
Termination Analysis by Tree
Automata Completion

Dissertation
in computer science

by
Martin Korp

submitted to the
Faculty of Mathematics, Computer Science and Physics

of the University of Innsbruck

in partial fulfillment of the requirements for the degree of

Doctor rerum naturalium

supervised by
Univ.-Prof. Dr. Aart Middeldorp
Institute of Computer Science

Innsbruck, June 2010

Abstract

Establishing termination of programs and processes is one of the most funda-
mental problems in computer science. In the area of term rewriting, a Turing-
complete model of computation which forms the theoretical basis of functional
programming, termination has been studied for several decades. Although ter-
mination is undecidable in general, many powerful termination criteria have
been developed. In this dissertation we focus on methods that uses automata
techniques, especially tree automata completion, to automatically prove the ter-
mination of rewrite systems.

A relatively new and elegant method within this scope is the so called match-
bound technique proposed by Geser, Hofbauer, and Waldmann. It uses tree
automata completion to prove the termination of rewrite systems. In this thesis
we extend the match-bound technique in three directions. The first extension
is the removal of the left-linearity restriction to increase the applicability of the
method. The second extension is the integration of the match-bound technique
into the dependency pair framework, a powerful framework to automatically
prove the termination of rewrite systems. The third extension discusses how
the match-bound technique can be used for modular complexity analysis.

Another termination technique that can benefit from the use of automata
techniques is the so called dependency graph processor, which is one of the
most frequently used techniques within the dependency pair framework. We
illustrate that by using tree automata completion tremendous gains in power
can be achieved.

The developed techniques have been integrated into the tool TTT2, a fully
automatic termination analyzer for first-order term rewrite systems, as well as
the complexity analyzer CaT.

i

Acknowledgments

First of all I would like to express my gratitude to my adviser Aart Middeldorp
who made it possible for me to write this thesis. His valuable and informative
guidance was definitely one of the decisive factors for the success and progress
of this thesis. During our cooperation I could learn a lot from him and I am
thankful for those experiences.

Special gratitude is also dedicated to Christian Sternagel and Harald Zankl.
I shared with them an office during the first three years of my Ph.D. studies and
it was mainly their merit that I felt very comfortable during work. I enjoyed the
discussions concerning research, TTT2, and CaT (although some of them where
quite heavy) but also all common activities outside the office. So thanks again
to both of you. I will always gladly remember the good old days in 3M09. Apart
from Christian and Harald I would like to thank Friedrich Neurauter and Sarah
Winkler who shared an office with me during the last year of my Ph.D. studies.
I had a nice time in 3M03 and the pleasure to be one of the founders of the
legendary CL Lab Parties.

Of course I would like to thank also all other members of the Computational
Logic group, namely Martin Avanzini, Simon Bailey, Martina Ingenhaeff, Georg
Moser, Andreas Schnabl, and René Thiemann, for useful and constructive dis-
cussion and for providing a great group atmosphere.

Last but not least, I would like to thank my family, especially my parents
Rosa and Rudi, my brother Matthias, and my better half Maria, who have
always supported me. Without you, all this would certainly not have been
possible.

iii

Contents

1 Introduction 1
1.1 Motivation and Outline . 2
1.2 Structure . 3

2 Preliminaries 5
2.1 Term Rewriting . 5
2.2 Tree Automata . 7

3 Tree Automata Completion 9
3.1 Compatible Tree Automata . 10
3.2 Detecting Compatibility Violations 11

3.2.1 Matching Algorithm . 11
3.2.2 Using Tree Automata Techniques 12

3.3 Solving Compatibility Violations 14
3.3.1 Approximation Equations 15
3.3.2 Approximation Rules . 16
3.3.3 Approximation Functions 17

3.4 Quasi-Deterministic Tree Automata 18
3.5 Establishing Quasi-Determinism 23

3.5.1 Constructing Quasi-Deterministic Tree Automata 23
3.5.2 Approximating Quasi-Deterministic Tree Automata . . . 25

3.6 Summary . 27

4 The Match-Bound Technique 29
4.1 Preliminaries . 30
4.2 Bounds for Left-Linear TRSs . 30
4.3 Raise-Bounds for Non-Left-Linear TRSs 32
4.4 Automation . 35

4.4.1 Compatible Tree Automata 35
4.4.2 Raise-Consistent Tree Automata 38
4.4.3 Quasi-Compatible Tree Automata 40

4.5 Forward Closures . 43
4.6 Summary . 47

5 The Dependency Pair Framework 49
5.1 Preliminaries . 50
5.2 Combining Dependency Pairs and Bounds 51

5.2.1 DP-Bounds for Left-Linear DP Problems 51
5.2.2 Raise-DP-Bounds for Non-Left-Linear DP Problems . . . 55

v

Contents

5.2.3 Automation . 57
5.2.4 Forward Closures . 58

5.3 Beyond Dependency Graphs . 60
5.3.1 Using Dependency Graphs 60
5.3.2 Estimating Dependency Graphs 62
5.3.3 Incorporating Forward Closures 63
5.3.4 Comparison . 66
5.3.5 Innermost Dependency Graphs 69

5.4 Usable Rules . 74
5.4.1 Match-Bounds . 76
5.4.2 Dependency Graphs . 77

5.5 Summary . 81

6 Complexity Analysis 83
6.1 Preliminaries . 84
6.2 Modular Complexity Analysis . 85
6.3 Relative Match-Bounds . 87

6.3.1 RT-Bounds for Left-Linear Relative TRSs 88
6.3.2 Raise-RT-Bounds for Non-Left-Linear Relative TRSs . . . 91
6.3.3 Automation . 93

6.4 The Complexity Framework . 94
6.5 Summary . 97

7 Experiments 99
7.1 Match-Bounds . 100

7.1.1 Raise-Bounds . 100
7.1.2 DP-Bounds and Raise-DP-Bounds 101

7.2 Dependency Graphs . 103
7.2.1 Full Termination . 104
7.2.2 Innermost Termination 108

7.3 Complexity Analysis . 109
7.4 Summary . 112

8 Conclusion 113

Bibliography 115

A Termination and Complexity Tools 121
A.1 The Termination Tool TTT2 . 121

A.1.1 Design and Execution . 121
A.1.2 The Strategy Language 123

A.2 The Complexity Tool CaT . 128
A.2.1 Design and Execution . 129
A.2.2 The Strategy Language 129

B Supplementary Proofs 133
B.1 Preliminaries . 133
B.2 Soundness of Match(-Raise)-DP-Bounds 136

vi

Contents

B.3 Soundness of Forward Closures 137

Index 141

vii

Progress is possible only if we
train ourselves to think about
programs without thinking of
them as pieces of executable
code.

Edsger Dijkstra
Chapter 1

Introduction

One of the milestones in the field of theoretical computer science was the founda-
tion of computability theory by Church and Turing in the late 1930s. Inspired
by Hilbert’s Entscheidungsproblem, Turing and Church where the first who
attempted to make the notion of computability precise, albeit from different
points of view. While Church developed the so called λ-calculus [5] to charac-
terize computable functions, Turing followed a more mechanical approach which
resulted in the definition of Turing machines [57]. Shortly after the publication
of the two achievements Turing showed that both approaches capture the same
notion of computability [58]. Based on this result, the famous and well-known
Church-Turing thesis arose. It basically states that any computable function
can be expressed as a λ-term or, alternatively, in form of a Turing machine.
Although this thesis cannot be proved formally because the notion of what it
means for a function to be computable is vague and intuitive, all models of
computation yet discovered have been shown to be equivalent to these early
models of computation.

In this thesis we are concerned with another Turing-complete model of com-
putation called term rewriting. Term rewriting is a branch of theoretical com-
puter science which forms the theoretical fundament of functional programming
and theorem proving. Its foundation is equational logic. What distinguishes
term rewriting from equational logic is that equations are used as directed rules
to perform computations. Although the origins of rewriting can be traced back
to mathematics and mathematical logic, it took until the early 20th century for
the development of term rewriting to start. In 1914, Thue used for the first
time rewrite systems to manipulate strings [56]. Later on, in the 1930s, the
introduction of the λ-calculus and its twin combinatory logic led to fundamen-
tal results in the area of term rewriting [2, 54]. Shortly after, the notion of a
term rewrite system in its present form was formulated and since then used in
various applications like type specifications, theorem proving, or programming
languages.

An important and interesting research field within the area of term rewrit-
ing is concerned with the analysis of the termination behavior of term rewrite
systems. Establishing termination of programs and processes is one of the
most fundamental problems in computer science. In the area of term rewrit-
ing, termination has been studied for several decades. The simplicity as well
as its relation to functional programming languages makes term rewriting a
perfect environment for the study of termination. Although termination is

1

1 Introduction

undecidable in general [2, 54], many powerful termination criteria have been
developed. The first techniques have been published in the early 1970s by
Manna and Ness as well as Knuth and Bendix. In contrast to the theoretical
work of Manna and Ness, in which termination has been characterized by using
reduction orderings [47], Knuth and Bendix developed the first automatable ter-
mination criterion—the well-known Knuth-Bendix order [38]. In the aftermath
of those trend-setting papers, simplification orderings dominated research for
many years. It took until the early 1990s when the development of termination
techniques which overcome the limitations of simplification orderings became
the main focus of attention. Some prominent techniques which emerged at the
beginning of this phase are transformation orders, introduced by Bellegarde and
Lescanne [3], and semantic labeling, developed by Zantema [62]. Ultimately in
2000, Arts and Giesl introduced the so called dependency pair method [1] which
immediately shaped up as one of the most powerful techniques, till this day.

At the beginning of the 21st century, a significant change of the nature of
termination analysis took place. Instead of developing new techniques, the
focus turned on automation of existing termination criteria. In 2004, the first
international termination competition took place.1 Since then, this event has
been annually repeated. In the last edition of the termination competition
in 2009, a dozen of termination tools competed against each other in various
categories.

1.1 Motivation and Outline

One reason for the importance of termination analysis is that it can be used
to check the correctness of programs and processes. It is often the case that
properties which guarantee a correct behavior of safety-critical systems can be
automatically transformed into suitable termination problems. A quite com-
mon and alternative approach to verify the correctness of a program is model-
checking. In the area of term rewriting, model-checking is usually performed
by analyzing the terms that can be reached via rewriting from some initial
terms. In this thesis we combine both techniques to a certain extend to prove
the correctness of term rewrite systems by analyzing their termination behav-
ior. To perform reachability analysis we use tree automata completion which
represents an elegant and efficient method to compute all terms that can be
reached from some initial terms via rewriting. Thereby tree automata are used
to represent possibly infinite sets of terms. As initial point we consider the
match-bound technique proposed by Geser, Hofbauer, and Waldmann in [21].
It is a relatively new and elegant termination method which combines elements
of semantic labeling and simplification orders to prove the termination of term
rewrite systems. In order to obtain a termination certificate it uses automata
techniques, in particular, tree automata completion.

In this thesis we extend the match-bound technique in three directions. At
first we remove the left-linearity restriction to increase the applicability of the
method. To this end we introduce a new approach to cope with non-left-

1http://termination-portal.org/

2

http://termination-portal.org/

1.2 Structure

linear rewrite rules during tree automata completion. Secondly we show how
the match-bound technique can be integrated into the dependency pair frame-
work [27], a modular reformulation and improvement of the dependency pair
method [1]. To guarantee a successful cooperation with other techniques within
this framework, we restructure the match-bound technique in such a way that
the termination of a single rewrite rule, relative to all other rules, can be proved.
Last but not least, we discuss how the match-bound technique can be used for
modular complexity analysis. To achieve this goal we switch from termination to
relative termination and present an enhanced version of relative match-bounds.

Another termination technique that can benefit from the use of tree automata
techniques is the so called dependency graph processor [28, 48]. This method is
one of the most frequently used techniques within the dependency pair frame-
work. We show that by using tree automata completion tremendous gains in
power can be achieved.

Most of the results presented in this thesis appeared already in the conference
proceedings [40, 41, 42, 44, 61] as well as in the journal article [43]. In this thesis
we slightly improve and extend these contributions. Besides a more detailed
presentation of the results we additionally explain how the developed techniques
can and have been implemented in the termination prover TTT2 as well as the
complexity tool CaT.

1.2 Structure

The remainder of the thesis is organized as follows. In the next chapter we recall
some basic definitions concerning term rewriting and tree automata. Chapter 3
is devoted to tree automata completion. Besides the classical approach we
present a new and elegant way to deal with non-left-linear rewrite rules, using
so called quasi-deterministic tree automata. Afterwards, in Chapter 4, we in-
troduce the match-bound technique and its extension to non-left-linear rewrite
rules. In Chapter 5 we first recall some basic definitions concerning the depen-
dency pair framework. After that we introduce the concept of e(-raise)-DP-
bounds which ensures a fully modular integration of the match-bound technique
into the dependency pair framework. Finally we discuss how the dependency
graph processor can be improved using tree automata completion. Chapter 6
is concerned with complexity analysis. Besides the presentation of a modular
framework, which allows us to infer bounds on the complexity of term rewrite
systems by combining different criteria, we show how the match-bound tech-
nique can be adapted such that it fits into this framework. All techniques
presented in the preceding chapters have been integrated in the termination
prover TTT2 as well as the complexity tool CaT. In Chapter 7 we report on the
extensive experiments that we conducted. Finally in Chapter 8 we conclude.
Some additional material concerning TTT2 and CaT as well as some of the more
technical proofs are deferred to Appendices A and B.

3

Chapter 2

Preliminaries

We assume familiarity with term rewriting [2] and tree automata [6]. Below we
recall some important definitions needed in the remainder of the thesis.

2.1 Term Rewriting

A signature consists of function symbols equipped with fixed arities. The set
of terms constructed from a signature F and a set of variables V is denoted by
T (F ,V). Likewise, we write T (F) for the set of ground terms induced by the
signature F . The set of variables occurring in a term t is denoted by Var(t)
and the set of function symbols of t is denoted by Fun(t). The size of a term
t is denoted by |t| and inductively defined as |t| = 1 if t is a variable and |t| =
1+|t1|+· · ·+|tn| if t = f(t1, . . . , tn). The number of function symbols occurring
in a term t is abbreviated by ‖t‖. We write depth(t) to refer to the depth of a
term t which is inductively defined as depth(t) = 0 if t is a variable or a constant
and depth(t) = 1+max {depth(ti) | i ∈ {1, . . . , n}} if t = f(t1, . . . , tn). A term t
is called linear if each variable in Var(t) occurs exactly once in t. Positions are
used to address symbol occurrences in terms. The set of positions induced by
a term t is denoted by Pos(t) and inductively defined as follows: Pos(t) = {ε}
if t is a variable and Pos(t) = {ε} ∪ {ip | i ∈ {1, . . . , n} and p ∈ Pos(ti)} if
t = f(t1, . . . , tn). Given a term t and a position p ∈ Pos(t), we write t(p) for
the function symbol or variable at position p. In case that p = ε we often write
root(t) to refer to the root symbol of the term t. We use PosF (t) to denote the
subset of positions p ∈ Pos(t) such that t(p) is a function symbol. Let s and t
be two terms. We say that s is a subterm of t, written s E t, if either s = t or
t = f(t1, . . . , tn) and s is a subterm of ti for some i ∈ {1, . . . , n}. A subterm s
of t is proper , denoted by s C t, if s 6= t. We write t|p to denote the subterm
of t at position p and s[t]p to denote the term obtained from s by replacing the
subterm at position p by the term t.

Contexts are terms over the extended signature F ∪{2} with exactly one oc-
currence of the fresh constant 2 (also called hole). The expression C[t] denotes
the term obtained from the context C and the term t by replacing the hole
2 in C by t. We extend contexts to multi-contexts (contexts with more than
one hole) in the usual manner. A substitution σ is a mapping from variables
to terms. As usual we assume that the domain of σ, denoted by Dom(σ), is
finite. The application of a substitution σ to a term t, written as tσ, is defined
as tσ = σ(t) if t is a variable and tσ = f(t1σ, . . . , tnσ) if t = f(t1, . . . , tn).

5

2 Preliminaries

A rewrite rule is a pair of terms (l, r), written l→ r. A rewrite rule l→ r is
called duplicating if there is a variable x ∈ Var(r) which occurs more often in
r than in l. We say that a rewrite rule l → r is collapsing if r is a variable. A
rewrite rule l → r is called linear if both l and r are linear. Similarly, l → r
is called left-linear (right-linear) if l (r) is linear. A term rewrite system (TRS
for short) R is a set of rewrite rules such that for all l → r ∈ R, l is not a
variable and Var(l) ⊇ Var(r). The defined symbols of a TRS R are all function
symbols f for which there is a rewrite rule l → r in R such that f = root(l).
In the following we denote this set of function symbols by FunD(R). Those
function symbols of R which are not defined are called constructor symbols. So
the set of all constructor symbols is defined as FunC(R) = F \FunD(R). Here
F denotes the signature of R. A TRS R is called duplicating (collapsing) if at
least one rewrite rule in R is duplicating (collapsing). Likewise, a TRS R is
called linear (left-linear , right-linear) if all rewrite rules in R are linear (left-
linear, right-linear respectively). Given some TRS R, we write R−1 to denote
the set {r → l | l → r ∈ R} of rewrite rules. Note that R−1 is not necessarily
a TRS. A rewrite relation is a binary relation on terms that is closed under
contexts and substitutions. For a set of rewrite rules R we define→R to be the
smallest rewrite relation that contains R, that is, s →R t for two terms s and
t if and only if there is a rewrite rule l → r ∈ R, a position p ∈ Pos(s), and a
substitution σ such that s = s[lσ]p and t = s[rσ]p. As usual →+

R denotes the
transitive and →∗R the reflexive and transitive closure of →R. In the following
we drop the subscript R from →R and its derivatives when no confusion about
R can arise. We say that a term s is a normal form with respect to a TRS R
if there is no term t such that s →R t. The set of all normal forms of a TRS
R is denoted by NF(R). Let R be a set of rewrite rules over a signature F . A
rewrite sequence or derivation is a possibly infinite sequence of →R-steps. We
say that R is terminating if →R is well-founded, that is, if R does not admit
an infinite rewrite sequence. Given a set L ⊆ T (F) of ground terms, we say
that R is terminating on L if none of the terms in L admit an infinite rewrite
sequence. Last but not least, the set {t ∈ T (F) | s→∗R t for some s ∈ L} of
descendants of L is denoted by →∗R(L).

Example 2.1. Consider the TRS R consisting of the rewrite rules

0 + y → y 0× y → 0

s(x) + y → s(x+ y) s(x)× y → (x× y) + y

which specify addition and multiplication over natural numbers in unary nota-
tion. By applying the above rules we can easily compute the result of the term
t = (s(0) + 0)× s(s(0)):

t →R s(0 + 0)× s(s(0))→R s(0)× s(s(0))
→R (0× s(s(0))) + s(s(0))→R 0 + s(s(0))
→R s(s(0))

For instance, in the first rewrite step the rewrite rule s(x) + y → s(x + y)
is applied to the term t at position 1, to reduce t to s(0 + 0) × s(s(0)). The

6

2.2 Tree Automata

corresponding matching substitution is σ = {x 7→ 0, y 7→ 0}. Since the resulting
term s(s(0)) does not permit any further rewrite steps, it is a normal form of
the TRS R. It is easy to see that the ground normal forms of R are all terms
which do not contain + and ×. So NF(R) ⊇ T ({0, s}). Additionally, NF(R)
also contains terms like x+ y, (x+ y) + z, etc.

In the following we assume that every signature F contains at least one
constant, L ⊆ T (F) denotes a possibly infinite set of ground terms (also called
language) induced by the signature F of the underlying system, and all TRSs
are finite unless it is indicated otherwise.

2.2 Tree Automata

A tree automaton A = (F , Q,Qf ,∆) consists of a finite signature F , a finite
set of states Q, a set of final states Qf ⊆ Q, and a set of transitions ∆ which
are either of the form f(q1, . . . , qn)→ q or p→ q where f is an n-ary function
symbol in F and p, q, q1, . . . , qn ∈ Q. Transitions of the latter form are called
ε-transitions. In the following we often write l → q1 | · · · | qn to abbreviate
that ∆ contains transitions l → q1, . . . , l → qn. The rewrite relation induced
by ∆ is defined as s →∆ t if and only if there is a transition l → q ∈ ∆ and a
position p such that s|p = l and t = s[q]p. Similar as for TRSs we write→+

∆ and
→∗∆ to denote the transitive as well as reflexive and transitive closure of →∆.
Furthermore, we sometimes drop the subscript ∆ from →∆ and its derivatives
when no confusion about ∆ can arise. We say that a term t is accepted by A
if t →∗∆ q for some final state q ∈ Qf . The language L(A) induced by A is
defined as the set of all ground terms t ∈ T (F) which are accepted by A. A
tree automaton A = (F , Q,Qf ,∆) is called deterministic if it contains neither
ε-transitions nor different transitions with the same left-hand side. Finally, a
set of ground terms L is called regular if there exists a tree automaton A such
that L(A) = L.

Example 2.2. Consider the tree automaton A with the transitions

0→ 1 s(1)→ 1 s(2)→ 2 ×(2, 1)→ 3
+(1, 1)→ 2 +(2, 1)→ 2 +(1, 2)→ 2 +(2, 2)→ 2

and the final state 3. The ground term t = (s(0) + 0)× 0 induces the derivation

t →∆ (s(1) + 0)× 0→∆ (1 + 0)× 0→∆ (1 + 1)× 0
→∆ 2× 0→∆ 2× 1→∆ 3

where, for instance in the fourth step the transition +(1, 1) → 1 is applied to
the term (1 + 1)× 0 at position 1. Since t→∗∆ 3 and 3 is a final state we know
that t is accepted by A. It is not difficult to check that A accepts all ground
terms of the form u× v such that u ∈ T ({0, s,+}) contains at least one + and
v ∈ T ({0, s}).

7

Chapter 3

Tree Automata Completion

Tree automata completion represents an elegant and efficient technique to per-
form reachability analysis. Starting from a regular language it aims to compute
a regular superset of all terms that can be reached from a set of initial terms
by performing rewriting. To represent possibly infinite sets of terms, tree au-
tomata are used. Since in general the set of descendants of a regular language
and a rewrite system need not be regular, the challenge in this connection is
to control the completion procedure in such a way that it terminates and the
language accepted by the returned tree automaton is as exact as possible.

Initially, tree automata completion has been introduced for left-linear TRSs
by Genet [18] and later on extended to non-left-linear TRSs by Genet and
Tong [20]. Improvements and variations of the technique are discussed by Feuil-
lade, Genet, and Viet Triem Tong in [14]. To obtain suitable approximations
during the completion process, various approximation techniques have been de-
veloped. The most important ones are illustrated in [14, 20, 24]. The fact that
tree automata completion has been used for example to certify properties of
various cryptographic protocols [19, 52] or to prototype static analyzers in Java
byte code [4], is a clear witness for the success of the approach. Nevertheless,
a serious drawback of the technique still affects the treatment of non-left-linear
rewrite rules. To ensure that rules of this kind can be handled, the overall idea
is to constrain the underlying approximation technique such that critical transi-
tions are kept deterministic. As a side effect the obtained over-approximations
are not as exact as if arbitrary approximation techniques could be used.

The remainder of this chapter is organized as follows. After introducing
tree automata completion for left-linear TRSs in Section 3.1, we discuss some
variations and technical details of the approach in Sections 3.2 and 3.3. In
Section 3.4 we present an alternative approach to cope with non-left-linear
TRSs without limiting the underlying approximation techniques. To this end
we use so called quasi-deterministic tree automata instead of non-deterministic
tree automata during the completion process. Finally in Section 3.5 we show
how quasi-deterministic tree automata can be efficiently constructed, especially,
within the scope of the completion process.

Most of the results presented in this chapter appeared already in the con-
ference paper [40] and the journal paper [43]. New contributions include an
optimized definition of quasi-deterministic tree automata in Section 3.4 as well
as the presentation of an advanced algorithm to construct quasi-deterministic
tree automata, explained in Section 3.5.

9

3 Tree Automata Completion

3.1 Compatible Tree Automata

To construct a tree automaton A that accepts →∗R(L) for some left-linear TRS
R and some language L we use compatible tree automata introduced in [24].

Definition 3.1. Let R be a left-linear TRS, A = (F , Q,Qf ,∆) a tree automa-
ton, and L a language. We say that A is compatible with R and L if L ⊆ L(A)
and for each rewrite rule l→ r ∈ R and state substitution σ : Var(l)→ Q such
that lσ →∗∆ q it holds that rσ →∗∆ q.

Example 3.2. Consider the TRS R consisting of the rewrite rules

f(x, y)→ f(g(x), g(y)) h(a, y)→ h(g(y), g(y))

and the tree automaton A with the final state 5 and the transitions

a→ 1 g(1)→ 4 f(4, 1)→ 5
b→ 2 g(4)→ 4 h(1, 2)→ 5
c→ 3 h(1, 3)→ 5

accepting the terms h(a, b) and h(a, c) as well as all terms of the form f(g+(a), a).
Since f(x, y) →R f(g(x), g(y)) and f(4, 1) → 5 but f(g(4), g(1)) 6→∗ 5, A is not
compatible with R and L(A).

As the above definition already indicates, any compatible tree automaton A
is closed under left-linear rewriting. The following result originates from [18].

Theorem 3.3. Let R be a left-linear TRS and L a language. Let A be a tree
automaton. If A is compatible with R and L then →∗R(L) ⊆ L(A).

So, as soon as we have constructed a tree automaton A that is compatible
with some left-linear TRS R and a language L we can conclude that →∗R(L) ⊆
L(A) by Theorem 3.3. Since the set →∗R(L) need not be regular, even for a
linear TRS R and a regular language L [31], we cannot hope to give an exact
automata construction.1 So to obtain a tree automaton that is compatible with
a TRS R and some language L, the general idea [18] is to start with some
initial tree automaton A = (F , Q,Qf ,∆) accepting L and to look for violations
of the compatibility requirement (see Figure 3.1): lσ →∗∆ q and rσ 6→∗∆ q for
some rewrite rule l → r ∈ R, state substitution σ : Var(l) → Q, and state
q ∈ Q. Then we add new states and transitions to the current automaton to
ensure rσ →∗∆ q. There are several ways to do this, ranging from establishing
a completely new path rσ →∗∆ q to adding as few new transitions as possible
by reusing transitions from the current automaton. After rσ →∗∆ q has been
established, we look for further violations of compatibility. This process is
repeated until a compatible automaton is obtained which may never happen if
new states are kept being added.

It is obvious that we can always compute a compatible tree automaton which
over-approximates the set →∗R(L) whenever R is a finite TRS over a finite
1For instance, for the TRS R = {f(x, y) → f(g(x), g(y))} and the language L = {f(a, a)} we
have →∗R(L) = {f(gn(a), gn(a)) | n > 0}, which is clearly not regular.

10

3.2 Detecting Compatibility Violations

Figure 3.1: Completion process

lσ rσ

q

R
∗

∆ ∗

∆

∗
=⇒

lσ rσ

q

R
∗

∆ ∗

∆

∗

signature. The challenge is to choose an approximation function that resolves
compatibility violations in such a way that the completion process terminates
and the language accepted by the returned tree automaton is as exact as pos-
sible. In Section 3.3 we discuss the most common approaches in that direction.

3.2 Detecting Compatibility Violations

Before we can solve compatibility violations and hence construct a compati-
ble tree automaton we have to locate them. Because for a tree automaton
A = (F , Q,Qf ,∆) and a term t ∈ T (F ,V) we have in the worst case |Var(t)||Q|
state substitutions σ such that tσ →∗∆ q for some q ∈ Q it is obvious that
each algorithm admits an exponential time behavior. In the literature, two
approaches are proposed to detect compatibility violations. The first one, in-
troduced in [17], uses a matching algorithm to enumerate all violations of the
compatibility requirement whereas the second one, illustrated in [14], uses tree
automata techniques to detect compatibility violations. Besides the fact that
the two approaches use diverse techniques two locate compatibility violations,
the main difference between the two approaches is that complexity wise, the sec-
ond one is faster than the first one but also more difficult to implement. In the
following we shortly introduce both approaches, beginning with the first one.
To simplify the presentation we consider tree automata without ε-transitions.

3.2.1 Matching Algorithm

Let F be a signature and Q a set of states. A matching problem is a proposi-
tional formula made up of the propositions ⊥ and t ` s with t ∈ T (F ,V) and
s ∈ T (F ∪ Q) as well as the connectives ∧ and ∨. Here the states in Q are
treated as constants. A state substitution σ is called a solution for a matching
problem φ if tσ →∗∆ s when φ = t ` s, σ is a solution for φ1 and φ2 if φ = φ1∧φ2,
and σ is a solution for φ1 or φ2 if φ = φ1 ∨ φ2. The matching problem φ = ⊥
has no solution. To modify matching problems we use the transformation rules

t ` q
t ` s1 ∨ · · · ∨ t ` sn ∨ ⊥

f(t1, . . . , tn) ` f(q1, . . . , qn)
t1 ` q1 ∧ · · · ∧ tn ` qn

where t 6∈ V, root(t) = root(si), and si → q ∈ ∆ for all i ∈ {1, . . . , n}. Addi-
tionally we require that s1, . . . , sn represent all terms in lhs(∆) that satisfy the

11

3 Tree Automata Completion

previous conditions. Besides the two transformation rules we use the simplifi-
cation rules

φ1 ∧ (φ2 ∨ φ3)
(φ1 ∧ φ2) ∨ (φ1 ∧ φ3)

φ ∧ ⊥
⊥

φ ∨ ⊥
φ

to convert a matching problem into disjunctive normal form. Let t ∈ T (F ,V)
be a term and A = (F , Q,Qf ,∆) a tree automaton. To compute all state
substitutions σ such that tσ →∗∆ q for some q ∈ Q we construct for each state
q a matching problem φ = t ` q and transform it into a matching problem φ′

by applying the above rules as long as possible. It is not difficult to see that
either φ′ = ⊥ or φ′ = φ1 ∨ · · · ∨ φn and φi = xi1 ` qi1 ∧ · · · ∧ xini ` qini with
xij ∈ Var(t) and qij ∈ Q for all i ∈ {1, . . . , n} and j ∈ {1, . . . , ni}. If φ′ = ⊥ we
conclude that φ has no solution and hence that there is no state substitution
σ such that t →∗∆ q. Otherwise, let σi = {xij 7→ qij | j ∈ {1, . . . , ni}}. If
σi is a valid state substitution, that is, qij = qik whenever xij = xik for all
j, k ∈ {1, . . . , ni}, then σi is the unique solution of the matching problem φi.
By the transformation rules applied to the matching problem φ it is guaranteed
that φi is also a solution of the matching problem φ. Furthermore if tσ →∗∆ q
for some substitution σ then σ = σi for some i ∈ {1, . . . , n}.

Example 3.4. Let R be the TRS and A = (F , Q,Qf ,∆) the tree automaton
of Example 3.2. Let t = h(a, y) be the left-hand side of the second rewrite
rule. We compute all state substitutions σ such that tσ →∗∆ 5 using the above
matching algorithm. We start with the initial matching problem h(a, y) ` 5.
By applying the first transformation rule we obtain the new matching problem
h(a, y) ` h(1, 2) ∨ h(a, y) ` h(1, 3) ∨ ⊥. Next we apply two times the second
transformation rule yielding the new problem (a ` 1∧y ` 2)∨(a ` 1∧y ` 3)∨⊥.
After that we can apply two times the first transformation rule producing the
matching problem ((a ` a ∨ ⊥) ∧ y ` 2) ∨ ((a ` a ∨ ⊥) ∧ y ` 3) ∨ ⊥. Finally,
with the second transformation rule and the third simplification rule we can
reduce the problem to y ` 2 ∨ y ` 3. The solutions for this matching problem
are σ1 = {y 7→ 2} and σ2 = {y 7→ 3}. It follows that tσ →∗∆ 5 if and only if
σ = σ1 or σ = σ2.

3.2.2 Using Tree Automata Techniques

Let A = (F , Q,Qf ,∆) be a tree automaton, t ∈ T (F ,V) a term, and q ∈ Q a
state. In order to compute all possible state substitutions σ such that tσ →∗∆ q
for some q ∈ Q we first construct a tree automaton At over the extended
signature F ∪ Var(t) which accepts the term t. Here variables contained in
Var(t) are treated as constants. We define At = (F ∪ Var(t), Q′, Q′f ,∆

′) where
Q′ = {qs | s E t} and Q′f = {qt}. Furthermore, for each subterm s E t with
s = f(s1, . . . , sn), we require that the transition f(qs1 , . . . , qsn) → qs belongs
to ∆′. It is easy to see that L(At) = {t}. Using the tree automaton At
we can now construct a tree automaton Aσ = (F ∪ Var(t), Q′′, Q′′f ,∆

′′) which
accepts all state substitutions σ such that tσ →∗∆ q for some q ∈ Q. To
this end we define Q′′ = Q′ × Q and Q′′f = Q′f × Q. Furthermore we have

12

3.2 Detecting Compatibility Violations

x → (qx, q) ∈ ∆′′ for all transitions x → qx ∈ ∆′ and states q ∈ Q as well as
f((p1, q1), . . . , (pn, qn))→ (p, q) ∈ ∆′′ for all transitions f(p1, . . . , pn)→ p ∈ ∆′

and f(q1, . . . , qn) → q ∈ ∆. According to the construction of Aσ there is a
state substitution σ such that tσ →∗∆ q for some q ∈ Q if and only if we have
t→∗∆′′ (qt, q) where each variable x ∈ Var(t) is replaced by the state (qx, xσ).

Example 3.5. Consider the TRSR and the tree automaton A = (F , Q,Qf ,∆)
over the signature F = {a, b, c, f, g, h} of Example 3.2. Let t = h(a, y) be the
left-hand side of the second rewrite rule. To compute all potential compatibility
violations caused by the rewrite rule h(a, y) → h(g(y), g(y)) using the above
approach we first construct the tree automaton At = (F ∪ Var(t), Q′, Q′f ,∆

′)
which accepts the term t. The above procedure yields Q′ = {1, 2, 3}, Q′f = {3},
and ∆′ consisting of the transitions

a→ 1 y → 2 h(1, 2)→ 3

where qa = 1, qy = 2, and qh(a,y) = 3. Next we compute the tree automaton
Aσ = (F ∪ Var(t), Q′′, Q′′f ,∆

′′). To simplify the presentation we restrict Q′′ to
those states that occur at some right-hand side. (Note that all other states
can be ignored because they can never occur in any →∆ sequence.) Hence we
have Q′′ = {(1, 1), (2, 2), (2, 3), (3, 5)}, Q′′f = {(3, 5)}, and ∆′′ consisting of the
following transitions:

a→ (1, 1) y → (2, 2) h((1, 1), (2, 2))→ (3, 5)
y → (2, 3) h((1, 1), (2, 3))→ (3, 5)

Because t →∆′′ h(a, (2, 2)) →∗∆′′ (3, 5) we conclude that tσ →∗∆ 5 if we take
σ = {y 7→ 2}. Similarly, the sequence t→∆′′ h(a, (2, 3))→∗∆′′ (3, 5) gives rise to
the state substitution τ = {y 7→ 3} with tτ →∗∆ 5.

It is not difficult to observe that this approach has two major advantages
over the matching algorithm proposed in the previous subsection. First of all,
all state substitutions σ such that tσ →∗∆ q for some q ∈ Q are computed
independently from the actual state q. In case of the matching algorithm the
situation is different. There, the solutions for each matching problem t ` q with
q ∈ Q are computed separately. Secondly, the approach based on tree automata
uses implicitly sharing of terms to avoid expensive recalculations. The matching
algorithm is not equipped with such a feature. So it can easily happen that
solutions of intermediate matching problems are computed several times. As
an immediate consequence, the average complexity of the matching algorithm
is worse than the average complexity of the approach based on tree automata
techniques.

Of course, using tree automata to find compatibility violations also possesses
some disadvantages. The most serious one is that we have to enumerate all
accepting sequences to get the substitutions we are looking for. So compared
to the matching algorithm, where we can directly read off all possible substi-
tutions, the approach based on tree automata somehow encodes the computed
substitutions.

13

3 Tree Automata Completion

3.3 Solving Compatibility Violations

To obtain a compatible tree automaton we have to solve violations of the com-
patibility requirement by establishing unavailable paths. Since there are various
ways to do this, in [14] so called abstraction functions have been introduced to
characterize possible approximation techniques. Below we recall the basic defi-
nitions.

Let F be a signature and Q a set of states. An abstraction function is a
mapping φ which assigns to any term f(q1, . . . , qn) a state q ∈ Q. Here f ∈ F
is a n-ary function symbol and q1, . . . , qn ∈ Q. We extend abstraction functions
to ground terms over the extended signature F ∪Q. For a term t ∈ T (F ∪Q)
the function φ(t) is defined as follows:

φ(t) =

{
t if t ∈ Q
φ(f(φ(t1), . . . , φ(tn))) if t = f(t1, . . . , tn)

Let A = (F , Q,Qf ,∆) be a tree automaton, t ∈ T (F ∪Q) a term, and q ∈ Q a
state. To establish a path t→∗ q we use a function normφ(t, q) which computes
a set of transitions using an abstraction function φ such that t →∗normφ(t,q) q.
Here normφ(t, q) is defined as normφ(t, q) = ∅ if t = q and normφ(t, q) = {t→ q}
if t ∈ Q and t 6= q. If t = f(t1, . . . , tn) then the set normφ(t, q) consists of the
transition f(φ(t1), . . . , φ(tn))→ q as well as all transitions contained in the sets
normφ(ti, φ(ti)) with i ∈ {1, . . . , n}. It is not difficult to see that by adding all
transitions in normφ(t, q) to ∆ we have t→∗∆ q.

Example 3.6. Let R be the TRS and A the tree automaton of Example 3.2.
In the following we construct a tree automaton that is compatible with R and
L = L(A) by using an abstraction function φ defined as follows:

φ(g(1)) = 4 φ(g(2)) = 6 φ(g(3)) = 7 φ(g(4)) = 4

We start by solving the compatibility violation caused by the rewrite rule
f(x, y) →R f(g(x), g(y)). We have f(4, 1) → 5 but not f(g(4), g(1)) →∗ 5.
Since normφ(f(g(4), g(1)), 5) = {g(1) → 4, g(4) → 4, f(4, 4) → 5} we establish
the path f(g(4), g(1))→∗ 5 by adding the transition f(4, 4)→ 5. Note that the
other two transitions do not have to be added since they are already present.
Next we consider the compatibility violation h(a, 2)→∗ 5 and h(g(2), g(2)) 6→∗ 5
caused by the rewrite rule h(a, y)→R g(g(y), g(y)). Since φ(g(2)) = 6 we have
normφ(h(g(2), g(2)), 5) = {g(2)→ 6, h(6, 6)→ 5}. Hence we add the fresh state
6 and the new transitions g(2) → 6 and h(6, 6) → 5. Finally the violation
caused by the rewrite rule h(a, y) →R g(g(y), g(y)) with h(a, 3) →∗ 5 is solved
by adding the new state 7 and the transitions g(3)→ 7 and h(7, 7)→ 5 to estab-
lish h(g(3), g(3))→∗ 5. Here normφ(h(g(3), g(3)), 5) = {g(3)→ 7, h(7, 7)→ 5}.
After this step the constructed tree automaton is compatible with R and L. It
is not difficult to observe that the language accepted by the constructed tree
automaton represents a quite optimal regular over-approximation of →∗R(L).
So L(A) consists of h(a, b), h(a, c), h(g(b), g(b)), and h(g(c), g(c)) as well as all
terms of the form f(g∗(a), g∗(a)).

14

3.3 Solving Compatibility Violations

It is easy to see that we always obtain a compatible tree automaton if the do-
main of the used abstraction function φ is finite. For some restricted classes of
TRSs, like ground TRSs, it is even known which (finite) abstraction functions
produce optimal over-approximations [14]. However, in general it is unclear
how to automatically construct suitable abstraction functions. Therefore sev-
eral approximation techniques have been developed. In [14] combinations of
injective abstraction functions and so called approximation equations are used
to construct a compatible tree automaton. Alternatively one can follow the
approach in [20] and use approximation rules to solve violations of the com-
patibility requirement. Another common method is to use specialized approx-
imation functions which reuse transitions of the underlying tree automaton to
establish missing paths [23, 24, 63]. In the following we will shortly introduce
and compare all three methods.

3.3.1 Approximation Equations

Let A = (F , Q,Qf ,∆) be a tree automaton. An approximation equation is
an equation s = t where s, t ∈ T (F ,V). For two states p, q ∈ Q the function
merge(A, p, q) = (F , Q′, Q′f ,∆′) denotes the tree automaton that is obtained
from A by replacing state p by q. That is Q′ = (Q \ {p}) ∪ {q} and Q′f = Qf
if p 6∈ Qf and Q′f = (Qf \ {p}) ∪ {q} otherwise. The set ∆′ is obtained from
∆ by replacing state p by q in all left- and right-hand sides of transitions in ∆.
Let A = (F , Q,Qf ,∆) be a tree automaton, t ∈ T (F ∪Q,) a term, and q ∈ Q
a state. To establish a path t →∗ q using an injective abstraction function φ
and a set of approximation rules E we perform the following steps. At first we
establish the path t→∗ q by adding the transitions normφ(t, q) to ∆. After that
we apply the function merge(A, ps, pt) as long as there is an equation s = t ∈ E
and a state substitution σ such that sσ →∗ ps and tσ →∗ pt.

Example 3.7. Let us consider again the TRS R and the initial tree automaton
A of Example 3.2. In the following we construct a compatible tree automaton
using the injective abstraction function φ defined as φ(g(2)) = 6 and φ(g(3)) = 7
as well as the approximation equation g(x) = x. We start by adapting A such
that it fulfills the constraints induced by the used approximation rule. Since
g(x)σ → 4 and xσ = 1 with σ = {x 7→ 1} we replace 4 by 1 using the function
merge(A, 4, 1). Thereby we obtain a tree automaton consisting of the following
transitions:

a→ 1 g(1)→ 1 f(1, 1)→ 5
b→ 2 h(1, 2)→ 5
c→ 3 h(1, 3)→ 5

Next we solve the violation h(a, 2) →∗ 5 but not h(g(2), g(2)) →∗ 5 caused by
the rewrite rule h(a, y)→R h(g(y), g(y)). According to the abstraction function
φ we establish the path h(g(2), g(2)) →∗ 5 by adding the transitions g(2) → 6
and h(6, 6) → 5. After that we merge state 6 and 2 because g(x)σ → 6 and
xσ = 2 with σ = {x 7→ 2}. Hence we replace the transitions g(2) → 6 and

15

3 Tree Automata Completion

h(6, 6) → 5 by g(2) → 2 and h(2, 2) → 5. Similarly, the compatibility vi-
olation h(a, 3) →∗ 5 but not h(g(3), g(3)) →∗ 5, caused by the rewrite rule
h(a, y) →R h(g(y), g(y)), is solved by adding the transitions g(3) → 3 and
h(3, 3)→ 5. Note that the abstraction function φ yields the transitions g(3)→ 7
and h(7, 7)→ 5 which are then replaced by g(3)→ 3 and h(3, 3)→ 5 using the
function merge(A, 7, 3). After this step the constructed tree automaton is com-
patible with R and accepts all terms of the form f(g∗(a), g∗(a)), h(g∗(a), g∗(b)),
h(g∗(a), g∗(c)), h(g∗(b), g∗(b)), and h(g∗(c), g∗(c)).

3.3.2 Approximation Rules

The approach base on approximation rules is very different from the previous
one. At first we do not use abstraction functions to construct a missing path
t →∗ q. Instead of that we use a set of rewrite rules S to rewrite the term t
to some smaller term t′ by contracting innermost redexes only. Thereby, each
rewrite rule l → r ∈ S fulfills the property that if the variables of l and r are
instantiated by states, the resulting rule equates to an ordinary transition. So
by adding all transitions applied in the derivation t→∗S t′ to the underlying tree
automaton we know that t can be reduced to t′. Since it might be the case that
t′ 6= q we still have to establish the path t′ →∗ q to ensure that t →∗S t′ →∗ q.
So, in contrast to the first approach it can happen that after the application of
an approximation rule, it still does not hold that t →∗ q. To establish t′ →∗ q
we use an injective abstraction function which assigns to each proper subterm
of t′ a fresh state.

A big advantage of this approach is that it sometimes allows us to obtain
more precise approximations because it takes the structure of the underlying
tree automaton into account. However, one has to be very careful during the
specification of approximation rules because it can easily happen that new states
and transitions are kept being added and hence that the completion procedure
does not terminate. Below we formally introduce this approach.

