation in TS(R), whenever
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C /= � . These two problems were solved in [17, 19] by decision procedures which, given a loop in the
original system R, directly decide whether the loop is also a loop under the respective strategy. Here,
[17] treats the innermost strategy whereas [19] deals with the context-sensitive [10] and the outermost
strategy. Another problem is the availability of complete transformations. For the leftmost-innermost,
parallel-innermost, and max-parallel-innermost strategy we know by [15] that a TRS is terminating under
one of these strategies iff it is innermost terminating. Thus, we can use the decision procedure for
innermost loops [17] to disprove termination under these strategies.1 However, we are not aware of
any complete transformation for the strategies leftmost-outermost, parallel-outermost, and max-parallel-
outermost. Therefore, in this paper we build upon the direct methods of [17, 19] and give decision
procedures for all these strategies (i.e., these procedures again decide whether a loop is also a loop under
the strategy). Note that our decision procedures can also be extended to the context-sensitive case, e.g.,
to the leftmost-innermost context-sensitive strategy.

Finally, recently a generalization of innermost / outermost / context-sensitive rewriting has been in-
troduced: rewriting with forbidden patterns [6]. In this paper we also develop a decision procedure for
loops under forbidden patterns.

Before giving an overview on the contents of this paper, we present a motivating example.

Example 1. Consider the following TRS (computing the factorial) which is a variant of [17, Ex. 1].

factorial(y)→ fact(0,y) (1)
fact(x,y)→ if(x == y,s(0), fact(s(x),y) · s(x)) (2)

if(true,x,y)→ x (3)
if(false,x,y)→ y (4)

0+ y→ y (5)
s(x)+ y→ s(x+ y) (6)

0 · y→ 0 (7)
s(x) · y→ y+(x · y) (8)
x == y→ eq(chk(x),chk(y)) (9)
eq(x,x)→ true (10)
chk(x)→ false (11)

eq(false,y)→ false (12)

Here, fact(x,y) computes ∏x≤z<y(z + 1) = (x + 1) · (x + 2) · . . . · y. The intended strategy is leftmost-
outermost. Otherwise, rule (2) would directly cause non-termination. Moreover, this strategy is needed
for the equality-test encoded by rules (9)–(12) (which takes at most three reductions). Nevertheless, we
obtain the following looping leftmost-outermost reduction (the respective redexes are underlined):

t = fact(x,y)

→ if(x == y,s(0), fact(s(x),y) · s(x))
→ if(eq(chk(x),chk(y)),s(0), fact(s(x),y) · s(x))
→ if(eq(false,chk(y)),s(0), fact(s(x),y) · s(x))
→ if(false,s(0), fact(s(x),y) · s(x))
→ fact(s(x),y) · s(x)
= C[tµ]

1By performing all steps in a parallel-innermost step one after another, one can easily show that innermost loopingness
is equivalent to parallel-innermost loopingness. Moreover, by [15] an innermost loop implies leftmost-innermost and max-
parallel innermost non-termination. Yet, this does neither imply leftmost-innermost nor max-parallel-innermost loopingness.
As an example, consider R′ = {a→ f(nloop,a)}∪R, where nloop is a non-terminating, but non-looping term w.r.t. R. Then
R′ is innermost looping but neither leftmost-innermost looping nor max-parallel-innermost looping. This might be a motivation
to also develop decision procedures for the various innermost strategies. Since the decision procedures for leftmost-, parallel-,
and max-parallel-outermost loops directly also give us decision procedures for the corresponding innermost strategies, we will
mention these results in the paper as well.
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where µ = {x/s(x)} and C =� · s(x). Applying our new decision procedure developed in this paper will
show that the above loop indeed is a leftmost-outermost loop, and hence, R does not terminate under
the leftmost-outermost strategy.

The rest of the paper is structured as follows: In Section 2 we give the necessary preliminaries.
Afterwards, in Section 3, we treat the special case of leftmost loops. Next, in Section 4, we consider
parallel as well as max-parallel loops. Subsequently, we handle the more complicated case of loops
under forbidden patterns in Section 5. Finally, in Section 6, we conclude.

2 Preliminaries

We only regard finite signatures and TRSs and refer to [1] for the basics of rewriting. We use `, r, s, t,
u for terms, f , g for function symbols, x, y for variables, µ , σ for substitutions, i, j, k, n, m for natural
numbers, o, p, q for positions, and C, D for contexts. Here, contexts are terms which contain exactly one
hole � . A position p is left of q iff p = oi p′, q = o j q′, and i < j. The set of variables is denoted by V .

Throughout this paper we assume a fixed TRS R and we write t →p s if one can reduce t to s at
position p with R, i.e., t = C[`σ ] and s = C[rσ ] for some rule `→ r ∈ R, substitution σ , and con-
text C with C|p = � . In this case, the term `σ is called a redex at position p. The reduction is left-
most / innermost / outermost, written t l→p / i→p / o→p s, iff p is a leftmost / innermost / outermost posi-
tion of t where t|p is a redex. The leftmost-innermost reduction is defined as li→p = l→p∩ i→p. Similarly,
the leftmost-outermost reduction is lo→p = l→p∩ o→p. If the position is irrelevant we just write→, l→, i→,
o→, li→, and lo→, respectively.

We also consider parallel reductions. Here, t p→q1,...,qk s is a parallel reduction iff k > 0, the qi’s
are pairwise parallel positions, and t →q1 . . .→qk s. The max-parallel reduction relation is defined by
t m→q1,...,qk s iff t p→q1,...,qk s and t has no further redex at a position that is parallel to all positions q1, . . . ,qk.
The (max-)parallel-innermost reduction is defined by t mi→ / pi→q1,...,qk s iff t m→ / p→q1,...,qk s and all redexes
t|qi are innermost redexes. The (max-)parallel-outermost reductions mo→ and po→ are defined analogously.

