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Abstract. Matrix interpretations can be used to bound the derivational
complexity of term rewrite systems. In particular, triangular matrix in-
terpretations over the natural numbers are known to induce polynomial
upper bounds on the derivational complexity of (compatible) rewrite
systems. Using techniques from linear algebra, we show how one can
generalize the method to matrices that are not necessarily triangular
but nevertheless polynomially bounded. Moreover, we show that our ap-
proach also applies to matrix interpretations over the real (algebraic)
numbers. In particular, it allows triangular matrix interpretations to in-
fer tighter bounds than the original approach.

Key words: derivational complexity, polynomial matrix interpretations

1 Introduction

Many powerful techniques for establishing termination of term rewrite systems
have been developed in the course of time, most of which have been automated
successfully, as is evident in the results of the (annual) international competi-
tion for termination and complexity tools.! Moreover, Hofbauer and Lautemann
observe in [9] that “proving termination with one of these specific techniques
in general proves more than just the absence of infinite derivations. It turns
out that in many cases such a proof implies an upper bound on the maximal
length of derivations”, which they consider as a natural measure for the com-
plexity of (terminating) term rewrite systems. More precisely, the resulting no-
tion of derivational complexity relates the length of a longest derivation to the
size of its initial term. For example, polynomial interpretations imply a double-
exponential upper bound on the derivational complexity [9]. However, since term
rewriting is a model of computation and algorithms of polynomial complexity
are widely accepted as feasible, one is especially interested in polynomial deriva-
tional complexity. But currently only few techniques for establishing feasible
upper complexity bounds are known. Commonly, they are stripped-down vari-
ants of existing termination techniques. For example, if a term rewrite system
can be shown terminating by a matrix interpretation (over the natural numbers)
[5,10] that orients all rewrite rules strictly, then its derivational complexity is
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at most exponential. However, by restricting the shape of the matrices to upper
triangular form, one obtains a method for establishing polynomial derivational
complexity [13], where the degree of the polynomial depends on the dimension
of the matrices. Using match-bounds [7] or arctic matrix interpretations [12],
linear derivational complexity can be inferred.

In this paper we investigate the method of (triangular) matrix interpretations
that is widely used in current automated termination and complexity tools. Us-
ing techniques from linear algebra, we show how one can generalize the method
of triangular matrix interpretations, as introduced in [13], to matrix interpre-
tations that are not necessarily triangular but nevertheless induce polynomial
upper bounds on the derivational complexity of compatible term rewrite sys-
tems. Moreover, we show that our approach also applies to matrix interpreta-
tions over the real (algebraic) numbers. In particular, we also show how one can
infer tighter bounds from triangular matrix interpretations by examining the
diagonal structure of upper triangular (complexity) matrices.

The remainder of this paper is organized as follows. Section 2 introduces
basic notions of term rewriting and some mathematical prerequisites. In Sec-
tion 3, we review matrix interpretations in the context of complexity analysis of
term rewriting, before presenting our main result in Section 4. In Section 5, we
give details on implementation-specific issues. Finally, we provide experimental
results in Section 6, before concluding in Section 7.

2 Preliminaries

We assume familiarity with the basics of term rewriting [2,17]. Let V denote a
countably infinite set of variables and F a fixed-arity signature. The set of terms
over F and V is denoted by 7 (F,V). The size |t| of a term ¢ is defined as the
number of symbols occurring in it and the depth of t is defined as follows: if ¢
is a variable or a constant, then depth(t) := 0, otherwise depth(f(¢1,...,tn)) :=
1 4+ max{depth(¢;) | 1 < ¢ < n}. A rewrite rule is a pair of terms written as
I — 7, such that [ is not a variable and all variables in r are contained in [. A
term rewrite system R (TRS for short) over 7 (F, V) is a set of rewrite rules. For
complexity analysis we assume TRSs to be finite. The rewrite relation induced
by — is denoted by —%. As usual, —% denotes the reflexive transitive closure
of —g and —% its n-th iterate. A term s € T(F,V) is called a normal form if
there is no term t such that s —5 t.

The derivation height of a term t with respect to a TRS R is defined as
follows: dh(t, =) := max{n | Ju t =% u}. The derivational complexity function
of a terminating TRS R computes the maximal derivation height of all terms up
to a given size, i.e., dcg: N\ {0} — N,k — max{dh(t, =) | |t| < k}. Sometimes
we say that R has linear, quadratic, etc. derivational complexity if dcg (k) can
be bounded by a linear, quadratic, etc. polynomial in k.

An important concept for establishing termination of TRSs is the notion
of well-founded monotone algebras. An F-algebra A consists of a non-empty
carrier A and interpretation functions f4: A" — A for every n-ary f € F.