Let F be a signature and Q a set of states. An approximation rule is a pair
(l → x,S) where l ∈ T (F ∪ Q,V) is a term, x ∈ V ∪ Q a variable or a state,
and S = {l1 → x1, . . . , ln → xn} a set of rewrite rules such that depth(li) 6 1,
li ∈ T (F ∪ Q,V), and xi ∈ Var(li) ∪ Var(l) ∪ {x} ∪ Q for all i ∈ {1, . . . , n}.
Similar as in the first approach we use a function norm(l→x,S)(t, q) to define
the application of an approximation rule (l → x,S) to a ground term t over
the signature F ∪ Q and a state q ∈ Q. Let ∆(l→x,S)(t, q) denote the set of
all transitions u → p such that there are a rewrite rule l′ → x′ ∈ S and a
state substitution σ : V → Q with lσ = t, xσ = q, u = l′σ, and p = x′σ. We
have (t′,∆′) ∈ norm(l→x,S)(t, q) for all ground terms t′ and ∆′ ⊆ ∆(l→x,S)(t, q)
such that t →∗∆′ t′ where each transition in ∆′ is applied at least once. Note
that it always holds that (t,∅) ∈ norm(l→x,S)(t, q). Let A = (F , Q,Qf ,∆) be
a tree automaton, t ∈ T (F ∪ Q) a term, and q ∈ Q a state. Let ψ be a set of
approximation rules. To establish a path t →∗ q we precede as illustrated in
Figure 3.2. At first we choose an approximation rule (l → x,S) ∈ ψ such that
t→∗∆′ t′ with (t′,∆′) ∈ norm(l→x,S)(t, q) and |t′| is minimal. After that we add
all transitions of ∆′ to ∆. Furthermore, if t′ 6= q we add some new transitions

16

3.3 Solving Compatibility Violations

Figure 3.2: Approximation rules

t

→∗∆′

t′

fresh path
t′ →∗ q

involving new states to ensure that t′ →∗ q.

Example 3.8. Assume that we want to construct a tree automaton that is
compatible with the TRS R and the language L(A) accepted by the tree au-
tomaton A of Example 3.2, using the following approximation rules:

(f(g(x), g(y))→ z,{g(x)→ 4, g(y)→ 4, f(4, 4)→ z})
(h(g(y), g(y))→ z,{g(y)→ 6, h(6, 6)→ z})

The first violation that we consider, f(4, 1)→ 5 and f(g(4), g(1)) 6→∗ 5, is caused
by the rewrite rule f(x, y) →R f(g(x), g(y)). To establish the missing path we
use the first approximation rule which yields the new transition f(4, 4) → 5.
Next we solve the compatibility violations caused by the rewrite rule h(a, y)→R
h(g(y), g(y)). We have h(a, 2)→ 5 but not h(g(2), g(2))→∗ 5. According to the
second approximation rule we add the new state 6 and the transitions g(2)→ 6
and h(6, 6) → 5. Finally, the violation h(a, 3) → 5 but h(g(3), g(3)) 6→∗ 5
is resolved by adding the new transition g(3) → 6. The resulting automaton
is compatible with R and accepts the terms h(a, b), h(a, c), and h(s, t) with
s, t ∈ {g(b), g(c)} as well as all terms of the form f(g∗(a), g∗(a)).

3.3.3 Approximation Functions

The third approach is quite similar to the second one. Instead of fixing the
transitions that can be added to a given tree automaton we use some specialized
approximation function which returns a set of transitions that have to be added
to the given tree automaton in order to establish a path t →∗ q. The main
difference between the second and the third approach is that with the latter
one we can reuse more transitions of the underlying tree automaton because
we can analyze the structure of the term t more precisely. By doing so we
sometimes can obtain more fine grained approximations. In the following we
present the approximation function introduced in [24].

Let F be a signature and Q a set of states. Let A = (F , Q,Qf ,∆) be a tree
automaton, t ∈ T (F ∪Q) a term, and q ∈ Q a state. To establish a path t→∗ q
the following steps are performed (see Figure 3.3):

1. Calculate all contexts C[2] and D[2, . . . ,2] and ground terms t1, . . . , tn
over the signature F ∪ Q such that C[D[t1, . . . , tn]] = t, C[p] →∗∆ q, and
ti →∗∆ qi for states p, q, qi ∈ Q with i ∈ {1, . . . , n}.

17

3 Tree Automata Completion

Figure 3.3: Approximation functions

t

→∗∆
p

C[p]

=⇒

D[. . .]

fresh path
D[. . .]→∗ p

2. Choose among all possible combinations one where the size of the context
D[2, . . . ,2] is minimal.

3. Add new transitions involving new states to achieve D[q1, . . . , qn]→∗ p.

Let us illustrate the above approximation function on the previous example.

Example 3.9. Similar as before we construct a tree automaton that is compat-
ible with the TRS R and the language L(A) accepted by the tree automaton A
of Example 3.2. The first compatibility violation that we consider, f(4, 1)→ 5
and f(g(4), g(1)) 6→∗ 5 is caused by the rewrite rule f(x, y) →R f(g(x), g(y)).
According to the above algorithm we can reuse the transition g(1) → 4 and
g(4) → 4 by choosing C = 2, D = f(2,2), t1 = g(4), and t2 = g(1). So
we just add the transition f(4, 4) → 5. Next we consider the compatibility
violations h(a, 2) → 5 but not h(g(2), g(2)) →∗ 5 caused by the rewrite rule
h(a, y)→R h(g(y), g(y)). Since there are no transitions with left-hand side g(2)
we have C = 2 and D = h(g(2), g(2)). So to establish h(g(2), g(2))→∗ 5 we add
a new state 6 and transitions g(2)→ 6 and h(6, 6)→ 5. Similarly, the violation
h(a, 3)→ 5 but h(g(3), g(3)) 6→∗ 5 is resolved by adding the new state 7 and the
transitions g(3) → 7 and h(7, 7) → 5. The resulting automaton is compatible
with R and accepts the terms h(a, b), h(a, c), h(g(b), g(b)), and h(g(c), g(c)) as
well as all terms of the form f(g∗(a), g∗(a)). It is not difficult to check that this
over-approximation is as optimal as the one constructed in Example 3.6.

3.4 Quasi-Deterministic Tree Automata

To construct the set→∗R(L) for a non-left-linear TRS R and a regular language
L we want to use compatible tree automata as presented in Section 3.1. However
there is one problem. To cope with non-left-linear TRSs, non-deterministic tree
automata cannot be used [14]. The reason is that given a non-deterministic tree
automaton it is possible that terms can only be rewritten by reducing equivalent
subterms to different states. In [20] this problem has been solved by choosing ap-
propriate approximation rules which keep critical transitions deterministic dur-
ing the construction of a compatible tree automaton. A serious disadvantage of
this approach is that the obtained approximations are not as exact as they could
be if the usage of unrestricted approximation functions would be allowed. In
order to avoid such limitations one could follow the common approach to handle

18

3.4 Quasi-Deterministic Tree Automata

non-linearity by using deterministic tree automata (compare [6, 48, 51]). How-
ever, in general deterministic tree automata are not suitable for tree automata
completion because during the determinisation transitions might be removed
which were added in earlier stages to ensure compatibility. In the following we
present an approach based on so called quasi-deterministic tree automata. To
simplify the presentation we consider tree automata without ε-transitions.

Definition 3.10. Let A = (F , Q,Qf ,∆) be a tree automaton. We say that
a state p subsumes a state q with p, q ∈ Q if p is final when q is final and
for all left-hand sides f(q1, . . . , qi−1, q, qi+1, . . . , qn) ∈ lhs(∆), the left-hand side
f(q1, . . . , qi−1, p, qi+1, . . . , qn) belongs to lhs(∆). For a left-hand side l ∈ lhs(∆),
the set {q | l → q ∈ ∆} of possible right-hand sides of l is denoted by QA(l).
Let φA denote a function which maps each left-hand side l ∈ lhs(∆) to a
state q ∈ QA(l). The relation �φA is defined as the smallest transitive re-
lation on Q such that φA(l) �φA q for all l ∈ lhs(∆) and q ∈ QA(l), and
φA(l) �φA φA(l′) for all left-hand sides l = f(p1, . . . , pi−1, p, pi+1, . . . , pn) and
l′ = f(p1, . . . , pi−1, q, pi+1, . . . , pn) in lhs(∆) with p �φA q. The tree automa-
ton A is said to be quasi-deterministic if there exits a function φA such that p
subsumes q whenever p �φA q for all p, q ∈ Q.2

Deterministic tree automata are trivially quasi-deterministic because QA(l)
is a singleton set for every left-hand side l ∈ lhs(∆). In general, ∆ may admit
more than one function φA that satisfies the above property. In the following
we assume that for each quasi-deterministic tree automaton, φA denotes a fixed
function that fulfills the requirements of Definition 3.10. The set of all states
φA(l) with l ∈ lhs(∆) is denoted by QφA and the restriction of ∆ to transitions
l → q that satisfy q = φA(l) is denoted by ∆φA . To simplify the notion we
sometimes call φA(l) the designated state for l and drop in the following the
subscript A from φA and QA(l) when no confusion can arise.

Example 3.11. The tree automaton A = (F , Q,Qf ,∆) over the signature
F = {a, f} with Q = {1, 2}, Qf = {1}, and the transitions

a→ 1 | 2 f(1, 2)→ 1

is not quasi-deterministic. This is due to the fact that for the left-hand side a
neither 2 nor 1 can be used as designated state. If we take φ(a) = 1 then we
should be able to replace state 2 in the transition f(1, 2)→ 1 by 1, that is, the
transition f(1, 1) → 1 should belong to ∆. Similarly, if we take φ(a) = 2 then
the transition f(2, 2)→ 1 should belong to ∆.

The key feature of a quasi-deterministic tree automaton A = (F , Q,Qf ,∆)
is that it accepts the same language as Aφ = (F , Q,Qf ,∆φ). To prove this, we
need the following result.
2Note that the definition of quasi-deterministic tree automata used in [43] requires that for
two left-hand sides l = f(q1, . . . , qi−1, p, qi+1, . . . , qn) and l′ = f(q1, . . . , qi−1, q, qi+1, . . . , qn)
in lhs(∆) we have QA(l) ⊇ QA(l′) whenever p �φA q. So compared to the new definition,
which just demands the existence of the single transition l′ → φ(l′), the definition in [43]
is more restrictive. Furthermore, as a byproduct of the new definition we have to add less
transitions to make a tree automaton quasi-deterministic which in turn has a positive impact
on the completion process.

19

3 Tree Automata Completion

Lemma 3.12. Let A = (F , Q,Qf ,∆) be a quasi-deterministic tree automaton,
t ∈ T (F) a term, and p ∈ Q a state. If t→∗∆ p then there exists a state q ∈ Q
such that t→∗∆φ

q and q �φ p.

Proof. We perform induction on t. If t is a constant the claim holds trivially.
Let t = f(t1, . . . , tn). The sequence from the term t to the state p can be
written as t →∗∆ f(p1, . . . , pn) →∆ p. The induction hypothesis yields for
every subterm ti with i ∈ {1, . . . , n} a state qi ∈ Q such that ti →∗∆φ

qi
and qi �φ pi. Let l = f(p1, . . . , pn) and li = f(q1, . . . , qi, pi+1, . . . , pn) for
all i ∈ {1, . . . , n}. Since A is quasi-deterministic we know by Definition 3.10
that φ(l) �φ p. Furthermore we have l1 ∈ lhs(∆) because q1 �φ p1 and hence q1

subsumes p1. From the definition of �φ it follows that φ(l1) �φ φ(l). Because
φ(l1) �φ φ(l) and φ(l) �φ p we know that φ(l1) �φ p by the transitivity of �φ.
Repeating this argument n − 1 times yields that the left-hand side ln belongs
to lhs(∆) and φ(ln) �φ p. So by taking q = φ(ln) we obtain a state q ∈ Q such
that t→∗∆φ

ln →∆φ
q and q �φ p.

Lemma 3.13. Let A = (F , Q,Qf ,∆) be a quasi-deterministic tree automaton.
The tree automaton Aφ = (F , Q,Qf ,∆φ) is deterministic and L(A) = L(Aφ).

Proof. From the definition of ∆φ it is obvious that Aφ is deterministic. Fur-
thermore, because ∆φ ⊆ ∆ the inclusion L(Aφ) ⊆ L(A) is trivial. In order to
show the reverse inclusion, let t ∈ L(A). So t →∗∆ p for some p ∈ Qf . The
previous lemma yields a q ∈ Q such that t →∗∆φ

q and q �φ p. Since A is
quasi-deterministic we know that q subsumes p. Together with the fact that p
is a final state we conclude that q ∈ Qf and thus t ∈ L(Aφ).

Because we will use quasi-deterministic tree automata rather than non-deter-
ministic tree automata to construct→∗R(L), we adapt the definition of compat-
ible tree automata to make it more suitable for our purpose.

Definition 3.14. Let R be a non-left-linear TRS and L a language. Let
A = (F , Q,Qf ,∆) be a quasi-deterministic tree automaton. We say that A is
compatible with R and L if L ⊆ L(A) and for each rewrite rule l→ r ∈ R and
state substitution σ : Var(l)→ Qφ such that lσ →∗∆φ

q it holds that rσ →∗∆ q.

The reason for requiring rσ →∗∆ q rather than rσ →∗∆φ
q in the above defi-

nition is that it is easier to construct a path rσ →∗∆ q because one can reuse
more transitions. Besides that, one of our primary objectives is to develop an
approach where arbitrary approximation techniques can be used to achieve a
compatible tree automaton. If we would require rσ →∗∆φ

q we would clearly
miss this target.

The general procedure to construct a quasi-deterministic tree automaton that
is compatible with a non-left-linear TRS R and some language L is similar to
the one explained in Section 3.1. Starting with some deterministic initial tree
automaton A = (F , Q,Qf ,∆) which accepts L we look for violations of the
compatibility requirement (recall that φ is uniquely determined for deterministic
tree automata): lσ →∗∆φ

q and rσ 6→∗∆ q for some rewrite rule l→ r ∈ R, state
substitution σ : Var(l) → Qφ, and state q ∈ Qφ. Then we add new states and

20

3.4 Quasi-Deterministic Tree Automata

transitions to the current automaton to establish rσ →∗∆ q. After that we check
if the new automaton is quasi-deterministic. If this is not the case, we transform
it into a tree automaton which has this property. How this can be automatically
done is explained in Section 3.5. Afterwards, we search for further violations of
the compatibility requirement. This process is repeated until a compatible and
quasi-deterministic tree automaton is obtained.

Now, assume that we have constructed a quasi-deterministic tree automaton
A that is compatible with a TRS R and a language L. To infer that A can be
used for reachability analysis, it must be guaranteed that A accepts at least the
set →∗R(L). To prove this main result, we need the following technical lemma.

Lemma 3.15. Let A = (F , Q,Qf ,∆) be a quasi-deterministic tree automaton
and C a ground context over the signature F . Let p, q ∈ Q be two states such
that q �φ p. If C[p] →∗∆φ

p′ for some p′ ∈ Q then there is a state q′ ∈ Q such
that C[q]→∗∆φ

q′ and q′ �φ p′.

Proof. We use induction on C. If C = 2 the claim holds trivially. Let C[p] =
f(t1, . . . , ti−1, D[p], ti+1, . . . , tn). The sequence from the term C[p] to the state
p′ can be written as C[p]→∗∆φ

f(p1, . . . , pn)→∆φ
p′. The induction hypothesis

yields a state qi ∈ Q such that D[q] →∗∆φ
qi and qi �φ pi. Because A is

quasi-deterministic we know that qi subsumes pi. Hence, the left-hand side
l = f(p1, . . . , pi−1, qi, pi+1, . . . , pn) belongs to lhs(∆). Because qi �φ pi and
φ(f(p1, . . . , pn)) = p′ we have φ(l) �φ p′. So by taking q′ = φ(l) we obtain
C[q]→∗∆φ

l→∆φ
q′ and q′ �φ p′ as desired.

Theorem 3.16. Let R be a TRS, L a language, and A a quasi-deterministic
tree automaton. If A is compatible with R and L then →∗R(L) ⊆ L(A).

Proof. Let s and t be two ground terms such that s ∈ L(A) and s →R t.
We show that t ∈ L(A). The desired result then follows by induction. Since
s →R t there exist a rewrite rule l → r ∈ R, a context C, and a ground
substitution σ such that s = C[lσ] →R C[rσ] = t. Let A = (F , Q,Qf ,∆) and
Aφ = (F , Q,Qf ,∆φ). Because s ∈ L(A) = L(Aφ) according to Lemma 3.13,
there exist states p ∈ Q and p′ ∈ Qf such that s = C[lσ] →∗∆φ

C[p] →∗∆φ
p′.

Because Aφ is deterministic by Lemma 3.13, different occurrences of xσ in lσ
with x ∈ Var(l) are reduced to the same state in the sequence from C[lσ] to C[p].
Hence there exists a mapping τ : Var(l) → Qφ such that lσ →∗∆φ

lτ →∗∆φ
p.

Compatibility of A yields rσ →∗∆ p. By applying Lemma 3.12 we obtain a
state q ∈ Q such that rσ →∗∆φ

rτ →∗∆φ
q and q �φ p. Because C[p] →∗∆φ

p′

and q �φ p we know from Lemma 3.15 that there is a state q′ ∈ Q such that
C[q] →∗∆φ

q′ and q′ �φ p′. Since A is quasi-deterministic we know that q′

subsumes p′ and hence that q′ ∈ Qf . So t = C[rσ]→∗∆φ
C[q]→∗∆φ

q′ and thus
t ∈ L(A).

The reason why we prefer quasi-deterministic tree automata over determin-
istic automata is the importance of preserving existing transitions when con-
structing an automaton that satisfies the compatibility condition. This is illus-
trated in the next example.

21

3 Tree Automata Completion

Example 3.17. Consider the TRS R consisting of the rewrite rules

f(x, x)→ f(a, b) f(a, a)→ a

and the initial tree automaton consisting of the transitions a→ 1 and f(1, 1)→ 2
as well as the final state 2, accepting the language L = {f(a, a)}. Suppose we
look for a deterministic tree automaton that is compatible with R and L. Since
f(a, a) →R a and f(a, a) →∗ 2, we add the transition a → 2. Next we consider
f(x, x) →R f(a, b) with f(1, 1) → 2. In order to ensure f(a, b) →∗ 2 we may
reuse one of the transitions a → 1 and a → 2. Let us consider the various
alternatives.

• Suppose we reuse the transition a → 1. Then we can solve the existing
compatibility violation by adding a new state 3 and transitions b→ 3 and
f(1, 3)→ 2, resulting in the following transitions:

a→ 1 | 2 f(1, 1)→ 2 b→ 3 f(1, 3)→ 2

Making these transitions deterministic produces an automaton that in-
cludes a→ {1, 2} and f(1, 1)→ 2. To simplify the presentation we identify
states {q} with q ∈ Q by q. Because the transition a → 2 was removed,
the first violation of compatibility that we considered, f(a, a) →R a and
f(a, a) →∗ 2, reappears. So we have to add a → 2 again, but each time
we make the automaton deterministic this transition is deleted.

• The remaining options would be to reuse the transition a → 2 or to
choose a fresh state for a. However they all give rise to a similar situation
as before.

So by using deterministic automata we will never achieve compatibility. The
problem is clearly the removal of transitions that were added in an earlier stage
to ensure compatibility and that is precisely the reason why we introduced
quasi-deterministic tree automata. Starting from the transitions in the last
case above, the following quasi-deterministic tree automaton is constructed:

a→ 1 | 2 | 4 b→ 3 f(1, 1)→ 2 f(1, 3)→ 2
f(4, 1)→ 2 f(1, 4)→ 2 f(4, 4)→ 2 f(4, 3)→ 2

The path f(a, b) →∗ 2 has been established by reusing the transition a → 1
and by adding a new state 3 and the transitions b → 3 and f(1, 3) → 1 to the
automaton. To satisfy the requirements of Definition 3.10 we choose φ(a) = 4,
φ(b) = 3, and φ(l) = 2 for all left-hand sides l with root symbol f. Thereby
state 4 has only been introduced to obtain a designated state for the transitions
with left-hand side a. By defining φ as above we have 4 �φ 1, 4 �φ 2, 2 �φ 2,
and 3 �φ 3. So to ensure that the constructed tree automaton is indeed quasi-
deterministic it must be guaranteed that 4 subsumes 1 and 2. This can be
easily done by replacing state 1 by 4 in the left-hand sides of the transitions
f(1, 1)→ 2 and f(1, 3)→ 2, yielding the transitions listed in the last row. Note
that 2 �φ 2 and 3 �φ 3 can be ignored because a state always subsumes itself.

22

3.5 Establishing Quasi-Determinism

3.5 Establishing Quasi-Determinism

In this section we present two approaches that can be used to transform a given
tree automaton A = (F , Q,Qf ,∆) into a quasi-deterministic one without losing
any transitions of ∆. The first algorithm is an exact transformation based on
the subset construction. The second approach constructs a quasi-deterministic
tree automaton which approximates the language of the given automaton by
limiting the number of states that can be added to make the given automaton
quasi-deterministic. To simplify the presentation we consider tree automata
without ε-transitions.

3.5.1 Constructing Quasi-Deterministic Tree Automata

A simple and exact procedure to turn a tree automaton A = (F , Q,Qf ,∆) into
an equivalent quasi-deterministic one without losing any transitions of ∆ is the
following:

1. Use the subset construction to transform A into a deterministic tree au-
tomaton A′ = (F , Q′, Q′f ,∆′).

2. Take the union of the two tree automata A and A′ after identifying states
{q} ∈ Q′ with q ∈ Q.

Let us illustrate this algorithm on a small example.

Example 3.18. Consider the tree automaton A of Example 3.11. The subset
construction yields a tree automaton A′ with final states {1} and {1, 2} and
the following transitions:

a→ {1, 2} f({1}, {2})→ {1} f({1}, {1, 2})→ {1}
f({1, 2}, {2})→ {1} f({1, 2}, {1, 2})→ {1}

Combining the tree automata A and A′ after identifying state {1} with 1 and
state {2} with 2 produces a tree automaton consisting of the transitions

a→ 1 | 2 | {1, 2} f(1, 2)→ 1 f(1, {1, 2})→ 1
f({1, 2}, 2)→ 1 f({1, 2}, {1, 2})→ 1

and the final states 1 and {1, 2}. Note that the designated state of the left-hand
side a is {1, 2}. Furthermore the transitions f(1, {1, 2}) → 1, f({1, 2}, 2) → 1,
and f({1, 2}, {1, 2})→ 1 are added to guarantee that {1, 2} subsumes 1 and 2.

The next theorem states that the proposed quasi-determinism procedure is
correct. To simplify the proof we use the following notions. Let F be some
signature and Q a set of states. The function unifQ : Q ∪ 2Q → 2Q is defined
as unifQ(q) = {q} if q ∈ Q and unifQ(q) = q otherwise. We write unifQ(t)
to denote the term f(unifQ(q1), . . . , unifQ(qn)), provided that t = f(q1, . . . , qn)
with f ∈ F and qi ∈ Q for all i ∈ {1, . . . , n}.

Theorem 3.19. For every tree automaton A there is a quasi-deterministic tree
automaton A′′ such that L(A′′) = L(A).

23

3 Tree Automata Completion

Proof. Let A′′ = (F , Q′′, Q′′f ,∆′′) be the tree automaton obtained from the au-
tomaton A = (F , Q,Qf ,∆) by applying the above quasi-determinism procedure
and let A′ = (F , Q′, Q′f ,∆′) be the deterministic tree automaton constructed in
step one. Let unif abbreviate unifQ and φ abbreviate φA′′ . First we show that
A′′ is quasi-deterministic. For this purpose let φ(l) = q if unif(l) → {q} ∈ ∆′

and φ(l) = q if unif(l)→ q ∈ ∆′ with |q| > 1, for all left-hand sides l ∈ lhs(∆′′).
Note that φ is uniquely and totally defined because A′ is deterministic and for
all l ∈ lhs(∆′′) we have unif(l) ∈ lhs(∆′) by the construction of A′. We start by
proving that unif(p) ⊇ unif(q) whenever p �φ q for all states p, q ∈ Q′′. Assume
that p �φ q with p = φ(l) and q ∈ QA′′(l) for some l ∈ lhs(∆′′). According
to the construction of A′′ we have unif(l) → unif(q) ∈ ∆′ or l → q ∈ ∆. If
unif(l) → unif(q) ∈ ∆′ then unif(φ(l)) = unif(q) by the definition of φ and
the determinism of A′, and hence unif(p) = unif(φ(l)) ⊇ unif(q). Similarly, if
l → q ∈ ∆ then unif(p) ⊇ unif(q) by the definition of φ and the construction
of A′. It remains to show that p �φ q if p = φ(l) and q = φ(l′) for left-hand
sides l = f(p1, . . . , pi−1, p

′, pi+1, . . . , pn) and l′ = f(p1, . . . , pi−1, q
′, pi+1, . . . , pn)

in lhs(∆′′) with unif(p′) ⊇ unif(q′). The desired result follows then by induction
and the transitivity of the relation ⊇. From the construction of A′′ we know
that unif(l) and unif(l′) belong to lhs(∆′). Let pl and ql′ be the correspond-
ing right-hand sides such that unif(l) → pl and unif(l′) → ql′ in ∆′. Because
unif(p′) ⊇ unif(q′) it follows that pl ⊇ ql′ by the construction of A′. In addition
we have unif(φ(l)) = pl and unif(φ(l′)) = ql′ by the choice of φ. Combining both
results yields unif(p) = unif(φ(l)) = pl ⊇ ql′ = unif(φ(l′)) = unif(q).

According to the previous result it suffice to prove that p subsumes q with
respect to ∆′′ if unif(p) ⊇ unif(q) for all states p, q ∈ Q′′ in order to conclude
that A′′ is quasi-deterministic. Fix p and q. Because unif(l) ∈ lhs(∆′) for all
l ∈ lhs(∆′′) it is easy to see that p subsumes q with respect to ∆′′ if and only
if unif(p) subsumes unif(q) with respect to ∆′. Since Q′ = 2Q and f(q1, . . . , qn)
belongs to lhs(∆′) for all f ∈ F and qi ∈ Q′ with i ∈ {1, . . . , n}, we know that
unif(p) subsumes unif(q) with respect to ∆′. Hence we conclude that p subsumes
q with respect to ∆′′. This finishes the proof that A′′ is quasi-deterministic.

It remains to show that L(A′′) = L(A). From Lemma 3.13 we know that
L(A′′) = L(A′′φ) with A′′φ = (F , Q′′, Q′′f ,∆′′φ). Since A′ is identical to the tree au-
tomatonA′′φ after identifying states {q} with q we conclude that L(A′′φ) = L(A′).
Together with the fact that L(A′) = L(A) due to the subset construction, we
know that L(A′′) = L(A).

It is obvious that the presented procedure is not optimal since it completely
ignores any information about existing designated states. Furthermore, each
time we make a tree automaton quasi-deterministic, it might happen that the
resulting tree automaton is exponentially larger than the one before. In our
setting this behavior is very critical because during the completion process it
often happens that the currently constructed tree automaton has to be made
quasi-deterministic. Since every additional state and transition introduced by
the quasi-determinisation procedure in some previous step could entail that the
completion procedure fails due to time constraints, it is clear that the above
procedure is not ideal. Let us illustrate the addressed behavior on an example.

24

3.5 Establishing Quasi-Determinism

Example 3.20. Let A be the tree automaton constructed in Example 3.18
extended by the single transition f(1, 2)→ {1, 2}. (Assume that this transition
has been added in order to solve some compatibility violation.) Clearly, A is no
longer quasi-deterministic because neither 1 nor {1, 2} is a suitable designated
state for f(1, 2). Making A quasi-deterministic produces the tree automaton

a → 1 | 2 | 3 | 5
f(1, 2) → 1 | 3 | 4 f(1, 3) → 1 f(1, 4) → 1 f(1, 5) → 4
f(3, 2) → 1 f(3, 3) → 1 f(3, 4) → 1 f(3, 5) → 1
f(4, 2) → 4 f(4, 3) → 1 f(4, 4) → 1 f(4, 5) → 4
f(5, 2) → 4 f(5, 3) → 1 f(5, 4) → 1 f(5, 5) → 4

where {1, 2} is abbreviated by 3, {1, 3} is abbreviated by 4, and {1, 2, 3} is
abbreviated by 5. The final states are 1, 3, 4, and 5. The intermediate tree
automaton constructed in step one of the quasi-determinisation procedure looks
as follows:

a → 5
f({1}, {2}) → 4 f({1}, {3}) → {1} f({1}, 4) → {1} f({1}, 5) → 4
f({3}, {2}) → {1} f({3}, {3}) → {1} f({3}, 4) → {1} f({3}, 5) → {1}

f(4, {2}) → 4 f(4, {3}) → {1} f(4, 4) → {1} f(4, 5) → 4
f(5, {2}) → 4 f(5, {3}) → {1} f(5, 4) → {1} f(5, 5) → 4

During the construction of this tree automaton a fresh designated state 5 for
the left-hand side a is introduced. It is easy to see that this step is unnecessary
because adding a designated state for the left-hand side f(1, 2) would suffice to
make A quasi-deterministic.

3.5.2 Approximating Quasi-Deterministic Tree Automata

We now present a slightly modified version of the initial procedure which anal-
ysis the given tree automaton to ensure that as few transitions as possible are
added during the quasi-determinisation process. To simplify the presentation
we assume without loss of generality that all tree automata are state-consistent .
A tree automaton A = (F , Q,Qf ,∆) has this property if there exists a subset
N ⊂ N of natural numbers such that for all q ∈ Q either q ∈ N or q ∈ 2N with
|q| > 1. So each state of the automaton corresponds either to some natural
number or to some set of natural numbers. To ensure that newly added states
do not violate this condition we use a function flat : 2Q → 2N , inductively de-
fined as flat(∅) = ∅ and flat({p} ∪ P) = unifN (p) ∪ flat(P) for all p ∈ Q and
P ⊆ 2Q, to modify states.

Let A = (F , Q,Qf ,∆) be a state-consistent tree automaton and N ⊂ N
the smallest finite set of natural numbers which guarantees that A is state-
consistent. We transform A into a state-consistent and quasi-deterministic one
without losing any transitions of ∆ as follows:

1. Construct the deterministic tree automaton A′ = (F , Q′, Q′f ,∆′) defined
as Q′ = 2N , Q′f = {p ∈ Q′ | p ⊇ unifN (q) for some q ∈ Qf}, and ∆′ con-
sisting of all transitions f(q1, . . . , qn) → q with q1, . . . , qn ∈ Q′ and q =
flat({p | f(p1, . . . , pn)→ p ∈ ∆ and unifN (pi) ⊆ qi for all i ∈ {1, . . . , n}}).

25

3 Tree Automata Completion

2. Take the union of A and A′ after identifying states {q} ∈ Q′ with q ∈ Q.

We continue the previous example.

Example 3.21. Let A be the tree automata of Example 3.20. Making A
deterministic using the algorithm proposed in step one of the second procedure
yields a tree automaton with final states {1} and 3, and the transitions

a→ 3 f({1}, {2})→ 3 f({1}, 3)→ 3
f(3, {2})→ 3 f(3, 3)→ 3

where {1, 2} is abbreviated by 3. Combining those transitions with the ones
contained in A after identifying {1} with 1 and {2} with 2 yields the quasi-
deterministic tree automaton

a→ 1 | 2 | 3 f(1, 2)→ 1 | 3 f(1, 3)→ 1 | 3
f(3, 2)→ 1 | 3 f(3, 3)→ 1 | 3

where 3 is the designated state of all left-hand sides. The final states are 1 and
3. Compared to the quasi-deterministic tree automaton given in Example 3.20,
only 3 instead of 14 transitions have been added to make A quasi-deterministic.

It remains to prove that the above procedure is correct. To this end we show
that it transforms each state-consistent tree automatonA into a state-consistent
and quasi-deterministic tree automaton that accepts at least all terms that are
accepted by A.

Theorem 3.22. For every state-consistent tree automaton A there is a state-
consistent and quasi-deterministic tree automaton A′′ such that L(A′′) ⊇ L(A).

Proof. Let A′′ = (F , Q′′, Q′′f ,∆′′) be the tree automaton obtained from the
tree automaton A = (F , Q,Qf ,∆) by applying the second quasi-determinism
procedure. The inclusion L(A′′) ⊇ L(A) holds trivially because ∆ ⊆ ∆′′ and
Qf ⊆ Q′′f . The proof that A′′ is quasi-deterministic is similar to the one of
Theorem 3.19.

As already indicated by the previous theorem we do not necessarily have
L(A′′) = L(A) if we use the second procedure to transform a state-consistent
tree automaton A into a state-consistent and quasi-deterministic tree automa-
ton A′′. The reason is that the intermediate tree automaton A′ constructed
in step one of the procedure might accept more ground terms than A. This
behavior is illustrated in the next example.

Example 3.23. Let A be the state-consistent tree automaton consisting of the
transitions

a→ {1, 2} | 3 b→ 1 | {2, 3} f({1, 2}, {2, 3})→ 4

and the final state 4. Making A deterministic using the approach described in
step one of the second quasi-determinism procedure yields the tree automaton

a→ {1, 2, 3} b→ {1, 2, 3} f({1, 2, 3}, {1, 2, 3})→ {4}

with the final state {4}. It is easy to check that the term f(a, a) is accepted by
the above tree automaton but not by A.

26

3.6 Summary

Although the second procedure is inexact in the sense that it over-approxi-
mates the language of the tree automaton that should be made quasi-determinis-
tic, it is in general a better choice than the first one. First of all, it changes only
those parts of the given tree automaton which violate the quasi-compatibility
requirement. So information regarding existing designated states are taken into
consideration which ensures that much less new states and transitions have to
be added in contrast to the first procedure. Secondly, the number of states
added to the tree automaton to make it quasi-deterministic can be bounded by
2|N | for some N ⊂ N even if the procedure is called several times. In case of
tree automata completion, N consists of all states of the initial tree automaton
as well as all states that have been added to solve compatibility violations. For
the first procedure this need not be the case since each time the procedure is
executed, an exponential increase of the number of states can happen. So in
general we have at most 2|N | states after the first call, 22|N| states after the
second call, etc. Of course, by using the second procedure it can always happen
that the obtained language accepts some strings which have some inappropriate
properties. However, in most cases the over-approximation of the language of
the given tree automaton has no negative effects since the whole completion
process is designed to over-approximate →∗R(L) for some TRS R and regular
language L.

3.6 Summary

In this chapter we presented an alternative approach to cope with non-left-
linear TRSs during tree automata completion. To this end we introduced
quasi-deterministic tree automata because the common approach to handle
non-left-linear rewrite rules by using deterministic tree automata turned out to
be incompatible with tree automata completion. Last but not least we presented
an effective quasi-determinisation procedure which ensures that the size of the
final automaton is at most exponential in the number of states added during
the completion process, including the states of the initial tree automaton.

27

Chapter 4

The Match-Bound Technique

The match-bound technique, introduced by Geser et al. in a sequence of pa-
pers [21, 22, 23, 24], is a relatively new and elegant approach to automatically
prove the termination of rewrite systems. In order to obtain a termination cer-
tificate, it uses automata techniques to reason about the derivations induced
by the given TRS R. To this end, R is transformed into an enriched system,
where function symbols are labeled with natural numbers. The key features of
this new rewrite system are that every rewrite step increases the labels in the
contracted redex and each original derivation can be simulated via the rewrite
rules of the new system. If the labels occurring in rewriting sequences induced
by the enriched system can be globally bounded, we can conclude that the
original TRS R is terminating.

Initially, Geser, Hofbauer, and Waldmann introduced the match-bound tech-
nique for string rewriting [21]. For this particular class of TRSs, the used
enrichment is deleting and hence regularity preserving [37]. Therefore, it is
semi-decidable if there exists a global bound on the labels introduced by the
enriched system [13]. Later on the method has been extended to left-linear
TRSs by Geser, Hofbauer, Waldmann, and Zantema [24]. The key to this
extension is the usage of tree automata to represent the terms that occur in
derivations caused by the enriched system. Since for TRSs the underlying en-
richment need not be regularity preserving, semi-decidability of the existence
of a global bound is lost. So instead of constructing the exact set of terms that
occur in derivations induced by the used enrichment, we use tree automata com-
pletion to approximate it [23]. The fact that the method has been implemented
in several different termination provers [13, 26, 44, 59, 63] is a clear witness of
the success of the approach.

The remainder of this chapter is organized as follows. After recalling some
preliminary notions we formally introduce the match-bound technique in Sec-
tion 4.2. In Section 4.3 we extend the method by removing the left-linearity
restriction. This turns out to be surprisingly challenging because the theory on
which the method is based does not work without further ado for non-left-linear
rewrite systems. So-called raise-rules are introduced to solve this issue. After
that, in Section 4.4 we show how tree automata completion can be used to au-
tomate the match-bound technique. To ensure that the approach works also for
non-left-linear TRSs, the raise-rules need special care to enable the automata
construction to terminate. Finally in Section 4.5 we increase the power of the
match-bound technique by considering right-hand sides of forward closures.

29

4 The Match-Bound Technique

The information presented in this chapter have already been published in
the conference paper [40] and the journal paper [43]. However, compared to
the results in [40, 43] the findings in Section 4.4 are based upon the optimized
definition of quasi-deterministic tree automata introduced in Section 3.4.

4.1 Preliminaries

Let F be a finite signature. For a set N ⊆ N of natural numbers, the signature
F × N is abbreviated by FN . Here function symbols (f, n) with f ∈ F and
n ∈ N have the same arity as f and are written as fn. To deal with function
symbols contained in the signature FN we use the mappings liftc : F → FN,
base : FN → F , and height : FN → N defined as

liftc(f) = fc base(fc) = f height(fc) = c

for all f ∈ F and c ∈ N. The application of a function φ ∈ {liftc, base} to a
term t ∈ T (F ,V) is defined as follows:

φ(t) =

{
t if t is a variable
φ(f)(φ(t1), . . . , φ(tn)) if t = f(t1, . . . , tn)

These mappings are extended to sets of terms and TRSs in the obvious way.
Let Mul(N) denote the set of all finite multisets over N. For any M ∈Mul(N)
we write M(n) to denote how often the number n ∈ N occurs in M . Let
M,N ∈ Mul(N) be two multisets. We write M ∪ N for the multiset sum of
M and N where (M ∪ N)(n) = M(n) + N(n) for all n ∈ N. The multiset
difference M \ N is defined as (M \ N)(n) = M(n) − N(n) if M(n) > N(n)
and (M \N)(n) = 0 otherwise, for all n ∈ N. We write M �mul N if there are
multisets X and Y such that N = (M \X)∪Y , X 6= ∅, and for all m ∈ Y there
is a n ∈ X such that n < m. We write M �mul N if M �mul N or M = N . Let
F be some signature. We extend the orderings �mul and �mul to terms over
the signature FN as follows: we have s �mul t if FunM(s) �mul FunM(t) and
s �mul t if FunM(s) �mul FunM(t) for terms s, t ∈ T (FN,V). Here FunM(t)
denotes the multiset of the heights of the function symbols that occur in the
term t: FunM(t) = {height(t(p)) | p ∈ PosF (t)}. Let R be a finite or infinite
TRS over a finite or infinite signature F . The restriction of R to some finite
signature G ⊆ F is defined as {l → r ∈ R | l, r ∈ T (G,V)}. We call R
locally terminating if every restriction of R to some finite signature G ⊆ F is
terminating.

Example 4.1. Consider the infinite TRS R = {fc(x) → fc+1(x) | c > 0} over
the signature F = {fc | c > 0}. It is easy to see that R is both non-terminating
and locally terminating.

4.2 Bounds for Left-Linear TRSs

To prove the termination of a TRS R over a signature F using the match-
bound technique [21, 24], first an enriched system over the new signature FN is

30

4.2 Bounds for Left-Linear TRSs

constructed that simulates the original derivations. The idea behind the new
TRS is that after a rewrite step, the minimal height of the rewritten part is
greater than the minimal height of the contracted redex. Below we introduce
three different enrichments that have been proposed in the literature [24].

Let t be a term in T (F ,V) and V ⊆ Var(t) a set of variables. A position
p ∈ PosF (t) is a roof position in t for V if V ⊆ Var(t|p). The set of all roof
positions in t for V is denoted by PosR(t, V). Let l and r be two terms in
T (F ,V). The mappings top, roof, and match are defined as follows:

top(l, r) = {ε} roof(l, r) = PosR(l,Var(r)) match(l, r) = PosF (l)

Let R be a TRS over a signature F and e a function that maps every rewrite
rule l → r ∈ R to a nonempty subset of PosF (l). The TRS e(R) over the
signature FN consists of all rewrite rules l′ → liftc(r) for which there exists a
rule l→ r ∈ R such that base(l′) = l and c = 1+min {height(l′(p)) | p ∈ e(l, r)}.
Let c ∈ N. The restriction of e(R) to the signature F{0,...,c} is denoted by ec(R).
Furthermore, we write e(l→ r) for e({l→ r}).

Example 4.2. Let R be the TRS consisting of the rewrite rule f(g(x, h(y)))→
g(h(f(x)), y). Then top(R) contains the rewrite rules

f0(g0(x, h0(y)))→ g1(h1(f1(x)), y) f0(g0(x, h1(y)))→ g1(h1(f1(x)), y)
f0(g1(x, h0(y)))→ g1(h1(f1(x)), y) f1(g0(x, h0(y)))→ g2(h2(f2(x)), y)
f1(g1(x, h0(y)))→ g2(h2(f2(x)), y) . . .

roof(R) contains

f0(g0(x, h0(y)))→ g1(h1(f1(x)), y) f0(g0(x, h1(y)))→ g1(h1(f1(x)), y)
f0(g1(x, h0(y)))→ g1(h1(f1(x)), y) f1(g0(x, h0(y)))→ g1(h1(f1(x)), y)
f1(g1(x, h0(y)))→ g2(h2(f2(x)), y) . . .

and the rewrite rules

f0(g0(x, h0(y)))→ g1(h1(f1(x)), y) f0(g0(x, h1(y)))→ g1(h1(f1(x)), y)
f0(g1(x, h0(y)))→ g1(h1(f1(x)), y) f1(g0(x, h0(y)))→ g1(h1(f1(x)), y)
f1(g1(x, h0(y)))→ g1(h1(f1(x)), y) . . .

belong to the TRS match(R). Note that all three TRSs have infinitely many
rewrite rules.

To be able to use e(R) for proving the termination of the TRS R it must
be guaranteed that R is terminating whenever e(R) is terminating. In [24] the
following result has been proved.

Lemma 4.3. Let R be a TRS. The TRSs top(R) and roof(R) are locally termi-
nating. If R is right-linear then the TRS match(R) is locally terminating.

By definition, the TRS e(R) has an infinite signature and consists of infinitely
many rewrite rules whenever R 6= ∅. The idea is now to check whether there

31

4 The Match-Bound Technique

exists a finite subset of e(R) which simulates all derivations of the original TRS
R. Let e ∈ {top, roof,match} and L a language. A TRS R is called e-bounded
for L if there exists a c ∈ N such that the maximum height of function symbols
occurring in terms in →∗e(R)(lift0(L)) is at most c. If we want to indicate the
bound c, we say that R is e-bounded for L by c. In the following we do not
mention L if we have the set of all ground terms in mind. The main result
from [24], underlying the match-bound technique, is stated below.

Theorem 4.4. Let R be a left-linear TRS and L some language. If R is top-
bounded, roof-bounded, or both right-linear and match-bounded for L then R is
terminating on L.

In [24] it is shown that match-bounds are strictly more powerful than roof-
bounds and roof-bounds are strictly more powerful than top-bounds. So in
general one would prefer roof(R) to top(R), and one will use match(R) for non-
duplicating TRSs. The reason for introducing top(R) is that we have to resort
to it in Section 5.2. We conclude this section with two examples to illustrate
this hierarchy.

Example 4.5. Consider the TRS R over the signature F = {a, f, g, h} of Ex-
ample 4.2. We show that R is not top-bounded for T (F). Consider the substi-
tutions σ = {x 7→ g0(x, h0(a0))}, τ = {x 7→ a0}, µi = {x 7→ gi(hi(x), a0)}, and
νi = {x 7→ fi(a0)} for all i > 1. We have

f0(g0(x, h0(a0)))σi−1τ →∗top(R) g1(h1(x), a0)µ2 · · ·µiνi

for all i > 1. However, R is roof-bounded by 2 and match-bounded by 1. In
Subsection 4.4.1 it is explained how this can be automatically checked.

Example 4.6. The TRS R consisting of the rewrite rule f(x, g(y)) → f(x, y)
over the signature F = {a, f, g} is match-bounded for T (F) by 1 but neither
top-bounded nor roof-bounded. The latter result follows from the fact that
f0(a0, g

n
0 (a0))→∗S fn(a0, a0) where S = top(R) = roof(R).

4.3 Raise-Bounds for Non-Left-Linear TRSs

The first problem that arises if one wants to extend the match-bound technique
to arbitrary TRSs is that e-bounded TRSs need not be terminating in the
presence of non-left-linear rewrite rules.

Example 4.7. Consider the non-terminating TRS R = {f(x, x) → f(a, x)}.
The TRSs match(R), roof(R), and top(R) coincide and consist of the rules

fi(x, x)→ fi+1(ai+1, x)

for all i > 0. It is not difficult to see that with these rewrite rules we can
never reach height 2 starting from a term in T ({a0, f0}). For instance, we have
f(a, a)→R f(a, a)→R f(a, a) but after the step f0(a0, a0)→e(R) f1(a1, a0) we are
stuck because a0 6= a1. Hence R is e-bounded by 1 for all e ∈ {top, roof,match}.

32

4.3 Raise-Bounds for Non-Left-Linear TRSs

The problem is that even though every single →R-step can be simulated
by an →e(R)-step, this does not hold for consecutive →R-steps. To overcome
this problem we introduce raise-rules which increase the heights of function
symbols.