To shortly illustrate the difference between the strategies, observe that for the TRS R of Example 1,
x == y i→∗ / li→∗ / mi→∗ / o→∗ /mo→∗ true whereas x == y /lo→∗ true. Moreover, 0 == 0 i→∗ / li→∗ / mi→∗ false
but 0 == 0 o→∗ / lo→∗ / mo→∗ false is not possible.

Next, we consider rewriting under forbidden patterns.

Definition 2 (Rewriting under forbidden patterns [6]). A forbidden pattern is a triple (`,o,λ ) for a term
`, position o ∈ Pos(`), and λ ∈ {h,a,b}. For a set Π of forbidden patterns the induced rewrite relation
Π→ is defined by t Π→p s iff t →p s and there is no pattern (`,o,λ ) ∈ Π such that there exist a position
o′ ∈ Pos(t), a substitution σ with t|o′ = `σ , and

• p = o′o, if λ = h,

• p < o′o, if λ = a, and

• p > o′o, if λ = b.

So a forbidden pattern (`,o,h) means that the redex may not be at position o in a subterm of the form
`σ . Similarly, (`,o,a) and (`,o,b) mean that the redex may not be strictly above and not strictly below
position o in a subterm of the form `σ , respectively.

Several strategies are expressible using Π→ [6]: Innermost rewriting is obtained by setting Π =
{(`,ε,a) | `→ r ∈R}, outermost rewriting by using Π = {(`,ε,b) | `→ r ∈R}, Q-restricted-rewriting
[3] by Π = {(`,ε,a) | `→ r ∈Q}, and context-sensitive-rewriting [10] w.r.t. the replacement map µ can
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be expressed by Π = {( f (x1, . . . ,xn), i,λ ) | f ∈ Σ, i /∈ µ( f ),λ ∈ {h,b}}, where Σ is the set of all function
symbols of the signature.

However, even more sophisticated examples can be treated by forbidden patterns.
Example 3. Consider the following TRS from [6, 11].

inf(x)→ x : inf(s(x))
2nd(x : (y : zs))→ y

This TRS is not weakly normalizing, but still some terms like 2nd(inf(0)) have a normal form. One
purpose of forbidden patterns is to restrict the rewrite relation in such a way that the restriction is
terminating, but that all normal forms are still being reached. Here, context-sensitive rewriting is
too restrictive, since forbidding rewriting in the second argument of “:” would not allow the reduc-
tion 2nd(inf(0))→ 2nd(0 : inf(s(0)))→ 2nd(0 : (s(0) : inf(s(s(0)))))→ s(0). However, we can use
rewriting with forbidden patterns where Π only contains the pattern (x : (y : inf(z)),2.2,h). Note that
(x : (y : inf(z)))|2.2 = inf(z). Then, Π→ is terminating, but the above reduction is still allowed.

A TRSR is non-terminating iff there is an infinite derivation t1→ t2→ ·· · . It is leftmost-innermost
/ leftmost-outermost / parallel-innermost / parallel-outermost / max-parallel-innermost / max-parallel-
outermost / forbidden pattern non-terminating iff there is such an infinite derivation using li→ / lo→ / pi→
/ po→ / mi→ / mo→ / Π→ instead of →. To describe the infinite derivation that is induced by a loop, we use
context-substitutions.
Definition 4 (Context-substitutions [19]). A context-substitution is a pair (C,µ) consisting of a context
C and a substitution µ . The n-fold application of (C,µ) to a term t, written t(C,µ)n, is defined as follows.

t(C,µ)0 = t t(C,µ)n+1 = C[t(C,µ)n
µ]

C

C

C

t
µ

µ

µ

µ

µ

µ

Figure 1: The term t(C,µ)3

For example, t(C,µ)=C[tµ], t(C,µ)2 =C[C[tµ]µ] =C[Cµ[tµ2]],
etc. So in general, in t(C,µ)n, the context C is added n-times
above t and t is instantiated by µn. Note that also the added con-
texts are instantiated by µ . For the term t(C,µ)3 this is illustrated
in Figure 1. Context-substitutions have similar properties to con-
texts and substitutions.
Lemma 5 (Properties of context-substitutions [19]).

(i) t(C,µ)nµ = tµ(Cµ,µ)n.

(ii) t(C,µ)m(C,µ)n = t(C,µ)m+n.

(iii) If C|p =� then t(C,µ)n|pn = tµn.

(iv) Whenever t→q s and C|p =� then t(C,µ)n→pnq s(C,µ)n.
Here, property (i) is similar to the fact that C[t]µ = Cµ[tµ], and (ii) shows that context-substitutions

can be combined just like substitutions where µmµn = µm+n. Property (iii) shows that the n-fold ap-
plication of (C,µ) to t yields a term containing the n-fold application of µ to t. Finally, stability and
monotonicity of rewriting are used to show in (iv) that rewriting is closed under context-substitutions.
Using context-substitutions we can now concisely present the infinite derivation resulting from a loop
t→+ C[tµ] = t(C,µ).

t(C,µ)0→+ t(C,µ)0(C,µ) = t(C,µ)1→+ · · · →+ t(C,µ)n→+ · · ·

So for every n, the positions of the reductions in the loop are prefixed by an additional pn where p is the
position of the hole in C, cf. Lemma 5 (iv).
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Definition 6 (S-loops [19]). Let S be a strategy.2 A loop t1 →q1 t2 →q2 · · · →qm tm+1 = t1(C,µ) with
C|p = � is an S-loop iff the reduction ti(C,µ)n →pnqi ti+1(C,µ)n respects the strategy S for all i ≤ m
and all n ∈ N.

As a direct consequence of Definition 6, we can conclude that every S-loop of a rewrite system R
proves non-termination of R under the strategy S . Moreover, Definition 6 also shows that being a loop
is a modular property in the following sense.

Corollary 7 (Loops of intersection strategies). Let S , S1, and S2 be strategies such that S→p = S1→p∩
S2→p

for all positions p. Then a loop is an S-loop iff it is both an S1-loop and an S2-loop.