By [@)a(): T(F,V) — A we denote the usual evaluation function of .4 with
respect to a variable assignment a: V — A. A well-founded monotone F-algebra
is a pair (A, >4), where A is an F-algebra and > 4 is a well-founded order on A
such that every f4 is strictly monotone in all arguments (with respect to > 4). A
well-founded monotone algebra naturally induces an order > 4 on terms: s =4 t
if [a]a(s) >4 [@].a(t) for all assignments « of elements of A to the variables in s
and t. Finally, it is well-known that a TRS R is terminating if and only if it is
compatible with a well-founded monotone algebra (A, > 4), where compatibility
means that [ > 4 r for every rewrite rule | — r € R.

Linear Algebra. As usual, we denote by N, Z, Q and R the sets of natural, integer,
rational and real numbers. Given some D € {N,Z,Q,R} and m € D, >p denotes
the natural order of the respective domain and D,, := {x € D | x > m}; e.g.,
Rp refers to the set of all non-negative real numbers. For any ring R (e.g., Z,
Q, R), we denote the ring of all n-dimensional square matrices over R by R™*",
and R[z1,...,x,] denotes the associated polynomial ring in n indeterminates
Z1,...,%n. In the special case n = 1, a polynomial P € R[z] can be written as
follows: P(x) = ZZ:O arz® (d € N). For the largest k such that ay # 0, we call
arx”® the leading term of P, ay, its leading coefficient and k its degree. P is said
to be monic if its leading coeflicient is one. Moreover, it is said to be linear,
quadratic, cubic etc. if its degree is one, two, three etc.

We say that a matrix is non-negative if all its entries are non-negative. Abus-
ing notation, we denote the set of all non-negative n-dimensional square matri-
ces of Z™*™ by N™ " An upper triangular matrix is a matrix, where all entries
below the main diagonal are zero. An upper triangular complerity matrix is a
non-negative upper triangular matrix whose diagonal entries are at most one and
whose top-left entry is exactly one. As usual, we denote the transpose of a matrix
(vector) A by AT. The characteristic polynomial of a square matrix A € R"*™ is
defined as x4 (\) := det(Al, — A), where I,, denotes the n-dimensional identity
matrix and det the determinant of a matrix. It is monic and its degree is n. The
equation x4(A) = 0 is called the characteristic equation of A. The eigenvalues
of A are precisely the solutions of its characteristic equation, and the spectral
radius p(A) of A is the maximum of the absolute values of all eigenvalues. By
my we denote the multiplicity of the eigenvalue A. A non-zero vector z is an
eigenvector of A if Ax = Az for some eigenvalue A of A. The Cayley-Hamilton
theorem [15] states that every matrix satisfies its own characteristic equation,
that is, xa(A) = 0, and it holds for square matrices over commutative rings.

Recurrence Relations. Informally, a recurrence relation is an equation that re-
cursively defines a sequence; each element of the sequence is defined as a function
of the preceding elements. For example, the Fibonacci numbers are defined by
F, =F,_1+ F,_o with F; = 0 and F; = 1. Solving a recurrence relation means
obtaining a closed-form solution; in this example, a non-recursive function of n.

A linear homogeneous recurrence relation with constant coefficients is an
equation of the form a,, = cian_1 + 2G5 + - -+ + ¢qa,_gq, Where the d > 1
coefficients cq, ..., cq are constants with cq # 0. The same coefficients yield the



characteristic polynomial x(\) := A — g N — X972 — ... — ¢, whose d roots
play a key role in the solution of a recurrence relation (cf. [3,4]). To be precise,
if A, A,..., A (1 < 7 < d) are the distinct (possibly complex) roots of the
characteristic polynomial such that A; is of multiplicity m; (i = 1,2,...,r), then
the general solution of the recurrence relation is given by

-
—1
ap = Z(Cil + cian 4 -+ Cin, T )AL
i=1

where the ¢;;’s are (complex) constants. Any real solution is of this form as
well, with the imaginary part zero. Moreover, if the coefficients of x(\) are
real numbers, its non-real roots always come in conjugate pairs; i.e., if \; :=
7j(cos(¢;) + isin(¢;)) is a root of x(A), then so is its complex conjugate A} :=
rj(cos(¢;) — isin(¢;)). In this case, avoiding the use of complex numbers, the
most general real solution can be written as

an = Z(Cil +cipgn 4+ + Ciminmi_l))\?

i

+ Z(djl + djgn + -+ dj .nmjil)T‘? COS(TLQSJ')

J

Jm

j
+ Z(d;-l +djgn+---+d, nmfl)r? sin(ng;)
J

where the c;;’s, dji’s and d;k’s are real constants, the \;’s the distinct real roots
of x(A) and the A;’s, A\; := r;(cos(¢;) + isin(¢;)), the distinct complex roots
(modulo conjugates).

3 Matrix Interpretations and Derivational Complexity

Next we review the method of matrix interpretations in the context of complex-
ity analysis of term rewriting. Matrix interpretations [5,10] were originally intro-
duced over the natural numbers. Later on they were lifted to the reals [1,6,21]
using the same technique that was already used to lift polynomial interpretations
from N to R (cf. [8]). Similarly, the first results relating matrix interpretations
and derivational complexity of TRSs (cf. [13], triangular matrix interpretations)
are based on matrix interpretations over the natural numbers. But these results
have never been lifted to the reals. In the next section we shall see, however,
how this follows from a more general result that holds for matrix interpretations
over both N and R, the foundations of which are laid in the present chapter.