Definition 4.8. Let F be a signature. The TRS raise(F) over the signature
FN consists of all rules

fc(x1, . . . , xn)→ fc+1(x1, . . . , xn)

with f an n-ary function symbol in F , c ∈ N, and x1, . . . , xn pairwise distinct
variables. The restriction of raise(F) to the signature F{0,...,c} is denoted by
raisec(F). For terms s, t ∈ T (FN,V) we write s � t if t →∗raise(F) s and s ↑ t
for the least term u with u � s and u � t. The latter notion is extended to
↑S for finite nonempty sets S ⊂ T (FN,V) in the obvious way. Note that ↑S is
undefined whenever S contains two terms s and t such that base(s) 6= base(t).

The following result corresponds to Lemma 4.3. The right-linearity condition
of the TRS match(R) is weakened to non-duplication in order to cover more
non-left-linear TRSs.

Lemma 4.9. Let R be a TRS over a signature F . The TRSs top(R)∪ raise(F)
and roof(R)∪ raise(F) are locally terminating. If R is non-duplicating then the
TRS match(R) ∪ raise(F) is locally terminating.

Proof. First we consider e(R) ∪ raise(F) with e ∈ {top, roof}. From the proof
of [24, Lemma 16] we know that the rewrite rules in e(R) are oriented from
left to right by the recursive path order [8] induced by the precedence � on FN
defined as f � g if and only if height(f) < height(g). The same holds for the
rules in raise(F). Since the precedence � is well-founded on any finite subset of
FN, we conclude that e(R)∪ raise(F) is locally terminating. Next we show that
match(R) ∪ raise(F) is locally terminating. From the proof of [24, Lemma 17]
we know that for a non-duplicating TRS R, s �mul t whenever s→match(R) t for
terms s, t ∈ T (FN,V). If s→raise(F) t then FunM(t) = (FunM(s)\{c})∪{c+1}
for some height c ∈ N, and thus FunM(s) �mul FunM(t). Since �mul inherits
well-foundedness from <, we conclude that the TRS match(R) ∪ raise(F) is
locally terminating. Note that < is well-founded on {0, . . . , c}.

In order to use e(R) ∪ raise(F) to infer termination of the TRS R, we have
to restrict the rules of raise(F) to those that are really needed to simulate
derivations in R because raise(F) is non-terminating. We do this by defining a
new relation r−→e(R) in which the necessary raise-steps are built in. The idea is
that s r−→e(R) t if t can be obtained from s by doing the minimum number of
raise-steps to ensure the applicability of a non-left-linear rewrite rule in e(R).

Definition 4.10. Let R be a TRS over a signature F . We define the relation
r−→e(R) on T (FN,V) as follows: s r−→e(R) t if and only if there exist a rewrite

rule l → r ∈ e(R), a position p ∈ Pos(s), a context C, and terms s1, . . . , sn
such that l = C[x1, . . . , xn] with all variables displayed, s|p = C[s1, . . . , sn],

33

4 The Match-Bound Technique

base(si) = base(sj) whenever xi = xj for all i, j ∈ {1, . . . , n}, and t = s[rσ]p.
Here the substitution σ is defined as follows:

σ(x) =

{
↑{si | xi = x with i ∈ {1, . . . , n}} if x ∈ {x1, . . . , xn}
x otherwise

Note that r−→e(R) = →e(R) for left-linear TRSs R. The following example il-
lustrates how implicit raise-steps are used in r−→e(R) to simulate original deriva-
tions.

Example 4.11. Consider the TRSR consisting of the rewrite rules g(x, x)→ b
and f(x, x)→ f(a, g(a, x)). With the rewrite rules

f0(x, x)→ f1(a1, g1(a1, x)) g0(x, x)→ b1 g1(x, x)→ b2

of the TRS match(R), arbitrary derivations in R can be simulated using the
rewrite relation r−→match(R). For instance,

f(f(a, a), f(a, b))→R f(f(a, g(a, a)), f(a, b))
→R f(f(a, b), f(a, b))
→R f(a, g(a, f(a, b)))

is turned into the following rewrite sequence:

f0(f0(a0, a0), f0(a0, b0)) r−→match(R) f0(f1(a1, g1(a1, a0)), f0(a0, b0))
r−→match(R) f0(f1(a1, b2), f0(a0, b0))
r−→match(R) f1(a1, g1(a1, f1(a1, b2)))

Here the raise-rules

a0 → a1 b0 → b1 b1 → b2 f0(x, y)→ f1(x, y)

are used implicitly to enable the application of the non-left-linear rules in
match(R).

Definition 4.12. A TRS R is called e-raise-bounded for a language L if there
exists a c ∈ N such that the maximum height of function symbols occurring in
terms belonging to r−→∗e(R)(lift0(L)) is at most c.

Note that e-raise-boundedness coincides with e-boundedness for left-linear
TRSs. The quintessence of the next lemma is that every derivation caused by
the TRS R can be simulated using the rewrite relation r−→e(R). This result is
used to infer termination from e-raise-boundedness in Theorem 4.15.

Lemma 4.13. Let R be a TRS. If s→R t then for all terms s′ with base(s′) = s
there exists a term t′ such that base(t′) = t and s′ r−→e(R) t

′.

Proof. Straightforward.

An immediate consequence of the above lemma is that by using the rewrite
relation r−→ instead of →, heights can no longer be responsible for the inappli-
cability of non-left-linear rewrite rules.

34

4.4 Automation

Example 4.14. Consider the TRS R over the signature F = {a, f} of Exam-
ple 4.7. Using the rewrite relation r−→e(R) instead of→e(R) we obtain the infinite
rewrite sequence

f0(a0, a0) r−→e(R) f1(a1, a0) r−→e(R) f2(a2, a1) r−→e(R) f3(a3, a2) r−→e(R) · · ·

for all e ∈ {top, roof,match}. Hence R is not e-raise-bounded for any L ⊆ T (F)
that contains f(a, a).

Using Lemma 4.13 we are now ready to show that a TRS is terminating
whenever it is e-raise-bounded. The following result extends Theorem 4.4.

Theorem 4.15. Let R be a TRS and L a language. If R is top-raise-bounded
or roof-raise-bounded for L then R is terminating on L. If R is non-duplicating
and match-raise-bounded for L then R is terminating on L.

Proof. Assume to the contrary that there exists an infinite rewrite sequence

t1 →R t2 →R t3 →R t4 →R · · ·

with t1 ∈ L. With help of Lemma 4.13 this sequence is lifted to an infinite r−→e(R)

rewrite sequence starting from lift0(t1). Since R is e-raise-bounded for L, all
terms in this latter sequence belong to T (F{0,...,c}) for some c ∈ N. Hence the
employed rules must come from ec(R)∪raisec(F) and therefore ec(R)∪raisec(F)
is non-terminating. However, this is impossible because e(R)∪raise(F) is locally
terminating according to Lemma 4.9.

We conclude this section with an example.

Example 4.16. The TRS R over the signature F = {a, b, f, g} of Example 4.11
can be shown to be match-raise-bounded for T (F) by 2 and hence terminating
by Theorem 4.15. In order to verify this bound, one has to cope with the TRS
match(R) on the one hand and with the rewrite relation r−→ on the other hand.
How this can be done automatically is explained in Subsections 4.4.1 and 4.4.2.

4.4 Automation

In the following part we shortly recapitulate how we can use tree automata
completion to prove that a given TRS is e(-raise)-bounded. At first we present
the classical approach using compatible tree automata. After that we introduce
an optimized version of compatible tree automata—so called quasi-compatible
tree automata—which take the heights of the function symbols into account to
achieve smaller tree automata.

4.4.1 Compatible Tree Automata

In order to prove automatically that a left-linear TRS is e-bounded for some
language L we use compatible tree automata [24] as presented in Chapter 3.
That is, given some left-linear TRS R we try to construct a tree automaton
A that is compatible with e(R) and lift0(L) by solving all violations of the
compatibility requirement. The following result originates from [24].

35

4 The Match-Bound Technique

Theorem 4.17. Let R be a left-linear TRS and L a language. If there is a tree
automaton A which is compatible with e(R) and lift0(L) then R is e-bounded
for L.

The use of tree automata completion to automate the match-bound technique
causes a severe problem. If R is not e-bounded for L, e(R) consists of infinitely
many rewrite rules over an infinite signature. So the completion procedure will
not terminate and hence we will never obtain a compatible tree automaton that
approximates →∗e(R)(lift0(L)). To overcome this problem we just limit the time
that is spent to construct a compatible tree automaton. As soon as the time is
up, we conclude that the e-boundedness of R for L cannot be proved.

Example 4.18. Let R be the TRS over the signature F = {a, f, g, h} of Exam-
ple 4.2. We show that R is match-bounded for T (F) by 1. As starting point
we use the tree automaton consisting of the final state 1 and the transitions

a0 → 1 f0(1)→ 1 g0(1, 1)→ 1 h0(1)→ 1

accepting the language lift0(T (F)). The first compatibility violation that we
solve is caused by the rewrite rule f0(g0(x, h0(y))) →match(R) g1(h1(f1(x)), y).
We have f0(g0(1, h0(1))) →∗ 1 but not g1(h1(f1(1)), 1) →∗ 1. In order to
solve this compatibility violation we add the fresh states 2 and 3 as well as
the transitions f1(1) → 2, h1(2) → 3, and g1(3, 1) → 1. This gives rise to
a new compatibility violation: f1(g1(x, h0(y))) →match(R) g1(h1(f1(x)), y) and
f1(g1(3, h0(1))) →∗ 2 but not g1(h1(f1(3)), 1) →∗ 2. To establish the missing
path we reuse the transition h1(2) → 3 and just add the transitions f1(3) → 2
and g1(3, 1)→ 2. After that step the constructed tree automaton is compatible
with match(R) and lift0(T (F)). Hence R is match-bounded for T (F) by 1 and
therefore R is terminating.

To use Theorem 4.15 for proving termination it is necessary to construct a
language which consists of at least all terms that are reachable from lift0(L)
via r−→e(R). As before we do that by using compatible tree automata. To cope
with non-left-linear TRSs we use quasi-deterministic tree automata. Remember
that the reason why we prefer quasi-deterministic tree automata over determin-
istic automata is the importance of preserving existing transitions during the
construction of a compatible tree automaton, as explained in Section 3.4.

Example 4.19. Consider the TRSR over the signature F = {a, b, f} consisting
of the rewrite rules

f(x, x)→ f(a, b) f(a, a)→ a f(b, b)→ b

as well as the initial tree automaton with the transitions

a0 → 1 b0 → 1 f0(1, 1)→ 1

and the final state 1, accepting the language lift0(T (F)). We construct a quasi-
deterministic tree automaton that is compatible with the TRS match(R) and
the language lift0(T (F)). Since f0(a0, a0) →match(R) a1 and f0(a0, a0) →∗ 1,

36

4.4 Automation

we add the transition a1 → 1. Similarly, f0(b0, b0) →match(R) b1 gives rise
to the transition b1 → 1. Next we consider f0(x, x) →match(R) f1(a1, b1) with
f0(1, 1) → 1. In order to ensure f1(a1, b1) →∗ 1 we add the new states 2 and 3
and the transitions a1 → 2, b1 → 3, and f1(2, 3)→ 1. Making these transitions
quasi-deterministic produces an automaton consisting of the final states 1, 4,
and 5 as well as the transitions

a0 → 1 b0 → 1 f0(1, 1)→ 1
a1 → 1 | 2 | 4 b1 → 1 | 3 | 5 f1(2, 3)→ 1

f0(1, 4)→ 1 f0(1, 5)→ 1 f0(4, 1)→ 1 f0(5, 1)→ 1
f0(4, 4)→ 1 f0(4, 5)→ 1 f0(5, 4)→ 1 f0(5, 5)→ 1
f1(2, 5)→ 1 f1(4, 3)→ 1 f1(4, 5)→ 1

which is compatible with match(R) and lift0(T (F)). Here 4 (abbreviating
{1, 2}) is the designated state for a1 and 5 (abbreviating {1, 3}) is the des-
ignated state for b1. The transitions in the last three rows are added to satisfy
the condition of Definition 3.10. If we would try to construct a deterministic
tree automaton that is compatible with match(R) and lift0(T (F)) we would
never succeed. To see this assume that we have already solved the first two
compatibility violations. To solve the third one, we may reuse one or both of
the transitions a1 → 1 and b1 → 1. Let us consider the various alternatives.

• If we reuse both transitions then we only need to add the transition
f1(1, 1) → 1 in order to obtain f1(a1, b1) →∗ 1. This however gives
rise to further violations of compatibility, namely f1(a1, a1) →match(R) a2

with f1(a1, a1) →∗ 1, f1(b1, b1) →match(R) b2 with f1(b1, b1) →∗ 1, and
f1(x, x) →match(R) f2(a2, b2) with f1(1, 1) → 1. To solve the first two vio-
lations the transitions a2 → 1 and b2 → 1 have to be added. Afterwards
the tree automaton consist of the following transitions:

a0 → 1 b0 → 1 f0(1, 1)→ 1
a1 → 1 b1 → 1 f1(1, 1)→ 1
a2 → 1 b2 → 1

It is easy to see that the new situation is similar to the one at the begin-
ning: we have to establish f2(a2, b2) →∗ 1 and may reuse one or both of
the transitions a2 → 1 and b2 → 1.

• Suppose we reuse a1 → 1 but not b1 → 1. That means we have to add
a new state 2 and transitions b1 → 2 and f1(1, 2) → 1 resulting in the
following transitions:

a0 → 1 b0 → 1 f0(1, 1)→ 1
a1 → 1 b1 → 1 | 2 f1(1, 2)→ 1

Making these transitions deterministic produces an automaton that in-
cludes b0 → 1, f0(1, 1)→ 1, and b1 → {1, 2}. To simplify the presentation

37

4 The Match-Bound Technique

we identify states {q} with q ∈ {1, 2} by q. Because the transition b1 → 1
was removed, the second violation of compatibility that we considered,
f0(b0, b0) →match(R) b1 and f0(b0, b0) → 1, reappears. So we have to add
b1 → 1 again, but each time we make the automaton deterministic this
transition is deleted.

• The remaining options would be to choose a fresh state for a1 or for both
a1 and b1. However they all give rise to the same situation.

So by using deterministic automata we will never achieve compatibility. The
problem is clearly the removal of transitions that were added in an earlier stage
to ensure compatibility and that is precisely the reason why we use quasi-
deterministic tree automata.

Assume that we have constructed a quasi-deterministic tree automaton A
that is compatible with e(R) and lift0(L). To infer that the TRS R is e-raise-
bounded for L, it must be guaranteed that A accepts at least r−→∗e(R)(lift0(L)).
From Theorem 3.16 we know that compatibility of the tree automaton A yields
→∗e(R)(lift0(L)) ⊆ L(A) for any TRS R. However that is not enough to con-
clude e-raise-boundedness. We also have to ensure that A is closed under the
implicit raise-steps caused by the rewrite relation r−→. How this can be done
automatically is explained in the next subsection.

4.4.2 Raise-Consistent Tree Automata

A naive (and sound) approach to guarantee that the implicit raise-rules in the
definition of r−→ are taken into account would be to require compatibility with
all raise-rules fc(x1, . . . , xn) → fc+1(x1, . . . , xn) for which fd with d > c + 1
appears in the current set of transitions. However, the following example shows
that this approach may over-approximate the essential raise-steps too much.

Example 4.20. Let us continue Example 4.19. We have f0(x, y) →raise(F)

f1(x, y) with f0(1, 1)→ 1. Compatibility requires the addition of the transition
f1(1, 1) → 1, causing a new compatibility violation f1(x, x) →match(R) f2(a2, b2)
with f1(1, 1) → 1. After establishing the path f2(a2, b2) →∗ 1, f2 will make
its appearance and thus we have to consider f1(x, y) →raise(F) f2(x, y) with
f1(1, 1) → 1. This yields the transition f2(1, 1) → 1. Clearly, this process will
not terminate.

To avoid the behavior in the previous example, we now outline a better ap-
proach to handle raise-rules. Let fc(q1, . . . , qn) → q be a transition that we
add to the current set ∆ of transitions, either to resolve a compatibility viola-
tion or to satisfy the quasi-determinism condition. Then, for every transition
fd(q1, . . . , qn) → p ∈ ∆ with d < c we add fc(q1, . . . , qn) → p to ∆ and for
every transition fd(q1, . . . , qn) → p ∈ ∆ with d > c we add fd(q1, . . . , qn) → q
to ∆. The automata resulting from this implicit handling of raise-rules satisfy
the property defined below.

Definition 4.21. Let A = (FN , Q,Qf ,∆) be a tree automaton with N a
finite subset of N. We say that A is raise-consistent if for every transition

38

4.4 Automation

fc(q1, . . . , qn) → q ∈ ∆ and left-hand side fd(q1, . . . , qn) ∈ lhs(∆) with c < d,
the transition fd(q1, . . . , qn)→ q belongs to ∆.

Let us illustrate the above definition on an example.

Example 4.22. The tree automaton A consisting of the final state 1 and the
transitions

a0 → 1 a1 → 1 | 2 f0(1, 2)→ 1 f2(1, 2)→ 2

is not raise-consistent because f0(1, 2) → 1 but not f2(1, 2) → 1. Adding the
latter transition to A makes it raise-consistent.

In the remainder of the subsection we show that by constructing a quasi-
deterministic and raise-consistent tree automaton A that is compatible with
e(R) and lift0(L) it is guaranteed that A accepts r−→∗e(R)(lift0(L)). We start
by proving the following technical lemma, which expresses a key property of
raise-consistent tree automata.

Lemma 4.23. Let A = (FN , Q,Qf ,∆) be a quasi-deterministic tree automaton
with N a finite subset of N. If A is raise-consistent then for all ground terms
s, t ∈ T (FN) and states ps, qt ∈ Q with base(s) = base(t), s →∗∆φ

ps, and
t →∗∆φ

pt there exists a state q ∈ Q such that s ↑ t →∗∆φ
q, q �φ ps, and

q �φ pt.

Proof. We prove the lemma by induction on the structure of s and t. If s and
t are constants then s ↑ t ∈ {s, t}. If t � s then s ↑ t = t and ps ∈ Q(t)
by the definition of raise-consistency. Likewise, if s � t then s ↑ t = s and
pt ∈ Q(s) for the same reason. So by taking in both cases q = φ(s ↑ t)
it follows that q �φ ps and q �φ pt according to Definition 3.10. For the
induction step suppose that s = fj(s1, . . . , sn) and t = fk(t1, . . . , tn) with s→∗∆φ

fj(ps1 , . . . , psn) →∆φ
ps and t →∗∆φ fk(pt1 , . . . , ptn) →∆φ

pt. The induction
hypothesis yields for every i ∈ {1, . . . , n} a state qi ∈ Q such that si ↑ ti →∗∆φ

qi
with qi �φ psi and qi �φ pti . Let Ci = fj(s1 ↑ t1, . . . , si−1 ↑ ti−1,2, si+1, . . . , sn)
and Di = fk(s1 ↑ t1, . . . , si−1 ↑ ti−1,2, ti+1, . . . , tn) for all i ∈ {1, . . . , n}. Let
v0 = ps and w0 = pt. Since C1[ps1]→+

∆φ
v0 and q1 �φ ps1 , Lemma 3.15 yields a

state v1 ∈ Q such that C1[q1]→+
∆φ

v1 and v1 �φ v0. Likewise, D1[pt1]→+
∆φ

w0

with q1 �φ pt1 yields a state w1 ∈ Q such that D1[q1] →+
∆φ

w1 and w1 �φ w0.
Repeating this argumentation n − 1 times produces states vi, wi ∈ Q such
that Ci[qi] →+

∆φ
vi with vi �φ vi−1 and Di[qi] →+

∆φ
wi with wi �φ wi−1 for all

i ∈ {1, . . . , n}. It follows that fj(q1, . . . , qn)→∆φ
vn and fk(q1, . . . , qn)→∆φ

wn.
Furthermore, by the transitivity of �φ we obtain vn �φ v0 and wn �φ w0.
Now let m = max {j, k} and l = fm(q1, . . . , qn). Raise-consistency of A yields
vn, wn ∈ Q(l). Together with the fact that A is quasi-deterministic we obtain
s ↑ t = fm(s1 ↑ t1, . . . , sn ↑ tn) →∗∆φ

l →∆φ
φ(l), φ(l) �φ vn, and φ(l) �φ wn.

So by taking q = φ(l) we obtain s ↑ t →∗∆φ
q, q �φ ps, and q �φ pt as desired.

Note that the last two properties follow from the transitivity of �φ.

Using the above lemma we are now ready to show that raise-consistency
suffice to handle the implicit raise-steps caused by the rewrite relation r−→.

39

4 The Match-Bound Technique

Theorem 4.24. Let R be a TRS and L a language. Let A be a raise-consistent
and quasi-deterministic tree automaton. If A is compatible with e(R) and
lift0(L) then R is e-raise-bounded for L.

Proof. Let F be the signature of R and A = (FN , Q,Qf ,∆) for some finite
subset N of N. We have lift0(L) ⊆ L(A). Let s ∈ L(A) and s r−→l→r t with
l → r ∈ e(R). Then there is a term s′ such that s →∗raise(F) s

′ →l→r t. We
show that s′ ∈ L(A). If l is linear then s = s′ and we are done. Suppose
l is non-linear. To simplify the notation we assume that l = f(x, x). Let p
be the position at which the rewrite rule l → r is applied. We may write
s = s[f(s1, s2)]p and s′ = s[f(u, u)]p with base(s1) = base(s2) and u = s1 ↑ s2.
Since s belongs to L(A), there exist states ps1 , ps2 , q ∈ Q and qs ∈ Qf such
that s →∗∆φ

s[f(ps1 , ps2)]p →∆φ
s[q]p →∗∆φ

qs. The previous lemma yields a
state pu ∈ Q such that u →∗∆φ

pu, pu �φ ps1 , and pu �φ ps2 . Since pu �φ ps1
and pu �φ ps2 we know that pu subsumes ps1 and ps2 . It follows that there
are states q′, q′′ ∈ Q such that f(pu, ps2) → q′ and f(pu, pu) → q′′ belong to
∆. According to Definition 3.10 we have q′ �φ q and q′′ �φ q′. Transitivity of
�φ yields q′′ �φ q. Because s[q]p →∗∆φ

qs and q′′ �φ q, Lemma 3.15 yields a
state qs′ ∈ Q such that s[q′′]p →∗∆φ

qs′ and qs′ �φ qs. Putting things together
produces the derivation s′ = s[f(u, u)]p →∗∆φ

s[f(pu, pu)]p →∆φ
s[q′′]p →∗∆φ

qs′ .
Because qs′ subsumes qs we know that qs′ ∈ Qf and hence s′ ∈ L(A). Now that
s′ ∈ L(A) is established, we obtain t ∈ L(A) from the compatibility of A and
e(R), as in the proof of Theorem 3.16.

Example 4.25. Since the final quasi-deterministic tree automaton in Exam-
ple 4.19 is raise-consistent and compatible with match(R) and lift0(T (F)), R
is match-raise-bounded for T (F) by Theorem 4.24.

4.4.3 Quasi-Compatible Tree Automata

By using the explicit approach for handling raise-rules described in the first
paragraph of Subsection 4.4.2 or the implicit approach using raise-consistent
tree automata, it is often the case that a transition is duplicated by increasing
the height of the function symbol of the left-hand side. As soon as this happens,
the transition with the smaller height is in principle useless since in each further
compatibility violation the new transition with the greater height can be used
instead. To be able to simplify tree automata by removing such transitions we
introduce so called quasi-compatible tree automata.

Definition 4.26. Let R be a non-left-linear TRS and L a language. Let A =
(FN , Q,Qf ,∆) be a quasi-deterministic tree automaton with N a finite subset
of N. We say that A is quasi-compatible with R and L if for all t ∈ L there
is a term t′ ∈ L(A) such that t′ � t and for each rewrite rule l → r ∈ R and
state substitution σ : Var(l) → Qφ such that lσ →∗∆φ

q it holds that r′σ →∗∆ q

for some r′ � r.

In the following we show that each quasi-deterministic and raise-consistent
tree automaton A that is quasi-compatible with e(R) and lift0(L) can be trans-
formed into a quasi-deterministic and raise-consistent tree automaton that is

40

4.4 Automation

compatible with e(R) and lift0(L). As an immediate consequence we obtain
that R is e-raise-bounded for L if A is quasi-compatible with e(R) and lift0(L).
To perform this transformation we need the notion defined below.

Definition 4.27. Let A = (FN , Q,Qf ,∆) be a tree automaton with N a finite
subset of N. We say that A is height-complete if for all fi(q1, . . . , qn)→ q ∈ ∆
we have fj(q1, . . . , qn)→ q ∈ ∆ for all j ∈ {0, . . . , i− 1}.

First we show that every height-complete extension of a tree automaton A
is raise-consistent and quasi-deterministic if A is raise-consistent and quasi-
deterministic.

Lemma 4.28. Let A = (FN , Q,Qf ,∆) be a raise-consistent and quasi-determi-
nistic tree automaton with N a finite subset of N. Let A′ = (FN ′ , Q,Qf ,∆′)
be the smallest height-complete tree automaton such that N ⊆ N ′ and ∆ ⊆ ∆′.
Then A′ is raise-consistent and quasi-deterministic.

Proof. To simplify the presentation, let QA′(l) be denoted by Q′(l) and let φA
and φA′ be abbreviated by φ and φ′. It is easy to see that the raise-consistency
of A′ is an immediate consequence of Definitions 4.21 and 4.27. Hence we
only have to show that A′ is quasi-deterministic. To this end, let φ be defined
as φ′(l) = φ(l′) for all l ∈ lhs(∆′) where l′ � l denotes the left-hand side in
lhs(∆) such that l′(ε) is maximal, that is, l′(ε) � l′′(ε) for all l′′ ∈ lhs(∆) with
base(l′′) = base(l′). Height-consistency of A′ yields that Q′(l) = Q′(l′) for all
l, l′ ∈ lhs(∆′) with l′ � l. Hence φ′(l) ∈ Q′(l) for all l ∈ lhs(∆′) as required
by Definition 3.10. It remains to show that p subsumes q with respect to ∆′

whenever p �φ′ q with p, q ∈ Q′. To prove this property of A′ we first show that
p �φ q whenever p �φ′ q. Assume that p �φ′ q with p = φ′(l) and q ∈ Q′(l)
for some l ∈ lhs(∆′). Because A′ is the smallest height-complete extension
of A we know that there is a left-hand side l′ ∈ lhs(∆) such that l′ � l and
Q(l′) = Q′(l). Because φ′(l) = φ(l′) we have p �φ q according to Definition 3.10.
It remains to show that p �φ q if p = φ′(u) and q = φ′(v) for arbitrary left-hand
sides u = f(p1, . . . , pi−1, p

′, pi+1, . . . , pn) and v = f(p1, . . . , pi−1, q
′, pi+1, . . . , pn)

in lhs(∆′) with p′ �φ q′. The desired result follows then by induction and
transitivity of �φ. As before the height-completeness of A yields two left-hand
sides u′, v′ ∈ lhs(∆) such that u′ � u, v′ � v, Q(u′) = Q′(u), and Q(v′) = Q′(v).
Because p′ �φ q′, φ′(u) = φ(u′), and φ′(v) = φ(v′) we know that p �φ q
according to Definition 3.10. This concludes the proof of the statement.

Now assume that there are states p, q ∈ Q′ such that p �φ′ q but p does
not subsume q with respect to ∆′. According to Definition 3.10 there is a
left-hand side u = f(p1, . . . , pi−1, p, pi+1, . . . , pn) in lhs(∆′) such that the term
v = f(p1, . . . , pi−1, q, pi+1, . . . , pn) does not belong to lhs(∆′). Because A′ is the
smallest height-complete extension of A we know that there is a left-hand side
u′ ∈ lhs(∆) such that u′ � u. Since A is quasi-deterministic and p �φ q by
the previous statement we know that p subsumes q with respect to ∆. Hence
there is a left-hand side v′ ∈ lhs(∆) such that v′ � v. Height-consistency yields
v ∈ lhs(∆′) which contradicts our assumption.

Next we show that quasi-compatibility implies e-raise-boundedness and hence
the termination of the considered TRS.

41

4 The Match-Bound Technique

Theorem 4.29. Let R be a TRS and L a language. Let A be a raise-consistent
and quasi-deterministic tree automaton. If A is quasi-compatible with e(R) and
lift0(L) then R is e-raise-bounded for L.

Proof. To simplify the presentation we abbreviate φA by φ and φA′ by φ′. Let
A = (FN , Q,Qf ,∆) for some finite set N ⊂ N and let A′ = (FN ′ , Q,Qf ,∆′) be
the smallest height-complete tree-automaton such that N ⊆ N ′ and ∆ ⊆ ∆′.
Due to Lemma 4.28, A′ is quasi-deterministic and raise-consistent. We show
that A′ is compatible with e(R) and lift0(L). Assume to the contrary that
this does not hold. Then there is a rewrite rule l → r ∈ e(R) and a state
substitution σ : Var(l) → Qφ′ such that lσ →∗∆′

φ′
q but not rσ →∗∆′ q. By the

construction of A′ there exists a term l′ � l such that l′σ →∗∆φ
q. Let r′ � r

such that l′ → r′ ∈ e(R). Since A is quasi-compatible with e(R) and lift0(L)
there must be a term r′′ � r′ such that r′′σ →∗∆ q and thus also r′′σ →∗∆′ q.
Let c ∈ N ′ such that liftc(base(r)) = r and let l1 → p1, . . . , ln → pn be the
transitions in ∆′ which are used in the derivation r′′σ →∗∆′ q. From r′′ � r
and the height-completeness of A′ we infer that liftc(base(li))→ pi ∈ ∆′ for all
i ∈ {1, . . . , n}. Hence rσ →∗∆′ q, contradicting our assumption. Putting things
together yields that R is e-raise-bounded for L according to Theorem 4.24.

Because e-raise-boundedness coincides with e-boundedness for left-linear re-
write systems it is obvious that quasi-compatible tree automata can also be used
to verify e-bounds. In this particular case the definition of quasi-compatible tree
automata can be slightly simplified.

Definition 4.30. Let R be some left-linear TRS and L a language. Let A =
(FN , Q,Qf ,∆) be a tree automaton with N a finite subset of N. We say that
A is quasi-compatible with R and L if for all t ∈ L there is a term t′ ∈ L(A)
such that t′ � t and for each rewrite rule l → r ∈ R and state substitution
σ : Var(l)→ Q such that lσ →∗∆ q it holds that r′σ →∗∆ q for some r′ � r.

Using the above definition it is straightforward to prove that quasi-compatible
tree automata can be used to verify e-boundedness.

Theorem 4.31. Let R be a left-linear TRS and L a language. If there is a
tree automaton A which is quasi-compatible with e(R) and lift0(L) then R is
e-bounded for L.

Proof. Analogues to the proof of Theorem 4.29 using Theorem 4.17 instead of
Theorem 4.24.

The general idea for constructing a (quasi-deterministic and raise-consistent)
tree automaton that is quasi-compatible with a TRS e(R) and a language
lift0(L) is quite similar to the procedure described in Section 3.1 (Section 3.4)
for constructing a compatible (and quasi-deterministic) tree automaton. How-
ever, instead of checking for compatibility violations we look for violations of
the quasi-compatibility requirement: lσ →∗∆ q (lσ →∗∆φ

q) for some rewrite
rule l → r, state substitution σ : Var(l) → Q (σ : Var(l) → Qφ), and state
q, but not r′σ →∗∆ q for any r′ � r. After that the path rσ →∗∆ q has to

42

4.5 Forward Closures

be established by adding new states and transitions to the current automa-
ton. Finally, to benefit from the use of quasi-compatible tree automata we
delete all transitions fc(p1, . . . , pn) → p for which there is a base-equivalent
transition fd(p1, . . . , pn) → p with d > c. This process is repeated until a
(quasi-deterministic, raise-consistent, and) quasi-compatible tree automaton is
obtained. To ensure that the constructed tree automaton is raise-consistent
and hence closed under the implicit raise-steps caused by the rewrite relation
r−→ if R is not left-linear, one of the procedures presented in Subsection 4.4.2

can be applied.

Example 4.32. A quasi-deterministic and raise-consistent tree automaton that
is quasi-compatible with the TRS match(R) of Example 4.19 consists of the
transitions

a1 → 1 | 2 | 4 b1 → 1 | 3 | 5
f0(1, 1)→ 1 f0(1, 4)→ 1 f0(1, 5)→ 1 f0(4, 1)→ 1
f0(4, 4)→ 1 f0(5, 1)→ 1 f0(5, 4)→ 1 f0(5, 5)→ 1
f1(2, 3)→ 1 f1(2, 5)→ 1 f1(4, 3)→ 1 f1(4, 5)→ 1

and the final states 1, 4, and 5. With respect to the quasi-deterministic, raise-
consistent, and compatible tree automaton given in Example 4.19, the transi-
tions a0 → 1, b0 → 1, and f0(4, 5) → 1 are removed. So by constructing a
quasi-compatible tree automaton a slightly smaller automaton is obtained.

Example 4.33. The tree automaton consisting of the transitions

a0 → 1 g0(1)→ 1 f0(1, 1)→ 1 f1(1, 1)→ 1

and the final state 1 is compatible with the TRS match(R) and the language
lift0(T (F)). Here R is the TRS of Example 4.6 over the signature F = {a, f, g}.
If we construct a quasi-compatible tree automaton instead of a compatible
tree automaton then the transition f0(1, 1) → 1 is removed in step one of the
completion procedure because the transition f1(1, 1) → 1 is added in order to
solve some compatibility violation. As a result the obtained quasi-compatible
tree automaton consists of 3 instead of 4 transitions.

4.5 Forward Closures

When proving the termination of a TRS R that is non-overlapping [25] or right-
linear [7] it is sufficient to restrict attention to the set RFCrhs(R)(R) of right-hand
sides of forward closures. This set is defined as the closure of the right-hand
sides of the rules in R under narrowing.

Definition 4.34. Let R be a TRS and L a language. The set RFCL(R) is the
least extension of L such that t[r]pσ ∈ RFCL(R) whenever t ∈ RFCL(R) and
there exist a position p ∈ PosF (t) and a fresh variant l→ r of a rewrite rule in
R with σ a most general unifier of t|p and l. If L is a singleton set consisting
of a term t we write RFCt(R) instead of RFC{t}(R).

43

4 The Match-Bound Technique

Dershowitz [7] obtained the following result.

Theorem 4.35. A right-linear TRS R is terminating if and only if R is ter-
minating on RFCrhs(R)(R).

The following concept has been introduced in [24]. It enables the simulation of
narrowing in the definition of right-hand sides of forward closures by rewriting.
This makes it possible to use tree automata to compute an approximation of
RFCL(R) for linear R.

Definition 4.36. Let R be a TRS and # a fresh function symbol. The TRS
R# is defined as the least extension of R that is closed under the following
operation. If l → r ∈ R# and p ∈ PosF (l) \ {ε} then l[#]p → rσ ∈ R#.
Here the substitution σ is defined by σ(x) = # if x ∈ Var(l|p) and σ(x) = x
otherwise. The substitution that maps all variables to # is denoted by σ#.

The following results are proved in [24].

Lemma 4.37. Let R be a linear TRS and L a set of linear terms. We have
RFCL(R)σ# =→∗R#

(Lσ#).

Theorem 4.38. If a linear TRS R is match-bounded for →∗R#
(rhs(R)σ#) then

R is terminating.

Let us illustrate the above results on an example.

Example 4.39. For the TRS R of Example 4.2, R# consists of the following
rewrite rules:

f(g(x, h(y)))→ g(h(f(x)), y) f(g(x,#))→ g(h(f(x)),#)
f(#)→ g(h(f(#)),#)

By using these rewrite rules we can now easily compute the set RFCrhs(R)(R)σ#.
We have

g(h(f(#)),#) →R#
g(h(g(h(f(#)),#)),#)

→R#
g(h(g(h(g(h(f(#)),#)),#)),#)

→R#
g(h(g(h(g(h(g(h(f(#)),#)),#)),#)),#)

→R#
· · ·

and hence RFCrhs(R)(R)σ# = →∗R#
(rhs(R)σ#) = {g(h(x),#)σnτ | n > 0}

where σ = {x 7→ g(h(x),#)} and τ = {x 7→ f(#)}. Since all terms in the set
→∗R#

(rhs(R)σ#) are in normal form with respect to R, it is obvious that R is
match-bounded for →∗R#

(rhs(R)σ#) by 0 and hence terminating according to
Theorem 4.38. At the end of this section we explain in detail how this can be
automatically checked.

In order to obtain corresponding results for arbitrary right-linear TRSs, we
linearize left-hand sides of rewrite rules.

44

4.5 Forward Closures

Definition 4.40. Let t be a term. The set of linear terms s, with Var(t) ⊆
Var(s), for which there exists a variable substitution τ : Var(s)\Var(t)→ Var(t)
such that sτ = t is denoted by linear(t). Let R be a TRS. The set of rewrite
rules {l′ → r | l→ r ∈ R and l′ ∈ linear(l)} is denoted by linear(R).

In the following we write R′# for linear(R)#. In general linear(R) and hence
R′# consists of infinitely many rewrite rules since variables in Var(l′) \ Var(l)
are not constrained. When using R′# to approximate RFCL(R)σ# it is enough
to consider a finite subset of R′# which ignores different variants of rules. Note
that in this case R# = R′# for linear TRSs R.

Example 4.41. The TRS linear(R), with R consisting of the rewrite rules

f(x, x)→ f(h(x), a) f(h(x), x)→ g(x) g(x)→ f(x, a)

contains the following rules:

f(x′, x)→ f(h(x), a) f(h(x′), x)→ g(x) g(x)→ f(x, a)
f(x, x′)→ f(h(x), a) f(h(x), x′)→ g(x)

Using the TRS R′# instead of R# we are now ready to extend Lemma 4.37
to right-linear TRSs. However, since we simulate non-left-linear rewrite rules
by left-linear rewrite rules we can no longer guarantee that the set →∗R′#(Lσ#)
exactly represents the set RFCL(R)σ#.

Lemma 4.42. Let R be a right-linear TRS and L a set of linear terms. We
have RFCL(R)σ# ⊆ →∗R′#(Lσ#).

Proof. Applying Lemma 4.37 to the TRS linear(R) yields RFCL(linear(R))σ# =
→∗R′#(Lσ#). Hence it is sufficient to prove that the set RFCL(R)σ# is a subset

of RFCL(linear(R))σ#. First we show that every term t ∈ RFCL(R) is linear.
We use induction on the derivation of t. If t ∈ rhs(R) then t is linear because
R is right-linear. Let t = s[r]pσ with s ∈ RFCL(R), l → r a fresh variant of a
rewrite rule in R, and σ a most general unifier of s|p and l. According to the
induction hypothesis s is linear. Hence Var(s|p) ∩ Var(s[2]p) = ∅. From the
linearity of r, Var(l) ∩ Var(s) = ∅, Var(r) ⊆ Var(l), and the fact that σ is a
most general unifier, we obtain that rσ is linear and Var(rσ)∩Var(sσ[2]p) = ∅.
It follows that t is linear.

Next we show that RFCL(R) ⊆ RFCL(linear(R)), which immediately gives
RFCL(R)σ# ⊆ RFCL(linear(R))σ#. Assume to the contrary that this does
not hold. This is only possible if there are a term t ∈ RFCL(R), a position
p ∈ PosF (t), a fresh variant l → r of a rewrite rule in R, and a most general
unifier σ of t|p and l such that t[r]pσ ∈ RFCL(R), and t[r]pσ /∈ RFCL(linear(R)).
Since l and t do not share variables, we may assume without loss of generality
that σ is idempotent. In order to arrive at a contradiction, we construct a term
l′ ∈ linear(l) and a most general unifier σ′ of l′ and t|p such that t[r]pσ′ = t[r]pσ.
Write l = C[x1, . . . , xn] with all variables displayed. Let q1, . . . , qn be the
positions of these variables. Because σ is idempotent and t is linear, for every
variable x ∈ Var(l) with xσ 6= x there exists a position qx ∈ {q1, . . . , qn} such

45

4 The Match-Bound Technique

that xσ = t|pqx . If xσ = x we define qx = qi for some i ∈ {1, . . . , n} such that
xi = x. Next we replace every variable xi in l with qi 6= qxi and i ∈ {1, . . . , n}
by a fresh variable. This yields a term l′ ∈ linear(l). Let σ′ be an idempotent
most general unifier of l′ and t|p. It follows from the construction of l′ that
σ(x) = σ′(x) for all variables x ∈ Var(l) ⊆ Var(l′). Since Var(r) ⊆ Var(l),
t[r]pσ′ = t[r]pσ as desired.

To guarantee the correctness of Lemma 4.42 it is important that linear(R)
reflects all linearizations of the TRS R. The following example shows what can
go wrong if we would change the definition of linear(R) such that it represents
an arbitrary linearization of R.

Example 4.43. Consider the TRS R of Example 4.41. For the set L = rhs(R),
RFCL(R)σ# consists of the following terms:

g(a) f(a, a) f(h(a), a)
g(#) f(#, a) f(h(#), a)

If linear(R) would consist of the rewrite rules

f(x, x′)→ f(h(x), a) f(h(x), x′)→ g(x) g(x)→ f(x, a)

then RFCL(linear(R))σ# = {g(hi(#)), f(hi(#), a) | i > 0}. Note that g(a) is
missing, invalidating Lemma 4.42. In the proof the linearization f(h(y′), y) →
g(y) of the variant f(h(y), y) → g(y) is constructed because the right-hand
side f(h(x), a) is unified with f(h(y), y) to produce the term g(a) and only the
second occurrence of y is mapped to the subterm a of f(h(y), a). We remark
that the TRS R is non-terminating since it admits the cycle rewrite sequence
g(a) →R f(a, a) →R f(h(a), a) →R g(a). However, it is easy to see that R is
terminating on RFCL(linear(R))σ#: f(hi(#), a) is a normal form and g(hi(#))
rewrites only to f(hi(#), a), for all i > 0.

The following example shows that the reverse inclusion of Lemma 4.42 does
not hold.

Example 4.44. For the TRS R of Example 4.41 the set →∗R′#(Lσ#), where
L = rhs(R), consists of all terms

g(hi(#)) g(hi(a)) f(hi(#), a) f(hi(a), a)

with i > 0. Because RFCL(R)σ# is a finite set consisting of the terms g(a),
f(a, a), f(h(a), a), g(#), f(#, a), and f(h(#), a) it is obvious that RFCL(R)σ# is
a strict subset of →∗R′#(Lσ#).

Theorem 4.45. Let R be a right-linear TRS. If R is match-raise-bounded for
→∗R′#(rhs(R)σ#) then R is terminating.

Proof. Since the set RFCrhs(R)(R)σ# is a subset of →∗R′#(rhs(R)σ#), according

to Lemma 4.42, R is also match-raise-bounded for RFCrhs(R)(R)σ#. Theo-
rem 4.15 yields the termination of R on RFCrhs(R)(R)σ#. Since rewriting is
closed under substitutions, R is terminating on RFCrhs(R)(R). From Theo-
rem 4.35 we conclude that R is terminating on all terms.

46

4.6 Summary

In order to show that a TRS R is match(-raise)-bounded for the language
L = →∗R#

(rhs(R)σ#) (L = →∗R′#(rhs(R)σ#)) we have to construct a (quasi-

deterministic and raise-consistent) tree automaton that is (quasi-)compatible
with match(R) and lift0(L). We do that by performing two steps. First we
construct a tree automaton A that is compatible with R# (R′#) and rhs(R)σ#.
Since R# (R′#) is left-linear we know by Theorem 3.3 that L(A) ⊇ L. In a
second step we search for a (quasi-deterministic and raise-consistent) tree au-
tomaton that is (quasi-)compatible with match(R) and lift0(L(A)) as described
in Section 4.4. If such an automaton has been found we know that the TRS
R is match(-raise)-bounded for L. Note that if R is left-linear the two steps
can be combined in an optimized way [24]. Instead of computing an intermedi-
ate tree automaton that accepts all terms in →∗R#

(rhs(R)σ#), we immediately
start with the construction of a tree automaton that is (quasi-)compatible with
the TRS match(R)∪ lift0(R# \R) and lift0(rhs(R)σ#). It is not difficult to ob-
serve that R is match-bounded for →∗R#

(rhs(R)σ#) whenever the construction
terminates.

Example 4.46. Let R be the TRS of Example 4.2. We show that R is
match-bounded for the language →∗R#

(rhs(R)σ#) by 0. To compute the set
→∗R#

(rhs(R)σ#) we close the initial tree automaton A consisting of the final
state 4 and the transitions

#→ 1 f(1)→ 2 h(2)→ 3 g(3, 1)→ 4

under rewriting. Note that A accepts the language rhs(R)σ#. Since f(#)→R#

g(h(f(#)),#) and f(#) →∗ 2 we have to establish g(h(f(#)),#) →∗ 2. We
do that by reusing the transitions f(1) → 2 and h(2) → 3 and by adding the
new transition g(3, 1) → 2. After that step, the obtained tree automaton is
already compatible with R# and rhs(R)σ#. Hence L(A) ⊇ →∗R#

(rhs(R)σ#).
Next we transform A into a tree automaton over the signature {#0, f0, g0, h0}
by labeling its function symbols with height 0. So we obtain the following tree
automaton:

#0 → 1 f0(1)→ 2 h0(2)→ 3 g0(3, 1)→ 2 | 4

After that it remains to close this tree automaton under rewriting with respect
to match(R). It is not difficult to see that the current automaton is already
compatible with match(R). Hence R is match-bounded for→∗R#

(rhs(R)σ#) by
0 and therefore terminating.