Hence, to decide whether a loop is leftmost-innermost / leftmost-outermost, we just require a decision
procedure for leftmost loops and a decision procedure for innermost / outermost loops. As decision
procedures for innermost loops and outermost loops have already been developed [17, 19], it remains to
construct a decision procedure for leftmost loops (see Section 3).

For rewriting with forbidden patterns, we observe that Π→p =
⋂

(`,o,λ )∈Π

{(`,o,λ )}−−−−−→ p, and hence, by
Corollary 7 it suffices to consider loops w.r.t. single forbidden patterns which is the content of Section 5.

3 Leftmost Loops
Cp(iii)

Cp(iii)

Cp(iii)

t
q
(i)

µ(iv)

µ

µ

µ(ii)

µ(ii)

µ(ii)

µ(iv)

µ

µ(iv)

Figure 2: Leftmost redexes

Recall the definition of l→. A leftmost re-
duction of all terms t(C,µ)n at positions
pnq requires that for no n there is a redex
at a position left of pnq. This is illustrated
in Figure 2: The reduction of the subterm at
the black position pnq respects the leftmost
strategy iff pnq is leftmost. This is the case
whenever there are no redexes at positions
�.

We want to be able to decide whether
all pnq point to leftmost redexes in the term
t(C,µ)n. There are four possibilities why
pnq might not point to a leftmost redex in
that term. These cases are marked with (i)-
(iv) in Figure 2.

(i) There might be a redex within tµn at a position q′ ∈ Pos(t) which is left of q. Hence, we have to
consider all finitely many subterms u = t|q′ where q′ is left of q and guarantee that uµn is no redex.

(ii) There might be a redex within tµn at a position q′ ∈ Pos(tµn)\Pos(t) which is left of q. Hence,
this redex is of the form uµk for some k ≤ n and some subterm uE xµ where x is a variable that
occurs within some of v, vµ , vµ2, . . . for some subterm v = t|q′ where q′ is left of q.3 Note that
there are only finitely many such variables x and hence, again we obtain a finite set of terms where
for each of these terms u and each n we have to guarantee that uµn is not a redex.

2In this paper we use a rather liberal definition of a strategy: a strategy is just a restriction of the rewrite relation.
3 It does not suffice to only consider the variables x that occur in v and vµ . This can be seen for v = y and µ =

{y/y1,y1/y2,y2/y3, . . .yn−1/x,x/ f (. . .)}. Here, x does neither occur in v nor in vµ , but in vµn. Hence, the potential redex
f (. . .) is detected only after n iterations.
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(iii) There might be a redex where the root is within C and left of the path p. Here, we have to consider
all finitely many subterms u = C|p′ where p′ is left of p and guarantee that uµn is not a redex.

(iv) In analogy to (ii) we also have to consider redexes within µ where now the variables x are taken
from the subterms u = C|p′ where p′ is left of p.

To summarize, we generate a finite set U of terms u such that (a) and (b) are equivalent:

(a) For every n, the reduction t(C,µ)n→pnq t ′(C,µ)n is leftmost.

(b) There is no u ∈U and no number n such that uµn is a redex.

Note that the question whether uµn is a redex for some n can be formulated as the kind of matching
problem that was encountered for deciding innermost loops.

Definition 8 (Matching problems [17]). A matching problem is a pair (u m `,µ). It is solvable iff there
are n and σ such that uµn = `σ .

Thus, following the possibilities (i) - (iv) above, we can formally define a set of matching problems
to analyze leftmost reductions.

Definition 9 (Leftmost matching problems). The set of leftmost matching problems for a reduction
t→q t ′ and a context-substitution (C,µ) with C|p =� is defined as the set consisting of:

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ is left of q, and u = t|q′

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ is left of q, x ∈
⋃
i∈N
V(t|q′µ i), and uE xµ

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ is left of p, and u = C|p′

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ is left of p, x ∈
⋃
i∈N
V(C|p′µ i), and uE xµ

Note that the sets of variables in the second and fourth case are finite and can easily be computed.
The above considerations prove the following theorem.

Theorem 10 (Soundness of leftmost matching problems). Let t →q t ′ and let (C,µ) be a context-sub-
stitution such that C|p = � . All reductions t(C,µ)n→pnq t ′(C,µ)n are leftmost iff none of the leftmost
matching problems for t→q t ′ and (C,µ) is solvable.

Using Theorem 10 in combination with the decision procedures for matching problems yields the
following corollary.

Corollary 11 (Leftmost loops are decidable). Let there be a loop t1→q1 t2→q2 · · · →qm tm+1 = t1(C,µ)
with C|p =� . Then it is decidable whether the loop is a leftmost loop.

Combining Corollary 11 and Corollary 7 with the decision procedures for innermost and outermost
loops of [17,19] yields decision procedures which determine whether a given loop is a leftmost-innermost
loop or a leftmost-outermost loop: for each loop construct the leftmost matching problems, ensure that
all these matching problems are not satisfiable (then leftmost reductions are guaranteed), and moreover
use the decision procedures of [17, 19] to further ensure that the loop is an innermost or outermost loop.

Corollary 12 (Leftmost-innermost and leftmost-outermost loops are decidable). Let there be a loop
t1→q1 t2→q2 · · · →qm tm+1 = t1(C,µ) with C|p =� . Then the following two questions are decidable.

• Is the loop a leftmost-innermost loop?

• Is the loop a leftmost-outermost loop?
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Example 13. Using Corollary 12, we can decide that the loop given in Example 1 is a leftmost loop,
since for this loop, the set of leftmost matching problems is empty (as there is never a position left of the
used redex). Moreover, by the results of [17, 19] we can decide that the loop is an outermost loop, but
not an innermost loop. Hence, the loop is a leftmost-outermost loop, but not a leftmost-innermost loop.