Let F denote a signature. A matrixz interpretation M over N is a well-founded
monotone algebra, where the carrier M is the set N™ for some fixed dimension
n € N\ {0}. The well-founded order >j; on M is defined as follows:

(21, %2, 2) T >0r (Y192, Yn) T = T SN YL AT SN Y2 A ATy 2N Un



For each k-ary function symbol f € F, we choose an interpretation function
v (NYF = N (@1,...,2%) = Fi@y + - + Foog + f

where f € N* and Fy,...,F, € N**" In addition, we require (F;);1 >y 1 for
all : =1,...,k to achieve strict monotonicity of fa( in all arguments. Finally, a
triangular matrix interpretation over N is a matrix interpretation over N, where
all matrices are upper triangular complexity matrices.

When extending matrix interpretations from N to R, the main problem is
the non-well-foundedness of >g. This problem is overcome by >g s, which is
defined as follows: given some fixed positive real number d, z >g s y if and only
if x —y 2gr 0 for all z,y € R. Thus >g s is well-founded on subsets of R that are
bounded from below. Then a matriz interpretation M over R is a well-founded
monotone algebra, where the carrier M is the set Rjj for some fixed dimension
n € N\ {0}. The well-founded order >j; on M is defined as follows:

(21,22, xn)" >0 (Y102, yn) " = 21 SR Y1AT2 2R Y2\ - AT 2R Yn
For each k-ary function symbol f, we choose an interpretation function
fr: RDP = RE, (z1,...,xk) = Fixq + ...+ Foze + f

where f € Ry and Fi, ..., F} are non-negative matrices in R"*™ with (F})11 >r
1 for all ¢ = 1,...,k in order to achieve strict monotonicity of fis in all argu-
ments. Again, a triangular matriz interpretation over R is a matrix interpretation
over R, where all matrices are upper triangular complexity matrices.

Remark 1. Concerning polynomial interpretations, it was recently shown in [14]
that it suffices to consider the set R,z of real algebraic® numbers instead of
the entire set R of real numbers. To be precise, it was shown that polynomial
termination over R is equivalent to polynomial termination over R,g. Observing
that the technique of [14] readily applies to matrix interpretations as well, we
may draw the conclusion that matrix interpretations over R are equivalent to
matrix interpretations over R,z with respect to proving termination of TRSs.

Matrix interpretations over R can be used to bound the derivational com-
plexity of compatible TRSs.? Let M be a matrix interpretation over R that is
compatible with some TRS R. Then any rewrite sequence

t=1o—rt1 2Rz 2R3 R ta =R -
gives rise to a strictly decreasing sequence of vectors of non-negative real numbers

[ am(t) >ar [ m(tr) >ar [alm(tz) > []aal(ts) >ar (@ m(ta) >ar -

2 A real number is said to be algebraic if it is a root of a non-zero polynomial in one
variable with integer coefficients.

3 The reasoning presented in the sequel readily includes matrix interpretations over N
as a special case (by letting 6 = 1 and observing that z >y y if and only if z >y y+1).



for all variable assignments «. In particular, by definition of >, the first com-
ponents of these vectors form a sequence of non-negative real numbers that is
strictly decreasing with respect to the order >g s, and every rewrite step causes
a decrease of at least 8. Hence, the first component of the vector 3 - [a]s(t) gives
an upper bound on dh(t, —x). So if we manage to bound (the first component of)
this vector for all terms ¢ up to a given (but arbitrary) size k, then we have actu-
ally established an upper bound on the derivational complexity of R. Moreover,
as we are only interested in the asymptotic growth of % -[a] m(t) with respect to
the size of t, we may neglect the multiplicative factor % because ¢ is a constant.
As already observed in [13], this problem essentially reduces to bounding the
entries of finite matrix products of the form M; - My - ... - My, M; € M. Such
products arise naturally when evaluating terms in a matrix interpretation; e.g.,
if t :== f(g(a, b), c) then [a|m(t) = F1Gra+ F1G2b+ Fig+ Foc+ f. As in [13], we
reduce this problem to the analysis of the growth of the powers of a single ma-
trix. To this end, we note that for all 1 < 4,5 < n, (My-Ma-...-My); ; < (A’“)m-,
where the matrix A is the component-wise maximum of all matrices occurring in
M;ie, A, j :==max{B;; | B€ M} foralll<i,j<n Ift| <k then the length
of each product is at most depth(t) (< k) and the number of products equals the
number of subterms of ¢, which is also bounded by k. Thus any lemma stating
that the entries of the matrix A* are polynomially bounded in k of degree d — 1
can readily be used as the basis of a corresponding theorem that establishes a
polynomial upper bound of degree d on the derivational complexity of all TRSs
that are compatible with the matrix interpretation M. In [13], for example, this
is achieved by restricting the shape of the matrices to upper triangular form.