4.6 Summary

In this chapter we extended the match-bound technique by removing the left-
linearity restriction. First we introduced so called raise-rules to ensure that
the theory on which the method is based works for non-left-linear TRSs. After
that we presented how tree automata completion can be used to automatically
obtain certificates for the e(-raise)-boundedness of TRSs. To ensure that for a

47

4 The Match-Bound Technique

non-left-linear TRS the obtained tree automaton is closed under the implicit
raise-steps caused by the rewrite relation r−→ we introduced raise-consistent tree
automata. Finally we showed how to strengthen the method by taking forward
closures into account.

48

Chapter 5

The Dependency Pair
Framework

The dependency pair method , developed by Arts and Giesl [1], is a powerful
approach for proving the termination of rewrite systems. In difference to other
methods it does not prove the termination of a rewrite system directly. Instead
it transforms the given rewrite system into a set of ordering constraints by an-
alyzing the recursive calls in the original system. Afterwards the ordering con-
straints are solved by applying some standard termination techniques. Initially
proposed as an additional method to prove the termination of rewrite systems,
Giesl, Thiemann, and Schneider-Kamp showed in [27], that dependency pairs
can be used as a general concept to integrate and combine several termination
techniques for termination analysis. This modular reformulation and improve-
ment of the dependency pair method result in the well-known dependency pair
framework [30, 55]. On the basis of its ability to combine different termination
techniques, the dependency pair framework became the most popular technique
to prove the termination of rewrite systems automatically.

After presenting a simplified version of the dependency pair framework which
is sufficient for our purposes, we show in Section 5.2 how the match-bound
technique can be successfully integrated into this framework. The key to this
extension is the introduction of two new enrichments which exploit the special
properties of dependency pair problems. Afterwards, in Section 5.3 we focus
on the dependency graph processor, one of the most frequently used techniques
within the dependency pair framework. We show that by using tree automata
completion, efficient and powerful approximations of the dependency graph
can be obtained which sometimes even allow us to eliminate arcs from the
real dependency graph. Finally, in Section 5.4 we increase the power of the
techniques introduced in the previous sections by combining them with usable
rules.

Many of the results presented in this chapter appeared already in the confer-
ence papers [41, 42] as well as the journal paper [43]. New contributions include
an optimized definition of c-innermost dependency graphs as well as c-improved
innermost dependency graphs presented in Subsection 5.3.5. Furthermore, in
Subsection 5.4.2 we analyze and explain in detail how the (innermost) depen-
dency graph approximations as well as the improved (innermost) dependency
graph approximations based one tree automata completion can be combined
with usable rules.

49

5 The Dependency Pair Framework

5.1 Preliminaries

A directed graph G is a pair (N,E) where N is a finite set of nodes and E ⊆
N ×N a finite set of arcs. Here an arc (α, β) ∈ E is considered to be directed
from α to β. Let G = (N,E) and G′ = (N ′, E′) be two directed graphs. The
intersection of G and G′ is defined as G ∩ G′ = (N ∩ N ′, E ∩ E′). Let M ⊆ N
be a set of nodes. The subgraph of G induced by removing the nodes in M
from N is denoted by G \M and defined as G \M = (N ′, E ∩ (N ′×N ′)) where
N ′ = N \M . We often write (α, β) ∈ G to denote that (α, β) ∈ E.

Let R be a TRS over a signature F . The signature F is extended with
symbols f# for every defined symbol f ∈ FunD(R), where f# has the same
arity as f , resulting in the signature F#. If t ∈ T (F ,V) with root(t) ∈ FunD(R)
then t# denotes the term that is obtained from t by replacing its root symbol
with root(t)#. If l→ r ∈ R and t is a subterm of r with a defined root symbol
that is not a proper subterm of l then the rule l# → t# is a dependency pair of
R. The set of dependency pairs of R is denoted by DP(R). Let P and R be two
TRSs. A dependency pair problem (DP problem for short) is a triple (P,R,G)
such that the root symbols of the left- and right-hand sides of P do neither occur
in R nor in proper subterms of the left and right-hand sides of rules in P and
G = (P, E) is a directed graph.1 A DP problem (P,R,G) is said to be linear
(left-linear, right-linear, duplicating) if P ∪R is linear (left-linear, right-linear,
duplicating respectively). A DP problem (P,R,G) is called finite if there are
no infinite rewrite sequences of the form s1

ε−→α1 t1 →∗R s2
ε−→α2 t2 →∗R · · · such

that all terms t1, t2, . . . are terminating with respect to R and (αi, αi+1) ∈ G
for all i > 1. Such an infinite sequence is said to be minimal . Here the ε in ε−→P
denotes that the application of the rule in P takes place at the root position.
We say that (P,R,G) is finite on a language L ⊆ T (F#) if there is no minimal
rewrite sequence starting at a term s in L. Let (P,R,G) be a DP problem
and S ⊆ P a set of rewrite rules. We write (P,R,G) \ S to denote the DP
problem obtained from (P,R,G) by removing the rules in S from P, that is,
(P,R,G) \ S = (P \ S,R,G \ S).

Example 5.1. Consider the TRS R over the signature F = {a, f, g, h} consist-
ing of the following two rewrite rules:

f(g(x), y)→ g(h(x, y)) h(x, y)→ f(x, g(y))

The dependency pairs of R over the signature F# = {a, f, g, h, f#, h#} are
f#(g(x), y) → h#(x, y) and h#(x, y) → f#(x, g(y)). The initial DP problem
(P,R,G) consistent with R is defined as P = DP(R) and G = (P,P×P) where
G consists of 4 arcs. In the following we often write F instead of f#, etc. to ease
readability.

The main result underlying the dependency pair framework states that a
TRS R is terminating if and only if the initial DP problem (DP(R),R,G)

1We remark that in Section 5.2 the third component of a DP problem (P,R,G)—namely the
graph G—does not play a role since we operate just on the TRSs P and R. In Section 5.3
this will then change because we manipulate G to prove finiteness of DP problems.

50

5.2 Combining Dependency Pairs and Bounds

with G = (DP(R),DP(R) × DP(R)) is finite. In order to prove finiteness of a
DP problem a number of so called dependency pair processors (DP processors
for short) have been developed. DP processors are functions that take a DP
problem as input and return a set of DP problems as output. In order to be
employed to prove termination they need to be sound , that is, if all DP problems
in a set returned by a DP processor are finite then the initial DP problem is
finite. In addition, to ensure that a DP processor can be used to prove non-
termination it must be complete which means that if one of the DP problems
returned by the DP processor is not finite then the original DP problem is not
finite. The general procedure for proving finiteness of a DP problem (P,R,G)
tries to remove step by step those rewrite rules in P which cannot be used
infinitely often in any minimal rewrite sequence. In each step a different DP
processor can be applied. As soon as P is empty or a empty list of DP problems
is returned, we can conclude that the DP problem (P,R,G) is finite.

5.2 Combining Dependency Pairs and Bounds

In this section we incorporate the match-bound technique into the dependency
pair framework. To guarantee a successful integration we need to modularize
the method in order to be able to simplify DP problems. We achieve this by
introducing two new enrichments which exploit the special properties of DP
problems. To simplify the presentation we first consider left-linear TRSs. The
extension to non-left-linear TRSs is discussed in Subsection 5.2.2. Finally in
Subsection 5.2.3 it is explained how (quasi-deterministic and raise-consistent)
tree automata can be used to infer finiteness of DP problems.

5.2.1 DP-Bounds for Left-Linear DP Problems

It is easy to incorporate the match-bound technique into the dependency pair
framework by defining a processor that checks for e-boundedness of P ∪R.

Theorem 5.2. The DP processor

(P,R,G) 7→

∅ if P ∪R is left-linear and either top-bounded

or roof-bounded, or linear and match-bounded
for T (F)

{(P,R,G)} otherwise

where F is the signature of P ∪R, is sound and complete.

Proof. Assume that P ∪ R is e-bounded for T (F) with e ∈ {top, roof,match}.
By Theorem 4.4 we conclude that P ∪ R is terminating. Because P ∪ R does
not admit an infinite rewrite sequence we know that (P,R,G) does not admit
a minimal rewrite sequence. Hence (P,R,G) is finite.

This DP processor either succeeds by proving that the combined TRS P∪R is
e-bounded or, when the e-boundedness of P∪R cannot be proved, it returns the
initial DP problem. Since the construction of a compatible tree automaton does

51

5 The Dependency Pair Framework

not terminate for TRSs that are not e-bounded, the latter situation typically
does not happen. Hence the DP processor of Theorem 5.2 is applicable only
at the leaves of the dependency pair search tree, which means that it cannot
be used to (partly) simplify a DP problem. Below we address this problem by
adapting the match-bound technique in such a way that it can remove single
rules of P. We introduce two new enrichments, namely top-DP(P, s → t,R)
and match-DP(P, s→ t,R) to achieve this. The basic idea behind these TRSs
is that every minimal sequence of (P,R,G) in which s → t, the rule that is to
be removed from P, is used infinitely often is simulated by a height increasing
infinite rewrite sequence. To simplify the presentation in the remaining part we
abbreviate the TRS (P \ {s→ t}) ∪R by Ss→t.

Definition 5.3. Let S be a TRS over a signature F . The TRS e-DP(S) over
the signature FN consists of all rules l′ → liftc(r) such that

c = min ({height(l′(ε))} ∪ {1 + height(l′(p)) | p ∈ e(base(l′), r)})

and base(l′) → r ∈ S. Given a DP problem (P,R,G) and a rule s → t ∈ P,
the TRS e-DP(P, s→ t,R) is defined as the union of e-DP(Ss→t) and e(s→ t).
Let c ∈ N. The restriction of e-DP(S) and e-DP(P, s → t,R) to the signature
F{0,...,c} is denoted by e-DPc(S) and e-DPc(P, s→ t,R).

Example 5.4. Consider the DP problem (P,R,G) consisting of the rewrite
rules f(g(x), y)→ g(h(x, y)) and h(x, y)→ f(x, g(y)), P = DP(R) consisting of
F(g(x), y)→ H(x, y) and H(x, y)→ F(x, g(y)), and G = (P,P × P). Let s→ t
be the first of the two dependency pairs. Then match-DP(R) contains the rules

f0(g0(x), y)→ g0(h0(x, y)) h0(x, y)→ f0(x, g0(y))
f0(g1(x), y)→ g0(h0(x, y)) h1(x, y)→ f1(x, g1(y))
f2(g0(x), y)→ g1(h1(x, y)) · · ·

match-DP(P \ {s→ t}) contains

H0(x, y)→ F0(x, g0(y)) H1(x, y)→ F1(x, g1(y))
H2(x, y)→ F2(x, g2(y)) · · ·

and the rewrite rules

F0(g0(x), y)→ H1(x, y) F1(g0(x), y)→ H1(x, y)
F0(g1(x), y)→ H1(x, y) · · ·

belong to match(s → t). The union of these three TRSs constitutes the TRS
match-DP(P, s → t,R). If we replace match(s → t) by match-DP({s → t}),
which consists of the rules

F0(g0(x), y)→ H0(x, y) F1(g0(x), y)→ H1(x, y)
F0(g1(x), y)→ H0(x, y) · · ·

we obtain the TRS match-DP(P ∪R). Note that all TRSs have infinitely many
rewrite rules.

52

5.2 Combining Dependency Pairs and Bounds

The idea now is to use the enrichment e-DP(P, s → t,R) to simplify the
DP problem (P,R,G) into (P,R,G) \ {s→ t}. For that we need the property
defined below.

Definition 5.5. Let (P,R,G) be a DP problem and s→ t ∈ P a rewrite rule.
We call (P,R,G) e-DP-bounded for s → t and a language L if there exists a
number c ∈ N such that the height of function symbols occurring in terms in
→∗e-DP(P,s→t,R)(lift0(L)) is at most c.

To ensure that the TRS e-DP(P, s → t,R) can assist to prove finiteness of
the DP problem (P,R,G), it is crucial that every minimal rewrite sequence
in (P,R,G) with infinitely many ε−→s→t-steps can be simulated by an infinite
height increasing sequence in e-DP(P, s → t,R). To this end it is important
that rewrite rules in e-DP(Ss→t) do not propagate the minimal height of the
contracted redex unless the height of the root symbol of the redex is minimal.
This is the reason for the slightly complicated definition of c in Definition 5.3.
The following example shows what goes wrong if we would simplify the defini-
tion.

Example 5.6. Consider the DP problem (P,R,G) with R consisting of the
rewrite rules f(x)→ g(x) and g(h(x))→ f(h(x)), P consisting of the dependency
pairs F(x)→ G(x) and G(h(x))→ F(h(x)) of R, and G = (P,P × P). The DP
problem (P,R,G) is not finite because the term F(h(x)) admits a minimal
rewrite sequence. If we change the definition of c in Definition 5.3 to

c = min {height(l′(p)) | p ∈ e(base(l′), r)}

then for s→ t = F(x)→ G(y) we have

F0(h0(x)) ε−→match(s→t) G1(h0(x)) ε−→match-DP(P\{s→t}) F0(h0(x))

and it would follow that (P,R,G) is match-DP-bounded for F(x) → G(x). As
we will see later, this would imply that we can remove F(x) → G(x) from
P. Because the remaining DP problem is finite we would falsely conclude the
termination of the original TRS R.

An immediate consequence of the next lemma is that every derivation caused
by some DP problem (P,R,G) can be simulated using the rewrite rules in
e-DP(P, s→ t,R).

Lemma 5.7. Let (P,R,G) be a left-linear DP problem and s → t ∈ P. If
u →s→t v or u →Ss→t v then for all terms u′ with base(u′) = u there exists a
term v′ such that base(v′) = v and u′ →e(s→t) v

′ or u′ →e-DP(Ss→t) v
′.

Proof. Straightforward.

To be able to use the concept of e-DP-boundedness to simplify DP problems,
we need to ensure that no restriction of e-DP(P, s→ t,R) to a finite signature
admits minimal rewrite sequences with infinitely many ε−→e(s→t)-steps. For the
TRS e-DP(P, s → t,R) with e = top this is shown below. Note that if we use
e-DP(P ∪ R) instead of e-DP(P, s → t,R) then this property does not hold
because every rewrite sequence in P ∪R can be simulated by an e-DP0(P ∪R)
sequence.

53

5 The Dependency Pair Framework

Lemma 5.8. Let (P,R,G) be a DP problem, s → t ∈ P a rewrite rule, and
c > 0. The TRS top-DPc(P, s → t,R) does not admit rewrite sequences with
infinitely many ε−→top(s→t)-steps.

Proof. Assume to the contrary that there is such an infinite rewrite sequence

s1
ε−→topc(s→t) t1 →

∗
top-DPc(Ss→t) s2

ε−→topc(s→t) t2 →
∗
top-DPc(Ss→t) · · ·

emanating from a term s1. Because the root symbols in P do not appear
anywhere else in P or R, we know that only rewrite rules from top(s → t)
and top-DP(P \ {s → t}) are applied at root positions. Every rewrite rule
l→ r in top-DP(P \{s→ t}) has the property that height(l(ε)) is equivalent to
height(r(ε)). Hence height(ti(ε)) = height(si+1(ε)) for all i > 1. By definition,
for every l → r ∈ top(s → t) we have height(r(ε)) = height(l(ε)) + 1 and thus
height(ti(ε)) = height(si(ε)) + 1 for all i > 1. It follows that height(tc+1(ε)) >
c+ 1, contradicting the assumption.

Theorem 5.9. Let (P,R,G) be a DP problem, s → t ∈ P a rewrite rule, and
L a language such that (P,R,G) is top-DP-bounded for s→ t and L. If P ∪R
is left-linear then (P,R,G) is finite on L if and only if (P,R,G) \ {s → t} is
finite on L.

Proof. The only-if direction is trivial. For the if direction, suppose that the DP
problem (P,R,G) \ {s → t} is finite on L. If (P,R,G) is not finite on L then
there exists a minimal rewrite sequence

s1
ε−→s→t t1 →∗Ss→t s2

ε−→s→t t2 →∗Ss→t s3
ε−→s→t · · ·

with s1 ∈ L. Due to left-linearity, this sequence can be lifted to an infinite
top-DP(P, s → t,R) rewrite sequence starting from lift0(s1) using Lemma 5.7.
Since the original sequence contains infinitely many ε−→s→t-steps the lifted se-
quence contains infinitely many ε−→top(s→t)-steps. Moreover, because (P,R,G)
is top-DP-bounded for L, there is a c > 0 such that the height of every func-
tion symbol occurring in a term in the lifted sequence is at most c. Hence
the employed rewrite rules must come from top-DPc(P, s → t,R) and there-
fore top-DPc(P, s → t,R) contains a minimal rewrite sequence consisting of
infinitely many ε−→top(s→t)-steps. This however is excluded by Lemma 5.8.

If we restrict Lemma 5.8 to minimal rewrite sequences, it also holds for
e = match provided that the TRSs R and P are non-duplicating. The proof is
considerably more complicated and given in Appendix B.2.

Lemma 5.10. Let (P,R,G) be a DP problem, s → t ∈ P a rewrite rule, and
c > 0. If P ∪ R is non-duplicating then the TRS match-DPc(P, s→ t,R) does
not admit minimal rewrite sequences with infinitely many ε−→match(s→t)-steps.

Theorem 5.11. Let (P,R,G) be a DP problem, s→ t ∈ P a rewrite rule, and
L a language such that (P,R,G) is match-DP-bounded for s → t and L. If
P ∪ R is linear then (P,R,G) is finite on L if and only if (P,R,G) \ {s → t}
is finite on L.

54

5.2 Combining Dependency Pairs and Bounds

Proof. Similarly to the proof of Theorem 5.9, using Lemma 5.10 instead of
Lemma 5.8. Note that in the presence of left-linearity, the non-duplicating
requirement in Lemma 5.10 is equivalent to linearity.

We conjecture that Lemma 5.8 also holds for e = roof. A positive solution
is important as roof-bounds are strictly more powerful than top-bounds (see
Section 7.1 and [24]).

Theorem 5.12. The DP processor

(P,R,G) 7→

{(P,R,G) \ {s→ t}} if (P,R,G) is top-DP-bounded and

left-linear or match-DP-bounded
and linear for s→ t and T (F)

{(P,R,G)} otherwise

where F is the signature of P ∪R, is sound and complete.

Proof. Immediate consequence of Theorems 5.9 and 5.11.

Example 5.13. The DP problem (P,R,G) of Example 5.4 over the signature
F = {a, f, g, h,F,H} is match-DP-bounded for F(g(x), y) → H(x, y) and T (F)
by 1. So by applying the above DP processor we obtain the new DP problem
(P ′,R,G′) with P ′ = {H(x, y)→ F(x, g(y))} and G′ = G \ (P \ P ′). In Subsec-
tion 5.2.3 it is explained in detail how e-DP-boundedness can be automatically
checked.

5.2.2 Raise-DP-Bounds for Non-Left-Linear DP Problems

In order to apply the DP processor of Theorem 5.2 to non-left-linear TRSs, we
use e-raise-bounds instead of e-bounds.

Theorem 5.14. The DP processor

(P,R,G) 7→

∅ if P ∪R is top- or roof-raise-bounded, or

non-duplicating and match-raise-bounded
for T (F)

{(P,R,G)} otherwise

where F is the signature of P ∪R, is sound and complete.

Proof. Analogues to the proof of Theorem 5.2 by using Theorem 4.15 instead
of Theorem 4.4.

Similar as in the case of e-bounds, e-DP-bounds can only be used for DP
problems (P,R,G) consisting of left-linear TRSs P and R. The reason is
that without left-linearity, rewrite sequences in (P,R,G) cannot be lifted to
sequences in e-DP(P, s → t,R) (compare Lemma 5.7). As described in Sec-
tion 4.3 one can solve that problem by considering the relation r−→e-DP(P,s→t,R)

which uses raise-rules to deal with non-left-linear rewrite rules. Here the rela-
tion r−→e-DP(P,s→t,R) is obtained from r−→e(R) by replacing the TRS e(R) with
e-DP(P, s→ t,R) in Definition 4.10.

55

5 The Dependency Pair Framework

Definition 5.15. Let (P,R,G) be a DP problem and s→ t ∈ P a rewrite rule.
We call (P,R,G) e-raise-DP-bounded for s→ t and a language L if there exists
a number c ∈ N such that the height of function symbols occurring in terms in
r−→∗e-DP(P,s→t,R)(lift0(L)) is at most c.

Note that for left-linear DP problems, e-raise-DP-boundedness coincides with
e-DP-boundedness. An immediate consequence of the next lemma is that every
derivation according to the DP problem (P,R,G) can be simulated using the
rewrite relation r−→e-DP(P,s→t,R).

Lemma 5.16. Let (P,R,G) be a DP problem and s→ t ∈ P. If u→s→t v or
u →Ss→t v then for all terms u′ with base(u′) = u there exists a term v′ such
that base(v′) = v and u′ r−→e(s→t) v

′ or u′ r−→e-DP(Ss→t) v
′.

Proof. Straightforward.

The following two results correspond to Lemmata 5.8 and 5.10.

Lemma 5.17. Let (P,R,G) be a DP problem, s → t ∈ P, and c > 0. The
TRS top-DPc(P, s → t,R) does not admit r−→ rewrite sequences with infinitely
many root r−→top(s→t)-steps.

Proof. Similar to the proof of Lemma 5.8, using the relation r−→top-DP(Ss→t) in-
stead of→top-DP(Ss→t),

r−→top(s→t) instead of ε−→top(s→t), and Lemma 5.16 instead
of Lemma 5.7.

Lemma 5.18. Let (P,R,G) be a DP problem, s → t ∈ P, and c > 0. If
P ∪R is non-duplicating then the TRS match-DPc(P, s→ t,R) does not admit
minimal r−→ rewrite sequences with infinitely many root r−→match(s→t)-steps.

Proof. Straightforward adaption of the proof of Lemma 5.10 given in the Ap-
pendix B.2.

Since we can simulate every minimal rewrite sequence by a height increasing
infinite r−→top-DP(P,s→t,R) and r−→match-DP(P,s→t,R) rewrite sequence we can remove
rewrite rules from the TRS P for which (P,R,G) is top-raise-DP-bounded or
match-raise-DP-bounded.

Theorem 5.19. Let (P,R,G) be a DP problem, s→ t ∈ P, and L a language.
If (P,R,G) is top-raise-DP-bounded for s → t and L then (P,R,G) is finite
on L if and only if (P,R,G) \ {s → t} is finite on L. If P and R are non-
duplicating and (P,R,G) is match-raise-DP-bounded for s → t and L then
(P,R,G) is finite on L if and only if (P,R,G) \ {s→ t} is finite on L.

Proof. The only-if direction is trivial. For the if direction, suppose that the DP
problem (P,R,G) \ {s → t} is finite on L. If (P,R,G) is not finite on L then
there exists a minimal rewrite sequence

s1
ε−→s→t t1 →∗Ss→t s2

ε−→s→t t2 →∗Ss→t s3
ε−→s→t · · ·

with s1 ∈ L. Here e ∈ {top,match}. By Lemma 5.16, this rewrite sequence can
be lifted to an infinite r−→e-DP(P,s→t,R) rewrite sequence starting from lift0(s1).

56

5.2 Combining Dependency Pairs and Bounds

Since the original sequence contains infinitely many ε−→s→t-steps the lifted se-
quence contains infinitely many root r−→e(s→t)-steps. Moreover, because (P,R,G)
is e-raise-DP-bounded for L, there is a c > 0 such that the height of ev-
ery function symbol occurring in a term in the lifted sequence is at most c.
Hence the employed rules must come from e-DPc(P, s → t,R) and therefore
e-DPc(P, s → t,R) contains a minimal r−→ rewrite sequence consisting of in-
finitely many root r−→e(s→t)-steps. This however is excluded by Lemmata 5.17
and 5.18.

Theorem 5.20. The DP processor

(P,R,G) 7→

{(P,R,G) \ {s→ t}} if (P,R,G) is top-raise-DP-bounded

or non-duplicating and match-raise-
DP-bounded for s→ t and T (F)

{(P,R,G)} otherwise

where F is the signature of P ∪R, is sound and complete.

Proof. Immediate consequence of Theorem 5.19.

5.2.3 Automation

To prove automatically that a DP problem is e(-raise)-DP-bounded for some
language L we use (quasi-deterministic, raise-consistent, and) compatible tree
automata as defined in Chapter 3 and 4.

Lemma 5.21. Let (P,R,G) be a left-linear DP problem, s → t ∈ P, and L a
language. Let A be a tree automaton. If A is compatible with e-DP(P, s→ t,R)
and lift0(L) then (P,R,G) is e-DP-bounded for s→ t and L.

Proof. Easy consequence of Theorem 3.3.

In case of non-left-linear TRSs we obtain the following result.

Lemma 5.22. Let (P,R,G) be a DP problem, s → t ∈ P, and L a language.
Let A be a quasi-deterministic and raise-consistent tree automaton. If A is
compatible with e-DP(P, s → t,R) and lift0(L) then (P,R,G) is e-raise-DP-
bounded for s→ t and L.

Proof. Similar as the proof of Theorem 4.24 if we take F to be the signature of
P ∪R and replace e(R) by e-DP(P, s→ t,R).

The general procedure for constructing a (quasi-deterministic and raise-con-
sistent) tree automaton that is compatible with e-DP(P, s → t,R) and some
language lift0(L) is identical to the procedure described in Section 4.4. That
means, we solve violations of the compatibility requirement until a (quasi-
deterministic, raise-consistent, and) compatible tree automaton is obtained.
Thereby, missing paths are established in the same way as if we would check
for e(-raise)-boundedness. To ensure that the constructed tree automaton is
raise-consistent and hence closed under the implicit raise-steps caused by the
rewrite relation r−→ if P ∪ R is non-left-linear, one of the approaches described
in Subsection 4.4.2 can be applied.

57

5 The Dependency Pair Framework

Example 5.23. We show that the DP problem (P,R,G) of Example 5.4 is
match-DP-bounded for s → t by constructing a compatible tree automaton.
Here s → t corresponds to the rewrite rule F(g(x), y) → H(x, y). As starting
point we consider the initial tree automaton consisting of the final state 2 and
the transitions

a0 → 1 f0(1, 1)→ 1 g0(1)→ 1
h0(1, 1)→ 1 F0(1, 1)→ 2 H0(1, 1)→ 2

which accepts the set of all ground terms that have F0 or H0 as root symbol
and a0, f0, g0, and h0 below the root. Since F0(g0(x), y) →match(s→t) H1(x, y)
and F0(g0(1), 1) →∗ 2, we add the transition H1(1, 1) → 2. Next we consider
H1(x, y) →match-DP(P\{s→t}) F1(x, g1(y)) with H1(1, 1) → 2. By adding the
transitions F1(1, 3) → 2 and g1(1) → 3 this compatibility violation is solved.
After that the rewrite rule F1(g0(x), y)→match(s→t) H1(x, y) and the derivation
F1(g0(1), 3) →∗ 2 give rise to the transition H1(1, 3) → 2. Finally we have
H1(x, y) →match-DP(P\{s→t}) F1(x, g1(y)) and H1(1, 3) → 2. In order to ensure
F1(1, g1(3))→∗ 2 we reuse the transition F1(1, 3)→ 2 and add the new transi-
tion g1(3)→ 3. After that step, the obtained tree automaton is compatible with
match-DP(P, s→ t,R). Hence the DP problem (P,R,G) is match-DP-bounded
for F(g(x), y) → H(x, y) by 1. Applying the DP processor of Theorem 5.12
yields the new DP problem (P ′,R,G′) with P ′ = {H(x, y) → F(x, g(y))} and
G′ = G \ (P \ P ′), which is easily (and automatically by numerous DP proces-
sors) shown to be finite. We note that the DP processor of Theorem 5.2 fails
on (P,R,G).

Similar as for e(-raise)-bounds we can optimize the completion procedure by
constructing a (quasi-deterministic and raise-consistent) tree-automaton that
is quasi-compatible with e-DP(P, s→ t,R) and lift0(L).

Lemma 5.24. Let (P,R,G) be a DP problem, s → t ∈ P, and L a language.
Let A be a tree automaton. If P and R are left-linear and A is quasi-compatible
with e-DP(P, s → t,R) and lift0(L) then (P,R,G) is e-DP-bounded for s → t
and L. If A is quasi-deterministic, raise-consistent, and quasi-compatible with
e-DP(P, s → t,R) and lift0(L) then (P,R,G) is e-raise-DP-bounded for s → t
and L.

Proof. Similar as the proofs of Theorems 4.29 and 4.31; just replace the TRS
e(R) by e-DP(P, s→ t,R).

5.2.4 Forward Closures

As mention in Section 4.5, when proving the termination of a TRS R that is
non-overlapping or right-linear it is sufficient to restrict our attention to the set
RFCrhs(R)(R) of right-hand sides of forward closures. If we want to prove the
termination of R using dependency pairs, we can benefit from the properties of
DP problems.

Lemma 5.25. Let (P,R,G) be a DP problem. If P and R are right-linear then
(P,R,G) is finite if and only if it is finite on RFCrhs(P)(P ∪R).

58

5.2 Combining Dependency Pairs and Bounds

Proof. Easy consequence of Theorem 4.35 and the definition of finiteness.

Lemma 5.25 can be used in connection with the DP processors of Theo-
rems 5.2 and 5.14. For the DP processors of Theorems 5.12 and 5.20 we can
do better. Since the proof is considerably more complicated than the previous
one it is deferred to Appendix B.3.

Lemma 5.26. Let (P,R,G) be a DP problem and s → t ∈ P. If P and R
are right-linear then (P,R,G) admits a minimal rewrite sequence with infinitely
many ε−→s→t-steps if and only if it admits such a sequence starting from a term
in RFCt(P ∪R).

In order to make use of the above lemma, we have to construct the set
RFCt(P ∪ R). As explained in Section 4.5 we want to do that by using tree
automata completion. To construct a suitable tree automaton we use the TRS
(P ∪R)# if P ∪R is linear and the TRS (P ∪R)′# if P ∪R is right-linear but
not left-linear. In the case that P ∪ R is linear the following results can be
derived using Lemma 4.37.

Theorem 5.27. Let (P,R,G) be a linear DP problem. If P ∪ R is match-
bounded for →∗(P∪R)#

(rhs(P)σ#) then (P,R,G) is finite.

Proof. Since→∗(P∪R)#
(rhs(P)σ#) is a superset of RFCrhs(P)(P ∪R)σ#, P ∪R is

also match-raise-bounded for RFCrhs(P)(P∪R)σ#. (Recall that for linear P and
R, match-boundedness coincides with match-raise-boundedness.) Theorem 4.15
yields the termination of P∪R on RFCrhs(P)(P∪R)σ#. Since rewriting is closed
under substitutions, P ∪ R is terminating on RFCrhs(P)(P ∪ R) and hence the
DP problem (P,R,G) is finite on RFCrhs(P)(P ∪ R). Applying Lemma 5.25
yields the finiteness of (P,R,G).

Theorem 5.28. Let (P,R,G) be a linear DP problem and s→ t ∈ P a rewrite
rule. If (P,R,G) is match-DP-bounded for s → t and →∗(P∪R)#

({t}σ#) then
the DP problem (P,R,G) is finite if and only if (P,R,G) \ {s→ t} is finite.

Proof. Since →∗(P∪R)#
(tσ#) is a superset of RFCt(P ∪ R)σ#, (P,R,G) is also

match-raise-DP-bounded for s→ t and RFCt(P ∪R)σ#. (Recall that for linear
P andR, match-DP-boundedness coincides with match-raise-DP-boundedness.)
Theorem 5.19 yields that (P,R,G) is finite on RFCt(P ∪ R)σ# if and only if
(P,R,G) \ {s→ t} is finite on RFCt(P ∪R)σ#. Since rewriting is closed under
substitutions, (P,R,G) is finite on RFCt(P∪R) if and only if (P,R,G)\{s→ t}
is finite on RFCt(P ∪R). From Lemma 5.26 we conclude that (P,R,G) is finite
if and only if (P,R,G) \ {s→ t} is finite.

The above results extend to non-left-linear and right-linear DP problems
without any problems. To conclude that →∗

(P∪R)′#
(Lσ#) ⊇ RFCL(P ∪R)σ#

we use Lemma 4.42 instead of Lemma 4.37.

Theorem 5.29. Let (P,R,G) be a right-linear DP problem. If P∪R is match-
raise-bounded for →∗

(P∪R)′#
(rhs(P)σ#) then (P,R,G) is finite.

59

5 The Dependency Pair Framework

Proof. Identical to the proof of Theorem 5.27 after replacing (P ∪R)# by
(P ∪R)′#.

Theorem 5.30. Let (P,R,G) be a right-linear DP problem and s → t ∈ P.
If (P,R,G) is match-raise-DP-bounded for s → t and →∗

(P∪R)′#
({t}σ#) then

(P,R,G) is finite if and only if (P,R,G) \ {s→ t} is finite.

Proof. Similar as the proof of Theorem 5.28; just replace (P ∪R)# by the TRS
(P ∪R)′#.

5.3 Beyond Dependency Graphs

One of the most important and frequently used DP processors is the so called
dependency graph processor. It enables the decomposition of DP problems into
smaller subproblems by determining which dependency pairs can follow each
other in infinite rewrite sequences. Since the real dependency pair graph can-
not be computed, the dependency graph processor requires the computation
of an over-approximation of the real dependency graph. In the literature sev-
eral such approximations are proposed. Arts and Giesl [1] gave an effective
algorithm based on abstraction and unification. Kusakari and Toyama [45, 46]
employed Huet and Lévy’s notion of ω-reduction to approximate dependency
graphs for AC-termination. Middeldorp [48] advocated the use of tree automata
techniques and in [49] improved the approximation of [1] by taking symmetry
into account. Giesl, Thiemann, and Schneider-Kamp [28] tightly coupled ab-
straction and unification, resulting in an improvement of [1] which is especially
suited for applicative systems.

In the following we show that tree automata completion is much more effective
for approximating dependency graphs than the method proposed in [48] which
approximates the underlying rewrite system to ensure regularity preservation.
We further show that by incorporating right-hand sides of forward closures, we
can eliminate arcs from the real dependency graph.

5.3.1 Using Dependency Graphs

As mentioned before, the dependency graph processor enables to decompose
a DP problem into smaller subproblems. Following [55], we find it convenient
to split the processor into one which computes the dependency graph and one
which performs the decomposition into smaller subproblems by computing the
strongly connected components of the underlying graph. This separates the
part that needs to be approximated from the computable part and is important
to properly describe the experiments in Section 7.2 where we combine several
graph approximations before computing strongly connected components.

Definition 5.31. Let (P,R,G) be a DP problem. The dependency graph pro-
cessor is defined as

(P,R,G) 7→ {(P,R,G ∩ DG(P,R))}

60

5.3 Beyond Dependency Graphs

where DG(P,R) is the dependency graph of P and R, which has the rules in
P as nodes and there is an arc from s → t to u → v if and only if there exist
substitutions σ and τ such that tσ →∗R uτ .

To split a DP problem (P,R,G) into a set of subproblems, we compute
the strongly connected components of the graph G. Thereby each strongly
connected component gives rise to one subproblem. Let G = (N,E) be a graph.
A sequence α1, . . . , αn of nodes is called a path from α1 to αn if (αi, αi+1) ∈ E
for all i ∈ {1, . . . , n− 1}. Let α and β be two nodes in N . We say that α and
β are connected if there are non-empty paths from α to β and from β to α. A
set M ⊆ N of nodes is called a strongly connected component (SCC for short)
if for all nodes α, β ∈M , α and β are connected and for all nodes α′ ∈ N \M
there is a node β′ ∈M such that α′ and β′ are not connected.

Definition 5.32. For a DP problem (P,R,G), the SCC processor accomplish
the transformation

(P,R,G) 7→ {(P1,R,G1), . . . , (Pn,R,Gn)}

where P1, . . . ,Pn are the SCCs of the graph G and Gi with i ∈ {1, . . . , n} denotes
the subgraph G \ (P \ Pi) of G.

The following results are well-known [1, 27, 32, 55].

Theorem 5.33. The dependency graph and SCC processors are sound and
complete.

Let us illustrate the above definitions and results on an example.

Example 5.34. Consider the DP problem (P,R,G) with R consisting of the
rewrite rules f(g(x), y)→ g(h(x, y)) and h(g(x), y)→ f(g(a), h(x, y)), P consist-
ing of the dependency pairs

1 : F(g(x), y)→ H(x, y) 2 : H(g(x), y)→ F(g(a), h(x, y))
3 : H(g(x), y)→ H(x, y)

of R, and G = P × P. Because the left-hand side H(g(x), y) is an instance of
the right-hand side H(x, y) and F(g(a), h(x, y)) is an instance of F(g(x), y), the
graph DG(P,R) has five arcs:

1 2 3

The dependency graph processor of Definition 5.31 returns the new DP problem
(P,R,DG(P,R)). Because the given dependency pairs form a single SCC in the
graph DG(P,R), the SCC processor of Definition 5.32 does not make progress.
Hence we end up with the DP problem (P,R,DG(P,R)).

61

5 The Dependency Pair Framework

5.3.2 Estimating Dependency Graphs

For two TRSs P and R the dependency graph DG(P,R) contains an arc from a
dependency pair α to a dependency pair β if and only if there exist substitutions
σ and τ such that rhs(α)σ →∗R lhs(β)τ . Without loss of generality we may
assume that rhs(α)σ and lhs(β)τ are ground terms. Hence there is no arc from
α to β if and only if Σ(lhs(β))∩→∗R(Σ(rhs(α))) = ∅. Here Σ(t) denotes the set
of ground instances of the term t with respect to the signature G consisting of
all function symbols that appear in P ∪ R minus the root symbols of the left-
and right-hand sides of P that do neither occur on positions below the root in
P nor in R.2 For an arbitrary term t and regular language L it is decidable
whether Σ(t)∩L = ∅—a result of Tison (see [48])—and hence we can check the
above condition by constructing a tree automaton that accepts→∗R(Σ(rhs(α))).
Since this set is in general not regular, we compute an over-approximation with
the help of tree automata completion starting from an automaton that accepts
Σ(ren(rhs(α))). Here ren is the function that linearizes its argument by replacing
all occurrences of variables with fresh variables. This step is necessary to ensure
the regularity of Σ(ren(rhs(α))).

Definition 5.35. Let P and R be two TRSs, α, β ∈ P, and L a language. We
say that β is unreachable from α with respect to L if there is a tree automaton
A compatible with R and L∩Σ(ren(rhs(α))) such that A is quasi-deterministic
whenever P or R is non-left-linear and Σ(lhs(β)) ∩ L(A) = ∅.

The language L in the above definition allows us to refine the set of starting
terms Σ(ren(rhs(α))) which are considered in the computation of an arc from
α to β. In Subsection 5.3.3 we make use of the set L to remove arcs from the
(real) dependency graph. In the remainder of this subsection we always have
L = Σ(ren(rhs(α))).

Definition 5.36. The nodes of the c-dependency graph DGc(P,R) are the
rewrite rules of P and there is no arc from α to β if and only if β is unreachable
from α with respect to Σ(ren(rhs(α))).

The c in the above definition refers to the fact that a compatible tree au-
tomaton is constructed by tree automata completion.

Lemma 5.37. Let P and R be two TRSs. Then DGc(P,R) ⊇ DG(P,R).

Proof. Easy consequence of Theorems 3.3 and 3.16.

As explained in Chapter 3 we try to construct a (quasi-deterministic) tree
automata A = (F , Q,Qf ,∆) that is compatible with the TRS R and the lan-
guage Σ(ren(rhs(α))) by resolving violations of the compatibility requirement:
If lσ →∗∆ q (lσ →∗∆φ

q) but not rσ →∗∆ q for some rewrite rule l → r ∈ R,
state substitution σ : Var(l) → Q (σ : Var(l) → Qφ), and state q ∈ Q, then
we add new states and transitions to the current tree automaton to ensure
2If each function symbol in P ∪R is identical to the root symbol of a left- or right-hand side
of P, then we require that G contains a fresh constant #. This constant is added to the
signature to ensure that Σ(t) cannot be empty.

62

5.3 Beyond Dependency Graphs

that rσ →∗∆ q. Note that in contrast to the match-bound technique we can
always compute a compatible tree automaton if the considered TRS as well as
its signature are finite.

Example 5.38. We consider the DP problem (P,R,G) of Example 5.34. The
tree automaton A consisting of the final state 2 and the transitions

a→ 1 f(1, 1)→ 1 g(1)→ 1 h(1, 1)→ 1 H(1, 1)→ 2

accepts the language Σ(H(x, y)) and is easily constructed. Because the automa-
ton A is already compatible with R and Σ(H(x, y)), completion is trivial here.
So we have L(A) =→∗R(Σ(H(x, y))) = Σ(H(x, y)). As H(g(a), a) is accepted by
A, DGc(P,R) contains arcs from 1 and 3 to 2 and 3. Similarly, we can construct
a tree automaton B which is compatible with R and Σ(F(g(a), h(x, y))):

a→ 1 | 2 f(1, 1)→ 1 | 4 g(1)→ 1 | 4 h(1, 1)→ 1 | 4 F(3, 4)→ 2
g(2)→ 3

Because F(g(a), h(a, a)) is accepted by B, we obtain an arc from 2 to 1. Further
arcs do not exist.

It can be argued that the use of tree automata techniques for the DP problem
of Example 5.34 is a waste of resources because the dependency graph can also
be computed by just taking the root symbols of the dependency pairs into
consideration. However, in the next subsection we show that this radically
changes when taking right-hand sides of forward closures into account.

5.3.3 Incorporating Forward Closures

Given a DP problem (P,R,G) and two rewrite rules α, β ∈ P, an arc from α
to β in the dependency graph DG(P,R) is an indication that β may follow α in
an infinite sequence in P ∪R. However it is not a sufficient condition because
if the problem is finite there are no infinite sequences whatsoever. What we
would like to determine is whether β can follow α infinitely many times in a
minimal sequence. To express this property we use the notion defined below.

Definition 5.39. Let (P,R,G) be a DP problem and α, β ∈ P. We say that
β directly follows α in a minimal sequence

s1
ε−→α1 t1 →∗R s2

ε−→α2 t2 →∗R · · ·

if αi = α and αi+1 = β for some i > 1.

With the existing approximations of the dependency graph, only local con-
nections can be tested. In this subsection we show that by using right-hand
sides of forward closures, we can sometimes delete arcs from the dependency
graph which cannot occur infinitely many times in minimal sequences. The
key ingredient to this extension is based on the observation that for each mini-
mal rewrite sequence there is a minimal rewrite sequence starting at a term in
RFCrhs(α)(P ∪R) which exhibits a similar structure as the original sequence.

63

5 The Dependency Pair Framework

Lemma 5.40. Let P and R be two right-linear TRSs and α, β ∈ P. The
TRS P ∪R admits a minimal rewrite sequence in which infinitely many β-steps
directly follow α-steps if and only if it admits such a sequence starting from a
term in RFCrhs(α)(P ∪R).

Since the proof of the above lemma is quite complicated and lengthy it is
deferred to Appendix B.3. Based on Lemma 5.40 we are now ready to define a
new form of dependency graphs.

Definition 5.41. Let P and R be two TRSs. The improved dependency graph
of P and R, denoted by IDG(P,R), has the rules in P as nodes and there is
an arc from s → t to u → v if and only if there exist substitutions σ and τ
such that tσ →∗R uτ and tσ ∈ Σ#(RFCt(P ∪R)). Here Σ# is the function that
replaces all variables by the fresh constant #.

Note that the use of Σ# in the above definition is essential. If we would
replace Σ# by Σ then Σ(RFCt(P ∪ R)) ⊇ Σ(t) because t ∈ RFCt(P ∪ R) and
hence IDG(P,R) = DG(P,R). According to the following lemma the improved
dependency graph can be used whenever the participating TRSs are right-linear.

Lemma 5.42. Let P and R be right-linear TRSs and α, β ∈ P. If P ∪ R
admits a minimal rewrite sequence in which infinitely many β-steps directly
follow α-steps, then IDG(P,R) admits an arc from α to β.

Proof. Assume that there is a minimal rewrite sequence

s1
ε−→P t1 →∗R s2

ε−→P t2 →∗R s3
ε−→P · · ·

in which infinitely many β-steps directly follow α-steps. Due to Lemma 5.40
we may assume without loss of generality that s1 ∈ RFCrhs(α)(P ∪R). Let i > 1
such that si ε−→α ti →∗R si+1

ε−→β ti+1. Because RFCrhs(α)(P ∪R) is closed under
rewriting with respect to P and R we know that ti ∈ RFCrhs(α)(P ∪ R). We
have ti = rhs(α)σ and si+1 = lhs(β)τ for some substitutions σ and τ . From ti ∈
RFCrhs(α)(P ∪R) we infer that tiθ ∈ Σ#(RFCrhs(α)(P ∪R)) for the substitution
θ that replaces every variable by #. Due to the fact that rewriting is closed
under substitutions we have tiθ →∗R si+1θ. Hence rhs(α)σθ →∗R lhs(β)τθ and
therefore IDG(P,R) contains an arc from α to β.