Example 14. We consider the following loop for the TRS of Example 1

t = fact(x,y)

→ if(x == y,s(0), fact(s(x),y) · s(x))
→ if(eq(chk(x),chk(y)),s(0), fact(s(x),y) · s(x))
→ if(eq(false,chk(y)),s(0), fact(s(x),y) · s(x))
→ if(eq(false, false),s(0), fact(s(x),y) · s(x))
→ if(false,s(0), fact(s(x),y) · s(x))
= C[tµ]

where C = if(false,s(0),� · s(x)) and µ = {x/s(x)}. We decide that this loop is a leftmost loop by
constructing the leftmost matching problems

• (falsem `,µ) for all left-hand sides ` (due to the reduction if(eq(false,chk(y)), . . .)→ . . . )

• (falsem `,µ), (0m `,µ), and (s(0)m `,µ) for all left-hand sides ` (since C = if(false,s(0),� · . . .))
and observing that none of them is solvable. This loop is also an innermost loop, but not an outermost
loop and hence, it is a leftmost-innermost loop, but not a leftmost-outermost loop.

Whereas in the previous two examples it is rather easy to see that the loops are leftmost, since the
leftmost matching problems are trivially not solvable, we now present two more examples where the
resulting matching problems are more involved.

Example 15. Consider the TRS

f(x,y,z)→ h(g(x,y), f(y,z,z))
g(x,x)→ x

and the loop t = f(x,y,z)→ h(g(x,y), f(y,z,z)) = C[tµ] for C = h(g(x,y),�) and µ = {x/y,y/z}. Here,
we construct the non-solvable leftmost matching problems (u m `,µ) for all left-hand sides ` and u ∈
{x,y,z}. But additionally we construct the leftmost matching problem (g(x,y)mg(x,x),µ) which is solv-
able, since g(x,y)µ2 = g(y,z)µ = g(z,z) = g(x,x)σ for σ = {x/z}. Hence, the loop is not a leftmost
loop.

Example 16. Consider the TRS

f(x,y,z)→ h(g(x), f(y,z,s(x)))
g(s(s(s(x))))→ x

and the loop t = f(x,y,z)→ h(g(x), f(y,z,s(x))) = C[tµ] for C = h(g(x),�) and µ = {x/y,y/z,z/s(x)}.
Here, we construct the non-solvable leftmost matching problems (u m `,µ) for all left-hand sides ` and
u ∈ {x,y,z,s(x)}. But additionally we construct the leftmost matching problem (g(x)mg(s(s(s(x)))),µ)
which is solvable, since g(x)µ9 = g(s(s(s(x)))). Hence, the loop is not a leftmost loop.
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4 Parallel and Max-Parallel Loops

For the parallel innermost / outermost strategies it suffices to use the decision procedures for innermost-
and outermost loops. The reason is that t(C,µ)n p→pnq1,...,pnqk t ′(C,µ)n is a pi→ / po→-reduction iff for every
1≤ i≤ k there is some si such that t(C,µ)n→pnqi si is an innermost / outermost reduction.

Hence, for the rest of the section we consider the max-parallel strategies mi→ and mo→. Again, the
innermost or outermost aspect can be decided by the respective decision procedures using a variant of
Corollary 7 where one allows parallel rewrite steps. It remains to consider the max-parallel aspect, i.e.,
we have to decide whether t(C,µ)n m→pnq1,...,pnqk t ′(C,µ)n for all n.

Here, we essentially proceed as in the leftmost case, where we replace the condition that some posi-
tion is left of p or q by the condition that it is parallel to p or to each qi.

Definition 17 (Max-parallel matching problems). The set of max-parallel matching problems for a re-
duction t p→q1,...,qk t ′ and a context-substitution (C,µ) with C|p =� is defined as the set consisting of:

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ is parallel to all positions qi, and u = t|q′

(u m `,µ) for each `→ r ∈R and q′ ∈ Pos(t) where q′ is parallel to all qi, x ∈
⋃
i∈N
V(t|q′µ i), and uE xµ

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ is parallel to p, and u = C|p′

(u m `,µ) for each `→ r ∈R and p′ ∈ Pos(C) where p′ is parallel to p, x ∈
⋃
i∈N
V(C|p′µ i), and uE xµ

Using this finite set of matching problems we again obtain a decision procedure.

Theorem 18 (Soundness of max-parallel matching problems). Let t p→q1,...,qk t ′ and let (C,µ) be a
context-substitution such that C|p = � . All reductions t(C,µ)n p→pnq1,...,pnqk t ′(C,µ)n are max-parallel
iff none of the max-parallel matching problems for t p→q1,...,qk t ′ and (C,µ) is solvable.

Corollary 19 (Max-parallel loops are decidable). Let t1 p→q1
1,...,q

1
k1

t2 p→q2
1,...,q

2
k2
· · · p→qm

1 ...qm
km

tm+1 be a loop

with tm+1 = t1(C,µ) and C|p =� . Then the following questions are decidable.

• Is the loop a max-parallel loop?

• Is the loop a parallel-innermost loop? Is it a max-parallel-innermost loop?

• Is the loop a parallel-outermost loop? Is it a max-parallel-outermost loop?

Note that in the corollary we did not list the question “Is the loop a parallel loop?” since every loop
is trivially also a parallel loop.

Example 20. It is easy to see that neither the loop of Example 1 nor the loop of Example 14 is a max-
parallel loop. The reason is that both loops violate the max-parallel strategy already in the second
reduction step. However, the TRS of Example 1 is both max-parallel-outermost and -innermost looping
which is proved by the following two loops which could be obtained automatically using a loop detection
technique and our decision procedure of Theorem 18.