Lemma 2 ([13, Lemma 5]). Let A € N"*" be an upper triangular complexity
matriz and k € N. Then (A*); ; € O(k™™1) for all 1 < i, < n.

Theorem 3 ([13, Theorem 6]). If a TRS R is compatible with a triangular
matriz interpretation of dimension n, then deg (k) € O(k™).

However, we claim that Lemma 2 only gives a rough estimate of the growth
of the entries of the matrix A*, i.e., the degree of the polynomial bound can
be lowered in many cases. To this end, we provide a more concise analysis of
the growth of AF in the next section, obtaining a replacement for Lemma 2,
which allows us to tighten the bounds established by Theorem 3. In particular,
our refinement holds for matrix interpretations over both N and R. Moreover,
we remark that the restriction of the shape of the matrices is another source
for improvement. Clearly, there are also non-triangular matrices that exhibit
polynomial growth, but in general non-triangular matrix interpretations do not
induce polynomial (but rather exponential) upper bounds on the derivational
complexity of compatible TRSs. So in order to be useful in (automated) com-
plexity analysis of term rewriting, a characterization of polynomially bounded
matrices is required such that, when searching for a compatible matrix interpre-
tation for a given TRS, it is guaranteed beforehand that the search process only
considers such matrices. This is the main goal of the following sections.



4 Main Result

In this section we elaborate on how to lift the restriction to upper triangular
matrices. To this end, we leverage the Cayley-Hamilton theorem and the theory
of linear homogeneous recurrence relations to completely characterize the growth
of the powers of real square matrices (independently of the shape of the matrices).
In particular, we show that the key point with respect to polynomial boundedness
of such matrices is the nature of their eigenvalues. According to the discussion
in Section 3, our results apply to matrix interpretations over N and R alike.

Lemma 4. Let A € R}*"™. Then p(A) < 1 if and only if all entries of A*
(k € N) are asymptotically bounded by a polynomial in k of degree d, where
d := max,(0,my — 1) and X\ are the eigenvalues with absolute value exactly one.

Proof. First, let us assume that p(A4) > 1, i.e., A has an eigenvalue X\ of ab-
solute value strictly greater than one. For any eigenvector x associated to A,
we have Az = Az and hence A*z = M\fz. Since x is non-zero by definition
and |A| > 1, there is at least one component of \*z whose absolute value
grows exponentially in k. But this can only be the case if at least one en-
try of A¥ grows exponentially in k as well. Conversely, if p(A) < 1, we have
to show that the entries of A* are polynomially bounded. Since A is a real
n X n matrix, its characteristic polynomial x 4(\) is a monic polynomial of de-
gree n with real coefficients. Without loss of generality, it can be written as
xa(A) = At-p(A), 0 < t < n, where t is maximal and p is a monic polynomial of
degree n —t. By the Cayley-Hamilton theorem, A satisfies its own characteristic
equation, that is, xa(A) = 0. Clearly, if t = n then A* = 0 for all k > n and
d = 0, such that the claim follows trivially. If ¢ < n we rearrange the equation
xa(A) = 0 into the form A" = c; A"+ A" 2 4. +¢,_A! with coefficients
C1y---,Cn_y, readily obtaining a recursive equation for the powers of A, namely,
forallk >neN A = ;A" 14 AR 24 .. 4 ¢, ;A=) Thus we establish
the following recurrence relation

Ap = c1Ag1+ coAp2+ -+ cnt Ap_(n—st) (1)

and note that the sequence (4;);>¢ where A; := A7 satisfies it by construction.
This is a linear homogeneous recurrence relation with constant coefficients and
characteristic polynomial x(\) = p()). Since the coefficients of x(A) are real
numbers, the non-real roots (eigenvalues) always come in conjugate pairs; i.e., if
Aj = rj(cos(¢;) + isin(¢;)) is a root of x(A), then so is its complex conjugate
Aj i=rj(cos(¢;) —isin(¢;)). Thus the general solution of (1) can be written as

A= (Cio+ Cink+ -+ Cim, 1K™ HAF
+ Y (Djo+ Djak 4o+ Dy, o1 k™7 )k cos(ke;) (2)
J
+ D (Do + Djkit o D K™ ) sin(hy)

J



where the \;’s are the distinct real roots of x()), each having multiplicity m;,
and the \;’s, \; := r;(cos(¢;) + isin(¢;)), the distinct complex roots (modulo
conjugates), each having multiplicity m;. By assumption, the absolute values of
all eigenvalues are at most one; hence, |[A\;| < 1 and r; < 1 in (2), such that
the asymptotic growth of the entries of the matrix A* is polynomial rather than
exponential. In particular, the degree d of the polynomial bound is at most m—1,
where m is the largest of the multiplicities of the eigenvalues with absolute value
exactly one. If there are no such eigenvalues, then p(A) < 1 and limy,_,o, A¥ =0,
such that d = 0. a