The following example shows that it is essential to include P in the construc-
tion of the set Σ#(RFCt(P ∪R)) in the definition of IDG(P,R).

Example 5.43. Consider the TRS R consisting of the three rules f(x)→ g(x),
g(a)→ h(b), and h(x)→ f(a), the TRS P = DP(R) consisting of the rules

F(x)→ G(x) G(a)→ H(b) H(x)→ F(a)

and the graph G = (P,P ×P). The DP problem (P,R,G) is not finite because
it admits the following cycle:

F(a) ε−→P G(a) ε−→P H(b) ε−→P F(a)

64

5.3 Beyond Dependency Graphs

Let t = G(x). We have RFCt(R) = {t} and hence Σ#(RFCt(R)) = {G(#)}.
If we now replace Σ#(RFCt(P ∪ R)) by Σ#(RFCt(R)) in Definition 5.41, we
would conclude that IDG(P,R) does not contain an arc from F(x) → G(x) to
G(a)→ H(b) because G(#) is a normal form which is different from G(a). But
this makes the resulting DP problem (P,R, IDG(P,R)) finite.

Theorem 5.44. The improved dependency graph processor

(P,R,G) 7→

{
{(P,R,G ∩ IDG(P,R))} if P ∪R is right-linear
{(P,R,G ∩ DG(P,R))} otherwise

is sound and complete.

Proof. Soundness is an easy consequence of Lemma 5.42 and Theorem 5.33.
Completeness is guaranteed by the two inclusions G ∩ DG(P,R) ⊆ G and G ∩
IDG(P,R) ⊆ G.

Example 5.45. We consider again the DP problem (P,R,G) of Example 5.34.
Let s = H(x, y) and t = F(g(a), h(x, y)). We first compute RFCs(P ∪ R) and
RFCt(P∪R). The former set consists of H(x, y) together with all terms in the set
RFCt(P ∪R). Each term contained in the latter set is an instance of F(g(a), x)
or H(a, x). It follows that each term in Σ#(RFCs(P ∪R)) is a ground instance
of F(g(a), x) or H(a, x) or equal to the term H(#,#). Similarly, each term in
Σ#(RFCt(P∪R)) is a ground instance of F(g(a), x) or H(a, x). Hence IDG(P,R)
contains an arc from 2 to 1. Further arcs do not exist because there are no
substitution τ and term u ∈ Σ#(RFCs(P ∪R)) such that u→∗R H(g(x), y)τ . So
IDG(P,R) looks as follows:

1 2 3

Hence the improved dependency graph processor produces the new DP problem
(P,R, IDG(P,R)). Since the above graph does not admit any SCCs, the SCC
processor returns an empty list of DP problems. Consequently, the TRS R is
terminating.

Similar to DG(P,R), IDG(P,R) is not computable in general. We over-
approximate IDG(P,R) by using tree automata completion as described in
Subsection 5.3.2.

Definition 5.46. Let P and R be two TRSs. The nodes of the c-improved
dependency graph IDGc(P,R) are the rewrite rules of P and there is no arc
from α to β if and only if β is unreachable from α with respect to the language
Σ#(RFCrhs(α)(P ∪R)).

Lemma 5.47. Let P and R be two TRSs. Then IDGc(P,R) ⊇ IDG(P,R).

Proof. Assume to the contrary that the lemma does not hold. Then there
are two rewrite rules s → t and u → v in P such that there is an arc from
s → t to u → v in IDG(P,R) but not in IDGc(P,R). By Definition 5.41 there
are substitutions σ and τ such that tσ ∈ L with L = Σ#(RFCt(P ∪ R)) and

65

5 The Dependency Pair Framework

tσ →∗R uτ . Since IDGc(P,R) does not admit an arc from s→ t to u→ v, there
is a tree automaton A compatible withR and L∩Σ(ren(t)) such that A is quasi-
deterministic if P or R is non-left-linear and Σ(u) ∩ L(A) = ∅. Theorems 3.3
and 3.16 yield →∗R(L ∩ Σ(ren(t))) ⊆ L(A). From tσ ∈ L ∩ Σ(ren(t)) and
tσ →∗R uτ we infer that uτ ∈ L(A), contradicting Σ(u) ∩ L(A) = ∅.

To compute IDGc(P,R) we have to construct an intermediate tree automa-
ton that accepts RFCrhs(α)(P ∪ R). This can be done by using tree automata
completion as described in Subsection 5.2.4. That means, we construct a tree
automaton A that is compatible with the TRS S and the language {rhs(α)}σ#.
Here S = (P ∪R)# if P ∪R is linear and S = (P ∪R)′# if P ∪R is right-linear
but not left-linear. Afterwards we convert A into a tree automaton A′ which
accepts only those terms in L(A) that are also contained in Σ(ren(rhs(α))).
Starting from this automaton we can then check whether IDGc(P,R) admits
an arc from α to β by transforming A′ into a tree automaton that is compatible
with R, as discussed in Subsection 5.3.2. We continue our leading example.

Example 5.48. We construct IDGc(P,R) for the DP problem (P,R,G) of
Example 5.34. Let s = H(x, y). The tree automaton A consisting of the final
state 2 and the transitions

#→ 1 g(3)→ 4 f(4, 5)→ 5 h(1, 1)→ 5 H(1, 1)→ 2
a→ 3 g(6)→ 5 h(3, 5)→ 6 H(3, 5)→ 2

is compatible with R and Σ#(RFCs(P∪R))∩Σ(s). Since A does not accept any
ground instance of the term H(g(x), y) we conclude that the rules 2 and 3 are
unreachable from 1 and 3. It remains to check whether there is any outgoing
arc from rule 2. Let t = F(g(a), h(x, y)) be the right-hand side of 2. Similar as
before we can construct a tree automaton B consisting of the final state 5 and
the transitions

#→ 1 g(2)→ 3 f(3, 4)→ 4 h(1, 1)→ 4 F(3, 4)→ 5
a→ 2 g(6)→ 4 h(2, 4)→ 6

which is compatible with R and Σ#(RFCt(P ∪ R)) ∩ Σ(t). Since the instance
F(g(a), h(#,#)) of F(g(x), y) is accepted by B, IDGc(P,R) contains an arc from
2 to 1. Further arcs do not exist. Hence IDGc(P,R) coincides with IDG(P,R).

5.3.4 Comparison

In the literature several over-approximations of the dependency graph are de-
scribed [1, 28, 32, 46, 48, 49]. In this subsection we compare the tree automata
approach to approximate the processors of Definition 5.31 and Theorem 5.44,
developed in the preceding subsections, with the earlier tree automata approach
of [48] as well as the approximation used in tools like AProVE [26] and TTT2 [44],
which is a combination of ideas of [28, 49]. We start by formally defining the
latter approach.

Let R be a set of rewrite rules and t a term. The function tcap(R, t) is
defined as tcap(R, t) = f(tcap(R, t1), . . . , tcap(R, tn)) if t = f(t1, . . . , tn) and

66

5.3 Beyond Dependency Graphs

f(tcap(R, t1), . . . , tcap(R, tn)) does not unify with any l ∈ lhs(R). Otherwise
tcap(R, t) = x for some fresh variable x.

Definition 5.49. Let P and R be two TRSs. The nodes of the estimated
dependency graph DGe(P,R) are the rewrite rules of P and there is an arc from
s→ t to u→ v if and only if tcap(R, t) and u as well as t and tcap(R−1, u) are
unifiable.

The approach described in [48] to approximate dependency graphs based on
tree automata techniques relies on regularity preservation rather than comple-
tion. Below we recall the relevant definitions. Let F be some signature and
R a set of rewrite rules over the signature F .3 An approximation mapping
is a mapping φ from sets of rewrite rules to sets of rewrite rules such that
→R ⊆ →∗φ(R). We say that φ is regularity preserving if the set ←∗φ(R)(L) =
{s ∈ T (F) | s→∗φ(R) t for some t ∈ L} is regular for all sets of rewrite rules
R and regular languages L. The approximation mappings s, nv, and g are
defined as follows: s(R) = {ren(l) → x | l→ r ∈ R and x is a fresh variable},
nv(R) = {ren(l) → ren(r) | l → r ∈ R}, and g(R) is defined as any set of
left-linear rewrite rules that is obtained from R by linearizing the left-hand
sides and renaming the variables in the right-hand sides that occur at a depth
greater than 1 in the corresponding left-hand sides. These mappings are known
to be regularity preserving [10, 51].

Definition 5.50. Let P and R be two TRSs and let φ be an approximation
mapping. The nodes of the φ-approximated dependency graph DGφ(P,R) are
the rewrite rules of P and there is an arc from s → t to u → v if and only if
both Σ(t) ∩←∗φ(R)(Σ(ren(u))) 6= ∅ and Σ(u) ∩←∗φ(R−1)(Σ(ren(t))) 6= ∅.

The following results originate from [28, 48].

Lemma 5.51. For TRSs P and R, DGe(P,R) ⊇ DG(P,R) and DGs(P,R) ⊇
DGnv(P,R) ⊇ DGg(P,R) ⊇ DG(P,R).

From Examples 5.34 and 5.48 it is obvious that neither DGe(P,R) nor the
graph DGg(P,R) subsumes IDGc(P,R). The converse depends very much on
the approximation strategy that is used; it can always happen that the com-
pletion procedure does not terminate or that the over-approximation is too
inexact. Nevertheless, there are problems where DGe(P,R) and DGs(P,R) are
properly contained in IDGc(P,R).

Example 5.52. Consider the TRSR consisting of the rewrite rules g(a, b)→ b,
f(x, x) → f(a, g(x, b)), and f(a, g(x, x)) → f(a, a), and the TRS P consisting of
the dependency pairs

1 : F(x, x)→ F(a, g(x, b)) 3 : F(a, g(x, x))→ F(a, a)
2 : F(x, x)→ G(x, b)

3To simplify the presentation we assume in the following that whenever we consider two TRSs
P and R or a DP problem (P,R,G), F represents the signature of P ∪ R, if necessary,
extended by the fresh constant #.

67

5 The Dependency Pair Framework

of R. First we compute IDGc(P,R). Because F(a, a) is an instance of F(x, x) we
obviously have arcs from 3 to 1 and 2. Since F(a, g(#, b))→P ′# F(a, a) using the
rewrite rule F(a, g(x, y))→ F(a, a), IDGc(P,R) contains arcs from 1 to 1 and 2.
Moreover, the derivation F(a, g(#, b)) →R′# F(a, b) →P ′# F(a, g(b, b)) together
with F(a, g(b, b)) ∈ Σ(F(a, g(x, x))) yields an arc from 1 to 3. Note that in the
above rewrite sequence the rewrite rules g(#, b)→ b and F(y, x)→ F(a, g(x, b))
have been used. Similarly, there is an arc from 3 to 3 because F(a, a) →P ′#
F(a, g(a, b)) →R′# F(a, b) →P ′# F(a, g(b, b)) and F(a, g(b, b)) ∈ Σ(F(a, g(x, x))).
Further arcs do not exist. Hence IDGc(P,R) looks as follows:

1

2

3

In contrast to IDGc(P,R), the graphs DGe(P,R) and DGs(P,R) do not admit
an arc from 3 to 3. In case of DGe(P,R) we have tcap(R,F(a, a)) = F(a, a)
and F(a, a) does not unify with F(a, g(x, x)). In case of DGs(P,R) we have
F(a, a) 6∈ ←∗s(R)(Σ(ren(F(a, g(x, x))))) because F(a, a) is a normal form with
respect to s(R) and not a ground instance of ren(F(a, g(x, x))).

In case of DGc(P,R) we obtain similar results as for IDGc(P,R). The follow-
ing example shows that neither DGe(P,R) nor DGg(P,R) subsumes DGc(P,R).

Example 5.53. Consider the TRSs R and P with R consisting of the rewrite
rules p(p(p(x)))→ p(p(x)), f(x)→ g(p(p(p(a)))), and g(p(p(s(x))))→ f(x) and
P = DP(R) consisting of the following rules:

1 : F(x)→ G(p(p(p(a)))) 3 : F(x)→ P(p(a)) 5 : G(p(p(s(x))))→ F(x)
2 : F(x)→ P(p(p(a))) 4 : F(x)→ P(a)

First we compute DGe(P,R). It is clear that DGe(P,R) contains arcs from
5 to 1, 2, 3, and 4. Furthermore, it contains an arc from 1 to 5 because the
term tcap(R,G(p(p(p(a))))) = G(y) unifies with G(p(p(s(x)))) and G(p(p(p(a))))
unifies with tcap(R−1,G(p(p(s(x))))) = G(y). Further arcs do not exist and
hence DGe(P,R) looks as follows:

51 4

2 3

Next we compute DGg(P,R). Similarly as DGe(P,R), DGg(P,R) has arcs from
5 to 1, 2, 3, and 4. Furthermore DGg(P,R) contains an arc from 1 to 5 because
G(p(p(p(a)))) →g(R) G(p(p(s(a)))) ∈ Σ(G(p(p(s(x))))) by applying the rewrite
rule p(p(p(x))) → p(p(y)) and G(p(p(s(x)))) →g(R−1) G(p(p(p(a)))) using the
rule p(p(x)) → p(p(p(y))). Hence DGg(P,R) coincides with DGe(P,R). The
graph DGc(P,R)

68

5.3 Beyond Dependency Graphs

51 4

2 3

does not contain an arc from 1 to 5 because 5 is unreachable from 1. This
is certified by the tree automaton A consisting of the final state 5 and the
following transitions:

a→ 1 p(1)→ 2 p(2)→ 3 | 4 p(3)→ 4 G(4)→ 5

Note that G(p(p(p(a)))) ∈ L(A) and Σ(G(p(p(s(x))))) ∩ L(A) = ∅. Further-
more, L(A) =→∗R({G(p(p(p(a))))}) = {G(p(p(p(a)))),G(p(p(a)))}.

Concerning the converse direction, there are TRSs such that DGe(P,R) and
DGnv(P,R) are properly contained in DGc(P,R). We assume that this also
holds for DGs(P,R) although we did not succeed in finding an example.

Example 5.54. Consider the TRSR consisting of the rule f(a, b, x)→ f(x, x, x)
and the TRS P consisting of the rewrite rule F(a, b, x) → F(x, x, x). Obvi-
ously, DGc(P,R) admits an arc from F(a, b, x)→ F(x, x, x) to itself because the
ground instance F(a, b, a) of F(a, b, x) is contained in Σ(ren(F(x, x, x))). How-
ever, it is easy to see that neither DGe(P,R) nor DGnv(P,R) contain an arc
from F(a, b, x) → F(x, x, x) to itself because tcap(R−1,F(a, b, x)) = F(a, b, y)
does not unify with F(x, x, x) and no ground instance of F(x, x, x) is contained
in ←∗nv(R)(Σ(F(a, b, x))).

5.3.5 Innermost Dependency Graphs

In the following we show how the ideas presented in Subsections 5.3.2 and 5.3.3
can be extended to innermost termination. Let R be a TRS. The innermost
relation i−→ of R is defined as s i−→R t if there is a rewrite rule l → r ∈ R, a
position p ∈ Pos(l), and a substitution σ such that s|p = lσ, t = s[rσ]p, and
for all proper subterms u C s|p, u is a normal from with respect to R. We
say that R is innermost terminating if it does not admit an infinite innermost
rewrite sequence. Let P and R be two TRSs and G = (P,P × P) a directed
graph. A minimal innermost rewrite sequence is an infinite rewrite sequence of
the form s1

i−→P t1 i−→∗R s2
i−→P t2 i−→∗R · · · such that si ε−→ ti and (αi, αi+1) ∈ G

for all i > 1. A DP problem (P,R,G) is called innermost finite if there are no
minimal innermost rewrite sequences. Similar as for full termination, a TRS R
is innermost terminating if and only if the initial DP problem (DP(R),R,G)
with G = (DP(R),DP(R) × DP(R)) is innermost finite [28, 55]. To prove
innermost finiteness of a DP problem so called innermost DP processors are
used. In order to be employed to prove innermost termination they need to
be innermost sound , that is, if all DP problems in a set returned by a DP
processor are innermost finite then the initial DP problem is innermost finite.
In addition, to ensure that a DP processor can be used to prove innermost non-
termination it must be innermost complete which means that if one of the DP
problems returned by the DP processor is not innermost finite then the original
DP problem is not innermost finite.

69

5 The Dependency Pair Framework

Definition 5.55. Let P and R be two TRSs. The innermost dependency graph
processor is defined as

(P,R,G) 7→ {(P,R,G ∩ DGi(P,R))}

where DGi(P,R) is the innermost dependency graph of P and R, which has the
rules in P as nodes and there is an arc from s→ t to u→ v if and only if there
exist substitutions σ and τ such that tσ i−→∗R uτ and sσ and uτ are normal
forms with respect to R.

The following result is well-known [1, 27, 55].

Theorem 5.56. The innermost dependency graph processor is innermost sound
and innermost complete.

By incorporating right-hand sides of forward closures, arcs of the innermost
dependency graph can sometimes be eliminated. The only complication is that
innermost rewriting is not closed under substitutions. To overcome this problem
we add a fresh unary function symbol besides the constant # to the signature
and assume that Σi

#(RFCt(P ∪ R)) denotes the set of ground terms that are
obtained from terms in RFCt(P ∪ R) by instantiating the variables by terms
built from # and this unary function symbol.

Definition 5.57. Let P and R be two TRSs. The improved innermost depen-
dency graph of P and R, denoted by IDGi(P,R), has the rules in P as nodes
and there is an arc from s→ t to u→ v if and only if there exist substitutions σ
and τ such that tσ i−→∗R uτ , tσ ∈ Σi

#(RFCt(P ∪R)), and sσ and uτ are normal
forms with respect to R.

The following results correspond to Lemma 5.42 and Theorem 5.44.

Lemma 5.58. Let P and R be right-linear TRSs and α, β ∈ P. If P ∪ R
admits a minimal innermost rewrite sequence in which infinitely many β-steps
directly follow α-steps then IDGi(P,R) admits an arc from α to β.

Proof. Assume that there is a minimal innermost rewrite sequence

s1
i−→P t1 i−→∗R s2

i−→P t2 i−→∗R s3
i−→P · · ·

in which infinitely many β-steps directly follow α-steps. Since i−→ ⊆ → we
may assume without loss of generality that s1 ∈ RFCrhs(α)(P ∪ R) according
to Lemma 5.40. Let i > 1 such that si i−→α ti

i−→∗R si+1
i−→β ti+1. Because

the set RFCrhs(α)(P ∪R) is closed under rewriting and hence also closed under
innermost rewriting with respect to P ∪ R we know that the term ti belongs
to RFCrhs(α)(P ∪ R). We have ti = rhs(α)σ and si+1 = lhs(β)τ for some sub-
stitutions σ and τ . Let Var(ti) = {x1, . . . , xn}. From ti ∈ RFCrhs(α)(P ∪R) we
infer that tiθ ∈ Σi

#(RFCrhs(α)(P ∪ R)) for the substitution θ that replaces the
variable xj by f j(#) for all j ∈ {1, . . . , n}. Here f denotes the fresh unary func-
tion symbol that has been added to the signature according to the definition of
Σi

#(RFCrhs(α)(P∪R)) to instantiate variables by terms build from # and f . Due

70

5.3 Beyond Dependency Graphs

to the facts that θ replaces each variable by a unique ground term in normal form
and ti

i−→∗R si+1 we have tiθ i−→∗R si+1θ and hence rhs(α)σθ i−→∗R lhs(β)τθ. It re-
mains to show that lhs(α)σθ and lhs(β)τθ are in normal form with respect to R.
For the latter term this is obviously the case since lhs(β)τ = si+1

i−→β ti+1 and
θ maps each variable in Var(si+1) ⊆ Var(ti) to a unique ground term in normal
form. In case of lhs(α)σθ there is also no problem because lhs(α)σ = si

i−→α ti
and θ replaces all variables in Var(si) which are also contained in Var(ti) by
pairwise distinct ground terms in normal form (all other variables remain un-
affected). It follows that IDGi(P,R) contains an arc from α to β.

Theorem 5.59. The improved innermost dependency graph processor

(P,R,G) 7→

{
{(P,R,G ∩ IDGi(P,R))} if P ∪R is right-linear
{(P,R,G ∩ DGi(P,R))} otherwise

is innermost sound and innermost complete.

Proof. Innermost soundness is an easy consequence of Lemma 5.58 and Theo-
rem 5.56. Innermost completeness follows from the inclusions G∩DGi(P,R) ⊆ G
and G ∩ IDGi(P,R) ⊆ G.

We want to approximate innermost dependency graphs as well as improved
innermost dependency graphs as discussed in Subsections 5.3.2 and 5.3.3. How-
ever there is one problem. The completion process is aimed to close a given
language under full rewriting but not under innermost rewriting. Since it is in
general impossible to close a tree automaton under innermost rewriting [16] we
have no other choice than to approximate i−→ by →. To make use of the fact
that sσ and uτ are normal forms with respect to R, we adapt the definition
of unreachable dependency pairs in two ways. First of all, to reflect that sσ
is a normal form, we restrict Σ(ren(t)) and Σi

#(RFCt(P ∪ R)) to the ground
instances of ren(t) that are obtained by substituting normal forms for the vari-
ables of ren(t). This is possible because sσ →P tσ and σ is normalized as sσ
is a normal form. To be able to approximate the set of normal forms of R we
remove all rewrite rules of R which are not left-linear. This step is necessary
because on the one hand for non-left-linear TRSs the set of normal forms need
not be regular [15] and on the other hand linearizing all non-left-linear rewrite
rules would result in an under-approximation of the set NF(R). Especially the
last fact is critical because ignoring it could easily result in incorrect approx-
imations of the (improved) innermost dependency graph. In the following we
write lhs-linear(R) for the TRS containing all left-linear rewrite rules of R. Fur-
thermore, the set {tσ | xσ ∈ NF(lhs-linear(R)) for all x ∈ Var(t)} of normalized
instances of a term t is denoted by ΣNF(t,R). Secondly, to make use of the
normal form property of uτ we demand that only instances of u that are in
normal form with respect to R have to be unreachable from normalized in-
stances of ren(t). Here, the set of normal form instances of a term u is denoted
by NF(u,R) and defined as NF(u,R) = NF(lhs-linear(R)) ∩ Σ(u).

Definition 5.60. Let P and R be two TRSs, α, β ∈ P, and L a language. We
say that β is innermost unreachable from α with respect to L if there is a tree

71

5 The Dependency Pair Framework

automaton A compatible with R and L ∩ ΣNF(ren(rhs(α)),R) such that A is
quasi-deterministic if P or R is non-left-linear and NF(lhs(β),R) ∩ L(A) = ∅.

Using the above notion, we are now ready to define an approximation of the
(improved) innermost dependency graph based on tree automata completion.

Definition 5.61. Let P and R be two TRSs. The nodes of the c-innermost
dependency graph DGi

c(P,R) are the rewrite rules of P and there is no arc
from α to β if and only if β is innermost unreachable from α with respect to
ΣNF(ren(rhs(α)),R). The nodes of the c-improved innermost dependency graph
IDGi

c(P,R) are the rewrite rules of P and there is no arc from α to β if and only
if β is innermost unreachable from α with respect to Σ#(RFCrhs(α)(P ∪R)).

Note that we replaced the set Σi
#(RFCrhs(α)(P∪R)) by Σ#(RFCrhs(α)(P∪R))

in the above definition of the c-improved innermost dependency graph because
i−→ is approximated by→ and ΣNF(ren(rhs(α)),R) as well as NF(lhs(β),R) con-

sider only the left-linear rewrite rules of R. So on the basis of these facts it is
sufficient to replace every variable of rhs(α) by the fresh constant #.

Lemma 5.62. Let P and R be two TRSs. Then DGi
c(P,R) ⊇ DGi(P,R) and

IDGi
c(P,R) ⊇ IDGi(P,R).

Proof. Straightforward adaption of the proofs of Lemmata 5.37 and 5.47.

In contrast to full termination only a few approximations of the innermost
dependency graph are known [1, 28, 32]. The most powerful one is a variant of
the estimated dependency graph defined in Subsection 5.3.4. In the remainder of
this subsection we compare DGi

c(P,R) and IDGi
c(P,R) with this approximation.

Let R be a set of rewrite rules and t a term. The function icap(R, t) is defined
as icap(R, t) = t if t is a variable and icap(R, t) = f(icap(R, t1), . . . , icap(R, tn))
if t = f(t1, . . . , tn) and f(icap(R, t1), . . . , icap(R, tn)) does not unify with any
l ∈ lhs(R). Otherwise icap(R, t) = x for some fresh variable x.

Definition 5.63. Let P and R be two TRSs. The nodes of the estimated
innermost dependency graph DGi

e(P,R) are the rewrite rules of P and there is
an arc from s→ t to u→ v if and only if there are most general unifiers σ and
τ such that icap(R, t)σ = u′σ, tτ = tcap(R−1, u′)τ , and sσ, u′σ, and sτ are
normal forms with respect to R. Here u′ denotes a fresh variant of u that does
not have common variables with s and t.

The reason why we use the function tcap in the above definition to check
whether there is a R−1 rewrite sequence from and instance of u to an instance
of t is that an innermost rewrite sequence tσ i−→∗R uτ does not necessarily
guarantee the existence of the innermost sequence uτ i−→∗R−1 tσ. So if we would
use icap instead of tcap, the estimated dependency graph DGi

e(P,R) would be
incorrect. An interesting and immediate consequence of the use of tcap is that
it is needless to check if u′τ is a normal form. Because tcap renames all variables
of u′ we have u′τ = u′. So if u′ is not a normal form then the same holds for
u′σ, independent from the given σ. From [28, 49] the following result can be
derived.

72

5.3 Beyond Dependency Graphs

Lemma 5.64. For TRSs P and R, DGi
e(P,R) ⊇ DG(P,R).

The next example demonstrates that neither DGi
c(P,R) nor IDGi

c(P,R) is
subsumed by DGi

e(P,R).

Example 5.65. Consider the TRSs R consisting of the rules f(x, x)→ f(a, b)
and a → c, and P consisting of the dependency pair F(x, x) → F(a, b) of
R. First we compute DGi

e(P,R). We have icap(R,F(a, b)) = F(u, b) and
tcap(R−1,F(y, y)) = F(v, w). Here F(y, y) represents the fresh variant of F(x, x)
required by Definition 5.63. Because F(u, b) unifies with F(y, y) using the most
general unifier σ = {y 7→ b, u 7→ b}, F(a, b) unifies with F(v, w) using the most
general unifier τ = {v 7→ a, w 7→ b}, and F(x, x)σ = F(x, x), F(y, y)σ = F(b, b),
as well as F(x, x)τ = F(x, x) are normal forms with respect to R, we know
that DGi

e(P,R) contains an arc from F(x, x) → F(a, b) to itself. The graphs
DGi

c(P,R) and IDGi
c(P,R) coincide and do not contain any arcs because in

both cases F(x, x) → F(a, b) is innermost unreachable from itself. This is cer-
tified by the tree automaton A consisting of the final state 3 and the following
transitions:

a→ 1 b→ 2 c→ 1 F(1, 2)→ 3

Note that F(a, b) ∈ L(A) and NF(F(x, x),R)∩L(A) = ∅. Additionally we have
L(A) = →∗R(L) = {F(a, b),F(c, b)} for both L = ΣNF(F(a, b),R) = {F(a, b)}
and L = Σ#(RFCF(a,b)(P ∪R)) = {F(a, b),F(c, b)}.

The converse directions also do not hold. First we show that DGi
e(P,R) is

not subsumed by DGi
c(P,R).

Example 5.66. Consider the TRSs R and P of Example 5.54. Clearly, the
graph DGi

c(P,R) admits an arc from F(a, b, x) → F(x, x, x) to itself because
the normalized ground instance F(a, b, a) of F(a, b, x) is contained in the set
ΣNF(ren(F(x, x, x)),R) since both a and b are normal forms. (Note that we
have lhs-linear(R) = R because R is left-linear.) In contrast, DGi

e(P,R) does
not contain such an arc because icap(R,F(y, y, y)) = F(y, y, y) does not unify
with F(a, b, x). Here F(y, y, y) represents the fresh variant of F(x, x, x) required
by Definition 5.63.

The next example shows that IDGi
c(P,R) does not subsume DGi

e(P,R).

Example 5.67. Consider the TRSs R and P of Example 5.52. It is easy to see
that IDGi

c(P,R) admits arcs from 3 to 1 and 2 because F(a, a) is an instance
of F(x, x) which is in normal form with respect to lhs-linear(R). The rewrite
sequence F(a, g(#, b)) →R′# F(a, b) →P ′# F(a, g(b, b)) together with the fact
that F(a, g(b, b)) ∈ NF(F(a, g(x, x)),R) yields an arc from 1 to 3. Likewise,
IDGi

c(P,R) contains arcs from 1 to 1 and 2 because F(a, g(#, b)) →P ′# F(a, a)
and F(a, a) ∈ NF(F(x, x),R). Finally, we also have an arc from 3 to 3 because
F(a, a) →P ′# F(a, g(a, b)) →R′# F(a, b) →P ′# F(a, g(b, b)) and F(a, g(b, b)) is an
instance of F(a, g(x, x)) which is in normal form with respect to lhs-linear(R).
Further arcs do not exist. Hence IDGi

c(P,R) looks as follows:

73

5 The Dependency Pair Framework

1

2

3

Compared to IDGi
c(P,R), DGi

e(P,R) does not admit an arc from 3 to 3 because
icap(R,F(a, a)) = F(a, a) and F(a, a) does not unify with F(a, g(y, y)).

5.4 Usable Rules

A widely used approach to increase the power of DP processors is to consider
only those rewrite rules of R which are usable [1, 28, 29, 33]. Let (P,R,G) be
a DP problem. The set of usable rules is defined as

U(P,R) =
⋃

s→t∈P
U(R, t)

where U(R, t) ⊆ R denotes the smallest set of rules such that

• U(R, r) ⊆ U(R, t) if l→ r ∈ U(R, t),

• U(R, u) ⊆ U(R, t) if u is a subterm of t, and

• l → r ∈ U(R, t) if t = f(t1, . . . , tn) and f(tcap(R, t1), . . . , tcap(R, tn))
unifies with a fresh variant of a left-hand side l ∈ lhs(R).

Furthermore, in the case that P or R is duplicating we require that the rewrite
rules c(x, y) → x and c(x, y) → y belong to U(P,R), where c is a fresh func-
tion symbol. The two projection rules ensure that (P,U(P,R),G) admits an
infinite rewrite sequence whenever (P,R,G) is not finite. If we switch from full
termination to innermost termination, we can improve the definition of usable
rules by using the function icap instead of tcap. So, the set of innermost usable
rules for a DP problem (P,R,G) is defined as

Ui(P,R) =
⋃

s→t∈P
Ui(R, t)

where Ui(R, t) ⊆ R denotes the smallest set of rules such that

• Ui(R, r) ⊆ Ui(R, t) if l→ r ∈ Ui(R, t),

• Ui(R, u) ⊆ Ui(R, t) if u is a subterm of t, and

• l → r ∈ Ui(R, t) if t = f(t1, . . . , tn) and f(icap(R, t1), . . . , icap(R, tn))
unifies with a fresh variant of a left-hand side l ∈ lhs(R).

Note that in contrast to full termination it is not necessary to add projection
rules c(x, y) → x and c(x, y) → y for some fresh function symbol c because
redexes are only contracted if all immediate arguments are in normal form. Let
us illustrate the above definitions on a small example.

74

5.4 Usable Rules

Example 5.68. Let R be the TRS consisting of the rewrite rules

f(x, x)→ f(g(x, s(x)), a) g(x, x)→ h(x) h(x)→ x a→ b

and let P be the TRS consisting of the rewrite rules F(x, x) → F(g(x, s(x)), a)
and F(x, x) → G(x, s(x)). According to the definition of usable rules we have
U(P,R) = U(R,F(g(x, s(x)), a))∪U(R,G(x, s(x))). Since the function symbols
F, G, and s are not defined with respect to the TRS R it is easy to see that
U(R,F(g(x, s(x)), a)) = U(R, g(x, s(x))) ∪ U(R, a) and U(R,G(x, s(x))) = ∅.
Because tcap(R, x) = y, tcap(R, s(x)) = s(z), and tcap(R, a) = u we have

U(R, g(x, s(x))) = {g(x, x)→ h(x), h(x)→ x} U(R, a) = {a→ b}

and hence U(P,R) = {g(x, x)→ h(x), h(x)→ x, a→ b}. Note that the rewrite
rule h(x) → x in U(R, g(x, s(x))) has been obtained from the right-hand side
of the rewrite rule g(x, x)→ h(x). If we compute the innermost usable rules of
P and R we get

Ui(R, g(x, s(x))) = ∅ Ui(R, a) = {a→ b}

because icap(R, x) = x, icap(R, s(x)) = s(x), and icap(R, a) = y. It follows that
Ui(P,R) = {a→ b}.

The following result is well-known [27, 28, 33, 55].

Lemma 5.69. If a DP problem (P,R,G) admits a minimal rewrite sequence
s1

ε−→α1 t1 →∗R s2
ε−→α2 t2 →∗R · · · then the DP problem (P,U(P,R),G) admits

an infinite rewrite sequence u1
ε−→αi v1 →∗U(P,R) u2

ε−→αi+1 v2 →∗U(P,R) · · · with
i > 1 and αj ∈ P for all j > 1.

Since in general the transformation from (P,R,G) to (P,U(P,R),G) does
not preserve the minimality of infinite rewrite sequences (the property that the
terms t1, t2, . . . are terminating in the definition on page 50) if P or R is
duplicating [30], it must be guaranteed that the match-bounds processors of
Theorems 5.2, 5.12, 5.14, and 5.20 as well as the graph processors of Defini-
tion 5.31 and Theorem 5.44 do not rely on the minimality of infinite rewrite
sequences. In case of innermost termination such complications do not appear.
The subsequent result is well-known [27, 28, 55].

Lemma 5.70. If a DP problem (P,R,G) admits a minimal innermost rewrite
sequence s1

i−→α1 t1
i−→∗R s2

i−→α2 t2
i−→∗R · · · then the DP problem (P,Ui(P,R),G)

admits a minimal innermost rewrite sequence u1
i−→αi v1

i−→∗Ui(P,R) u2
i−→αi+1

v2
i−→∗Ui(P,R) · · · with i > 1 and αj ∈ P for all j > 1.

Note that the revers directions of the previous lemmata do not hold. In the
remainder of this section we address how usable rules can be used to improve
the DP processors presented in the preceding sections. First we focus on the
match-bounds processors defined in Section 5.2. Afterwards, the DP processors
of Section 5.3 are considered.

75

5 The Dependency Pair Framework

5.4.1 Match-Bounds

As indicated before, if we want to retrofit the match-bounds processors with
usable rules, we have to take care of the fact that usable rules do not preserve
the minimality of infinite rewrite sequences. For the match-bounds processors
of Theorems 5.2 and 5.14 this behavior does not constitute any problems, since
e(-raise)-bounds take all infinite rewrite sequences into account.

Corollary 5.71. Let (P,R,G) be a DP problem and L a language. If the TRS
P ∪ U(P,R) is left-linear and e-bounded for L or e-raise-bounded for L then
(P,R,G) is finite.

Similarly, the DP processors of Theorems 5.12 and 5.20 with e = top also
consider all infinite rewrite sequences, as stated by Lemmata 5.8 and 5.17. For
e = match there is also no problem since e = match can only be used for
non-duplicating systems and it is known that usable rules can be used without
restrictions for non-duplicating systems.4

Corollary 5.72. Let (P,R,G) be a DP problem, s→ t ∈ P, and L a language.
If P ∪U(P,R) is left-linear and (P,U(P,R),G) is e-DP-bounded for s→ t and
L then (P,R,G) is finite if and only if (P,R,G)\{s→ t} is finite. Likewise, if
(P,U(P,R),G) is e-raise-DP-bounded for s → t and L then (P,R,G) is finite
if and only if (P,R,G) \ {s→ t} is finite.

Let us illustrate the above results on an example.

Example 5.73. Consider the TRS R consisting of the following three rewrite
rules:

f(x, g(y, a))→ g(f(x, y), x) f(x, a)→ x g(x, a)→ x

The dependency pairs of R are F(x, g(y, a))→ G(f(x, y), x) and F(x, g(y, a))→
F(x, y). After applying the dependency graph processor of Definition 5.31 as
well as the SCC processor of Definition 5.32 to the initial DP problem induced
by R we end up with the following DP problem: ({s → t},R,G) where s → t
is the second dependency pair and G = ({s → t}, {s → t} × {s → t}). To
prove finiteness of this DP problem we can now use the DP processors induced
by Corollaries 5.71 and 5.72. Since s → t does not cause any rules to be
usable we have U({s → t},R) = ∅. Because {s → t} is match-bounded
by 1 we can conclude that ({s → t},R,G) is finite by Corollary 5.71. If we
apply Corollary 5.72 instead of Corollary 5.71 we obtain finiteness of the DP
problem ({s → t},R,G) because ({s → t},U({s → t},R),G) is match-DP-
bounded for s → t by 1. Without using usable rules both DP processors fail.
The reason is that for ({s → t},R,G) roof-bounds instead of match-bounds
and top-DP-bounds instead of match-DP-bounds have to be used because R
is duplicating. However by using roof-bounds or top-DP-bounds we do not
succeed in constructing a compatible tree automaton.
4In [27, Example 14] and [33, Theorem 23] this has been shown for a slightly different definition
of usable rules. Nevertheless, this result carries over to the present setting without any
problems.

76

5.4 Usable Rules

Note that the DP processors obtained from Corollaries 5.71 and 5.72 are in
general not more powerful than the ones of Theorems 5.2, 5.12, 5.14, and 5.20.
The reason is that by using U(P,R) instead of R it is possible that for dupli-
cating TRSs P ∪R the DP problem (P,U(P,R),G) admits a minimal rewrite
sequence whereas (P,R,G) does not.

Example 5.74. Consider the TRS R consisting of the rewrite rule f(a, b, x)→
f(x, x, x). There is one dependency pair, namely F(a, b, x) → F(x, x, x). By
using Theorem 5.2 it can be easily checked that the DP problem (DP(R),R,G)
with G = (DP(R),DP(R) × DP(R)) is roof-bounded by 1, and hence finite.
Similarly, Theorem 5.12 allows to conclude finiteness of (DP(R),R,G) because
(DP(R),R,G) is top-DP-bounded for F(a, b, x)→ F(x, x, x) by 1. If we combine
both DP processors with usable rules, finiteness of (DP(R),R,G) can no longer
be shown since (DP(R),U(DP(R),R),G) admits the following minimal cyclic
rewrite sequence:

F(a, b, c(a, b)) ε−→DP(R) F(c(a, b), c(a, b), c(a, b))

→U(DP(R),R) F(a, c(a, b), c(a, b))

→U(DP(R),R) F(a, b, c(a, b))

Here U(DP(R),R) = {c(x, y)→ x, c(x, y)→ y}.

5.4.2 Dependency Graphs

For the dependency graph processor of Definition 5.31 it is already known that
it can be combined with usable rules [28].

Theorem 5.75. Let P and R be two TRSs and α, β ∈ P. If P ∪ R admits
a minimal rewrite sequence in which a β-step directly follows an α-step, then
DG(P,U(P,R)) admits an arc from α to β.

Let us illustrate the above result on an example where DG(P,U(P,R)) is
approximated by DGc(P,U(P,R))

Example 5.76. Consider the DP problem (P,R,G) with R consisting of the
rewrite rules

p(x, x)→ a g(x, x, y, y)→ h(x, x, y, y)
p(x, x)→ b h(a, x, b, y)→ f(p(a, b), x, p(a, b), y)
p(x, x)→ x

P consisting of the single rewrite rule F(f(x, x, x, x)) → F(g(x, x, x, x)), and
G = (P,P ×P). Since P as well as R are non-duplicating, U(P,R) consists of
all rules of R except p(x, x) → a, p(x, x) → b, and p(x, x) → x. Starting with
the initial tree automaton

a→ 1 b→ 2 F(4)→ 5
f(p, q, u, v)→ 3 g(p, q, u, v)→ 4 h(p, q, u, v)→ 3 p(p, q)→ 3

77

5 The Dependency Pair Framework

where p, q, u, v ∈ {1, 2, 3, 4} and 5 is the only final state, it is straightfor-
ward to construct a quasi-deterministic tree automaton A that is compatible
with U(P,R) and Σ(F(g(u, x, y, z))) such that Σ(F(f(x, x, x, x))) ∩ L(A) = ∅.
Hence F(f(x, x, x, x))→ F(g(x, x, x, x)) is unreachable from itself and therefore
DGc(P,U(P,R)) is empty. If we use R instead of U(P,R) we cannot prove the
absence of the arc from F(f(x, x, x, x)) → F(g(x, x, x, x)) to itself. The reason
is that in every quasi-deterministic tree automaton B = (F , Q,Qf ,∆) over the
signature F = {a, b, f, g, h, p} that is compatible with R and Σ(F(g(u, x, y, z)))
we cannot distinguish between the term p(p(a, b), p(a, b)) and the terms a and
b due to the rewrite rules p(x, x)→ a and p(x, x)→ b. To illustrate this effect
assume to the contrary that there is such a tree automaton. We consider the
derivation

C[p(p(a, b), p(a, b))]→∗∆φ
C[p(p, p)]→∆φ

C[q]→∗∆φ
qp

for some arbitrary context C and states p, q ∈ Q and qp ∈ Qf . Because B
is compatible with R, especially with the rules p(x, x) → a and p(x, x) → b,
we know that the transitions a → q and b → q belong to ∆. This however
implies that φ(a) �φ q and φ(b) �φ q. So the derivation C[q] →∗∆φ

qp gives
rise to the sequences C[φ(a)] →∗∆φ

qa and C[φ(b)] →∗∆φ
qb with qa, qb ∈ Q,

qa �φ qp, and qb �φ qp (see Lemma 3.15). Because qa and qb subsume qp and
qp ∈ Qf it follows that qa, qb ∈ Qf . Using this property it is easy to show that
DGc(P,R) admits an arc from the rewrite rule F(f(x, x, x, x))→ F(g(x, x, x, x))
to itself. Consider the term F(g(t, t, t, t)) ∈ L(B) with t = p(p(a, b), p(a, b)).
We have F(h(t, t, t, t)) ∈ L(B) because F(g(t, t, t, t)) →R F(h(t, t, t, t)). Using
the property that t is indistinguishable from the terms a and b we conclude
that F(h(a, t, b, t)) ∈ L(B). Finally, the term F(f(p(a, b), p(a, b), p(a, b), p(a, b)))
belongs to L(B) according to the following rewrite sequence:

F(h(a, t, b, t))→R F(f(p(a, b), t, p(a, b), t))
→R F(f(p(a, b), p(a, b), p(a, b), t))
→R F(f(p(a, b), p(a, b), p(a, b), p(a, b)))

Hence DGc(P,R) admits an arc from F(f(x, x, x, x))→ F(g(x, x, x, x)) to itself.

Although the improved dependency graph IDG(P,R) relies on the minimality
of infinite rewrite sequences, we obtain a similar result as for the dependency
graph DG(P,R) because it can only be applied to right-linear and hence non-
duplicating TRSs P and R.

Corollary 5.77. Let P and R be two right-linear TRSs and α, β ∈ P. If
P ∪ R admits a minimal rewrite sequence in which infinitely many β-steps
directly follow α-steps, then IDG(P,U(P,R)) admits an arc from α to β.

In case of the improved dependency graph processor obtained from Theo-
rem 5.75 and Corollary 5.77 it is obvious that we can benefit from the usage of
usable rules because sometimes P∪U(P,R) is right-linear whereas P∪R is not.
In such a situation we can compute IDG(P,U(P,R)) instead of DG(P,R) which
might entail the removal of additional arcs. The following example illustrates
this effect.

78

5.4 Usable Rules

Example 5.78. Consider the DP problem (P,R,G) with with R consisting
of the rewrite rules f(x, s(y)) → g(f(x, p(y)), x) and p(x) → x, P consisting
of the rewrite rule F(x, s(y)) → F(x, p(y)), and G = (P,P × P). The usable
rules of P and R are U(P,R) = {p(x) → x}. Since P as well as U(P,R) are
right-linear we can apply Corollary 5.77 where IDG(P,U(P,R)) is estimated
by IDGc(P,U(P,R)). It is easy to see that IDGc(P,U(P,R)) is empty because
F(#, p(#)) can never be rewritten to an instance of F(x, s(y)) via rewrite rules
in (P ∪ U(P,R))#. Hence (P,R,G) is finite. If we use the DP processor of
Theorem 5.44 we have to compute DG(P,R) because R is not right-linear.
Since F(x, p(s(y))) →R F(x, s(y)) by applying the rule p(x) → x we know that
any approximation of DG(P,R) contains an arc from F(x, s(y))→ F(x, p(y)) to
itself. Hence we cannot conclude finiteness.