The max-parallel-outermost loop needs two parallel reductions:

t = if(eq(false, false),1, if(eq(chk(s(x)),chk(y)),1, if(s2(x) == y,1, fact(s3(x),y) · s3(x)) · s2(x)) · s(x))
mo→ if(false,1, if(eq(false, false),1, if(eq(chk(s2(x)),chk(y)),1, if(s3(x) == y,1, fact(s4(x),y) · s4(x)) · s3(x)) · s2(x)) · s(x))
mo→ if(eq(false, false),1, if(eq(chk(s2(x)),chk(y)),1, if(s3(x) == y,1, fact(s4(x),y) · s4(x)) · s3(x)) · s2(x)) · s(x)
= C[tµ]
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where C = � · s(x), µ = {x/s(x)}, and where 1 abbreviates s(0). For the max-parallel-innermost loop
one parallel reduction suffices:

t = if(eq(false, false),1, if(eq(chk(s(x)),chk(y)),1, if(s2(x) == y,1, fact(s3(x),y) · s3(x)) · s2(x)) · s(x))
mi
→ if(false,1, if(eq(false, false),1, if(eq(chk(s2(x)),chk(y)),1, if(s3(x) == y,1, fact(s4(x),y) · s4(x)) · s3(x)) · s2(x)) · s(x))
= C[tµ]

where C = if(false,1,� · s(x)) and µ = {x/s(x)}.

5 Loops for Rewriting with Forbidden Patterns

For rewriting with forbidden patterns we have to investigate for given t, t ′, C, µ with C|p =� and t→q t ′,
whether all reductions t(C,µ)n →pnq t ′(C,µ)n are allowed w.r.t. some fixed forbidden pattern (`,o,λ ).
In other words, we have to check whether

there are n, o′, and σ with t(C,µ)n|o′ = `σ and


pnq = o′o, if λ = h,
pnq < o′o, if λ = a, and
pnq > o′o, if λ = b.

(13)

In the subsections 5.1-5.3, we investigate the three cases of λ . We show that for all of them, (13) is
decidable. To this end, we reuse algorithms that have been developed to decide innermost and outermost
loops.

5.1 Deciding Loops for Forbidden Patterns of Type (·, ·,h)

We start with the easiest case where λ = h. Given p, q, and o, here we first want to figure out whether
there are n and o′ such that the condition pnq = o′o of (13) is satisfied. Obviously, once n has been
fixed, then o′ is uniquely determined. Therefore, we first compute n0 as the minimal value of n such that
pnq = o′o is satisfied for some o′ and then uniquely determine o′0 such that pn0q = o′0o.

This can be done as follows. If p = ε , then one can set n0 = 0 and just has to determine whether q
has o as a suffix. Otherwise, one has to ensure that pnq is at least as long as o. This is done by choosing
n0 = d |o|

·−|q|
|p| e. If there is an n where ∃o′.pnq = o′o can be satisfied, then n0 is the minimal such number.

Here, “ ·−” is the subtraction on natural numbers where x ·−y = max(x−y,0). Afterwards one just checks
whether pn0q contains o as suffix. If this holds, then there is obviously a unique o′0 such that pn0q = o′0o.
Otherwise, there cannot be any n and o′ which satisfy pnq = o′o. The reason is that for any solution
pnq = o′o we know that n ≥ n0 and hence, pn−n0 pn0q = pnq = o′o shows that o is a suffix of pn0q as
|pn0q| ≥ |o|.

In this way we can compute the minimal number n0 and the corresponding o′0 such that pn0q = o′0o,
or we detect that pnq = o′o is unsatisfiable. In the latter case we are finished since we know that the
forbidden pattern will not restrict any of the desired reductions. In the former case we can represent the
set of solutions of pnq = o′o conveniently:

{(n,o′) | pnq = o′o}= {(k +n0, pko′0) | k ∈ N}

Hence, it remains to check whether there are k ∈ N and σ with t(C,µ)k+n0 |pko′0
= `σ . Note that this

problem can be simplified using Lemma 5:

t(C,µ)k+n0 |pko′0
= t(C,µ)n0(C,µ)k|pk |o′0 = t(C,µ)n0 µ

k|o′0 = (t(C,µ)n0 |o′0)µ
k
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Thus, for the concrete terms u = t(C,µ)n0 |o′0 and `, we have to decide whether there are k and σ such
that uµk = `σ .

Definition 21 ((`,o,h) matching problems). The set of (`,o,h) matching problems for a term t, a position
q ∈ Pos(t), and a context-substitution (C,µ) with C|p =� is defined as

• the empty set, if there are no n and o′ such that pnq = o′o

• {(t(C,µ)n0 |o′0 m `,µ)}, otherwise, where n0 and o′0 form the unique minimal solution to the equa-
tion pnq = o′o

By the discussion above, we have proved the following theorem.

Theorem 22 (Soundness of (`,o,h) problems). Let t→q t ′ and let (C,µ) be a context-substitution such
that C|p =� . All reductions t(C,µ)n→pnq t ′(C,µ)n are allowed w.r.t. the pattern (`,o,h) iff none of the
(`,o,h) matching problems for t, q, and (C,µ) is solvable.

Using Theorem 22 in combination with the decision procedure of [17] for solvability of matching
problems, one can decide whether all reductions t(C,µ)n →pnq t ′(C,µ)n are allowed w.r.t. the pattern
(`,o,h).

Example 23. We consider the TRS of Example 3 and Π = {(x : (y : inf(z)),2.2,h)}. Here, we have
the looping reduction t = inf(x)→ x : inf(s(x)) = C[tµ] for C = x : � and µ = {x/s(x)}. Hence, to
investigate whether this loop is a Π-loop, we have p = 2 as the position of � in C, q = ε since the
reduction is on the root position of t, and o = 2.2. Then we compute n0 = d |o|

·−|q|
|p| e = d2 ·−0

1 e = 2
and observe that pn0q = 2.2 has o = 2.2 as a suffix, and set o′0 = ε . Hence, we construct the match-
ing problem (t(C,µ)n0 |o′0 m `,µ) = (inf(x)(C,µ)2 m `,µ) = (x : (s(x) : inf(s(s(x))))m x : (y : inf(z)),µ)
which is solvable because (x : (s(x) : inf(s(s(x)))))µn = (x : (y : inf(z)))σ by choosing n = 0 and σ =
{y/s(x),z/s(s(x))}. Thus, by Theorem 22 we know that this loop is not a Π-loop.