Example 5. Consider the 4 x 4 matrix A := (4;;)1<i j<a with all entries zero
except A1 = Ag 4 = A3z = Ay 3 = 1. It has one real eigenvalue A; =1 of mul-
tiplicity two and a pair of complex conjugate eigenvalues Ao = %(71 +1iv/3) and

3 = 2(—1 —iV/3) of multiplicity one, all of which have absolute value exactly
one. Hence, the spectral radius p(A) of A is also one. According to Lemma 4,
the entries of the matrix A®, k € N, are bounded by a linear polynomial in k.
The actual bound, however, is even lower since A* = A, such that the powers of
A are trivially bounded by a constant, and we can use the method outlined in
the proof of Lemma 4 to show this. To this end, we note that the characteristic
polynomial of A is x4(A) = A* — A% — X + 1. Thus, by the Cayley-Hamilton
theorem, we obtain the recursive equation A* = A*~1 4 A*=3 — AF=4 for all
k > 4 € N, the general solution of which can be written as

AF = (Co + C1E)NE + D ¥ cos(k¢) + D' r* sin(ke) (3)

where r(cos(¢) + isin(¢)) = Az, that is, 7 = 1 and ¢ = Z. In the next step,
the exact values of the four constants Cy, C1, D and D’ can be determined, for
example, by letting k = 4, 5,6, 7 in (3) and solving the resulting systems of linear
equations. In doing so, one learns that C; is zero, which means that the linear
summand in (3) vanishes. Further, we obtain A¥ = Cy + D cos(k¢) + D’ sin(k¢),

1000 0 0 0 0 o 0 0 0

V3 3

Co = O%%% D= 0 %_%_% D = 0 0—% 5
0333 03 54 0 F 0-
0334 033 3 0-F E o

which explains why the powers of A are bounded by a constant. In particular,
the periodic nature of the sequence (A*)rcn becomes evident.

On the basis of Lemma 4, we now establish the following theorem concerning
complexity analysis of TRSs that holds for matrix interpretations over N and R.

Theorem 6. Let R be a TRS and M a compatible matriz interpretation of
dimension n. Further, let A denote the component-wise mazimum of all matri-
ces occurring in M. If the spectral radius of A is at most one, then dcg (k) €
O(k%t1), where d := max,(0,my — 1) and \ are the eigenvalues of A with abso-
lute value exactly one.



Remark 7. Actually the d in Theorem 6 can be strengthened to maxy(0,my)—1
because the pathological case p(A) < 1 implies dcg (k) € O(KP).

The next example shows why triangular matrices may fail. Similar (but
larger) systems are contained in TPDB [18], e.g., TRS/Cime_04/dpgs.xml.

Ezample 8. Consider the TRS R = {f(f(z)) — f(c(f(x))), c(c(z)) — =} which is
compatible with the matrix interpretation

110 0 102
fm(x)=1000)x+ (1 cm(x)=(001 |z
000 0 010

The eigenvalues of the component-wise maximum matrix are —1, 1 and 1; hence,
Theorem 6 deduces a quadratic upper bound on the derivational complexity of R.
There cannot exist a triangular matrix interpretation compatible with R since
the second rule demands that all diagonal entries in cyq are non-zero, but then
the first rule can no longer be oriented.

Next we specialize Theorem 6 to triangular matrix interpretations. In such
interpretations all matrices are upper triangular complexity matrices whose di-
agonal entries are restricted to the closed interval [0, 1] and whose top-left entry
is always one. Hence, this is also true for the component-wise maximum ma-
trix A. Since the diagonal entries of a triangular matrix give the multiset of its
eigenvalues, the matrix A is therefore guaranteed to have spectral radius one.

Theorem 9. Let R be a TRS and M a compatible triangular matrix interpre-
tation over N or R of dimension n. Further, let A denote the component-wise
mazximum of all matrices occurring in M, and let d denote the number of ones
occurring along the diagonal of A. Then dcg (k) € O(k%).4

Note that the bound established by Theorem 9 for matrix interpretations
over N is at least as tight as the one of Theorem 3 since d < n.

Ezample 10. The TRS R = {a(b(a(z))) — a(b(b(a(z)))), b(b(b(z))) — b(b(z))}?
is compatible with the triangular matrix interpretation

121 0 102 1
am(x) = (001>w+ (1) bam(x) = <001>w+ <O>
000 1 000 0

The diagonal of the component-wise maximum of the two matrices has the shape
(1,0,0). Hence, R has (at most) linear derivational complexity by Theorem 9,
whereas the bound established by Theorem 3 is cubic. Incidentally, the bound
inferred from Theorem 9 is even optimal since it is easy to see that the deriva-
tional complexity of R is at least linear. It is easy to show that there are no
triangular matrix interpretations of dimension one and two compatible with R.