It is somehow clear that the DP processors obtained from Theorem 5.75
and Corollary 5.77, where DG(P,U(P,R)) is approximated by DGc(P,U(P,R))
and IDG(P,U(P,R)) is approximated by IDGc(P,U(P,R)), are in general not
more powerful than the ones of Definition 5.31 and Theorem 5.44, estimated
by DGc(P,R) and IDGc(P,R). The reason is that by using U(P,R) instead of
R it is possible that for duplicating P ∪R, the two projection rules contained
in U(P,R) cause some additional arcs.

Example 5.79. Consider the DP problem (P,R,G) with R consisting of the
rewrite rules

g(x, x, y, y)→ h(x, x, y, y) h(a, x, b, y)→ f(x, x, y, y)

P consisting of the single rewrite rule F(f(x, x, x, x)) → F(g(x, x, x, x)), and
G = (P,P × P). Since R is duplicating, the DP processors of Definition 5.31
and Theorem 5.44 where DG(P,R) is estimated by DGc(P,R) and IDG(P,R) is
approximated by IDGc(P,R) coincide. Starting with the initial tree automaton

a→ 1 b→ 2 F(4)→ 5
f(p, q, u, v)→ 3 g(p, q, u, v)→ 4 h(p, q, u, v)→ 3

where p, q, u, v ∈ {1, 2, 3, 4} and 5 is the only final state, it is straightfor-
ward to construct a quasi-deterministic tree automaton A that is compati-
ble with R and Σ(F(g(u, x, y, z))) such that Σ(F(f(x, x, x, x))) ∩ L(A) = ∅.
Thus F(f(x, x, x, x)) → F(g(x, x, x, x)) is unreachable from itself and therefore
DGc(P,R) is empty. It follows that (P,R,G) is finite. If we take U(P,R)
instead of R we cannot prove finiteness of (P,R,G) because DGc(P,U(P,R))
admits an arc from F(f(x, x, x, x)) → F(g(x, x, x, x)) to itself, caused by the
following U(P,R) rewrite sequence:

F(g(c(a, b), c(a, b), c(a, b), c(a, b))))→ F(h(c(a, b), c(a, b), c(a, b), c(a, b))))
→ F(h(a, c(a, b), c(a, b), c(a, b))))
→ F(h(a, c(a, b), b, c(a, b))))
→ F(f(c(a, b), c(a, b), c(a, b), c(a, b))))

Here c denotes the fresh function symbol introduced by the two projection rules
c(x, y)→ x and c(x, y)→ y which have been added to R to obtain U(P,R).

79

5 The Dependency Pair Framework

In contrast to full termination it is obvious that we can combine the inner-
most graph processors defined in Subsection 5.3.5 with innermost usable rules
because, according to Lemma 5.70, minimality of infinite rewrite sequences is
preserved. Hence we obtain the following results.

Corollary 5.80. Let P and R be two TRSs and α, β ∈ P. If P ∪ R admits
a minimal innermost rewrite sequence in which a β-step directly follows an
α-step, then DGi(P,Ui(P,R)) admits an arc from α to β.

Corollary 5.81. Let P and R be right-linear TRSs and α, β ∈ P. If P ∪ R
admits a minimal innermost rewrite sequence in which infinitely many β-steps
directly follow α-steps, then IDGi(P,Ui(P,R)) admits an arc from α to β.

Let us illustrate the above results on two examples. The first one illus-
trates the positive effect of usable rules if we approximate DGi(P,Ui(P,R)) by
DGi

c(P,Ui(P,R)).

Example 5.82. Let R be the TRS consisting of the two rules g(x, x)→ h(a, a)
and f(h(x, a))→ f(g(x, f(x))). There are two dependency pairs of R:

1 : F(h(x, a))→ F(g(x, f(x))) 2 : F(h(x, a))→ G(x, f(x))

Because lhs-linear(R) consists just of the rewrite rule f(h(x, y)) → f(g(x, f(x)))
we know that F(g(f(a), f(a))) ∈ ΣNF(F(g(x, f(y))),R). Together with the facts
that F(g(f(a), f(a))) →R F(h(a, a)) and F(h(a, a)) is an instance of F(h(x, a))
which is in normal form with respect to lhs-linear(R) we know that DGi

c(P,R)
admits an arc from 1 to 1 as well as from 1 to 2. In contrast the graph
DGi

c(P,Ui(P,R)) is empty. We have Ui(P,R) = ∅ and so

→∗Ui(P,R)(ΣNF(F(g(x, f(y))),Ui(P,R))) = ΣNF(F(g(x, f(y))),Ui(P,R))

because all ground instances of the right-hand side F(g(x, f(y))), contained in
the set ΣNF(F(g(x, f(y))),Ui(P,R)), are in normal form with respect to the TRS
lhs-linear(Ui(P,R)).

The next example shows that we can sometimes delete additional arcs of
improved innermost dependency graphs if we switch from R to Ui(P,R).

Example 5.83. It is not difficult to see that for the TRSs R and P with R
consisting of the rewrite rules f(a, x) → f(g(a, b), x) and g(x, x) → a, and P
consisting of the rewrite rules

1 : F(a, x)→ F(g(a, b), x) 2 : F(a, x)→ G(a, b)

IDGi
c(P,R) contains arcs from 1 to 1 and 2 because F(g(a, b),#)→R′# F(a,#)

by applying the rewrite rule g(x, y) → a contained in R′#. If we replace R by
Ui(P,R) the situation changes completely as Ui(P,R) = ∅. As a result the
term F(g(a, b),#) is in normal form with respect to (P ∪ Ui(P,R))# and hence
IDGi

c(P,Ui(P,R)) is empty.

80

5.5 Summary

Similar as for full termination, the innermost DP processors of Definitions 5.55
and 5.57 are in general incomparable to the ones obtained from Corollaries 5.80
and 5.81. The reason is that by using the TRS Ui(P,R) instead of R it is
possible that rewrite rules are removed which are essential for the finiteness of
(P,R,G).

Example 5.84. Consider the TRS R consisting of the rewrite rules

f(a, x)→ f(x, x) a→ b

and the TRS P consisting of the dependency pair F(a, x)→ F(x, x) of R. It is
easy to see that the DP problem (P,R,G) where G = (P,P × P) is innermost
finite because the left-hand side of the rewrite rule F(a, x) → F(x, x) is not in
normal form with respect to R. Hence it can never be applied. This behavior
is also reflected by the innermost graph processors of Definitions 5.55 and 5.57,
estimated by DGi

c(P,R) and IDGi
c(P,R). Since the underlying TRS R is dupli-

cating both processors compute the graph DGi
c(P,R). Because a is not a normal

form of lhs-linear(R) we conclude that F(a, x)σ 6∈ NF(F(a, x),R) for all ground
substitutions σ. Hence DGi

c(P,R) is empty and therefore (P,R,G) is inner-
most finite. If we use the DP processors induced by Corollaries 5.80 and 5.81,
innermost finiteness of (P,R,G) can no longer be shown since (P,Ui(P,R),G)
admits the following minimal cyclic innermost rewrite sequence:

F(a, a) i−→P F(a, a)

Here Ui(P,R) = ∅. Note that a is now a normal from because the rewrite rule
a→ b has been removed.

5.5 Summary

In this chapter we showed how the match-bound technique can be integrated
into the dependency pair framework. For that purpose we introduced two
new enrichments which take care of the special properties of dependency pair
problems. After that we illustrated how tree automata completion can be used
to approximate dependency graphs. Furthermore, we showed that by using
tree automata techniques together with forward closures we can sometimes
remove arcs of the exact dependency graphs. Last but not least we combined
all developed DP processors with usable rules.

An important open question is whether we can use the roof enrichment in
connection with dependency pairs. To ensure soundness of roof(-raise)-DP-
bounds, it has to be proved that no restriction of roof-DP(P, s→ t,R) to a finite
signature admits a minimal rewrite sequence with infinitely many ε−→roof(s→t)-
steps (root r−→roof(s→t)-steps). We conjecture that this claim holds for arbitrary
TRSs P and R. A positive solution would make additional termination proofs
possible.

81

Chapter 6

Complexity Analysis

As soon as we have established the termination of a given TRS R, it is natural
to analyze its complexity in order to determine the amount of resources that
are necessary to perform computations with R. In the area of term rewriting
the length of derivations provides a suitable measurement for the complexity
of rewrite systems, as proposed by Hofbauer and Lautemann [36]. The result-
ing notion of derivational complexity relates the length of the longest rewrite
sequence to the size of its starting term. Thereby it is, for instance, a suitable
metric for the complexity of deciding the word problem for confluent and termi-
nating rewrite systems. If one regards a rewrite system as a program and wants
to estimate the maximal number of computation steps needed to evaluate an
expression to a result, then the special shape of the starting terms—a function
applied to data which is in normal form—can be taken into account. Hirokawa
and Moser [34] identified this special form of complexity and named it runtime
complexity.

To show feasible upper complexity bounds, currently only a few techniques
are known. Typically, termination criteria are restricted such that a polynomial
complexity of the underlying TRS can be inferred. One of the most powerful
methods to establish (linear) complexity bounds is the match-bound technique
introduced in Chapter 4. Its ability to prove termination of an arbitrary reg-
ular set of ground terms makes it one of the most powerful methods that can
be used to establish (linear) runtime complexity. Other techniques used to
prove polynomial upper bounds are based on polynomial interpretations [36],
suitably restricted to admit quadratic complexity bounds, arctic matrix in-
terpretations [39] to conclude linear complexity bounds, or triangular matrix
interpretations [50] which induce polynomially long derivations (the dimension
of the matrices yields the degree of the polynomial). All these methods share
the property that until now they have been used directly only, meaning that a
single termination technique has to orient all rules in one go. However, using di-
rect criteria exclusively is problematic due to their restricted power. In [34, 35]
Hirokawa and Moser have lifted many aspects of the dependency pair framework
from termination analysis into the complexity setting, resulting in the notion
of weak dependency pairs. So for the special case of runtime complexity for the
first time a modular approach has been introduced. There the modular aspect
amounts to using different interpretation based criteria for parts of the depen-
dency graph and the usable rules. However, still all rewrite rules considered
must be oriented strictly in one go and only restrictive criteria may be applied

83

6 Complexity Analysis

for the usable rules. In the following part we present a new approach which ad-
mits a fully modular treatment. The approach is general enough that it applies
to derivational as well as runtime complexity and basic enough that it allows
us to combine completely different complexity criteria such as match-bounds
and triangular matrix interpretations. By the modular combination of different
criteria also gains in power are achieved. These gains come in two flavors. On
one hand our approach allows us to obtain lower complexity bounds for several
TRSs where complexity bounds have already been established before and on
the other hand we found complexity bounds for systems that could not be dealt
with before automatically.

The remainder of this chapter is organized as follows. First some preliminaries
about complexity analysis are fixed. In Section 6.2 we formulate a modular
framework for complexity analysis based on relative termination. In Section 6.3
we show how the match-bound technique can be used for complexity analysis
within this setting. Our results have been implemented in the complexity prover
CaT. The technical details can be inferred from Section 6.4.

Some of the results presented in this chapter appeared already in the con-
ference paper [61]. New contributions include an improved version of relative
match-bounds as well as an extended version of the complexity framework. In
addition we explain in detail how match-RT-bounds can be extended to non-
duplicating TRSs, resulting in the notion of match(-raise)-RT-boundedness,
and how (quasi-deterministic, raise-consistent, and) (quasi-)compatible tree au-
tomata can be used to automatically check for match(-raise)-RT-boundedness.

6.1 Preliminaries

A relative TRSR/S is a pair of TRSsR and S with the induced rewrite relation
→R/S =→∗S · →R · →∗S . A relative TRS R/S is called linear (left-linear, dupli-
cating) if R∪S is linear (left-linear, duplicating respectively). We say that R/S
is terminating if→R/S is well founded. In the sequel we will sometimes identify
a TRS R with the relative TRS R/∅. Let F be some signature and L ⊆ T (F)
a language. The derivation length of a term t with respect to a rewrite rela-
tion → is defined as dl(t,→) = max {n > 0 | t→n u for some u ∈ T (F ,V)}.
Here →n denotes the n-th iterate of →. The complexity of a rewrite rela-
tion → with respect to a language L, denoted by cpL(n,→), computes the
maximal derivation length of all terms in L up to a given size and is de-
fined as cpL(n,→) = max {dl(t,→) | t ∈ L and |t| 6 n}. Sometimes we say
that a TRS R (relative TRS R/S) has a linear, quadratic, etc. complexity
with respect to L if cpL(n,→R) (cpL(n,→R/S)) can be bounded by a lin-
ear, quadratic, etc. polynomial in n. Let R be a TRS over some signature
F . The derivational complexity of R, abbreviated by dc(n,R) and defined as
dc(n,R) = cpT (F)(n,→R), computes the complexity of →R with respect to all
ground terms induced by the signature F . In contrast, the runtime complex-
ity of R just computes the maximal derivation length of all constructor-based
terms: rc(n,R) = cpTC(R)(n,→R). Here, the set of constructor-based terms
TC(R) is defined as the set of all terms t = f(t1, . . . , tn) such that f ∈ FunD(R),

84

6.2 Modular Complexity Analysis

and ti ∈ T (FunC(R)) for all i ∈ {1, . . . , n}.
Let M,N ∈Mul(N) be multisets. The function dropn(M) removes all occur-

rences of the number n ∈ N from M . So for all m ∈ N we have dropn(M)(m) = 0
if m = n and dropn(M)(m) = M(m) otherwise. The orderings �cmul and
�cmul are defined as M �cmul N if dropc(M) �mul dropc(N) and M �cmul N if
dropc(M) �mul dropc(N). Let F be some signature. We extend �cmul and �cmul

to terms over the signature FN as follows: we have s �cmul t if FunM(s) �cmul

FunM(t) and s �cmul t if FunM(s) �cmul FunM(t) for terms s, t ∈ T (FN,V).
Let = ∈ {�mul,�cmul} and w ∈ {�mul,�cmul} denote two orderings. A possibly
infinite sequence of =-steps is called a chain. We call = and w compatible if
w · = ⊆ = and = · w ⊆ =. Observe that the orderings �mul and �mul as well as
�cmul and �cmul are compatible. Let R be a TRS. We say that R is compatible
with an ordering = (w) if →R ⊆ = (→R ⊆ w).

6.2 Modular Complexity Analysis

In this section we present a modular approach which allows us to combine
different techniques for estimating the complexity of TRSs. To achieve this
goal we switch from full rewriting to relative rewriting. The fundamental idea
for computing the complexity of a given TRS R is based on the following
simple procedure. At first we transform R into the relative TRS R/∅. Then
we try to bound the complexity of R/∅ by splitting R into smaller components
R1 and R2 such that R = R1 ∪ R2. So, instead of estimating dl(t,→R/S)
directly we want to bound it by dl(t,→R1/S1) + dl(t,→R2/S2). Here the TRS
Si with i ∈ {1, 2} is defined as (R ∪ S) \ Ri. For each relative TRS Ri/Si
with i ∈ {1, 2} we can proceed in two directions: we can either split up Ri into
smaller components or over-estimate dl(t,→Ri/Si) by applying some suitable
method. The general idea is to choose the former option and simplify problems
as much as possible. Afterwards we independently compute the complexity of
each subproblem. Finally the complexity of the original system is determined
by summing up all intermediate results. The next theorem states the main
observation in this direction.

Theorem 6.1. Let R/S be a relative TRS and let R1 and R2 be two TRSs
such that R = R1 ∪ R2. Then dl(t,→R1/S1) + dl(t,→R2/S2) > dl(t,→R/S) for
any terminating term t.

Proof. Assume that dl(t,→R/S) = n. Then there exists a rewrite sequence of
the form

t→∗S t1 →R s1 →∗S t2 →R s2 →∗S t3 →R · · · →R sn →∗S t′

of length n. Next we investigate this sequence for the relative TRSs Ri/Si with
i ∈ {1, 2}, where ni is used to estimate how often rewrite rules from Ri have
been applied in the original sequence. Fix i. If the original sequence does not
contain a →Ri-step then t →∗Si t

′ and ni = 0. In the other case the original
rewrite sequence can be written as

t→∗Si ti1 →Ri si1 →
∗
Si ti2 →Ri si2 →

∗
Si ti3 →Ri · · · →Ri sini →

∗
Si t
′

85

6 Complexity Analysis

where 1 6 i1 < i2 < · · · < ini 6 n. Apparently we have n1 + n2 = n be-
cause each rewrite rule in R is either contained in R1 or R2. If ni = 0 we
obviously have dl(t,→Ri/Si) > ni and if t →ni

Ri/Si t
′ with ni > 0 we know that

dl(t,→Ri/Si) > ni by the choice of the rewrite sequence. (Note that in both
cases it can happen that dl(t,→Ri/Si) > ni because the chosen rewrite sequence
need not be maximal with respect to the relative TRS →Ri/Si , although it is
maximal for R/S.) Putting things together yields

dl(t,→R1/S1) + dl(t,→R2/S2) > n1 + n2 = n = dl(t,→R/S)

which concludes the proof.

As already indicated in the above proof, the reverse direction of Theorem 6.1
does not hold. This is illustrated by the following example.

Example 6.2. Consider the relative TRS R/S with R consisting of the two
rewrite rules a → b and a → c and S = ∅. We have a →R/S b and a →R/S c.
Hence dl(a,→R/S) = 1. However, if R1 consists of the rewrite rule a → b and
R2 of the rewrite rule a → c, the sum of the derivation lengths dl(a,→R1/S1)
and dl(a,→R2/S2) is 2.

Although for Theorem 6.1 equality cannot be established the next result
states that for complexity analysis this does not matter.

Theorem 6.3. Let R/S be a relative TRS and let R1 and R2 be two TRSs
such that R = R1 ∪ R2. Then for any language L we have cpL(n,R/S) ∈
Θ(cpL(n,R1/S1) + cpL(n,R2/S2)) .

Proof. To prove the theorem we show that there are constants M,N and M ′, N ′

such that for any term t ∈ L that terminates with respect to R/S the following
two properties hold:

• dl(t,→R/S) 6 M · (dl(t,→R1/S1) + dl(t,→R2/S2)) +N

• M ′ · dl(t,→R/S) +N ′ > dl(t,→R1/S1) + dl(t,→R2/S2)

The result then follows immediately from this. Theorem 6.1 shows the first
property with M = 1 and N = 0. To prove the second property, let i ∈ {1, 2}
and

t→Ri/Si t1 →Ri/Si · · · →Ri/Si tn
be a terminating Ri/Si rewrite sequence of length n. Because t →Ri/Si tn
implies t →+

R/S tn we obtain dl(t,→Ri/Si) 6 dl(t,→R/S). By choosing M ′ = 2
and N ′ = 0 we obtain dl(t,→R1/S1) + dl(t,→R2/S2) 6 M ′ · dl(t,→R/S) +N ′ as
desired.

Theorems 6.1 and 6.3 allow us to split a relative TRS R/S into smaller com-
ponents R1/S1 and R2/S2 such that R1 ∪R2 = R. Afterwards the complexity
of these systems can be independently evaluated to estimate the complexity of
R/S. In the next section we show in detail how the match-bound technique
can be suited for relative complexity analysis.

86

6.3 Relative Match-Bounds

6.3 Relative Match-Bounds

By a remark in [24] we know that the complexity of a linear TRS R with
respect to a language L is bounded by a linear polynomial wheneverR is match-
bounded for L. It is easy to extend this result to match-raise-boundedness and
hence to non-duplicating TRSs.

Theorem 6.4. Let R be a TRS and L a language. If R is linear and match-
bounded or non-duplicating and match-raise-bounded for L then cpL(n,→R) is
bounded by a linear polynomial.

Proof. Assume that R is match-raise-bounded for L. (Recall that for a linear
TRS R, match-boundedness coincides with match-raise-boundedness.) Then
by Theorem 4.15 we know that R is terminating on L. Let

t→R t1 →R · · · →R tn−1 →R tn

be an arbitrary (terminating) rewrite sequence with t ∈ L. Using Lemma 4.13
this derivation can be lifted to a length-preserving r−→match(R) rewrite sequence

t′ r−→match(R) t
′
1

r−→match(R) · · · r−→match(R) t
′
n−1

r−→match(R) t
′
n

such that t′ = lift0(t) and base(t′i) = ti for all i ∈ {1, . . . , n}. From the proof
of Lemma 4.9 we know that r−→match(R) ⊆ �+

mul. Transitivity of �mul yields
t′i �mul t

′
i+1 for all i ∈ {0, . . . , n − 1}. Here t′0 = t′. Since R is match-raise-

bounded for L, all terms in this latter sequence belong to T (F{0,...,c}) for some
c ∈ N. Let k be the maximal number of function symbols occurring in some
right-hand side in R. Due to a remark in [9] we know that the length of the
�mul chain from t′ to t′n is bounded by ‖t′‖ · (k + 1)c. Since ‖t′‖ = ‖t‖ and
the �mul chain starting at t′ is at least as long as the lifted and hence original
sequence, we conclude that the length of the R rewrite sequence starting at the
term t is bounded by ‖t‖ · (k + 1)c.

Based on Theorem 6.4 it is easy to use the match-bound technique to es-
timate the complexity of a relative TRS R/S; just check for match(-raise)-
boundedness of R ∪ S. This process either succeeds by proving that the com-
bined TRS is match(-raise)-bounded, or, when R ∪ S cannot be proved to be
match(-raise)-bounded, it fails. Since the construction of a (quasi-deterministic,
raise-consistent, and) (quasi-)compatible tree automaton does not terminate
for TRSs that are not match(-raise)-bounded, the latter situation typically
does not happen. This behavior causes two serious problems. On the one
hand we cannot benefit from Theorem 6.3 because whenever we split a relative
TRS R/S into smaller components R1/S1 and R2/S2 such that R = R1 ∪R2

then R1 ∪ S1 is match(-raise)-bounded if and only if R2 ∪ S2 is match(-raise)-
bounded since both TRSs coincide. On the other hand the match-bound tech-
nique cannot cooperate with other techniques since either linear complexity
of all or none of the rules in R is shown. In [60] this problem has been ad-
dressed by specifying an upper bound on the heights that can be introduced by
rewrite rules in match(S). So one tries to find a c ∈ N such that the maximum

87

6 Complexity Analysis

height of function symbols occurring in terms in derivations caused by the TRS
matchc+1(R) ∪ matchc(S) ∪ liftc(S) is at most c. If such a bound can be es-
tablished we know that R/S is terminating and hence that it admits at most
linear complexity. In the following we extend this approach in two directions.
At first we adapt it such that, given a relative TRS R/S, it can investigate the
complexity of a single rewrite rule s → t ∈ R relative to all other rules. To
this end we introduce a new enrichment match-RTc(R, s→ t,S). Secondly, the
rewrite rules in match-RTc(R, s→ t,S) which originate from size-preserving or
size-decreasing rules in Ss→t are labeled in such a way that they do not increase
the heights of the function symbols in a contracted redex. Here Ss→t denotes
the TRS (R∪ S) \ {s→ t}.

To simplify the presentation we first consider linear TRSs. The extension to
non-duplicating TRSs is explained in Subsection 6.3.2.

6.3.1 RT-Bounds for Left-Linear Relative TRSs

As proposed in [60] we design the new enrichment match-RTc(R, s→ t,S) such
that rewrite rules which do not originate from s → t may introduce function
symbols with height at most height c. In addition we try to keep the heights of
the function symbols in a contracted redex if a size-preserving or size-decreasing
rewrite rule different from s→ t (after dropping all heights) is applied.

Definition 6.5. Let S be a TRS over a signature F and c ∈ N. The TRS
match-RTc(S) over the signature FN consists of all rules l′ → liftd(r) such that
base(l′)→ r ∈ S and

d = min {c, height(l′(ε))}
if ‖base(l′)‖ > ‖r‖ and liftheight(l′(ε))(base(l′)) = l′, and

d = min {c, 1 + height(l′(p)) | p ∈ PosF (l′)})

otherwise. Given a relative TRS R/S and a rewrite rule s→ t ∈ R, the relative
TRS match-RTc(R, s→ t,S) is defined as match(s→ t)/match-RTc(Ss→t). Let
d ∈ N. The restriction of match-RTc(S) to the signature F{0,...,d} is denoted by
match-RTcd(S). Likewise the relative TRS match-RTcd(R, s → t,S) is defined
as matchd(s → t)/match-RTcd(Ss→t). If c = d then match-RTcd(R, s → t,S) is
abbreviated by match-RTc(R, s→ t,S) and match-RTcd(S) = match-RTc(S).

The reason for the introduction of the requirement ‖base(l′)‖ > ‖r‖ in the
above definition is that we need it later on to prove that the new enrichment
can be used to infer a linear upper bound on the complexity of R/S. Let us
illustrate the above definition on an example.

Example 6.6. Consider the relative TRS R/S with R consisting of the rewrite
rules rev(x) → rev′(x, nil) and rev′(nil, y) → y, and S consisting of the single
rule rev′(cons(x, y), z) → rev′(y, cons(x, z)). Let s → t be the first of the two
rewrite rules of R. Then match-RT1(Ss→t) contains the rules

rev′0(cons0(x, y), z)→ rev′0(y, cons0(x, z)) rev′0(nil0, y)→ y

rev′0(cons1(x, y), z)→ rev′1(y, cons1(x, z)) rev′0(nil1, y)→ y

rev′2(cons1(x, y), z)→ rev′1(y, cons1(x, z)) · · ·

88

6.3 Relative Match-Bounds

and the rewrite rules

rev0(x)→ rev′1(x, nil1) rev1(x)→ rev′2(x, nil2)
rev2(x)→ rev′3(x, nil3) · · ·

belong to match(s → t). The union of the two infinite TRSs constitutes
match-RT1(R, s→ t,S).

The general idea behind the new enrichment match-RTc(R, s → t,S) is to
prove the complexity of the rewrite rule s → t relative to all other rules. In
combination with Theorem 6.3 we can then estimate the complexity of R/S by
computing the complexity of (R \ {s→ t})/(S ∪ {s→ t}) and combining both
results. So to put it bluntly, we try to move the rewrite rule s → t from R to
S. To achieve this we need the property defined below.

Definition 6.7. Let R/S be a relative TRS and s → t ∈ R. We call R/S
match-RT-bounded for s→ t and a language L if there exists a c ∈ N such that
the height of function symbols occurring in terms in→∗match-RTc(R,s→t,S)(lift0(L))
is at most c.

An immediate consequence of the next lemma is that every derivation in R/S
can be lifted to a length-preserving match-RTc(R, s → t,S) rewrite sequence.
This result is used later on to infer termination and complexity results of R/S.

Lemma 6.8. Let R/S be a left-linear relative TRS, s→ t ∈ R, and c ∈ N. If
u →s→t v or u →Ss→t v then for all terms u′ with base(u′) = u there exists a
term v′ such that base(v′) = v and u′ →match(s→t) v

′ or u′ →match-RTc(Ss→t) v
′.

Proof. Straightforward.

To be able to prove that a rewrite rule s→ t admits a linear upper complexity
bound whenever the underlying relative TRS R/S is match-RT-bounded for
s → t, we rely on the fact that the rewrite rules in match-RTc(R, s → t,S)
which originate from s→ t are compatible with �cmul and all remaining rewrite
rules are compatible with �cmul. However there is one problem. If s → t is
collapsing the rewrite rule liftc(s)→ liftc(t) appears in match-RTc(R, s→ t,S)
which cannot be oriented via the ordering �cmul although liftc(s) �mul liftc(t).
The problem is that collapsing rewrite rules do not increase the heights of
function symbols in a contracted redex because the right-hand sides consist
just of single variables. To avoid this problem we assume in the following that
s → t corresponds to some non-collapsing rewrite rule in R. Alternatively,
one could follow the approach in [61] which can handle collapsing rewrite rules
because it does not not use an upper bound c to limit the heights that can be
introduced by the enriched system. However, a disadvantages of this approach
is that the heights of a contracted redex are increased more often. So apart
from the collapsing case the approach presented here is strictly more powerful
than the approach introduced in [61].

Lemma 6.9. Let R and S be two TRSs and c ∈ N. If R is non-duplicating and
non-collapsing and S is non-duplicating then the TRS matchc(R) is compatible
with the ordering �cmul and match-RTc(S) is compatible with the ordering �cmul.

89

6 Complexity Analysis

Proof. From the proof of [24, Lemma 17] we know that for a non-duplicating
TRS R and two terms s and t such that s →matchc(R) t we have s �mul t.
So there are multisets X and Y such that FunM(t) = (FunM(s) \ X) ∪ Y ,
X 6= ∅, and for all d′ ∈ Y there is a d ∈ X such that d < d′. Because
R is non-collapsing we know from the definition of matchc(R) that there is a
d ∈ X such that d < c and d < d′ for all d′ ∈ Y . From this it follows that
dropc(FunM(t)) = (dropc(FunM(s))\dropc(X))∪dropc(Y), dropc(X) 6= ∅, and
for all d′ ∈ dropc(Y) there is a d ∈ dropc(X) such that d < d′. As an immediate
consequence we have dropc(FunM(s)) �mul dropc(FunM(t)) and hence s �cmul t.
Now let s and t be two terms and l → r a rewrite rule in match-RTc(S) such
that s→l→r t. According to Definition 6.5 we can assume that either l → r is
some non-collapsing rewrite rule in matchc(S) or FunM(s) ⊇ FunM(t). Note
that if the rewrite rule l→ r is collapsing then FunM(t) = FunM(s)\FunM(l)
and hence FunM(s) ⊇ FunM(t). If ‖l‖ > ‖r‖ and liftheight(l(ε))(base(l)) = l then
we have FunM(s) ⊇ FunM(t) either because on the one hand l consists of at
least equally many function symbols as r and on the other hand the height of
the function symbols in l is propagated to the function symbols in r. Now let us
continue with the proof. In the first case we obtain s �cmul t as before. So by the
definition of �cmul it follows that s �cmul t. If FunM(s) ⊇ FunM(t) there also is
no problem because we obviously have dropc(FunM(s)) �mul dropc(FunM(t))
and hence s �cmul t.

Since the length of every �cmul chain is bounded by a function linear in the
size of the starting term—if the size-increase of the terms in the chain can be
bounded by a constant—we can prove that the complexity induced by the rela-
tive TRS {s→ t}/Ss→t on some language L is bounded by a linear polynomial
if R/S is match-RT-bounded for s→ t and L.

Theorem 6.10. Let R/S be a linear relative TRS, s→ t ∈ R a non-collapsing
rewrite rule, and L a language. If R/S is match-RT-bounded for s → t and
L then the relative TRS {s → t}/Ss→t is terminating on L. Furthermore,
cpL(n,→{s→t}/Ss→t) is bounded by a linear polynomial.

Proof. First we show that {s → t}/Ss→t is terminating on L. Assume to the
contrary that there is an infinite rewrite sequence of the form

t1 →{s→t}/Ss→t t2 →{s→t}/Ss→t t3 →{s→t}/Ss→t · · ·

with t1 ∈ L. Because R ∪ S is left-linear and R/S is match-RT-bounded for
s→ t and L by a c ∈ N, according to Lemma 6.8, the above derivation can be
lifted to an infinite match-RTc(R, s→ t,S) rewrite sequence

t′1 →match-RTc(R,s→t,S) t
′
2 →match-RTc(R,s→t,S) t

′
3 →match-RTc(R,s→t,S) · · ·

starting from t′1 = lift0(t1) such that base(t′i) = ti for all i > 1 and the height of
every function symbol occurring in a term in the lifted sequence is at most c.
Hence the employed rewrite rules in the derivation emanating from t′1 must come
from match-RTc(R, s → t,S). With help of Lemma 6.9, transitivity of �cmul,
and compatibility of the orderings �cmul and �cmul we deduce that t′i �cmul t

′
i+1

90

6.3 Relative Match-Bounds

for all i > 1. However, this is excluded because < is well-founded on {0, . . . , c}
and hence �cmul is well-founded on T (F{0,...,c},V).

To prove the second part of the theorem, consider an arbitrary (terminating)
rewrite sequence

u→{s→t}/Ss→t u1 →{s→t}/Ss→t · · · →{s→t}/Ss→t un

with u ∈ L. Similar as before this rewrite sequence can be lifted to a to a
length-preserving match-RTc(R, s→ t,S) rewrite sequence

u′ →match-RTc(R,s→t,S) u
′
1 →match-RTc(R,s→t,S) · · · →match-RTc(R,s→t,S) u

′
n

such that u′ = lift0(u) and u′i �cmul u
′
i+1 for all i ∈ {0, . . . , n− 1}. Here u′0 = u′

and c ∈ N such that the relative TRS R/S is match-RT-bounded for s → t
and L by c. Similarly as in the proof of Theorem 6.4 we can conclude that the
length of the {s→ t}/Ss→t rewrite sequence starting at the term u is bounded
by ‖u‖ · (k+ 1)c where k is the maximal number of function symbols occurring
in some right-hand side in R∪ S; just replace �mul by �cmul.

We conclude this subsection with an example.

Example 6.11. The relative TRS R/S of Example 6.6 is match-RT-bounded
for s→ t and T (F) by 1. Here s→ t denotes the rule rev(x)→ rev′(x, nil) and
F = {nil, cons, rev, rev′}. Due to Theorem 6.10 we can conclude that the relative
TRS {s → t}/Ss→t admits at most linear complexity. In Subsection 6.3.3 it is
explained in detail how match-RT-boundedness can be checked automatically.

6.3.2 Raise-RT-Bounds for Non-Left-Linear Relative TRSs

In order to be able to apply Theorem 6.10 also to a non-linear and non-
duplicating relative TRS R/S, we consider the relation r−→match-RTc(R,s→t,S) in-
stead of →match-RTc(R,s→t,S) which uses raise-rules to deal with non-left-linear
rewrite rules. Thereby the rewrite relation r−→match-RTc(R,s→t,S) is defined as
r−→∗match-RTc(Ss→t) ·

r−→match(s→t) · r−→∗match-RTc(Ss→t) where r−→match-RTc(Ss→t) is ob-
tained from r−→e(R) by replacing the TRS e(R) with match-RTc(Ss→t) in Defi-
nition 4.10. If we would not do that it might happen that rewrite sequences in
R/S cannot be lifted to sequences in match-RTc(R, s→ t,S).

Definition 6.12. Let R/S be a relative TRS and s → t ∈ R. We call R/S
match-raise-RT-bounded for s → t and a language L if there exists a number
c ∈ N such that the height of function symbols occurring in terms belonging to
r−→∗match-RTc(R,s→t,S)(lift0(L)) is at most c.

Note that for left-linear relative TRSs, match-raise-RT-boundedness coincides
with match-RT-boundedness. By using the relation r−→match-RTc(R,s→t,S) every
derivation induced by the relative TRS R/S can be simulated via the rewrite
rules in match-RTc(R, s→ t,S).

Lemma 6.13. Let R/S be a relative TRS, s→ t ∈ R, and c ∈ N. If u→s→t v
or u→Ss→t v then for all terms u′ with base(u′) = u there exists a term v′ such
that base(v′) = v and u′ r−→match(s→t) v

′ or u′ r−→match-RTc(Ss→t) v
′.

91

6 Complexity Analysis

Proof. Straightforward.

Before we can prove that match-raise-RT-boundedness induces a linear up-
per bound on the complexity of s → t we have to ensure that the raise-rules
implicitly used by the relation r−→match-RTc(R,s→t,S) can be oriented via �cmul.

Lemma 6.14. For any signature F and c ∈ N it holds that raisec(F) is com-
patible with the ordering �cmul.

Proof. Assume that there are terms s and t such that s→raisec(F) t. According
to the definition of raisec(F) we have FunM(t) = (FunM(s) \ {d})∪{d+ 1} for
some height d < c. Thus s �cmul t and hence s �cmul t according to the definition
of �cmul.

Using Lemma 6.14 it is easy to extend Theorem 6.10 to non-linear and non-
duplicating relative TRSs.

Theorem 6.15. Let R/S be a non-duplicating relative TRS, s→ t ∈ R a non-
collapsing rewrite rule, and L a language. If R/S is match-raise-RT-bounded
for s → t and L then the relative TRS {s → t}/Ss→t is terminating on L.
Furthermore, cpL(n,→{s→t}/Ss→t) is bounded by a linear polynomial.

Proof. First we show that {s → t}/Ss→t is terminating on L. Assume to the
contrary that there is an infinite rewrite sequence of the form

t1 →{s→t}/Ss→t t2 →{s→t}/Ss→t t3 →{s→t}/Ss→t · · ·

with t1 ∈ L. Let R/S be match-raise-RT-bounded for s→ t and L by a c ∈ N.
Lemma 6.13 yields an infinite r−→match-RTc(R,s→t,S) rewrite sequence

t′1
r−→match-RTc(R,s→t,S) t

′
2

r−→match-RTc(R,s→t,S) t
′
3

r−→match-RTc(R,s→t,S) · · ·

starting from t′1 = lift0(t1) such that base(t′i) = ti for all i > 1. Because R/S
is match-raise-RT-bounded for s → t and L by c, the height of every function
symbol occurring in a term in the lifted rewrite sequence is at most c. Hence
the employed rewrite rules in the derivation emanating from t′1 must come from
match-RTc(R, s → t,S). With help of Lemmata 6.9 and 6.14, transitivity of
�cmul, and compatibility of �cmul and �cmul we deduce that t′i �cmul t

′
i+1 for all

i > 1. However, this is excluded because < is well-founded on {0, . . . , c} and
hence �cmul is well-founded on T (F{0,...,c},V).

To prove the second part of the theorem, consider an arbitrary (terminating)
rewrite sequence

u→{s→t}/Ss→t u1 →{s→t}/Ss→t · · · →{s→t}/Ss→t un

with u ∈ L. Similar as before this rewrite sequence can be lifted to a length-
preserving r−→match-RTc(R,s→t,S) rewrite sequence

u′ r−→match-RTc(R,s→t,S) u
′
1

r−→match-RTc(R,s→t,S) · · · r−→match-RTc(R,s→t,S) u
′
n

such that u′ = lift0(u) and u′i �cmul u
′
i+1 for all i ∈ {0, . . . , n− 1}. Here u′0 = u′

and c ∈ N such that the relative TRS R/S is match-raise-RT-bounded for s→ t

92

6.3 Relative Match-Bounds

and L by c. Similarly as in the proof of Theorem 6.4 we can conclude that the
length of the {s→ t}/Ss→t rewrite sequence starting at the term u is bounded
by ‖u‖ · (k+ 1)c where k is the maximal number of function symbols occurring
in some right-hand side in R∪ S; just replace �mul by �cmul.

6.3.3 Automation

To prove automatically that a relative TRS is match(-raise)-RT-bounded for
some language L we use (quasi-deterministic, raise-consistent, and) compatible
tree automata. Here a tree automaton A is said to be compatible with a relative
TRS R/S and a language L if A is compatible with R∪ S and L.

Lemma 6.16. Let R/S be a left-linear relative TRS, s→ t ∈ R a rewrite rule,
L a language, and c ∈ N. Let A be a tree automaton. If A is compatible with
the relative TRS match-RTc(R, s → t,S) and lift0(L) such that the height of
each function symbol occurring in transitions in A is at most c then R/S is
match-RT-bounded for s→ t and L.

Proof. Easy consequence of Theorem 3.3 and Definition 6.7 by using the fact
that each each function symbol occurring in transitions in A is at most c.

In case of non-left-linear TRSs we obtain the following result.

Lemma 6.17. Let R/S be a relative TRS, s → t ∈ R a rewrite rule, L a
language, and c ∈ N. Let A be a quasi-deterministic and raise-consistent tree
automaton. If A is compatible with match-RTc(R, s → t,S) and lift0(L) such
that the height of each function symbol occurring in transitions in A is at most
c then R/S is match-raise-RT-bounded for s→ t and L.

Proof. Similar as the proof of Theorem 4.24 if we take F to be the signature
of R ∪ S and replace e(R) by match(s → t) ∪ match-RTc(Ss→t). In order to
conclude match-raise-RT-boundedness we additionally rely on the fact that the
height of each function symbol occurring in transitions in A is at most c.

To prove that R/S is match(-raise)-RT-bounded for some rewrite rule s→ t
and a language L we construct a (quasi-deterministic and raise-consistent) tree
automaton A that is compatible with match-RTc(R, s → t,S) and lift0(L) as
described in Section 4.4. To guess an appropriate c we start with c = 0. As soon
as a new transition fd(q1, . . . , qn) → q with d > c is added to the constructed
tree automaton, we set c = d and proceed with the construction.

Example 6.18. We show that the relative TRS R/S of Example 6.6 over the
signature F = {nil, cons, rev, rev′} is match-RT-bounded for rev(x)→ rev′(x, nil)
by constructing a compatible tree automaton. Let s→ t denote the rewrite rule
rev(x)→ rev′(x, nil). As starting point we consider the initial tree automaton

nil0 → 1 cons0(1, 1)→ 1 rev0(1)→ 1 rev′0(1, 1)→ 1

which accepts all ground terms over the enriched signature lift0(F). Because
we have rev0(x) →match(s→t) rev′1(x, nil1) and rev0(1) → 1, we add the transi-
tions nil1 → 2 and rev′1(1, 2) → 1. The compatibility violation caused by the

93

6 Complexity Analysis

rewrite rule rev′1(nil0, y)→match-RT1(Ss→t) y and the derivation rev′1(nil0, 2)→∗ 1
is solved by adding the transition 2 → 1. Note that we are currently using
match-RT1(Ss→t) because the maximal height of a function symbol occurring
in the underlying tree automaton is 1. Next we consider the compatibility
violation rev′1(cons0(1, 1), 2) →∗ 1 but rev′1(1, cons1(1, 2)) 6→∗ 1 induced by
the rule rev′1(cons0(x, y), z) →match-RT1(Ss→t) rev′1(y, cons1(x, z)). In order to
ensure rev′1(1, cons1(1, 2)) →∗ 1 we reuse the transition rev′1(1, 2) → 1 and
add the new transition cons1(1, 2) → 2. Finally, rev′0(cons1(1, 2), 1) →∗ 1 and
rev′0(cons1(x, y), z) →match-RT1(Ss→t) rev′1(y, cons1(x, z)) give rise to the transi-
tion cons1(1, 1)→ 2. After this step, the obtained tree automaton is compatible
with match-RT1(R, s → t,S). Hence R/S is match-RT-bounded for s → t by
1. Due to Theorem 6.10 we can conclude that {s → t}/Ss→t admits a linear
complexity. To compute the complexity of R/S we can proceed by using Theo-
rem 6.3. Since we have already established the complexity of {s→ t}/Ss→t we
just have to compute the complexity of the relative TRS {s′ → t′}/Ss′→t′ with
s′ → t′ = rev′(nil, y)→ y. We remark that the ordinary match-bound technique
fails on R/S because R∪ S induces a quadratic complexity:

revn(x)σm → revn−1(rev′(x, nil))σm →m revn−1(rev′(nil, x))σm

→ revn−1(x)σm →(n−1)(m+2) xσm

with σ = {x 7→ cons(y, x)}) for all n,m > 1.

Similar as for e(-raise)-bounds we can optimize the completion procedure by
constructing a (quasi-deterministic and raise-consistent) tree-automaton A that
is quasi-compatible with match-RTc(R, s→ t,S) and lift0(L) for some appropri-
ate c ∈ N. Here A is said to be quasi-compatible with match-RTc(R, s → t,S)
and lift0(L) if A is quasi-compatible with match(s→ t)∪match-RTc(Ss→t) and
lift0(L).

Lemma 6.19. Let R/S be a relative TRS, s → t ∈ R a rewrite rule, L a
language, and c ∈ N. Let A be a tree automaton such that the height of each
function symbol occurring in transitions in A is at most c. If R/S is left-
linear and A is quasi-compatible with match-RTc(R, s→ t,S) and lift0(L) then
R/S is match-RT-bounded for s→ t and L. If A is quasi-deterministic, raise-
consistent, and quasi-compatible with the relative TRS match-RTc(R, s→ t,S)
and lift0(L) then R/S is match-raise-RT-bounded for s→ t and L.

Proof. Similar to the proofs of Theorems 4.29 and 4.31; just replace the TRS
e(R) by match(s → t) ∪ match-RTc(Ss→t). To conclude match(-raise)-RT-
boundedness we additionally need the fact that the height of each function
symbol occurring in transitions in A is at most c.

6.4 The Complexity Framework

To estimate the complexity of a TRS R, we first transform R into the rel-
ative TRS R/∅. (If the input is already a relative TRS this step is omit-
ted.) Afterwards we try to apply Theorem 6.3 to estimate the complexity

94

6.4 The Complexity Framework

of R/S by splitting R into TRSs R1 and R2 such that R = R1 ∪ R2 and
dl(t,→R1/S1) + dl(t,→R2/S2) > dl(t,→R/S). This is done by moving step by
step those rewrite rules from R to S of which the complexity can be bounded.
In each step a different technique can be applied. As soon as R is empty, we
can compute the complexity of R/S by summing up all intermediate results.
In the following we describe the presented approach more formally and refer to
it as the complexity framework .

Definition 6.20. A complexity problem (CP problem for short) is a triple
(R/S, L, f) consisting of a relative TRS R/S, a language L, and a unary func-
tion f : N→ N.