5.2 Deciding Loops for Forbidden Patterns of Type (·, ·,a)

Also for patterns of type (·, ·,a) we want to generate a finite set of matching problems such that the loop
respects a pattern (`,o,a) iff none of these matching problems is solvable. Essentially, we replace the
condition pnq = o′o of the previous subsection by pnq < o′o, i.e., o′o must now be strictly below the
redex.

The plan is to systematically represent all terms t(C,µ)n|o′ for all numbers n and all positions o′ where
pnq < o′o. We consider two alternatives: either the term starts within Cn[t] and not in the substitutions
below t, or the term starts within the substitutions that are below t. To distinguish these possibilities, we
define the finite set of positions P = {q′ | qq′ ∈ Pos(t)}. Then the first alternative corresponds to the
constraint o′ ≤ pnqq′ for some q′ ∈P , and the second alternative corresponds to the constraint o′ > pnqq′

for some maximal position q′ ∈ P .
For the first alternative, we start to fix the unknown n by choosing n0 = 0 if p = ε , and n0 = d |o|

·−|q|
|p| e

otherwise. We will show later that if ∃o′.pnq < o′o can be satisfied by some n, then it can also be satisfied
using some n ≥ n0. For n ≥ n0, we will see that t(C,µ)n|o′ must be of the form t(C,µ)n0 |o′′µk for some
o′′ and k. Hence, we build the finite set of matching problems

M1 = {(t(C,µ)n0 |o′′ m `,µ) | o′′ ≤ pn0qq′∧q′ ∈ P ∧ pn0q < o′′o}.

For the second alternative where o′ > pnqq′ for some maximal q′ ∈ P , we first define the set W =⋃
k∈NV(t|qµk) of variables that can occur below t|q when applying µ an arbitrary number of times. Note
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that for substitutions with finite domains,W is finite and can easily be computed by iteratively applying
µ on t|q until no new variables appear. We define the second set of matching problems as

M2 = {(u m `,µ) | uE xµ ∧ x ∈W}.

We will show soundness of these matching problems by the following key lemma which handles
both alternatives.

Lemma 24 (Connection of (13) andM1∪M2). Let t be a term, q ∈Pos(t), and let (C,µ) be a context-
substitution such that C|p =� and such that t|q is not a variable.

(i) If (13) is satisfied with o′ ≤ pnqq′ for some q′ ∈ P , then a problem inM1 is solvable.

(ii) If (13) is satisfied with o′ > pnqq′ for some maximal q′ ∈ P , then a problem inM2 is solvable.

(iii) If a problem inM1∪M2 is solvable then (13) is satisfied.

Proof. (i) Assume (13) holds and let n, o′, q′ ∈ P , and σ be such that t(C,µ)n|o′ = `σ , o′ ≤ pnqq′,
and pnq < o′o. If p = ε then n0 = 0, and we define o′′ = o′ and k = n. Hence, using Lemma 5

t(C,µ)n0 |o′′µk = t|o′′µk = t|o′µn = tµn|o′ = t(C,µ)n|pn |o′ = t(C,µ)n|εn |o′ = t(C,µ)n|o′ = `σ

shows that the matching problem (t(C,µ)n0 |o′′ m `,µ) is solvable, and since o′′ = o′ ≤ pnqq′ =
pn0qq′ and pn0q = εn0q = εnq = pnq < o′o = o′′o we also know that this matching problem is
contained in M1. Otherwise, p /= ε and n0 = d |o|

·−|q|
|p| e. W.l.o.g. one can assume that n ≥ n0.4

Hence, the position pn−n0 is well formed. Next, we prove that o′ ≥ pn−n0 . Note that o′ cannot
be parallel to pn−n0 as o′ ≤ pnqq′. If we had o′ < pn−n0 , then |pn−n0 |+ |pn0q| = |pnq| < |o′o| =
|o′|+ |o|< |pn−n0 |+ |o| shows that n0 · |p|+ |q|< |o|, and hence yields the contradiction n0 · |p|=
d |o|

·−|q|
|p| e · |p| < |o| ·− |q|. So there is some o′′ such that o′ = pn−n0o′′ and since o′ ≤ pnqq′ =

pn−n0 pn0qq′ we know that o′′ ≤ pn0qq′. Moreover, as pn−n0 pn0q = pnq < o′o = pn−n0o′′o we also
know that pn0q < o′′o. Thus, o′′ ≤ pn0qq′ and pn0q < o′′o and hence, (t(C,µ)n0 |o′′ m `,µ) ∈M1.
It remains to show that this matching problem is solvable which is established using Lemma 5:

t(C,µ)n0 |o′′µn−n0 = t(C,µ)n0 µ
n−n0 |o′′ = t(C,µ)n0(C,µ)n−n0 |pn−n0 |o′′ = t(C,µ)n|o′ = `σ .

(ii) We now assume that (13) is satisfiable where o′ > pnqq′ for some maximal position q′ ∈ P , and
show that there is also some matching problem in M2 that is solvable. So, let n, o′, q′, and σ

be such that t(C,µ)n|o′ = `σ , o′ > pnqq′, pnq < o′o, and q′ is a maximal position in P . Hence,
o′ = pnqq′o′′ for some o′′ /= ε and thus by Lemma 5,

t(C,µ)n|o′ = t(C,µ)n|pn |qq′o′′ = tµn|qq′o′′ = t|qq′µ
n|o′′ .