The final example shows the benefit of matrix interpretations over R.

4 Independently in [19, Proposition 7.6] the same result has been established for N.
> TPDB problem TRS/Zantema_04,/7126.xml



Ezample 11. Consider the TRS R.® There exists a matrix interpretation (see
website in Footnote 8) compatible with R such that the diagonal of the component-
wise maximum matrix has the shape (1, %, 0). Due to Theorem 9, the derivational
complexity of R is at most linear. Our implementation could find a triangular
matrix interpretation of the same dimension over N compatible with R estab-

lishing a quadratic but not a linear bound.

5 Implementation Issues

In Theorem 6, we consider some TRS together with a compatible matrix inter-
pretation and demand that the component-wise maximum matrix A has spec-
tral radius at most one. So we have to make sure that the absolute values of
all its eigenvalues (real and complex ones) are at most one. However, since A
is a non-negative real square matrix, we only have to ensure this condition for
all (non-negative) real eigenvalues of A. This follows directly from the Perron-
Frobenius theorem ([16], weak form), which states that the spectral radius of a
non-negative real square matrix is an eigenvalue of the matrix; i.e., there exists
a non-negative real eigenvalue that dominates in absolute value all eigenvalues.
Concerning the automation of Theorem 6, the main problem that has to be
dealt with is the following. Given some square matrix A with unknown entries,
all of which are supposed to be non-negative real (or integer) numbers, we need
a set of constraints, expressed in terms of the unknown entries, that enforce
p(A) < 1; e.g., for which non-negative values of a, b, ¢ and d has the matrix

a=(24)

spectral radius at most one? In the sequel, we present three different approaches.

(A) The first approach is based on the explicit calculation of the eigenvalues
of A, i.e., the explicit calculation of the roots of the characteristic polynomial
x4(N). For the two-dimensional case, we have x4(\) = A2 — (a + d)\ + ad — be,

and by the quadratic formula we obtain the roots A2 = “%d + 7@)2%“,
both of which are real because all matrix entries are non-negative. In particular,
A2 (= A1) is non-negative, such that it suffices to require Ao < 1 according to the
Perron-Frobenius theorem. Simplifying this condition as much as possible, we
infer that the matrix A has spectral radius at most one if and only if a+d < 2 and
a+d < ad —bec+ 1. This explicit approach also applies to matrices of dimension
three and four since there exist formulas for the solution of arbitrary cubic and
quartic polynomial equations with symbolic coefficients (though the respective
calculations are tedious). However, for equations of degree five or higher, there
are no formulas that express the solutions of such equations in terms of their
coefficients using only the four basic arithmetic operations and radicals (n-th
roots, for some integer n).

5 TPDB problem TRS/Secret_05_SRS/matchbox2.xml

10



(B) Next we present an alternative and simpler approach for three-dimensional
matrices. To this end, let A be some arbitrary three-dimensional non-negative
real square matrix with entries a, b, ..., and characteristic polynomial x 4 ()

N —(a+e+i)A?+(ei— fh+ai—cg+ae—bd)\—(aei+bfg+cdh—ceg—bdi—afh)

which we abbreviate by A3 + pAZ + g\ + 7. By the Perron-Frobenius theorem,
it suffices to constrain the real roots of xa(\) to the closed interval [—1,1].
To this end, we make use of the well-known fact that a cubic polynomial like
XA(A) either has only one real root (and two complex conjugate roots) if its
discriminant D = p?q® — 4¢> — 4p®r — 27r? + 18pgr is negative or three (not
necessarily distinct) real roots if D > 0. Visualizing the geometric shape of
Xa(A), it is not hard to see that in the latter case all three roots are in [—1, 1]
if and only if xa(—1) <0, xa(1) > 0 and x/;(A) > 0 for all A € R with |A\| > 1
(here x4 denotes the first derivative of x4). Thus we conclude that the matrix
A has spectral radius at most one if and only if

(D<0Axa(-1)<0AXxa(l)=0)V
(xa(=1) SOAxa(1) = 0A X, (A) =0 for all [\ >1)

These are polynomial constraints in the entries of A. In particular, the constraint
X4a(X\) = 3X% +2pA + ¢ = 0 for all [A| > 1 can be shown to be equivalent to

(P —3¢<0)V(-3<p<3A—(¢+3)<2p<qg+3)

by means of the quadratic formula. Here the term p? — 3¢ is essentially the
discriminant of x’4(\); if it is negative, then x’4 () has no real root, such that
the constraint holds trivially, otherwise it has two real roots A\; and As. In case
A1 = Mg, the constraint also holds because then x’y(A) = 3+ (A — A1)%. Finally,
if Ay # Az, then both must necessarily lie in the closed interval [—1, 1] for the
constraint to hold, which is ensured by the second disjunct in the above formula.