To operate on CP problems so called complexity processors are used. Sim-
ilar as in the dependency pair framework we distinguish between sound and
complete complexity processors. Here sound complexity processors are used
to prove upper bounds on the complexity of CP problems whereas complete
complexity processors are applied to derive complexity lower bounds.

Definition 6.21. A complexity processor (shortened by CP processor) is a
function that takes a CP problem (R/S, L, f) as input and returns a new CP
problem (R′/S ′, L′, f ′) as output. A CP processor is sound if

f(n) + cpL(n,→R/S) ∈ O(f ′(n) + cpL′(n,→R′/S′))

and it is called complete if

f(n) + cpL(n,→R/S) ∈ Ω(f ′(n) + cpL′(n,→R′/S′))

for all CP problems (R/S, L, f).

To compute the complexity of a relative TRS R/S with respect to some lan-
guage L, using the complexity framework, we proceed as follows. First we trans-
form R/S into the initial CP problem (R/S, L, f) where f(n) = 0 for all n ∈ N.
After that we try to move rewrite rules from theR to S by applying different CP
processors. As soon as we end up with a CP problem of the form (∅/S ′, L′, f ′)
the procedure stops. If all CP processors that where involved in the computa-
tion of (∅/S ′, L′, f ′) are sound we know that cpL(n,→R/S) ∈ O(f ′(n)). If the
applied CP processors are complete we conclude that cpL(n,→R/S) ∈ Ω(f ′(n)).

Theorem 6.22. Let R/S be a relative TRS and L a language. Let P1, . . . , Pm
be a sequence of CP problems such that Pi = (Ri/Si, Li, fi) for all i ∈ {1, . . . ,m},
R1/S1 = R/S, L1 = L, f1(n) = 0 for all n ∈ N, and Rm = ∅. If for all
i ∈ {1, . . . ,m − 1}, Pi+1 has been obtained from Pi by applying some sound
CP processor, then cpL(n,→R/S) ∈ O(fm(n)). If for all i ∈ {1, . . . ,m − 1},
Pi+1 has been obtained from Pi by applying some complete CP processor, then
cpL(n,→R/S) ∈ Ω(fm(n)).

Proof. First we show that cpL(n,→R/S) ∈ O(fm(n)) under the assumption
that all applied CP processor are sound. According to Definition 6.21 we have

fi(n) + cpLi(n,→Ri/Si) ∈ O(fi+1(n) + cpLi+1
(n,→Ri+1/Si+1

))

95

6 Complexity Analysis

for all i ∈ {1, . . . ,m− 1} and hence

f1(n) + cpL1
(n,→R1/S1) ∈ O(fm(n) + cpLm(n,→Rm/Sm))

due to the transitivity of the O-notation. Because cpLm(n,→Rm/Sm) = 0 and
f1(n) = 0 we conclude that f1(n) + cpL1

(n,→R1/S1) = cpL1
(n,→R1/S1) and

fm(n)+cpLm(n,→Rm/Sm) = fm(n) for all n ∈ N. Putting things together yields
cpL(n,→R/S) = cpL1

(n,→R1/S1) ∈ O(fm(n)). The proof that cpL(n,→R/S)
belongs to Ω(fm(n)) if the applied CP processors are complete is similar to the
one before; just replace O by Ω.

From the preceding section the following CP processors can be derived. To
simplify the presentation we write (R/S, L, f)\R′ for the CP problem obtained
from (R/S, L, f) by moving the rewrite rules in R′ ⊆ R from R to S, that is,
(R/S, L, f) \ R′ = ((R \R′)/(S ∪R′), L, f).

Theorem 6.23. The CP processor

(R/S, L, f) 7→

(R/S, L, f ′) \ {s→ t} if R/S is linear and match-

RT-bounded for s→ t and L
(R/S, L, f) otherwise

where R = R1 ∪R2 and f ′(n) = f(n) + n is sound.

Proof. Follows from Theorems 6.3 and 6.10.

In case of non-linear but non-duplicating relative TRSs we can use the CP
processor mentioned below.

Theorem 6.24. The CP processor

(R/S, L, f) 7→

(R/S, L, f ′) \ {s→ t} if R/S is non-duplicating

and match-raise-RT-bounded
for s→ t and L

(R/S, L, f) otherwise

where R = R1 ∪R2 and f ′(n) = f(n) + n is sound.

Proof. Follows from Theorems 6.3 and 6.15.

Note that none of the above CP processors is complete as there are linear
relative TRSs which are match(-raise)-RT-bounded and admit a constant com-
plexity.

Example 6.25. Consider the CP problem (R/S, L, f) with R consisting of
the single rewrite rule a → b, S = ∅, L = T ({a, b}), and f(n) = 0 for all
n ∈ N. It is obvious that R/S is match(-raise)-RT-bounded for a → b and
L by 1. Hence by applying Theorem 6.23 or 6.24 we obtain the CP problem
(∅/{a → b}, L, f ′) with f ′(n) = n. However, cpL(n,→R/S) = 1 for all n ∈ N.
Hence cpL(n,→R/S) 6∈ Ω(f ′(n)).

96

6.5 Summary

6.5 Summary

In this chapter we introduced a modular approach for estimating the complex-
ity of TRSs by considering relative rewriting. We showed how the match-bound
technique can be lifted into the relative setting. To this end we extended the
approach in [60] by using the enrichment match-RTc(R, s → t,S) which keeps
the heights of the function symbols in a contracted redex if a size-preserving or
size-decreasing rewrite rule different from s → t is applied. Finally, to exploit
all possible features of the modular approach in a possible implementation we
presented the so called complexity framework. We remark that our setting al-
lows a more fine-grained complexity analysis. For instance, while traditionally a
quadratic complexity ensures that any rule is applied at most quadratically of-
ten, our approach can make different statements about single rules. Hence even
if a proof attempt does not succeed completely, it may highlight the problematic
rules.

97

Chapter 7

Experiments

The techniques described in the preceding chapters have been implemented in
the automatic termination analyzer TTT2 [44] and the complexity tool CaT1.
Both, TTT2 as well as CaT, are written in OCaml2 and consist of about 32,000
lines of code. About 11% is used to implement the techniques based on tree
automata completion. More information about TTT2 and CaT, including the
strategies that have been used to gain the experimental data presented in this
chapter, can be found in Appendix A.

The most important criterion for the successful construction of a (quasi-)com-
patible tree automaton is the strategy used to resolve (quasi-)compatibility
violations. In TTT2 and CaT a path t →∗ q is established by adding new states
and transitions according to the following strategy, which is a variation of the
one presented in Section 3.3:

1. Calculate all contexts C[2, . . . ,2], D1[2, . . . ,2], . . . , Dn[2, . . . ,2] and
terms t1, . . . , tm ∈ T (F ∪ Q) such that ti →∗∆ qti for all i ∈ {1, . . . ,m},
C[D1[t1, . . . , ti], . . . , Dn[tj , . . . , tm]] = t, and D1[qt1 , . . . , qti] →∗∆ q1, . . . ,
Dn[qtj , . . . , qtm]→∗∆ qn with q1, . . . , qn, qt1 , . . . , qtm ∈ Q.

2. Choose among all possibilities one where the combined size of the contexts
D1[2, . . . ,2], . . . , Dn[2, . . . ,2] is minimal.

3. Add new transitions involving new states (using an injective abstraction
function) to achieve D1[qt1 , . . . , qti]→∗ q1, . . . , Dn[qtj , . . . , qtm]→∗ qn.

In case that the system under consideration is non-left-linear we have to en-
sure that the constructed automaton is quasi-deterministic and raise-consistent.
Since quasi-determinisation is expensive, TTT2 and CaT collect and resolve all
(quasi-)compatibility violations with respect to the current tree automaton be-
fore making the automaton quasi-deterministic and raise-consistent. Then new
(quasi-)compatibility violations are determined and the process is repeated. To
detect (quasi-)compatibility violations TTT2 and CaT use a matching algorithm
which is quite similar to the one presented in Section 3.2. The main difference is
that the implemented algorithm uses sharing to avoid expensive recalculations.
As a result it is as efficient as the approach based on tree automata techniques.

In the remaining part of this chapter we report on the experiments we per-
formed with TTT2 and CaT on version 7.0.2 of the Termination Problem Data
1http://cl-informatik.uibk.ac.at/software/cat/
2http://caml.inria.fr/

99

http://cl-informatik.uibk.ac.at/software/cat/
http://caml.inria.fr/

7 Experiments

Table 7.1: Summary e-raise-bounds

explicit implicit
t r rm t r rm

successes 7 7 9 13 12 16
average time 323 323 287 884 302 3658 using

timeouts 148 148 146 142 143 139
c

successes 7 7 10 14 14 17
average time 209 220 4913 783 758 667 using

timeouts 148 148 145 141 141 138
qc

Base (TPDB for short).3 All tests were conducted on a server equipped with
eight dual-core AMD OpteronTM 885 processors running at a clock rate of 2.6
GHz and on 64 GB of system memory.4 For all experiments we used a 60
seconds time limit. We remark that similar results have been obtained on a
dual-core laptop.

7.1 Match-Bounds

In this section we present the experimental data that have been obtained with
TTT2 using the match-bound technique. As testbed we considered the 1370 TRSs
of the TPDB that fulfill the variable condition: for each rewrite rule l→ r ∈ R,
l is not a variable and Var(l) ⊇ Var(r). Our results are summarized in Tables 7.1
through 7.4. We list the number of successful termination attempts, the average
system time needed to prove termination (measured in milliseconds), and the
number of timeouts.

7.1.1 Raise-Bounds

In Tables 7.1 and 7.2 we deal with non-left-linear systems (155 TRSs in total)
and test for e-raise-boundedness, both with the explicit approach for handling
raise-rules described in the first paragraph of Subsection 4.4.2 and the implicit
approach using raise-consistent tree automata. To be precise, in the former
table we check if the given TRS R is e-raise-bounded for the set of ground
terms induced by the signature of R whereas in the latter table we check if
the given TRS R is e-raise-bounded for the set RFCrhs(R)(R). (The usage of
right-hand sides of forward closures is indicated by RFC.) To ease readability
we use the abbreviations t, r and m to indicate that we test for top-, roof-, and
match-raise-boundedness. Since match-raise-bounds can only be used if the
given TRS is non-duplicating, we combine match-raise-bounds with roof-raise-
bounds (indicated by rm). That means that if the TRS under consideration
3http://www.termination-portal.org/
4Full experimental data can be found at http://cl-informatik.uibk.ac.at/software/

ttt2/experiments/completion/.

100

http://www.termination-portal.org/
http://cl-informatik.uibk.ac.at/software/ttt2/experiments/completion/
http://cl-informatik.uibk.ac.at/software/ttt2/experiments/completion/

7.1 Match-Bounds

Table 7.2: Summary e-raise-bounds for RFC

explicit implicit
t r rm t r rm

successes 27 27 28 36 37 39
average time 275 281 274 1611 1536 1471 using

timeouts 128 128 127 119 118 116
c

successes 27 27 28 37 38 40
average time 205 208 204 1006 971 940 using

timeouts 128 128 127 118 117 115
qc

is non-duplicating we test for match-raise-boundedness; duplicating TRSs are
tested for roof-raise-boundedness. In the upper part of the tables we construct
compatible tree automata (indicated by c) whereas in the lower part quasi-
compatible tree automata (indicated by qc) are used.

The positive effect of right-hand sides of forward closures (see Theorem 4.45)
is clearly visible. By constructing quasi-compatible tree automata instead of
compatible tree automata we get some additional termination proofs as well
as an average speed up of 1.5. Furthermore, our results confirm that match-
raise-bounds are more powerful than roof-raise-bounds, which in turn are more
powerful than top-raise-bounds.

7.1.2 DP-Bounds and Raise-DP-Bounds

Tables 7.3 and 7.4 show our results for e(-raise)-DP-bounds. Besides the SCC
processor of Definition 5.32 and the dependency graph processor of Defini-
tion 5.31 where DG(P,R) is approximated by the estimated dependency graph
DGe(P,R) of Definition 5.49, we use the following four DP processors:

s represents the subterm criterion of [33].

p is an instance of the reduction pair processor based on polynomial order-
ings with 0/1 coefficients [30].

b denotes a combination of the DP processor of Theorem 5.2 for left-linear
DP problems and the one of Theorem 5.14 for non-left-linear DP prob-
lems.

d uses the DP processor of Theorem 5.12 for left-linear DP problems and
the one of Theorem 5.20 for non-left-linear DP problems.

For the latter two, if the DP problem is non-duplicating we take e = match.
For duplicating problems we take e = roof for b and e = top for d. If the DP
problem is non-left-linear, in both cases raise-rules are handled by the implicit
approach. The usage of usable rules (see Corollaries 5.71 and 5.72) is indicated
by ur.

101

7 Experiments

Table 7.3: Summary e(-raise)-DP-bounds

no ur ur
sp spb spd spb spd

successes 455 517 557 566 593
average time 325 322 989 319 807 using

timeouts 3 853 813 804 777
c

successes 455 521 557 567 598
average time 325 377 974 315 903 using

timeouts 3 849 813 803 772
qc

Table 7.4: Summary e(-raise)-DP-bounds for RFC

no ur ur
sp spb spd spb spd

successes 455 536 566 583 608
average time 325 369 926 382 638 using

timeouts 3 834 804 787 762
c

successes 455 538 566 585 608
average time 325 359 911 393 570 using

timeouts 3 832 804 785 762
qc

An important criterion for the success of e(-raise)-DP-bounds is the choice of
the rewrite rule from P that should be removed from the DP problem (P,R,G)
under consideration. To find a suitable rewrite rule, TTT2 simply starts the
construction of a (quasi-deterministic, raise-consistent, and) (quasi-)compatible
tree automaton for each s→ t ∈ P in parallel. As soon as one of the processes
terminates the procedure stops and returns the corresponding rewrite rule.

The advantage of the DP processors of Theorems 5.12 and 5.20 over the naive
ones of Theorems 5.2 and 5.14 is clear, although the difference decreases when
usable rules and right-hand sides of forward closures are in effect. Furthermore,
by using quasi-compatible tree automata instead of compatible tree automata
we obtain some additional termination proofs. For b this effect is clearly visi-
ble. In case of d, the corresponding numbers in Tables 7.3 and 7.4 are identical
except for Table 7.4 when usable rules are in effect. The reason for this be-
havior is that the number of additional termination proofs is identical to the
number of TRSs for which we do not obtain a termination certificate if quasi-
compatible tree automaton are used (two TRSs for which TTT2 can construct
a quasi-compatible tree automaton but not a compatible tree automaton are
Secret 05 TRS/teparla1 and Zantema 05/z30).

102

7.2 Dependency Graphs

Although not visible from the data in Table 7.3, our experiments do not con-
firm the claim at the end of Subsection 5.4.1 that usable rules sometimes have
an adverse effect. The reason for this behavior is that the other two processors
(s and p) suffice to prove the termination of critical TRSs in the TPDB. If we
would drop s and p then the termination of TRSs like SK90/4.50 can no longer
be proved because, by computing usable rules in advance, the added projection
rules cause the (quasi-)completion procedure to loop. Although our experi-
ments do not demonstrate the negative effect of usable rules, they confirm that
restricting the computation of usable rules to non-duplicating systems in order
to avoid negative effects induced by the added projection rules is not a good
strategy since there are duplicating TRSs such as Secret 06 TRS/divExp which
can only be proved terminating with help of usable rules.

The TRSs Secret 07 TRS/1 and Secret 07 TRS/4 in the TPDB can be proved
terminating by TTT2 using match-raise-DP-bounds and right-hand sides of for-
ward closures. In the 2009 edition of the international termination competition,
besides TTT2, only AProVE [26] could show the termination of the two TRSs.5

Another interesting TRS is Secret 06 TRS/gen-25. In the 2008 competition,
only JAMBOX6 and TTT2 could prove the system to be terminating (in 2009 it
was not selected).

Example 7.1. The TRS Secret 06 TRS/gen-25 (R in the following) consists of
three rewrite rules:

c(c(z, x, a), a, y)→ f(f(c(y, a, f(c(z, y, x)))))
f(f(c(a, y, z)))→ b(y, b(z, z))

b(a, f(b(b(z, y), a)))→ z

The dependency graph contains one SCC, consisting of the following depen-
dency pairs:

1 : C(c(z, x, a), a, y)→ C(y, a, f(c(z, y, x)))
2 : C(c(z, x, a), a, y)→ C(z, y, x)

Hence termination of R is reduced to finiteness of the DP problem (P,R,G)
where P = {1, 2} and G = (P,P×P). This problem is top-DP-bounded for rule
1; the compatible tree automaton computed by TTT2 consists of 630 transitions
and 47 states. Hence the DP processor of Theorem 5.12 is applicable. This
results in the new DP problem ({2},R,G \ {1}), which is proved finite by the
subterm criterion with the simple projection π(C) = 1.

7.2 Dependency Graphs

There are various ways to implement the (improved) dependency graph proces-
sors based on tree automata completion, ranging from checking single arcs to
computing SCCs in between in order to reduce the number of arcs that have
5http://termcomp.uibk.ac.at/
6http://joerg.endrullis.de/

103

http://termcomp.uibk.ac.at/
http://joerg.endrullis.de/

7 Experiments

to be checked. In case of full termination, the following procedure turned out
to be the most efficient. For every term t ∈ rhs(P), TTT2 constructs a tree
automaton At that is compatible with R and L(t). Here L(t) = Σ(ren(t)) in
case of DGc(P,R) and L(t) = Σ#(RFC{t}(P ∪ R)) ∩ Σ(ren(t)) if IDGc(P,R)
should be computed and P∪R is right-linear. During that process it is checked
if there is a term u ∈ lhs(P) and a state substitution σ such that uσ ∈ L(At).
As soon as this condition evaluates to true, TTT2 adds an arc from s → t to
u → v for all terms s and v such that s → t and u → v are rules in P. This
procedure is repeated until for all t ∈ rhs(P), either At is compatible with
R and L(t) or an arc was added from s → t to u → v for all terms s and
rules u → v ∈ P such that root(t) = root(u) and s → t belongs to P. In
case of innermost termination we use a simpler procedure. First of all TTT2
tries to construct for each t ∈ rhs(P) a tree automaton At that is compatible
with R and L(t). Here L(t) = Σ#(RFC{t}(P ∪ R)) ∩ ΣNF(ren(t),R) if P ∪ R
is right-linear and IDGi

c(P,R) should be computed and L(t) = ΣNF(ren(t),R)
in case of DGi

c(P,R). Afterwards TTT2 computes the intersection of L(At)
and NF(lhs-linear(R)) and checks for all terms u ∈ lhs(P) whether there is
a state substitution σ such that uσ ∈ L(A) ∩ NF(lhs-linear(R)) or not. If
uσ ∈ L(A) ∩ NF(lhs-linear(R)) an arc from s→ t to u→ v, for all terms s and
v such that s → t and u → v are rewrite rules in P, is added. Otherwise the
graph remains unchanged.

Another important point is the strategy used to solve compatibility violations.
In TTT2 we establish paths as described at the beginning of this chapter. A dis-
advantage of this strategy is that it can happen that the completion procedure
does not terminate because new states are kept being added. Hence we have to
set a time limit on the involved processors to avoid that the termination prov-
ing process does not proceed beyond the calculation of (improved) dependency
graphs. Alternatively one could follow the approach based on approximation
equations or approximation rules described in Section 3.3. However, our exper-
iments showed that the former approach produces better over-approximations.

7.2.1 Full Termination

Below we report on the experiments we performed with TTT2 on the 1370 TRSs
in the full termination category of the TPDB that satisfy the variable condition.
For the results in Tables 7.5 and 7.6 we used the following DP processors:

t is a simple and fast approximation of the dependency graph processor of
Definition 5.31 using root comparisons to estimate the dependency graph:
an arc is added from a dependency pair α to a dependency pair β if and
only if the root symbols of rhs(α) and lhs(β) coincide.

e represents the dependency graph processor with the estimation DGe(P,R)
described in Definition 5.49. This is the default dependency graph pro-
cessor in TTT2 and AProVE.

c corresponds to the dependency graph processor with the approximation
DGc(P,R) of Definition 5.36.

104

7.2 Dependency Graphs

Table 7.5: Summary dependency graph approximations

t e c r ∗
arcs removed 55 68 68 73 74
SCCs 4790 4904 4522 3970 4606
rules 26291 24046 21516 20026 23469 without
successes 24 58 65 203 208 poly
average time 261 288 1078 1219 499
timeouts 0 0 32 76 0

successes 318 341 349 401 410
average time 293 289 479 456 362

with

timeouts 5 5 39 83 5
poly

Table 7.6: Summary dependency graph approximations with ur

t e c r ∗
arcs removed 55 67 68 74 74
SCCs 4790 4907 4486 3879 4550
rules 26291 24052 21269 19681 23360 without
successes 24 56 65 218 220 poly
average time 271 296 1034 1165 504
timeouts 0 0 29 71 0

successes 318 338 349 408 414
average time 306 300 486 463 370

with

timeouts 5 5 35 77 5
poly

r corresponds to the improved dependency graph processor of Theorem 5.44.
If P and R are right-linear, IDG(P,R) is estimated by IDGc(P,R) of
Definition 5.46 and in case that P ∪ R is non-right-linear, DGc(P,R) is
computed.

After applying the above processors we use the SCC processor of Definition 5.32.
In the bottom third of the tables this is additionally followed by the reduction
pair processor instantiated by linear polynomial interpretations with 0/1 coef-
ficients (poly for short) [30].

In the top third of Tables 7.5 and 7.6 we list the average number of removed
arcs (as percentage of the complete graph), the number of SCCs, and the num-
ber of rewrite rules in the computed SCCs. In the middle third we list the
number of successful termination attempts, the average wall-clock time needed
to compute the graphs (measured in milliseconds), and the number of timeouts.
In the bottom third, where polynomial interpretations are in effect, the average
time now refers to the time to prove termination.

105

7 Experiments

The power of the new processors is apparent, although the difference with e
decreases when other DP processors are in place. An obvious disadvantage of
the new processors is the large number of timeouts. As explained earlier, this
is mostly due to the unbounded number of new states to resolve compatibility
violations during tree automata completion. Modern termination tools use a
variety of techniques to prove finiteness of DP problems. So it is in general more
important that the graph approximations used in the (improved) dependency
graph processor terminate quickly rather than that they are powerful. Since
the processors c and r seem to be quite fast when they terminate, an obvious
idea is to equip each computation of a compatible tree automaton with a small
time limit. Another natural idea is to limit the number of allowed compatibility
violations. For instance, by reducing this number to 5 we can still prove termi-
nation of 150 TRSs with processor r while the number of timeouts is reduced
from 76 to 9. Another strategy is to combine different graph approximations.
This is shown in the columns of Tables 7.5 and 7.6 labeled ∗, which denotes the
composition of t, e, c, and r with a time limit of 500 milliseconds for each of
the latter three.

It is interesting to observe that r (and by extension ∗) is the only processor
that benefits from usable rules. In case of e we anticipated such a behavior
because similar as U(P,R), DGe(P,R) uses the function tcap to check via
unification if there is an arc from a dependency pair α to a dependency pair
β. So whenever there is a rewrite rule in R which causes tcap(R, rhs(α)) and
lhs(β) to be unifiable we know that this rule is usable. Of course this does not
mean that DGe(P,R) is identical to DGe(P,U(P,R)). There are systems like
the one of Example 7.2 where usable rules have a positive effect. The reason
why the c-dependency graph does not benefit from usable rules is quite similar
to the one we mentioned in connection with the estimated dependency graph.
In most cases, only those rewrite rules cause compatibility violations which are
also usable. Certainly, this is not always the case as shown in Subsection 5.4.2.

Example 7.2. Let (P,R,G) be the DP problem with P consisting of the single
rewrite rule F(a, x) → F(b, x), R consisting of the two rewrite rules b → c
and d → a, and G = (P,P × P). Obviously, tcap(R,F(b, x)) = F(y, z) and
tcap(R−1,F(a, x)) = F(y, z). Since F(y, z) unifies with F(a, x) and F(b, x) unifies
with F(y, z) we know that DGe(P,R) contains an arc from F(a, x) → F(b, x)
to itself. In contrast, DGe(P,U(P,R)) does not contain such an arc. We have
U(P,R) = {b → c} and hence tcap(R−1,F(a, x)) = F(a, y). Since F(b, x) does
not unify with F(a, y), DGe(P,U(P,R)) is empty.

We also implemented the approximations based on tree automata and regu-
larity preservation described in Subsection 5.3.4. The results are summarized
in Tables 7.7 and 7.8. Thereby s represents the dependency graph proces-
sor estimated by DGs(P,R), nv defines the dependency graph processor using
DGnv(P,R) to approximate DG(P,R), and g corresponds to the dependency
graph processor estimated by DGg(P,R). It is apparent that these approx-
imations are too time-consuming to be of any use in automatic termination
provers. This is implicitly indicated by the high average time that is needed
to compute the graphs and the huge number of timeouts. As an immediate

106

7.2 Dependency Graphs

Table 7.7: Summary φ-approximated dependency graphs

c s nv g
arcs removed 68 64 60 48
SCCs 4522 2407 1600 63
rules 21516 6345 3898 105 without
successes 65 58 64 35 poly
average time 1078 4515 5119 5051
timeouts 32 232 468 1275

successes 349 315 295 56
average time 479 1923 2317 4962

with

timeouts 39 233 468 1275
poly

Table 7.8: Summary φ-approximated dependency graphs with ur

c s nv g
arcs removed 68 64 61 49
SCCs 4486 2438 1777 259
rules 21269 6425 4207 432 without
successes 65 56 61 54 poly
average time 1034 3869 4180 2320
timeouts 29 222 421 1112

successes 349 312 297 131
average time 486 1847 1957 1801

with

timeouts 35 222 420 1112
poly

consequence it would not make much sense to equip those approximations with
a small time limit of 500 milliseconds as we did with the DP processors c and
r in the columns labeled with ∗.

One advantage of more powerful (improved) dependency graph approxima-
tions is that termination proofs can get much simpler.

Example 7.3. The TRS Endrullis 06/quadruple1 (R in the following) consists
of the following rewrite rule:

p(p(b(a(x)), y), p(z, u))→ p(p(b(z), a(a(b(y)))), p(u, x))

To prove termination of R using dependency pairs, we transform R into the
initial DP problem (P,R,G) where P = DP(R) consists of the rewrite rules

1 : P(p(b(a(x)), y), p(z, u))→ P(p(b(z), a(a(b(y)))), p(u, x))
2 : P(p(b(a(x)), y), p(z, u))→ P(b(z), a(a(b(y))))
3 : P(p(b(a(x)), y), p(z, u))→ P(u, x)

107

7 Experiments

and G = P ×P. Applying the improved dependency graph processor produces
the new DP problem (P,R, IDGc(P,R)) where IDGc(P,R) = ∅. It follows
that the initial DP problem is finite and hence that R is terminating. If we use
DGe(P,R) instead of IDGc(P,R) we obtain the DP problem (P,R,DGe(P,R))
where DGe(P,R) looks as follows:

12 3

By applying the SCC processor of Definition 5.32 we end up with the non-empty
DP problem ({1},R,DGe(P,R)\{2, 3}). So termination of R cannot be shown
that easily. This is reflected in the 2009 edition of the international termination
competition: AProVE combined a variety of processors to infer termination
within 2.1 seconds, JAMBOX proved termination of R within 2.38 seconds by
using linear matrix interpretations up to dimension 2, and TTT2 used match-
bounds together with right-hand sides of forward closures to prove termination
within 242 milliseconds. All other tools could not show the termination of the
TRS R.

7.2.2 Innermost Termination

In this subsection we report on the experiments we performed with TTT2 on the
358 TRSs in the innermost termination category of the TPDB. For the results
in Tables 7.9 and 7.10 we used the innermost counterparts of the DP processors
t, e, c, and r of the previous subsection:

t approximates the innermost dependency graph processor of Definition 5.55
using root comparisons.

e estimates the innermost dependency graph processor with DGi
e(P,R) de-

scribed in Definition 5.63. This is the default innermost dependency graph
processor in TTT2 and AProVE.

c approximates the innermost dependency graph processor with DGi
c(P,R)

of Definition 5.61.

r represents the improved innermost dependency graph processor of Theo-
rem 5.59 where IDGi

c(P,R) of Definition 5.61 is computed if P and R are
right-linear and DGi

c(P,R) otherwise.

Similar as for full termination we use ∗ to denote the composition of the in-
nermost DP processors t, e, c, and r where each of the latter three is equipped
with a time limit of 500 milliseconds. After applying the above processors we
use the SCC processor of Definition 5.32. In the bottom third of the tables this
is additionally followed by the application of poly.

The power of the new processors is clearly visible, although the difference
with e is not that large as in the case of full termination. A serious problem of
the innermost processors c and r is that the normal form computations require

108

7.3 Complexity Analysis

Table 7.9: Summary innermost dependency graph approximations

t e c r ∗
arcs removed 69 78 72 79 81
SCCs 2751 2485 198 102 2674
rules 16419 13927 543 305 15686 without
successes 9 24 32 53 51 poly
average time 421 1593 4726 4146 1375
timeouts 0 2 239 248 0

successes 74 92 66 65 99
average time 516 493 4159 2609 962

with

timeouts 5 9 239 248 5
poly

Table 7.10: Summary innermost dependency graph approximations with ur

t e c r ∗
arcs removed 69 78 70 77 81
SCCs 2751 2483 206 108 2674
rules 16419 13607 547 305 15692 without
successes 9 23 28 50 51 poly
average time 547 1470 3724 2632 1459
timeouts 0 3 237 246 0

successes 74 91 63 63 99
average time 522 498 3779 1759 944

with

timeouts 5 9 237 246 5
poly

additional resources which lead to a huge number of timeouts. As a side effect
the number of innermost termination proofs of the c and r processor are much
lower than the number of successful innermost termination proofs of e, if poly-
nomial interpretations are in effect. To control the number of timeouts one can
use the same techniques as discussed in Subsection 7.2.1.

Another interesting observation is that none of the processors can really ben-
efit from usable rules. Of course there are TRSs like AG01 innermost/#4.25
where DGi

c(P,R) and IDGi
c(P,R) contain less arcs if usable rules are computed

beforehand. Nevertheless, it seems that the negative effect of usable rules,
indicated in Subsection 5.4.2, is more serious than assumed.

7.3 Complexity Analysis

In the following section we report on the experiments we performed with CaT
on the 1172 TRSs in the complexity category of the TPDB that are non-

109

7 Experiments

duplicating.7 Our results are summarized in Tables 7.11 and 7.12. In Ta-
ble 7.11 we are concerned with derivational complexities whereas in Table 7.12
we investigate the runtime complexities of the considered TRSs. We list the
number of successful termination attempts (inducing a polynomial complexity),
the number of TRSs that admit a linear, quadratic, or cubic complexity, and the
average system time needed to prove termination (measured in milliseconds).
To compute upper complexity bounds we used the following techniques:

b represents the ordinary match-bound technique based on Theorems 4.4
and 4.15. To estimate the derivational complexity of a TRS we have
chosen as initial language the set of all ground terms and to evaluate the
runtime complexity of a TRS we considered the set of all constructor-
based terms.

p corresponds to the CP processor based on strongly linear interpretations
with 0/1 coefficients [61].

m abbreviates two CP processors based on triangular matrix interpretations
of dimension two and three with 0/1 coefficients [61].

r represents the CP processor based on Theorems 6.23 and 6.24. Similar as
for match(-raise)-bounds we considered as initial language the set of all
ground terms to estimate the derivational complexity of a TRS and the
set of all constructor-based terms to evaluate the runtime complexity of
a TRS.

Note that we do not mention the number of timeouts because all techniques
have been equipped with a small time limit. This is necessary because lin-
ear complexity proofs are preferred to quadratic complexity proofs etc. As a
consequence the used strategies always terminate. The use of compatible tree
automata is indicated by c and we write qc to denote that quasi-compatible
tree automata have been constructed. To handle raise-rules we used the im-
plicit approach.

Our experiments confirm the conjecture that match(-raise)-RT-bounds are
more powerful than match(-raise)-bounds. Although there is only a minor dif-
ference between the two approaches, there are at least some TRSs like Vari-
ous 04/24 or Zantema 04/z024 that can be proved polynomially terminating if
we use match-RT-bounds instead of match-bounds. Quite interesting is that
some of these systems do not admit a linear complexity. So match(-raise)-RT-
bounds are not only useful to prove linear complexity bounds. The reason for
this behavior can be traced back to the complexity framework which makes it
possible to combine different techniques to prove complexity bounds. Another
interesting observation is the tremendous increase of linear complexity proofs if

7If we want to compute the derivational complexity of a TRS, non-duplication is no real
restriction because any duplicating TRS admits exponential derivational complexity. In case
of runtime complexity the situation is different. There are TRSs which are duplicating but
admit a polynomial runtime complexity. Nevertheless, we had to restrict our experiments
to non-duplicating TRSs because match(-raise)-bounds and in the sequel match(-raise)-RT-
bounds cannot be used to prove polynomial upper complexity bounds of duplicating TRSs.

110

7.3 Complexity Analysis

Table 7.11: Summary derivational complexity

using c using qc
pm bpm bprm bpm bprm

successes 170 270 276 268 274
linear 38 171 179 171 180
quadratic 110 85 84 83 82
cubic 22 14 13 14 12
average time 514 2344 4174 2339 4120

Table 7.12: Summary runtime complexity

using c using qc
pm bpm bprm bpm bprm

successes 170 921 928 919 925
linear 38 907 916 905 913
quadratic 110 13 11 13 11
cubic 22 1 1 1 1
average time 514 276 390 276 385

we switch from derivational complexity to runtime complexity. The reasons for
this gain in power are that the complexity category of the TPDB contains many
TRSs where all function symbols are defined (such TRSs admit most times a
linear or even constant complexity, especially if every left-hand side consists of
at least two defined symbols) and that the match-bound technique allows us to
investigate the termination of a given TRS with respect to an arbitrary regular
language. So it is not surprising that match(-raise)-bounds and match(-raise)-
RT-bounds are so far the most powerful techniques to prove linear runtime
complexity.

In the 2009 edition of the international termination competition none of the
tools could prove an upper complexity bound for the TRS Transformed CSR 04/
Ex16 Luc06 GM. Using match-raise-RT-bounds CaT is now able to show that this
TRS admits a quadratic derivational complexity.

Example 7.4. We compute the derivational complexity of the rewrite system
Transformed CSR 04/Ex16 Luc06 GM (R in the following) over the signature
F = {a, b, c, f, g,mark} which consists of the following rewrite rules:

c→ a g(x, y)→ f(x, y) mark(a)→ a

c→ b g(x, x)→ g(a, b) mark(b)→ c

mark(f(x, y))→ g(mark(x), y)

By using the CP processor p, we can transform the initial CP problem consisting
of the relative TRS R/∅ into the CP problem (R′/S ′, T (F), f ′) where the TRS

111

7 Experiments

R′ consist of the rewrite rules

g(x, x)→ g(a, b) mark(f(x, y))→ g(mark(x), y)

and S ′ = R \R′. Since p induces linear complexity bounds we have f ′(n) = n
for all n ∈ N. After that we can apply the CP processor r to show that the
derivational complexity induced by the rewrite rule g(x, x)→ g(a, b) is at most
linear. So we end up with the CP problem (R′′/S ′′, T (F), f ′′) where the TRS
R′′ consist of the rewrite rule mark(f(x, y))→ g(mark(x), y), S ′′ = R \R′′, and
f ′′(n) = f ′(n) + n = 2n for all n ∈ N. Finally, by applying the CP processor
m with triangular matrix interpretations of dimension two we obtain the CP
problem (∅/R, T (F), f) where f(n) = f ′′(n) + n2 = n2 + 2n for all n ∈ N. It
follows that the derivational complexity of R can be bounded by a quadratic
polynomial. Note that the quadratic bound is tight as R admits derivations

markn(x)σm →m markn−1(x)τmθ →m markn−1(x)σmθ →2m(n−1) xσmθn

of length 2mn where σ = {x 7→ f(x, y)}, τ = {x 7→ g(x, y)}, and θ = {x 7→
mark(x)}. Last but not least we remark that none of the involved techniques can
establish an upper bound on its own. In case of the match-bound technique
this follows from the fact that R admits quadratic derivational complexity.
The same reason also holds for p because strongly linear interpretations induce
linear complexity bounds. Finally, m fails because it cannot orient the rule
g(x, x)→ g(a, b).

7.4 Summary

In this chapter we reported on the extensive experiments we conducted. We
showed that termination tools can benefit from the termination techniques pre-
sented in the previous chapters.

The main reason why the presented techniques are quite successful is that
they can be adapted to any situation by configurating the initial language. For
instance, in case of e(-raise)(-DP)-bounds we used right-hand sides of forward
closures to prove the termination of rewrite systems. Likewise, we used forward
closures to go beyond dependency graphs. For complexity analysis we could use
the mentioned ability to configurate match(-raise)(-RT)-bounds in such a way
that they are especially suited to prove runtime complexity bounds (we have
chosen the set of all constructor-based terms as initial language). So it is not
astonishing that we sometimes got a large increase of the number of termination
or complexity proofs.

A serious disadvantage of all methods based on tree automata completion is
that they either succeed or never terminate. So to ensure a successful integration
into a termination or complexity prover it is necessary to equip each technique
with a time limit. In TTT2 and CaT we usually choose a small time limit of
at most 5 seconds since the employed methods seem to be quite fast if they
succeed.

112

Chapter 8

Conclusion

In this thesis we have shown that tree automata techniques, especially tree
automata completion, can efficiently be used to check if a given TRS is termi-
nating. As starting point we considered the match-bound technique which uses
tree automata techniques, in particular, tree automata completion to obtain
termination certificates. Since tree automata completion is mainly justified for
left-linear rewrite systems, the initially proposed match-bound technique could
only be used for this restricted class of TRSs. To eliminate this burden we
presented in Chapter 3 a new and elegant approach to cope with non-left-linear
TRSs. The key to this extension is the use of quasi-deterministic tree automata
instead of non-deterministic tree automata during the completion process. How-
ever, to extend the match-bound technique to non-left-linear rewrite systems it
does not suffice to broaden tree automata completion. The reason is that the
theory on which the method is based is incorrect for non-left-linear TRSs. To
overcome this problem we introduced so called raise-rules in Chapter 4. Fi-
nally we showed how to strengthen the method by taking forward closures into
account.

Chapter 5 was devoted to the so called dependency pair framework. First of all
we showed how the match-bound technique can be successfully integrated into
this framework. For that purpose we introduced two new enrichments which
take care of the special properties of dependency pair problems. Afterwards we
illustrated how tree automata completion can be used to approximate depen-
dency graphs. Thereby we used forward closures to remove arcs of the exact
dependency graph. Last but not least we combined all developed DP processors
with usable rules.

After successfully performing termination analysis it is natural to determine
the complexity of the given TRSs. To show feasible upper complexity bounds
only a few techniques such as match-bounds and triangular matrix interpreta-
tions are known. Typically, those techniques are used in a direct way only. So
a single termination technique has to orient all rules in one go. In Chapter 6 we
presented a modular approach, the so called complexity framework, which com-
putes the complexity of a given TRS using relative rewriting. We also showed
how the match-bound technique can be integrated into this setting.

Finally in Chapter 7 we reported on the extensive experiments we conducted.
We showed that termination tools can benefit from the termination techniques
presented in the previous chapters. We also figured out that the main reason
why the presented methods are quite successful is that they can be adapted to

113

8 Conclusion

any situation by configurating the initial language in an appropriate way. A
serious disadvantage of the presented techniques is that they either succeed or
never terminate. So to successfully use them in a termination or complexity
prover it is necessary to equip each method with a time limit.

114

Bibliography

[1] Tomas Arts and Jürgen Giesl. Termination of term rewriting using depen-
dency pairs. Theoretical Computer Science, 236(1–2):133–178, 2000.

[2] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, 1998.

[3] Françoise Bellegarde and Pierre Lescanne. Termination by completion. Ap-
plicable Algebra in Engineering, Communication and Computing, 1(2):79–
96, 1990.

[4] Yohan Boichut, Thomas Genet, Thomas Jensen, and Luka Le Roux.
Rewriting approximations for fast prototyping of static analyzers. In Pro-
ceedings of the 18th International Conference on Rewriting Techniques and
Applications (RTA 2007), volume 4533 of Lecture Notes in Computer Sci-
ence, pages 48–62, 2007.

[5] Alonzo Church. An unsolvable problem of elementary number theory.
American Journal of Mathematics, 58(2):345–363, 1936.

[6] Hubert Comon, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis
Lugiez, Christof Löding, Sophie Tison, and Marc Tommasi. Tree automata
techniques and applications. Available from tata.gforge.inria.fr, 2007.

[7] Nachum Dershowitz. Termination of linear rewriting systems (preliminary
version). In Proceedings of the 8th International Colloquium on Automata,
Languages and Programming (ICALP 1981), volume 115 of Lecture Notes
in Computer Science, pages 448–458, 1981.

[8] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical
Computer Science, 17(3):279–301, 1982.

[9] Nachum Dershowitz and Zohar Manna. Proving termination with multiset
orderings. Communications of the ACM, 22(8):465–476, 1979.

[10] Iréne Durand and Aart Middeldorp. Decidable call-by-need computations
in term rewriting. Information and Computation, 196(2):95–126, 2005.

[11] Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Proceedings of the 6th International Conference on Computer
Aided Verification (CAV 2006), volume 4144 of Lecture Notes in Computer
Science, pages 81–94, 2006.

115

tata.gforge.inria.fr

Bibliography

[12] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings
of the 6th International Conference on Theory and Applications of Satis-
fiability Testing (SAT 2003), volume 2919 of Lecture Notes in Computer
Science, pages 502–518, 2004.

[13] Jörg Endrullis, Dieter Hofbauer, and Johannes Waldmann. Decompos-
ing terminating rewrite relations. In Proceedings of the 8th International
Workshop on Termination (WST 2006), pages 39–43, 2006.

[14] Guillaume Feuillade, Thomas Genet, and Valérie Viet Triem Tong. Reach-
ability analysis over term rewriting systems. Journal of Automated Rea-
soning, 33(3–4):341–383, 2004.

[15] Jean Gallier and Ronald Book. Reductions in tree replacement systems.
Theoretical Computer Science, 37:123–150, 1985.

[16] Adrià Gascón, Guillem Godoy, and Florent Jacquemard. Closure of tree
automata languages under innermost rewriting. Electronic Notes in Theo-
retical Computer Science, 237:23–38, 2009. Proceedings of the 8th Interna-
tional Workshop on Reduction Strategies in Rewriting and Programming
(WRS 2008).

[17] Thomas Genet. Decidable approximations of sets of descendants and sets
of normal forms (extended version). Technical Report RR-3325, Institut
National de Recherche en Informatique et Automatique (INRIA), 1997.

[18] Thomas Genet. Decidable approximations of sets of descendants and sets
of normal forms. In Proceedings of the 9th International Conference on
Rewriting Techniques and Applications (RTA 1998), volume 1379 of Lec-
ture Notes in Computer Science, pages 151–165, 1998.

[19] Thomas Genet and Francis Klay. Rewriting for cryptographic protocol
verification. In Proceedings of the 17th International Conference on Auto-
mated Deduction (CADE 2000), volume 1831 of Lecture Notes in Artificial
Intelligence, pages 271–290, 2000.

[20] Thomas Genet and Valérie Viet Triem Tong. Reachability analysis of
term rewriting systems with Timbuk. In Proceedings of the 8th Inter-
national Conference on Logic Programming and Automated Reasoning
(LPAR 2001), volume 2250 of Lecture Notes in Artificial Intelligence, pages
695–706, 2001.

[21] Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Match-bounded
string rewriting systems. Applicable Algebra in Engineering, Communica-
tion and Computing, 15(3–4):149–171, 2004.

[22] Alfons Geser, Dieter Hofbauer, and Johannes Waldmann. Termination
proofs for string rewriting systems via inverse match-bounds. Journal of
Automated Reasoning, 34(4):365–385, 2005.

116

Bibliography

[23] Alfons Geser, Dieter Hofbauer, Johannes Waldmann, and Hans Zan-
tema. Finding finite automata that certify termination of string rewrit-
ing systems. International Journal of Foundations of Computer Science,
16(3):471–486, 2005.

[24] Alfons Geser, Dieter Hofbauer, Johannes Waldmann, and Hans Zantema.
On tree automata that certify termination of left-linear term rewriting
systems. Information and Computation, 205(4):512–534, 2007.

[25] Oliver Geupel. Overlap closures and termination of term rewriting systems.
Technical Report MIP-8922, Universität Passau, 1989.

[26] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. AProVE 1.2:
Automatic termination proofs in the dependency pair framework. In Pro-
ceedings of the 3rd International Joint Conference on Automated Reason-
ing (IJCAR 2006), volume 4130 of Lecture Notes in Artificial Intelligence,
pages 281–286, 2006.

[27] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The depen-
dency pair framework: Combining techniques for automated termination
proofs. In Proceedings of the 11th International Conference on Logic Pro-
gramming and Automated Reasoning (LPAR 2004), volume 3425 of Lecture
Notes in Artificial Intelligence, pages 301–331, 2004.

[28] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving and
disproving termination of higher-order functions. In Proceedings of the
5th International Workshop on Frontiers of Combining Systems (FroCoS
2005), volume 3717 of Lecture Notes in Artificial Intelligence, pages 216–
231, 2005.