Since q′ was maximal and o′′ /= ε we know that t|qq′ must be a variable. Then one can show as in
the proof of [17, Thm. 10] that t|qq′µ

n|o′′ = uµk for some uE xµ , x ∈W , and k. Hence, (u m `,µ)
is a matching problem ofM2 and it is solvable since

`σ = t(C,µ)n|o′ = t|qq′µ
n|o′′ = uµ

k.

4If n < n0 then one can replace n, o′, and σ by n+n0, pn0 o′, and σ µn0 . These new values also satisfy (13).
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(iii) Assume that a problem in M1 is solvable. Hence, there exist k, σ , o′′, and q′ ∈ P such that
t(C,µ)n0 |o′′µk = `σ , o′′ ≤ pn0qq′, and pn0q < o′′o. Then we define n = n0 + k and o′ = pko′′ and
achieve

t(C,µ)n|o′ = t(C,µ)n0(C,µ)k|pk |o′′ = t(C,µ)n0 µ
k|o′′ = t(C,µ)n0 |o′′µk = `σ

and moreover pnq = pk pn0q < pko′′o = o′o. Hence, if one of the matching problems in M1 is
solvable, then also (13) holds.
We now assume that a matching problems inM2 is solvable and show that then (13) is satisfied.
Here, we need the additional assumption that t|q is not a variable. This assumption is not severe as
we are interested in terms t where t→q t ′, which implies that t|q is not a variable for well-formed
TRSs.5 So, let u, x, k, k′, and σ be given such that x ∈ V(t|qµk′), uExµ , and uµk = `σ . Let o′′ and
o′′′ be positions such that t|qµk′ |o′′ = x and xµ|o′′′ = u. We define n = k + k′+1 and o′ = pnqo′′o′′′

and show for these values that (13) is satisfied (again, using Lemma 5):

t(C,µ)n|o′ = t(C,µ)n|pn |qo′′o′′′ = tµn|qo′′o′′′ = t|qµ
k′+1+k|o′′o′′′ = xµ

1+k|o′′′ = uµ
k = `σ

and pnq < pnqo′′o′′′o = o′o since o′′ /= ε . That o′′ is indeed non-empty follows from the fact that
t|q and thus also tµk′ |q is not a variable, but tµk′ |qo′′ = t|qµk′ |o′′ = x.

Using Lemma 24 it is now easy to derive the following theorem.

Theorem 25 (Soundness of (`,o,a) problems). Let t→q t ′ and let (C,µ) be a context-substitution such
that C|p =� and such that t|q is not a variable. All reductions t(C,µ)n→pnq t ′(C,µ)n are allowed w.r.t.
the pattern (`,o,a) iff none of the matching problems inM1∪M2 is solvable.

Note that when encoding innermost rewriting by using forbidden patterns, the resulting matching
problems one obtains in [17] are essentiallyM1∪M2.

5.3 Deciding Loops for Forbidden Patterns of Type (·, ·,b)

Finally, for patterns (`,o,b), we replace the condition pnq = o′o by pnq > o′o, i.e., o′o has to be strictly
above the redex. First note that o′o ∈ Pos(Cn[t]). Now, we consider the following two cases: either o′o
ends in t (i.e., o′o≥ pn), or otherwise it ends in some occurrence of C (i.e., o′o < pn).

In the first case there are only finitely many positions in t above q in which o′o could end. Thus, we
reduce this case to finitely many (·, ·,h) cases. For each q̄ above q in t, we consider the pattern (`,o,h)
for a reduction at position q̄. Hence, we define

M3 =
⋃
q̄<q
Mq̄, whereMq̄ is the set of (`,o,h) matching problems for t, q̄, and (C,µ).

In the second case o′o is a non-hole position of Cn, i.e., pn > o′o. Then p /= ε , since otherwise we
would obtain the contradiction ε = pn > o′o. So there is a k < n and a p′′′ ≤ p with o′ = pk p′′′. Let
p′′ be the position with p = p′′′p′′. Then we have o < p′′pn0 for some n0. To examine all possible
choices for o′, we consider all prefixes p′′′ of p, i.e., all contexts D with � CDEC where C|p′′′ = D,
D|p′′ = � , and p = p′′′p′′. Let n0 be the smallest number such that |p′′|+ |pn0 | > |o| (since p > ε , such

5It is also possible to define M2 in a way that t|q can be a variable. However, then the definitions would become even more
technical. Essentially, one just would have to perform some additional book-keeping to check whether one is strictly below t|q.
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a number always exists). Then we have to check whether o < p′′pn0 . If that is not the case, then we
do not result in any additional matching problems. Otherwise, we obtain an extended matching problem
(D m `,Cµ, t(C,µ)n0 µ,µ) for each � CDEC.

M4 = {(D m `,Cµ, t(C,µ)n0 µ,µ) |
� CDEC,D|p′′ =� ,n0 is least number with |p′′|+n0|p|> |o|, p′′pn0 > o}

These are the same kind of extended matching problem as for deciding outermost loops.
Definition 26 (Extended matching problems [19]). We call a quadruple (D m `,C, t,µ) an extended
matching problem. It is solvable iff there are m, k, σ , such that D[t(C,µ)m]µk = `σ .
Lemma 27 (Connection of (13) andM3∪M4). Let t→q t ′ and let (C,µ) be a context-substitution such
that C|p =� .

(i) (13) is satisfied with o′o≥ pn iff a problem inM3 is solvable.

(ii) (13) is satisfied with o′o < pn iff a problem inM4 is solvable.

Proof. (i) Suppose that a (`,o,h) matching problem inM3 for q̄ < q is solvable. By Theorem 22 we
obtain q̄, m, o′, and σ with t(C,µ)n|o′ = `σ and pnq̄ = o′o. Since q̄ < q, this implies pnq > o′o and
o′o≥ pn. Thus we satisfy the case of (13) where λ = b and o′o≥ pn.
Conversely, assume that there are n, o′, and σ such that t(C,µ)n|o′ = `σ , pnq > o′o, and o′o≥ pn.
Thus, there is some o′′ /= ε with pnq = o′oo′′. Since we are in the case where o′o≥ pn, this implies
that o′′ is a suffix of q. Hence, there is some position q̄ such that q = q̄o′′ and pnq̄ = o′o. As o′′ /= ε

we know that q̄ < q and hence, one of the (`,o,h) matching problems in M3 is solvable using
Theorem 22.