(C) Last but not least, we present a generic method that works for matrices
with unknown entries of any dimension. To this end, let A be an n-dimensional
square matrix whose entries are supposed to be real numbers (not necessarily
non-negative). Its characteristic polynomial is a monic polynomial of degree
n, which can be written as xa(\) = A" + 37" ¢; A", where the coefficients ¢;,
0 < i < n—1, are polynomial expressions in the entries of A. Since all coefficients
are supposed to be real numbers, x4(A) can always be factored as

xa) = (A=) T + pr+ )™ (4)

J

where b = 0 if n is even, b = 1 otherwise, m; > 1 (m; € N) is the multiplicity of
the quadratic factor A2 +pjA+g;, and r,p;, ¢; € R. Thus the absolute values of
all roots (real and complex ones) of x4 (\) are at most one if and only if |r| < 1
(in case b = 1) and the absolute values of the roots of all quadratic factors
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are at most one. So when does the latter condition hold for a given quadratic
factor A* 4+ p; A + ¢;? By the quadratic formula, we obtain the roots A\; o =

) \/p2—4
-5+ #. If the discriminant p? — 4¢; is negative, both roots are complex,

/iq,—p2
Le, A\ig:= -8+ i# and have absolute value |A\1| = |A\2| = ,/g;. Hence,
we demand ,/g; < 1, or equivalently, ¢; < 1. In the other case, if pf —4q; > 0,

both roots are real, and the constraints |A1| < 1 and |Az| < 1 simplify to
—2<pj<2and —(gj+1)<p; <qgj+1

As a consequence, the matrix A € R™*™ with characteristic polynomial (4) has
spectral radius at most one if and only if b = 1 implies —1 < r < 1 and for all
quadratic factors A2 + p;\ + ¢; in (4),

(p2—4g; <O A g <L)V (pP—4g; 20N —2<pj <2 A —(g+1) <pj < g;+1)

Non-negative Integer Matrices. If all matrix entries are non-negative integers,
one can also apply a totally different approach. It is based on graph theory and
the following lemma, which is an immediate consequence of [11, Corollary 1].7

Lemma 12. Let A € N"*". Then p(A) > 1 if and only if (A*);; > 1 for some
EeNandic{l,...,n}.

Viewing A € N"*" as the adjacency matrix of a directed weighted graph G 4 of
n vertices numbered from 1 to n, such that for every positive entry A;; there
is an edge from vertex i to vertex j of weight A; ;, the condition (A¥);; > 1 for
some i € {1,...,n} mentioned in the previous lemma holds if and only if

1. there is a cycle in G 4 containing at least one edge of weight w > 1, or
2. there are (at least) two different paths (cycles) from some vertex to itself.

This is due to the well-known fact that the entry (A¥); ; equals the sum of the
weights of all distinct paths in G 4 of length k£ from vertex i to vertex j, where
the weight w of a path is the product of the weights of its edges (in particular,
w > 1). Hence, we have p(A) < 1 if and only if neither of the two conditions
holds. Since every cycle of G4 is composed of simple cycles, that is, cycles with
no repeated vertices (aside from the necessary repetition of the start and end
vertex), we may restrict to simple cycles for both conditions.

Next we make two important observations. First, for A € N**™ G 4 cannot
have a simple cycle containing an edge of weight greater than one if every matrix
in the set {4, A%, ..., A"} has diagonal entries less than or equal to one. Concern-
ing the second condition, let us assume that there are two different simple cycles
C1 and C5 of length I; and ls, 1 < I1,1s < n, from some vertex 4 to itself. Con-
sidering all paths of length lecm(ly,l2), the least common multiple of I; and Iy, we
clearly have (A'“m(1/2)), . > 1. In addition, we also have (A“+%2); ; > 1 because
there are two different cycles, each of weight at least one, from vertex i to itself of
length I; 4 l2, namely, the concatenation of C; and C5 as well as the concatena-

" The joint spectral radius of a singleton set {A} of matrices coincides with p(A).
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tion of C; and ;. Hence, we can detect the existence of the cycles C; and Cs by
examining the diagonal entries of all matrices in the set {4, A%,..., A™}, where
m = min(ly + la,lcm(l1,l2)). More generally, we can detect any pair of cycles
satisfying condition 2 by examining the diagonal entries of the matrices in the set
{A, A%, ... AP where p(n) := max{min(l; + lo,lcm(l1,12)) | 1 < I1,ls < n}.
The left part of the table below shows the values of p(n) for various values of n.

n |1 2 3 4 5 6 n |1 2 3 4 5 6
pn) |1 2 5 7 9 11 qm) |1 2 3 5 7 9

In particular, we observe that p(n) > n for n > 1, and we draw the following
conclusion. If every matrix in the set {A, A2, ... AP(™} has diagonal entries less
than or equal to one, then neither condition 1 nor condition 2 can hold, which
implies p(A) < 1. The converse is obvious.