(ii) Suppose that an extended matching problem inM4 is solvable. Thus there are m, k, and σ such
that D[t(C,µ)n0 µ(Cµ,µ)m]µk = `σ and p′′pn0 > o. Let o′ = pk p′′′ and n = k+n0 +m+1. Hence,
by Lemma 5

t(C,µ)n|o′ = t(C,µ)k+n0+m+1|pk p′′′ = t(C,µ)n0+m+1
µ

k|p′′′ = C[t(C,µ)n0+m
µ]µk|p′′′

= D[t(C,µ)n0+m
µ]µk = D[t(C,µ)n0 µ(Cµ,µ)m]µk = `σ

and moreover pn = pk pn0 pm p≥ pk ppn0 = pk p′′′p′′pn0 > pk p′′′o = o′o and thus, also pnq > o′o.
In order to prove the other direction, assume that there are n, o′, and σ such that t(C,µ)n|o′ = `σ

and pn > o′o. Let k = b |o
′|
|p| c. Hence, there is some p′′′ < p such that o′ = pk p′′′. Since p′′′ < p,

there is also some p′′ with p = p′′′p′′. From the fact that o′ is a strict prefix of pn, we obtain some
m ∈ N such that pn = pk p′′′p′′pm = o′p′′pm. Thus, o′p′′pm = pn > o′o which implies p′′pm > o
and so, |p′′|+ |pm| > |o|. Hence, m is greater than or equal to the smallest number n0 satisfying
|p′′|+ |pn0 | > |o| and thus m = n0 + m′ for some m′ ∈ N. From pn = pk p′′′p′′pm, we also obtain
n = k +m+1. Let D = C|p′′′ .

`σ = t(C,µ)n|o′ = t(C,µ)k+m+1|pk p′′′ = t(C,µ)m+1
µ

k|p′′′ = C[t(C,µ)m
µ]µk|p′′′ = D[t(C,µ)m

µ]µk

= D[t(C,µ)n0+m′
µ]µk = D[t(C,µ)n0(C,µ)m′

µ]µk = D[t(C,µ)n0 µ(Cµ,µ)m′ ]µk

By m′, k, σ , we obtain a solution of the extended matching problem (D m `,Cµ, t(C,µ)n0 µ,µ).
Note that � CD since otherwise p′′′ = p which contradicts p′′′ < p. Moreover, since p′′pm > o
and |p′′|+ |pn0 |> |o|, we have p′′pn0 > o. Hence, the matching problem (D m `,Cµ, t(C,µ)n0 µ,µ)
is contained inM4.
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Using Lemma 27, we have proved the following theorem.

Theorem 28 (Soundness of (`,o,b) problems). Let t→q t ′ and let (C,µ) be a context-substitution such
that C|p =� . All reductions t(C,µ)n→pnq t ′(C,µ)n are allowed w.r.t. the pattern (`,o,b) iff none of the
matching problems inM3∪M4 is solvable.

Note that as in the innermost case, when encoding outermost rewriting by using forbidden patterns,
the resulting matching problems one obtains in [19] areM3 ∪M4. So Theorem 28 is a generalization
of the result in [19].

By combining Corollary 7 with Theorem 22, Theorem 25, and Theorem 28, we finally obtain the
following corollary.

Corollary 29 (Forbidden loops are decidable). Let t1→q1 t2→q2 · · · →qm tm+1 = t1(C,µ) be a loop with
C|p =� and let Π be a set of forbidden patterns. Then it is decidable whether the loop is a loop under
the strategy Π.

6 Conclusion

In this paper, we developed approaches to disprove termination of rewriting under strategies like leftmost-
innermost, leftmost-outermost, (max-)parallel-innermost, (max-)parallel-outermost, and forbidden pat-
terns automatically. To this end, we introduced decision procedures which check whether a given loop is
also a loop under the respective strategy. By combining these procedures with techniques to detect loops
automatically, one obtains methods to prove non-termination of term rewriting under these strategies.

The general idea of our decision procedures is to generate a set of (extended) matching problems from
every loop such that one of these matching problems is solvable iff the given loop violates the strategy.
We presented a decision problem for solvability of matching problems in [17] (for extended matching
problems this was done in [19]).

We started with defining leftmost matching problems in Section 3 which shows that it is decidable
whether a loop is a leftmost loop. By combining this result with the decision procedures for innermost
and outermost loops from [17,19], it is also decidable whether a loop is a leftmost-innermost or leftmost-
outermost loop.

In Section 4 we considered parallel- and max-parallel-rewriting, where in the latter case, all redexes
at parallel positions must be reduced simultaneously. Similar to leftmost matching problems, here we
defined max-parallel matching problems and showed that it is decidable whether a given loop is also a
max-parallel, a (max-)parallel-innermost, or a (max-)parallel-outermost loop.

Finally, in Section 5 we extended our approach to strategies defined by forbidden patterns [6]. For-
bidden patterns are very expressive and in particular, they can also be used to describe strategies such
as innermost, outermost, or context-sensitive rewriting. There are three variants of such patterns which
restrict rewriting on, above, or below certain positions of certain subterms. For each of these classes of
forbidden patterns, we showed how to generate corresponding matching problems such that one of these
matching problems is solvable iff the given loop violates the restriction described by the pattern. Thus,
it is decidable whether a loop is also a loop under a strategy expressed by a set of forbidden patterns.

Our results constitute the first automatic approach for disproving termination under these strategies.
Future work will be concerned with extending and adapting our results such that they can be integrated
in rewriting-based approaches for termination analysis of programming languages (e.g., [16, 5, 12]).
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