Now let us apply this result to matrix interpretations. By definition, all ma-
trices of a matrix interpretation M must have a top-left entry of at least one.
Hence, this is also true for the maximum matrix A of M. In other words, in
G 4, vertex 1 has a loop (of length one) to itself. This corresponds to a dimen-
sion reduction by one for precluding all instances of condition 2. More precisely,
we do not have to consider the cases 1 = n or I = n because then not only
Cy and C5 but also C; (C3) and the loop of vertex 1 satisfy condition 2 (for
n > 1), and we can detect this by examining the diagonal entries of the matrix
A™ which has to be considered anyway for precluding all instances of condi-
tion 1. Therefore, if A1 > 0, we have p(A) < 1 if and only if every matrix in
the set {A, A2, ..., A‘Z(”)} has diagonal entries less than or equal to one, where
q(n) := max(n,p(n — 1)) for n > 1 and ¢(1) := 1. Some values for ¢(n) are
displayed in the right part of the above table.

6 Experimental Results

The criteria proposed in this paper have been implemented in the complexity tool
@T [20] and the 1172 non-duplicating TRSs in TPDB 7.0.2 have been considered.
All tests have been performed on a server equipped with 64 GB of main memory
and eight dual-core AMD Opteron® 885 processors running at a clock rate of
2.6 GHz with a time limit of 60 seconds per system.®

We searched for matrix interpretations of dimension d € {1,...,5} by encod-
ing the constraints as an SMT problem (quantifier-free non-linear arithmetic),
which is solved by bit-blasting. We used max(2,6 — d) (7 — d) bits to represent
coefficients (intermediate results). The numerators of rational numbers are rep-
resented with the bit-width mentioned above while all denominators are 2. GT
found compatible matrix interpretations (not necessarily polynomially bounded)
for 287 TRSs, giving an upper bound on the number of systems our results can
apply to (if used stand-alone).

Table 1 indicates the number of systems where the labeled approach yields
polynomial upper bounds on the derivational complexity. The first row shows

8 For full details see http://cl-informatik.uibk.ac.at/software/cat/polymatrix.
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Table 1. Polynomial bounds for 1172 systems

O(k) O(K?) O(k?) O(k™)
Theorem 3[9y |9 46] 85] 88 158[184[185  177|202[196 203]205]199
A|B|C|Lemma 12 61]68] 80| 64 158|176|185|175 —|182|191|180 —|~|193]190
row 1|row 2|row 142 88| 80| 88 191]185(200  205|191|209 208]196|212
GT(2009) | GT (2010) 208|214 299|309 310|321 328|329

that the theorems proposed in this paper allow to infer tighter upper bounds
from triangular matrices than [13]; e.g., the number of linear (quadratic) upper
bounds increases by 84% (16%) if one compares Theorems 3 and 9y. The results
for (possibly) non-triangular matrix interpretations are reported in the second
row. The generic method based on factoring the characteristic polynomial (C)
is implemented by comparing the coefficients from the characteristic polynomial
with the coefficients of equation (4). Note that only this non-triangular approach
allows to add upper bounds on the multiplicity of eigenvalues to the matrix
encoding, which explains the high score for linear bounds. Since encoding A
(B) is becoming harder for larger dimensions, we implemented it for dimensions
one and two (and three) only (explaining the — in the table). Row three relates
the approaches based on triangular and non-triangular matrices. Here row 1
corresponds to the accumulated power of Theorems 3 and 9 and row 2 to A, B, C,
and Lemma 12, respectively. The impact of the methods proposed in this paper
when integrated into the 2009 competition version of @T is shown in row four.
@T was the strongest (derivational) complexity prover in 2008, 2009, and 2010.
Since most parts of this paper aim at tightening bounds, it is not surprising that
the total number of polynomial bounds did not increase significantly.

7 Conclusion, Related and Future Work

We have presented a characterization of matrix interpretations that induce poly-
nomial upper bounds on the derivational complexity of compatible TRSs. Con-
trary to previous approaches, our method applies to matrix interpretations over
N and R alike and does not restrict the shape of the matrices. At the core of our
method is the analysis of the growth of finite products of matrices. In particular,
we estimate the growth of a product of the form M; - My -...- M}, by the growth
of a (suitably chosen) matrix A*, which is determined by its spectral radius. For
future work, the investigation of joint spectral radius theory [11] looks promising
since the joint spectral radius is a measure of the maximal growth of products
of matrices taken from a set and has been the subject of intense research.
Concerning related work, very recently (and independently) Waldmann [19]
provides a characterization of polynomially bounded matrix interpretations over
N, which extends triangular matrix interpretations. In [19] matrices are viewed as
weighted (word) automata and the derivational complexity of TRSs is bounded
by the growth of the weight function computed by such automata. We believe
that the method is at least as powerful as our approach for matrix interpretations
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over N. In contrast to our approach, it can handle the TRS in [19, Example 7.5],
probably because it is not based on the maximum matrix. In practice, the method
based on automata is much harder to implement (cf. [19, Section 8]). Unlike our
approach, it only applies to matrix interpretations over N; the extension to R
(Q) raises non-trivial issues (cf. [19, Section 10]).
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