[29] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke.
Improving dependency pairs. In Proceedings of the 10th International Con-
ference on Logic Programming and Automated Reasoning (LPAR 2003),
volume 2850 of Lecture Notes in Artificial Intelligence, pages 167–182,
2003.

[30] Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke.
Mechanizing and improving dependency pairs. Journal of Automated Rea-
soning, 37(3):155–203, 2006.

[31] Rémi Gilleron and Sophie Tison. Regular tree languages and rewrite sys-
tems. Fundamenta Informaticae, 24(1–2):157–175, 1995.

[32] Nao Hirokawa and Aart Middeldorp. Automating the dependency pair
method. Information and Computation, 199(1–2):172–199, 2005.

[33] Nao Hirokawa and Aart Middeldorp. Tyrolean termination tool: Tech-
niques and features. Information and Computation, 205(4):474–511, 2007.

[34] Nao Hirokawa and Georg Moser. Automated complexity analysis based
on the dependency pair method. In Proceedings of the 4th International

117

Bibliography

Joint Conference on Automated Reasoning (IJCAR 2008), volume 5195 of
Lecture Notes in Computer Science, pages 364–379, 2008.

[35] Nao Hirokawa and Georg Moser. Complexity, graphs, and the dependency
pair method. In Proceedings of the 15th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning (LPAR 2008), vol-
ume 5330 of Lecture Notes in Artificial Intelligence, pages 652–666, 2008.

[36] Dieter Hofbauer and Clemens Lautemann. Termination proofs and the
length of derivations (preliminary version). In Proceedings of the 3rd In-
ternational Conference on Rewriting Techniques and Applications (RTA
1989), volume 355 of Lecture Notes in Computer Science, pages 167–177,
1989.

[37] Dieter Hofbauer and Johannes Waldmann. Deleting string rewriting sys-
tems preserve regularity. Theoretical Computer Science, 327(3):301–317,
2004.

[38] Donald Knuth and Peter Bendix. Simple word problems in universal al-
gebras. In Computational Problems in Abstract Algebra, pages 263–297.
Pergamon Press, 1970.

[39] Adam Koprowski and Johannes Waldmann. Arctic termination . . . below
zero. In Proceedings of the 19th International Conference on Rewriting
Techniques and Applications (RTA 2008), volume 5117 of Lecture Notes in
Computer Science, pages 202–216, 2008.

[40] Martin Korp and Aart Middeldorp. Proving termination of rewrite sys-
tems using bounds. In Proceedings of the 18th International Conference
on Rewriting Techniques and Applications (RTA 2007), volume 4533 of
Lecture Notes in Computer Science, pages 273–287, 2007.

[41] Martin Korp and Aart Middeldorp. Match-bounds with dependency pairs
for proving termination of rewrite systems. In Proceedings of the 2nd Inter-
national Conference on Language and Automata Theory and Applications
(LATA 2008), volume 5196 of Lecture Notes in Computer Science, pages
321–332, 2008.

[42] Martin Korp and Aart Middeldorp. Beyond dependency graphs. In Pro-
ceedings of the 22nd International Conference on Automated Deduction
(CADE 2009), volume 5663 of Lecture Notes in Computer Science, pages
339–354, 2009.

[43] Martin Korp and Aart Middeldorp. Match-bounds revisited. Information
and Computation, 207(11):1259–1283, 2009.

[44] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp.
Tyrolean termination tool 2. In Proceedings of the 20th International Con-
ference on Rewriting Techniques and Applications (RTA 2009), volume
5595 of Lecture Notes in Computer Science, pages 295–304, 2009.

118

Bibliography

[45] Keiichirou Kusakari. Termination, AC-Termination and Dependency Pairs
of Term Rewriting Systems. PhD thesis, Japan Advanced Institute of
Science and Technology (JAIST), 2000.

[46] Keiichirou Kusakari and Yoshihito Toyama. On proving AC-termination
by AC-dependency pairs. Research Report IS-RR-98-0026F, School of In-
formation Science, Japan Advanced Institute of Science and Technology
(JAIST), 1998.

[47] Zohar Manna and Stephen Ness. On the termination of Markov algorithms.
In Proceedings of the 3rd Hawaii International Conference on System Sci-
ence (HICSS 1970), pages 789–792, 1970.

[48] Aart Middeldorp. Approximating dependency graphs using tree automata
techniques. In Proceedings of the 1st International Joint Conference on
Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes in
Artificial Intelligence, pages 593–610, 2001.

[49] Aart Middeldorp. Approximations for strategies and termination. Elec-
tronic Notes in Theoretical Computer Science, 70(6):1–20, 2002. Proceed-
ings of the 2nd International Workshop on Reduction Strategies in Rewrit-
ing and Programming (WRS 2002).

[50] Georg Moser, Andreas Schnabl, and Johannes Waldmann. Complexity
analysis of term rewriting based on matrix and context dependent inter-
pretations. In Proceedings of the 28th International Conference on Founda-
tions of Software Technology and Theoretical Computer Science (FSTTCS
2008), volume 1762 of Dagstuhl Research Online Publication Server, pages
304–315, 2008.

[51] Takashi Nagaya and Yoshihito Toyama. Decidability for left-linear growing
term rewriting systems. Information and Computation, 178(2):499–514,
2002.

[52] Frédéric Oehl, Gérard Cece, Olga Kouchnarenko, and David Sinclair. Au-
tomatic approximation for the verification of cryptographic protocols. In
Proceedings of the 1st International Conference on Formal Aspects of Secu-
rity (FASec 2002), volume 2629 of Lecture Notes in Artificial Intelligence,
pages 33–48, 2003.

[53] David Plaisted and Steven Greenbaum. A structure-preserving clause form
translation. Journal of Symbolic Computation, 2(3):293–304.

[54] Terese. Term Rewriting Systems. Cambridge University Press, 2003.

[55] René Thiemann. The DP Framework for Proving Termination of Term
Rewriting. PhD thesis, Rheinisch-Westfaelische Technische Hochschule
Aachen (RWTH Aachen), 2007. Available as technical report AIB-2007-17.

[56] Axel Thue. Probleme über Veränderungen von Zeichenreihen nach gegebe-
nen Regeln. Number 10 in Matematisk-Naturvidenskabelig Klasse. Skrifter
utgit av Videnskapsselskapet i Kristiania, 1914.

119

Bibliography

[57] Alan Turing. On computable numbers with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
2(42):230–265, 1936.

[58] Alan Turing. Computability and λ-definability. Journal of Symbolic Logic,
2(4):153–163, 1937.

[59] Johannes Waldmann. Matchbox: A tool for match-bounded string rewrit-
ing. In Proceedings of the 15th International Conference on Rewriting
Techniques and Applications (RTA 2004), volume 3091 of Lecture Notes in
Computer Science, pages 85–94, 2004.

[60] Johannes Waldmann. Weighted automata for proving termination of string
rewriting. Journal of Automata, Languages and Combinatorics, 12(4):545–
570, 2007.

[61] Harald Zankl and Martin Korp. Modular complexity analysis via relative
complexity. In Proceedings of the 21st International Conference on Rewrit-
ing Techniques and Applications (RTA 2010), 2010. To be published.

[62] Hans Zantema. Termination of term rewriting by semantic labelling. Fun-
damenta Informaticae, 24(1–2):89–105, 1995.

[63] Hans Zantema. Termination of rewriting proved automatically. Journal of
Automated Reasoning, 34(2):105–139, 2005.

120

Appendix A

Termination and Complexity
Tools

In this chapter we summarize the main design issues, features, and successes
of the termination prover TTT2 and the complexity tool CaT. In Section A.1 we
describe the architecture and most important features of TTT2. In particular, we
explain the strategy language of TTT2 which gives the user full control over the
implemented termination methods. Additionally we also list the strategies that
have been used to conduct the experiments presented in Sections 7.1 and 7.2.
Afterwards, in Section A.2, we describe the most important features of CaT.
Similar as for TTT2 we explain its strategy language, the output, as well as
the strategies that have been used to obtain the experimental data shown in
Section 7.3.

Most of the information presented in this appendix appeared already in the
conference paper [44] which was related to version 1.0 of TTT2. In the following
we updated the information to conform to version 1.05 of TTT2.

A.1 The Termination Tool TTT2

TTT2 is the completely redesigned successor of the Tyrolean Termination Tool
(TTT for short) [33]. It is a tool for automatically proving termination of TRSs,
based on the dependency pair framework [27, 30, 33, 55]. It incorporates several
novel methods like increasing interpretations, match-bounds, uncurrying, and
outermost loops. It produces readable output and has a simple web interface.
Precompiled binaries, sources and documentation of TTT2 are available at the
following web-site:

http://cl-informatik.uibk.ac.at/software/ttt2/

In contrast to its predecessor, TTT2 is open source, published under terms of the
GNU Lesser General Public License. In the remainder of this section we refer
to version 1.05 of the tool.

A.1.1 Design and Execution

The tool is written in OCaml1 and consists of about 32,000 lines of code. Ap-
proximately 16% are dedicated to provide some general useful functions and
1http://caml.inria.fr/

121

http://cl-informatik.uibk.ac.at/software/ttt2/
http://caml.inria.fr/

A Termination and Complexity Tools

data structures. Another 27% are used to implement the rewriting library
which deals with terms and rules, the automata library which provides basic
functions concerning tree automata and tree transducers, and the logic library
which interfaces the used SAT and SMT solvers. The biggest fragment—about
47%—is used to implement the accessible termination methods and the strat-
egy language. The rest (about 10%) is concerned with input and output. Since
our tool provides several techniques that modify a termination problem by
transforming it into different problem domains, TTT2 interfaces the SAT solver
MiniSat [12] and the SMT solver Yices [11]. For interfacing C code the third
party contribution CamlIDL2 is needed. The use of monads to implement the
strategy language and several other parts of the tool, allows a clean and abstract
treatment of the internal prover state in a purely functional way. Additionally,
monads facilitate changes (like the integration of a new termination method).

Besides the actual termination prover, we provide the following libraries:

• util extends the functionality of several modules from the standard
OCaml library. Modules for graph manipulation, advanced process and
timer handling, as well as monads are also included.

• parsec is an OCaml port of the Haskell parsec3 library, which provides an
implementation of a functional combinator parser library.

• rewriting provides types and functions dealing with terms, substitutions,
contexts, TRSs, etc. The functionality is not only aimed at termination.
For instance the computation of overlaps and normal forms is also sup-
ported.

• logic provides an OCaml interface that abstracts over the two constraint
solvers MiniSat and Yices. To this end arithmetical formulas are encoded
in an intermediate datatype. When solving the constraints the user spec-
ifies the back-end. In the case of MiniSat, additional information (how
many bits are used to represent numbers and intermediate results) can be
provided. Afterwards the propositional formula is transformed into con-
junctive normal form by a satisfiability-preserving transformation [53].
Yices, on the other hand, does neither require the number of bits as a
parameter nor the transformation due to built-in support for linear arith-
metic and formulas not in conjunctive normal form.

• automata provides an implementation of tree automata and tree trans-
ducers. The emphasis is put on functions which are especially useful in
connection with tree automata completion.

• processors collects the numerous (non-)termination methods.

• ttt2 contains the strategy language and connects the preceding libraries.

In order to run TTT2 from the command line, the user can either download
the source code from the TTT2 web page and install it following the installation
2http://caml.inria.fr/pub/old_caml_site/camlidl/
3http://legacy.cs.uu.nl/daan/parsec.html

122

http://caml.inria.fr/pub/old_caml_site/camlidl/
http://legacy.cs.uu.nl/daan/parsec.html

A.1 The Termination Tool TTT2

guidelines or alternatively download the binary of the latest version of TTT2.
After a successful installation, TTT2 can be started via the command

./ttt2 [options] <file> [timeout]

where [options] denotes a list of command line options, <file> specifies the
name of the file containing the TRS of which termination should be proved,
and [timeout]—a floating point number—defines the time limit for proving
termination of the given TRS. The TRS must adhere to the termination problem
database format.4 The timeout is optional. To get a complete list of the
command line options of TTT2 execute the command ./ttt2 --help.

A.1.2 The Strategy Language

As mentioned in the introduction, TTT2 is designed according to the dependency
pair framework which ensures that all methods are implemented in a modular
way. In order to combine these methods in a flexible manner, TTT2 provides a
strategy language. In the following the most important constructs of this lan-
guage are explained. For further information please consult the documentation
of TTT2 by executing the command ./ttt2 --help.

Syntax

The operators provided by the strategy language can be divided into three
classes: combinators, iterators, and specifiers. Combinators are used to combine
two strategies whereas iterators are used to repeat a given strategy a designated
number of times. In contrast, specifiers are used to control the behavior of
strategies. The most common combinators are the infixes ‘;’, ‘|’, and ‘||’. The
most common iterators are the postfixes ‘?’, ‘+’, and ‘*’. The most common
specifiers are ‘{ }’ and ‘[f]’ (written postfix), where f denotes some floating
point number. In order to obtain a well-formed strategy s, these operators have
to be combined according to the grammar

s ::= m | (s) | s;s | s|s | s||s | s? | s+ | s* | s[f] | {s}o

where m denotes any available method and o any available modifier of TTT2
(possibly followed by some flags to adjust the considered technique). For the
moment we just want to remark that the main difference between methods and
modifiers is that the former operate on one termination problem whereas the
latter get two termination problems as input (the current problem as well as
some old problem). In order to avoid unnecessary parentheses, the following
precedence is used: ?, +, *, [f] > ; > |, ||.

Semantics

In the remainder of this subsection we use the notion termination problem to
denote a TRS, a DP problem, or a relative termination problem. We call a
termination problem terminating if the underlying TRS (DP problem, relative
4http://www.termination-portal.org/

123

http://www.termination-portal.org/

A Termination and Complexity Tools

termination problem) is terminating (finite, relative terminating). A strategy
works on a termination problem. Whenever TTT2 executes a strategy, internally,
a so called proof object is constructed which represents the actual termination
proof. Depending on the shape of the resulting proof object after applying a
strategy s, we say that s succeeded or s failed.

This should not be confused with the possible answers of the prover: YES, NO,
and MAYBE. Here YES means that termination could be proved, NO indicates a
successful non-termination proof, and MAYBE refers to the case when termination
could neither be proved nor disproved. On success of a strategy s it depends
on the internal proof object whether the final answer is YES or NO. On failure,
the answer is always MAYBE. Based on the two possibilities success or failure,
the semantics of the strategy operators is as follows.

The combinator ‘;’ denotes sequential composition. Given two strategies s
and s′ together with a termination problem P , s;s′ first tries to apply s to P . If
this fails, then also s;s′ fails, otherwise s′ is applied to the resulting termination
problem. So the strategy s;s′ fails, whenever one of s and s′ fails. The combi-
nator ‘|’ denotes choice. Different from sequential composition, the choice s|s′

succeeds whenever at least one of s or s′ succeeds. More precisely, given the
strategy s|s′, TTT2 first tries to apply s to P . If this succeeds, its result is the
result of s|s′, otherwise s′ is applied to P . The combinator ‘||’ is quite similar
to the choice combinator and denotes parallel execution. That means given the
strategy s||s′, TTT2 runs s and s′ in parallel on the termination problem P .
As soon as at least one of s and s′ succeeds, the resulting termination problem
is returned. This can be seen as a kind of non-deterministic choice, since on
simultaneous success of both s and s′, it is more or less arbitrary whose result
is taken.

Example A.1. Consider the following strategy:

dp;edg;sccs;(bounds -dp || (matrix -dp | kbo -af))

In order to prove termination of a TRS R using this strategy, TTT2 first com-
putes the dependency pairs P = DP(R) of R using the dp processor (thereby
transforming the initially supplied TRS into a DP problem (P,R,G) with
G = (P,P × P)). After that the estimated dependency graph and the SCCs
of the DP problem (P,R,G) are computed, resulting in a set of DP problems
{(P1,R,G1), . . . , (Pn,R,Gn)} with n ∈ N. Finally, to conclude that the DP
problem (P,R,G) is finite and hence that the TRS R is terminating, TTT2 tries
to prove finiteness of each DP problem (Pi,R,Gi) with i ∈ {1, . . . , n} by apply-
ing the match-bound technique and a combination of the matrix method and the
Knuth-Bendix order in parallel. Here the substrategy matrix -dp | kbo -af
first applies matrix interpretations to a given termination problem and on fail-
ure, applies the Knuth-Bendix order. Besides that the flag -dp specifies that
e(-raise)-DP-boundedness should be proved in case of the bounds processor and
weakly monotone interpretations should be used when the matrix processor is
applied. The flag -af specifies that argument filterings should be considered
when computing the Knuth-Bendix ordering.

124

A.1 The Termination Tool TTT2

Next we describe the iterators ‘?’, ‘+’, and ‘*’. The strategy s? tries to apply
the strategy s to a termination problem P . On success its result is returned,
otherwise P is returned unmodified. So s? applies s once or not at all to P
and always succeeds. The iterators ‘+’ and ‘*’ are used to apply s recursively
to P until P cannot be modified any more. The difference between ‘+’ and ‘*’
is that s* always succeeds whereas s+ only succeeds if it can prove or disprove
termination of P . In other words, s* is used to simplify problems, since it
applies s until no further progress can be achieved and then returns the latest
problem. In contrast ‘+’ requires the proof attempt to be completed. This is
particularly useful if two strategies should be combined of which the first aims
to prove termination and the second one tends to prove non-termination.

Example A.2. We extend the strategy of the previous example by adding the
iterators ‘?’ and ‘+’, as well as two new methods:

uncurry?;poly -ib 2 -ob 4*;
dp;edg?;sccs?;(bounds -dp || (matrix -dp | kbo -af))+

To prove termination of a TRS R, TTT2 performs the following steps. At first
uncurrying is applied. Since this method only works for applicative TRSs, the
iterator ‘?’ is added in order to avoid that the whole strategy fails if R is not an
applicative system. After that polynomial interpretations with two input bits
(coefficients) and four output bits (intermediate results) are used to simplify
the given TRS. (Restricting the values for intermediate computations results in
efficiency gains.) The iterator ‘*’ ensures that a maximal number of rewrite rules
is removed by applying the method as often as possible. Next, TTT2 transforms
the given termination problem into a DP problem. Afterwards the estimated
dependency graph and the SCCs are computed. In contrast to the strategy of
the previous example we have combined the processors edg and sccs with the
iterator ‘?’ because edg as well as sccs fail if they do not achieve any progress
(edg fails if none of the arcs of the complete graph could be removed and sccs
fails if the given termination problem could not be split into more than one
problem). Finally, TTT2 tries to prove finiteness of the given DP problems by
applying the strategy bounds -dp || (matrix -dp | kbo -af) recursively.

At last we explain the specifiers ‘{s}o’ and ‘[f]’. The strategy ‘{s}o’ first
tries to apply s to the given termination problem P . If this fails then also
‘{s}o’ fails. Otherwise the modifier o is called. As input it gets the original
termination problem P as well as the result of applying s to P (in the following
called P ′). Since o always succeeds, ‘{s}o’ succeeds. Furthermore, as new
termination problem the result of applying o to P ′ is returned. The specifier
‘[f]’ denotes timed execution. Given a strategy s and a timeout f , s[f] tries
to modify a given termination problem P for at most f seconds. If s does not
succeed or fail within f seconds (wall clock time), s[f] fails. Otherwise s[f]
returns the termination problem that remains after applying s to P . Hence it
succeeds (fails) if s succeeds (fails).

Example A.3. To ensure that the strategy of the previous example is executed
for at most 5 seconds we add the specifier ‘[5]’. In addition we limit the time

125

A Termination and Complexity Tools

spend by the match-bound technique to 1 second and combine it with usable
rules. For the latter modification we use the operator ‘{ }’ to emulate the DP
processors obtained from Corollary 5.72. So the new strategy looks as follows:

(uncurry?;poly -ib 2 -ob 4*;dp;edg?;sccs?;
({ur?;bounds -dp[1]}restore || (matrix -dp | kbo -af))+)[5]

Using this strategy, TTT2 has at most 5 seconds to prove the termination of
a given TRS R and in each iteration 1 second is available to simplify termi-
nation problems using the match-bound technique. If the 5 seconds expire,
the execution is aborted immediately. Of particular interest is the substrategy
{ur?;bounds -dp[1]}restore. Assume that we apply this strategy to some
problem P . First the usable rules of P are computed. Since the ur processor
fails if all rewrite rules of P are usable we add the iterator ? to avoid that the
whole strategy fails if ur fails. Next the match-bound technique is applied for at
most 1 second. If this processor succeeds the modifier restore is used to replace
the usable rules by the original rewrite rules of P . To be able to do that, the
processor restore gets as input the current problem as well as the old problem
P . Note that if bounds -dp[1] fails then also {ur?;bounds -dp[1]}restore
fails.

Specification and Configuration

In order to call TTT2 with a certain strategy, the flag --strategy (or alterna-
tively the short form -s) has to be set. For convenience it is possible to call TTT2
without specifying any strategy. In this case a predefined strategy is used (for
details execute ./ttt2 --help). Note that the user is responsible for ensuring
soundness of the strategy, for example, applying the processors in correct order.

Example A.4. To call TTT2 with the strategy of Example A.3, the follow-
ing command is used: ./ttt2 -s ’(uncurry?; ...)[5]’ <file>. Alterna-
tively, one could also remove the outermost time limit of the strategy and
pass it as an argument to TTT2. In that case the command looks as follows:
./ttt2 -s ’(uncurry?; ...)’ <file> 5.

Since strategies can get quite complex (for instance, the strategy used in
the 2009 edition of the international termination competition consists of about
100 lines), TTT2 provides the opportunity to specify a configuration file. This
allows to abbreviate and connect different strategies. By convention strategy
abbreviations are written in capital letters. To tell TTT2 which configuration
file should be used, the flag --conf (or the short form -c) followed by the file
name has to be set.

Example A.5. Consider the strategy of Example A.3. In order to call TTT2
with this strategy we write a configuration file ttt2.conf containing the fol-
lowing lines:

PRE = uncurry?;poly -ib 2 -ob 4*
SUB = {ur;bounds -dp[1]}restore || (matrix -dp | kbo -af)
AUTO = (PRE;dp?;edg?;sccs?;(SUB)+)[5]

126

A.1 The Termination Tool TTT2

It is important to note that abbreviations are not implicitly surrounded by
parentheses since this allows more freedom in abbreviating expressions. To
inform TTT2 that the strategy AUTO of the configuration file ttt2.conf should
be used to prove the termination of a given TRS the following flags have to be
declared: ./ttt2 -c ttt2.conf -s AUTO <file>.

Used Strategies

In the following we shortly introduce the strategies that have been used to
conduct the experiments in Sections 7.1 and 7.2. To obtain the experimental
data shown in Tables 7.1 and 7.2, TTT2 has been configurated using the following
strategies:

explicit

t bounds -e top -rc explicit
r bounds -e roof -rc explicit
rm bounds -e match -rc explicit

implicit

t bounds -e top -rc implicit
r bounds -e roof -rc implicit
rm bounds -e match -rc implicit

To compute quasi-compatible tree automata instead of compatible tree au-
tomata we equipped each instance of the bounds processor with the additional
flag -qc. Similarly, to incorporate right-hand sides of forward closures the flag
-rfc has been appended to each strategy. To conduct the experiments for
Tables 7.3 and 7.4 we used the basic strategy

dp;edg?;sccs?;(sc[5] | matrix -dp -dim 1 -ib 1 -ob 2[5] | s)*

where s has been chosen as follows:

without ur with ur

sp fail
spb bounds {ur -ce?;bounds}restore
spd bounds -dp {ur -ce?;bounds -dp}restore

In addition we added the flags -qc and -rfc to each bounds processor in order
to compute quasi-compatible tree automata or to ensure that right-hand sides
of forward closures are in effect.

To produce the experimental data presented in Subsection 7.2.1, TTT2 has
been called with the strategy dp;s;sccs? where s has been replaced either by
a single graph processor or a combination of graph processors. In case of ∗, s
has been defined as

{ur -ce?;tdg?;edg[0.5]?;cdg[0.5]?;cdg -rfc[0.5]?}restore

if usable rules should be computed and

tdg?;edg[0.5]?;cdg[0.5]?;cdg -rfc[0.5]?

127

A Termination and Complexity Tools

otherwise. The experimental data of all other graph processors have been ob-
tained by replacing s according to the following table:

without ur with ur

t tdg? {ur -ce?;tdg?}restore
e edg? {ur -ce?;edg?}restore
s adg -a strong? {ur -ce?;adg -a strong?}restore
nv adg -a newars? {ur -ce?;adg -a newars?}restore
g adg -a growing? {ur -ce?;adg -a growing?}restore
c cdg? {ur -ce?;cdg?}restore
r cdg -rfc? {ur -ce?;cdg -rfc?}restore

In addition, if polynomial interpretations were used, the processor

matrix -dp -dim 1 -ib 1 -ob 2*

has been appended to the strategy. So instead of dp;s;sccs? the strategy
dp;s;sccs?;matrix -dp -dim 1 -ib 1 -ob 2* has been used. To conduct
the experiments in Subsection 7.2.2 we used the same strategies as for the
experiments in Subsection 7.2.1, except that the processors edg and cdg have
been additionally equipped with the flag -i. So in case of the innermost DP
processors e, c, and r the substrategies

without ur with ur

e edg -i? {ur?;edg -i?}restore
c cdg -i? {ur?;cdg -i?}restore
r cdg -i -rfc? {ur?;cdg -i -rfc?}restore

have been applied. Likewise, for ∗ the substrategies

{ur?;tdg?;edg -i[0.5]?;cdg -i[0.5]?;cdg -i -rfc[0.5]?}restore

if usable rules should be computed and

tdg?;edg -i[0.5]?;cdg -i[0.5]?;cdg -i -rfc[0.5]?

otherwise have been used. Note that the ur processor has been called without
the flag -ce because for innermost termination it is not necessary to add any
projection rules. So basically it would be also possible to drop the modifier
restore since it is not necessary to replace the usable rules by the original ones
after the graph has been computed. We did not do that to ensure that the
results are comparable with the ones where usable rules are not used (without
replacing the usable rules by the original rules, the matrix processor would be
more powerful since less rules have to be oriented).

A.2 The Complexity Tool CaT

The tool CaT (short form for Complexity and Termination) is a derivative of TTT2
especially configurated to prove polynomial upper bounds on the derivational
complexity and runtime complexity of TRSs. Similar as the tool TTT2, CaT is
open source, published under terms of the GNU Lesser General Public License.
Precompiled binaries, sources, and documentation of CaT are available at the

128

A.2 The Complexity Tool CaT

following web-site:

http://cl-informatik.uibk.ac.at/software/cat/

In the remainder of this section we refer to version 1.5 of the tool.

A.2.1 Design and Execution

The aim of CaT is just to demonstrate how helpful it is to start from the basis of
a well-designed termination prover; the additional implementation effort took
a single day. Since CaT and TTT2 share most of the code, we recently decided
to completely integrate the additional code fragments of CaT into TTT2. As
a result, the source code of CaT is nearly identical to the one of TTT2 (there
are only some slight differences in some of the makefiles). So CaT can be seen
as a doubleganger of TTT2 especially aimed for complexity analysis. The only
difference between the tools is that in case of CaT the so called complexity mode
is per default enabled.

In order to run CaT from the command line, the user can either download
the source code from the CaT web page and install it following the installation
guidelines or alternatively download the binary of the latest version of CaT.
After a successful installation, CaT can be started via the command

./cat [options] <file> [timeout]

where [options] denotes a list of command line options, <file> specifies the
name of the file containing the TRS of which termination should be proved,
and [timeout]—a floating point number—defines the time limit for proving
termination of the given TRS. The timeout is optional. To get a complete list
of the command line options of CaT execute the command ./cat --help.

The most important option for complexity analysis is the flag --complexity
(or its short form -cp). Via this flag the user can control if either the deriva-
tional or runtime complexity of a given TRS should be computed. To do this
the flag -cp has to be equipped with one of the following options:

• DC specifies that the derivational complexity of the given TRS should be
computed, even when the problem file states something different.

• PC defines that the complexity category, induced by the given problem file,
should be chosen. That means, if the file specifies as start terms the set
of all constructor-based terms then the runtime complexity is computed.
Otherwise, the derivational complexity of the given TRS is estimated.

• RC ensures that CaT estimates the runtime complexity of the given TRS.
Similar as for DC, any information in the problem file regarding complexity
analysis is ignored.

A.2.2 The Strategy Language

As mentioned in the introduction, there is basically no difference between CaT
and TTT2, except the name. As a result the strategy language of CaT is identical

129

http://cl-informatik.uibk.ac.at/software/cat/

A Termination and Complexity Tools

to the one of TTT2. However, to generate a strategy that can be used to prove
a polynomial complexity of a given TRS the user has to ensure that the used
methods are properly configurated. Detailed information how this can be done
can be inferred from the documentation.

Computing Complexity Bounds

To compute the complexity of a given termination problem P using some strat-
egy s, CaT proceeds as follows. First it applies s to P . During this step a internal
proof object is created which contains basic information about the applied pro-
cessors, the intermediate termination problems, etc. Afterwards this internal
proof object is analyzed in order to compute the complexity of the input prob-
lem P . Possible answers of the prover are: YES(cl,cu), NO, and MAYBE. Here
YES(cl,cu) means that P is terminating and that the exact complexity of P is
somewhere between the lower bound cl and the upper bound cu, NO indicates a
successful non-termination proof, and MAYBE refers to the case when termination
could neither be proved nor disproved. Possible values for cl and cu are ?, O(1),
O(ni) for some i ∈ N, and POLY. Here ? indicates that the complexity of P is
unknown and POLY means that the complexity of P is polynomial (the exact
bound is unknown). So far CaT can only prove upper complexity bounds. So a
successful complexity proof of CaT is always indicated by the answer YES(?,cu).
If CaT returns the answer YES(?,?) then some method has been used which is
unknown to infer polynomial upper complexity bounds. In such a case the used
strategy should be adapted.

As indicated in the previous subsection, in general we differentiate between
the derivational complexity and the runtime complexity of TRSs. Per default,
CaT automatically chooses the complexity category induced by the problem file.
That means, if the input problem specifies as start terms the set of all terms,
the derivational complexity of the given TRS is computed. Otherwise, if the
set of start terms is set to the set of all constructor-based terms, the runtime
complexity of the given problem is estimated.

Used Strategies

In the following we shortly discuss the strategies that have been used to conduct
the experiments in Section 7.3. The information shown in Table 7.11 has been
obtained by using the strategy

cp;(matrix -dim 1 -ib 1 -ob 2 -cp -triangle -strict[5])*;
(matrix -dim 2 -ib 1 -ob 2 -cp -triangle ||
(sleep -t 1?;matrix -dim 3 -ib 1 -ob 2 -cp -triangle))*

for the column labeled with pm, the strategy

bounds[5]?;cp;
(matrix -dim 1 -ib 1 -ob 2 -cp -triangle -strict[5])*;
(matrix -dim 2 -ib 1 -ob 2 -cp -triangle ||
(sleep -t 1?;matrix -dim 3 -ib 1 -ob 2 -cp -triangle))*

when match-bounds are in effect (column bpm), and

130

A.2 The Complexity Tool CaT

bounds[5]?;cp;
(matrix -dim 1 -ib 1 -ob 2 -cp -triangle -strict[5])*;
(bounds -cp[5])*;(matrix -dim 2 -ib 1 -ob 2 -cp -triangle ||
(sleep -t 1?;matrix -dim 3 -ib 1 -ob 2 -cp -triangle))*

when the CP processors based on match(-raise)-RT-bounds are used (column
bprm). The main difference between the latter two strategies is that in the
third one an additional instance of the bounds processor has been added which
is aimed to prove match(-raise)-RT-boundedness and hence linear complexity
bounds of single rewrite rules. So in the third strategy the bounds processor can
assist the other processors to prove linear, quadratic, or even higher complexity
bounds. The reason why we did not add a second instance of the bounds
processor in the second strategy is that the ordinary match-bound technique
does not allow us to prove the complexity of single rewrite rules. So it would
not make sense to add an additional instance of the bounds processor because
it would behave in the exact same manner as the first instance.

In case of runtime complexity (see Table 7.12) we used the same strategies
as for derivational complexity except that all instances of the bounds processor
have been equipped with the additional flag -l constructor. Furthermore, to
construct quasi-compatible tree automata instead of compatible tree automata
we equipped each bounds processor with the additional flag -qc.

131

Appendix B

Supplementary Proofs

In this chapter we present the proofs of Lemmata 5.10, 5.26, and 5.40. To prove
these statements we mark function symbols of terms as active and inactive either
to trace the propagation of heights as in case of Lemma 5.10 or the application
of rewrite rules as in case of Lemmata 5.26 and 5.40. The idea to consider
active and inactive areas of terms occurring in derivations originates from [7].
Below we recall the most important notions and results.

Most of the information presented in this appendix appeared already in the
journal paper [43]. However the prove of Lemma 5.26 is slightly reformulated
such that it can be reused to prove Lemma 5.40.

B.1 Preliminaries

For a signature F , F denotes the set {f | f ∈ F} where f is a fresh function
symbol with the same arity as f . The function symbols in F are called active
whereas those in F are called inactive. The mappings label : F → F and
unlabel : F → F are defined as label(f) = f and unlabel(f) = f . They are
extended to terms and sets of terms in the obvious way. A term s ∈ T (F∪F ,V)
is called inactive if s = unlabel(s). For a term s ∈ T (F ,V) the set mark(s)
consists of all terms t which can be divided into a context C ∈ T (F ∪ {2},V)
and terms t1, . . . , tn ∈ T (F ,V) such that t = C[t1, . . . , tn] and unlabel(t) = s.
For two terms s, t ∈ T (F ∪ F ,V) with unlabel(s) = unlabel(t) we write s _ t
for the term u that is uniquely determined by the following two conditions:
unlabel(u) = unlabel(s) and for each position p ∈ PosF (u) we have u(p) ∈ F if
and only if s(p) ∈ F or t(p) ∈ F . We extend this notion to _S for finite non-
empty sets S ⊂ T (F ∪ F ,V) consisting of terms that have the same unlabeled
image.

Definition B.1. Let R be a TRS over a signature F . The TRS R over the
signature F ∪ F consists of all rewrite rules l → r for which there exists a
rewrite rule l′ → unlabel(r) ∈ R such that l ∈ mark(l′) and r ∈ T (G,V) where
G = F if l(ε) ∈ F and G = F otherwise.

Example B.2. Let R be the TRS consisting of the rewrite rules

f(s(x), y)→ s(g(x, p(y))) g(p(x), s(y))→ y g(x, x)→ f(s(x), x)

over the signature F = {f, g, p, s}. We have F = {f, g, p, s}. The set mark(t)
with t = g(p(x), s(y)) consists, besides t, of the terms ḡ(p(x), s(y)), ḡ(p̄(x), s(y)),

133

B Supplementary Proofs

ḡ(p(x), s̄(y)), and ḡ(p̄(x), s̄(y)). Furthermore, the TRS R contains the following
rewrite rules:

f(s(x), y)→ s(g(x, p(y))) g(p(x), s(y))→ y g(x, x)→ f(s(x), x)

f(s(x), y)→ s(g(x, p(y))) g(p(x), s(y))→ y g(x, x)→ f(s(x), x)

f(s(x), y)→ s(g(x, p(y))) g(p(x), s(y))→ y

g(p(x), s(y))→ y

g(p(x), s(y))→ y

Definition B.3. Let R be a TRS over a signature F . We define the relation
_ on T (F ∪ F ,V) as follows: s _R t if and only if there exist a rewrite rule
l → r ∈ R, a position p ∈ Pos(s), a context C, and terms s1, . . . , sn such that
l = C[x1, . . . , xn] with all variables displayed, s|p = C[s1, . . . , sn], unlabel(si) =
unlabel(sj) whenever xi = xj , and t = s[rσ]p. Here the substitution σ is defined
as follows:

σ(x) =

{

_{si | xi = x with i ∈ {1, . . . , n}} if x ∈ {x1, . . . , xn}
x otherwise

An immediate consequence of the next lemma is that every rewrite sequence
caused by the TRS R can be lifted to a rewrite sequence in R.

Lemma B.4. Let R be a TRS. If s→R t then for all terms s′ ∈ mark(s) there
exists a term t′ ∈ mark(t) such that s′ _R t′.

Definition B.5. Let R be a TRS over the signature F , l → r ∈ R a rewrite
rule, t a term, p ∈ Pos(t) a position, and σ a substitution. The rewrite step
t[lσ]p _ t[rσ]p is said to be active if t(p) ∈ F and inactive if t(p) ∈ F . We
use _a to denote active steps and _i to denote inactive steps. An active rewrite
step t[lσ]p _a t[rσ]p is said to be strongly active if Fun(l) ⊆ F .

Example B.6. With respect to the TRS R of the previous example, the term
f(s(p(x)), g(p(y), s(x))) admits the following rewrite sequence:

f(s(p(x)), g(p(y), s(x))) _i R f(s(p(x)), x)
_a R s(g(p(x), p(x)))

_a R s(f(s(p(x)), p(x)))

Note that the second active rewrite step is strongly active.

A second important property of R is that active function symbols always
stay above inactive function symbols.

Lemma B.7. Let R be a TRS over a signature F and s ∈ T (F ∪F ,V) a term
such that s ∈ mark(unlabel(s)). If s _∗R t then t ∈ mark(unlabel(t)).

The proofs of Lemmata 5.10, 5.26, and 5.40 are based on the observation
that from some point on in each minimal rewrite sequence only strongly active
steps are applied. Below we prove the correctness of this observation. Minimal
terms in Lemma B.8 are terms that have the property that all proper subterms
are terminating.

134

B.1 Preliminaries

Lemma B.8. Let R be a non-duplicating TRS over some signature F and
s ∈ T (F ∪ F ,V) a minimal term such that the root symbol of s is active and
all other function symbols are inactive. If s starts a infinite rewrite sequence of
the form

s = s1 _R s2 _R s3 _R s4 _R · · ·

then there exists an i > 1 such that all rewrite steps in the rewrite sequence
starting from si are strongly active.

Proof. The proof of this lemma is based on the following observations:

• active _a R-steps cannot increase the number of inactive symbols because
R is non-duplicating,

• proper subterms of the term s are terminating due to the minimality
assumption,

• maximal inactive subterms of sj for j > 1 can be traced back to inactive
subterms of s.

The first two observations hold trivially. To show the correctness of the last
one, we prove the following claim:

If t _∗R u with t, u ∈ T (F ∪ F ,V) and t ∈ mark(unlabel(t)), then
for each inactive subterm u′ of u there is an inactive subterm t′ of t
and a context C such that t′ _i ∗R C[u′].

We prove the claim by induction on the length of the derivation. The base case
is trivial. Assume now that t _+

R u. Then there are a position p, a substitution
σ, and a rewrite rule l → r ∈ R such that t _∗R u[lσ]p _ u[rσ]p = u. Let u′

be an inactive subterm of u at some position q ‖ p. Then u′ = (u[lσ]p)|q. Due
to the induction hypothesis we know that there exists an inactive subterm t′ of
t and a context C such that t′ _i ∗R C[u′]. Assume now that u′ is an inactive
subterm of u at some position q such that either q < p or q > p. We distinguish
between these two cases.

• If q < p then u[lσ]p _i l→r u. Let v = (u[lσ]p)|q. Obviously, v is an
inactive subterm of u[lσ]p and v _i l→r u′. The induction hypothesis
yields an inactive subterm t′ of t and a context C such that t′ _i ∗R C[v].
Hence t′ _i ∗R C[v] _i l→r C[u′].

• If q > p then either u[lσ]p _i l→r u or u[lσ]p _a l→r u. In the former case we
have lσ _i l→r D[u′] for some context D. The induction hypothesis yields
an inactive subterm t′ of t and a context C such that t′ _i ∗R C[lσ]. Hence
t′ _i ∗R C[lσ] _i l→r C[D[u′]]. Next suppose that u[lσ]p _a l→r u. Since all
function symbols of r are active, we conclude that u′ is a subterm of xσ
for some variable x ∈ Var(r). Hence u′ is an inactive subterm of u[lσ]p.
The induction hypothesis yields an inactive subterm t′ of t and a context
C such that t′ _i ∗R C[u′].

135

B Supplementary Proofs

This concludes the proof of the claim.
Now, from the above observations it follows that the infinite sequence starting

from s contains only finitely many inactive _i R-steps. Hence a tail of the
sequence consists entirely of _a R-steps. Steps in this tail that are not strongly
active consume at least one inactive symbol whereas the strongly active steps
do not increase the number of inactive symbols. Hence from some point on only
strongly active steps are applied. This completes the proof of the lemma.

The following example shows that the previous lemma does not hold for
duplicating TRSs. Hence it cannot be used for instance to prove soundness of
roof-DP(P, s→ t,R).

Example B.9. Consider the TRS R consisting of the rewrite rules a→ b and
f(a, b, x)→ f(x, x, x). The term f(a, b, a) admits the rewrite sequence

f(a, b, a) _a R f(a, a, a) _i R f(a, b, a) _a R · · ·

Since this sequence does not contain any strongly active rewrite steps, it is
obvious that the previous lemma does not hold.

B.2 Soundness of Match(-Raise)-DP-Bounds

By using the rewrite relation _match-DP(P,s→t,R) we are now ready to prove that
no restriction of the TRS match-DP(P, s → t,R) to a finite signature admits
minimal rewrite sequences with infinitely many ε−→match(s→t)-steps.

Proof of Lemma 5.10. Assume to the contrary that there is a minimal rewrite
sequence of the form

s1
ε−→match(s→t) t1 →∗match-DP(P,s→t,R) s2

ε−→match(s→t) t2 →∗match-DP(P,s→t,R) · · ·

where we assume without loss of generality that s1 ∈ T (F{0},V). Here F
denotes the signature of P ∪ R. To trace the propagation of heights in this
sequence we switch from → to _. To simplify the representation we assume
that for terms s′···′i we have unlabel(s′···′i) = si. Moreover, the infinite rewrite
sequence starting from s′···′i is projected onto the above sequence from si by
applying the function unlabel. The terms s′···′i will be constructed as we go
along. To prove the lemma, we first prove the following claim (illustrated in
Figure B.1):

Let s′i be a term such that all rewrite steps in the infinite rewrite
sequence starting from s′i are strongly active and the height of all
active symbols in s′i is at least n. Further let s′′i be the term obtained
from s′i by labeling all function symbols as inactive except the root
symbol. Then there is a term s′′j with j > i such that all rewrite
steps of the infinite sequence starting at s′′j are strongly active and
the height of every active function symbol in s′′j is at least n+ 1.

136

B.3 Soundness of Forward Closures

Figure B.1: The claim in the proof of Lemma 5.10

> n

< n

s′i

a
ct

iv
e

in
a
ct

iv
e

transform
=⇒

> n

< n

s′′i
a
ct

iv
e

in
a
ct

iv
e

_∗match-DP(P,s→t,R)
> n
= n

< n

s′′j

a
ct

iv
e

in
a
ct

iv
e

Lemma B.8 yields a term s′′j with j > i such that all rewrite steps of the rewrite
sequence starting from s′′j are strongly active. Because all rewrite steps in the
infinite rewrite sequence starting from s′i are strongly active, we know that
whenever

s′i _a ∗match-DP(P,s→t,R) u = u[lσ]p _a match-DP(P,s→t,R) u[rσ]p

for some term u, rewrite rule l→ r, position p, and substitution σ, the minimal
height of function symbols in l is at least n. Since the rewrite sequence starting
from s′i is equivalent to the rewrite sequence starting at the term s′′i after unla-
beling, this property holds also for s′′i . Since the rewrite step s′′i _match(s→t) t

′′
i

is active, we know that the height of all active function symbols in t′′i is at least
n+ 1. Hence, whenever

t′′i _∗match-DP(P,s→t,R) u = u[lσ]p _a match-DP(P,s→t,R) u[rσ]p

the height of the root symbol of l is at least n+ 1. Together with the fact that
the minimal height of the function symbols in the redex pattern of an active
rewrite step is at least n, we can conclude from Definition 5.3 that the height
of each active function symbol in s′′j must be at least n+ 1. This completes the
proof of the claim.

Now let s′1 be the term obtained from s1 by marking the root symbol as active.
Lemma B.8 yields a term s′i1 with i1 > 1 such that s′1 _∗match-DP(P,s→t,R) s

′
i1

and
all rewrite steps in the rewrite sequence starting from s′i1 are strongly active.
Since s′1 _a match(s→t) t

′
1, we know that the height of every active function symbol

in t′1 is 1. It follows that the height of each active function symbol in s′i1 is at
least 1. Let s′′i1 be the term obtained from s′i1 by inactivating all function
symbols below the root. Applying the claim yields a term s′′i2 with i2 > i1
such that all rewrite steps in the infinite sequence starting from s′′i2 are strongly
active and the height of all active function symbols in s′′i2 is at least 2. Repeating
this argumentation produces increasingly greater heights. As soon as we reach
height c+1 we obtain a contradiction with the assumptions of Lemma 5.10.

B.3 Soundness of Forward Closures

In this section we present the proofs of Lemmata 5.26 and 5.40. First we prove
the correctness of Lemma 5.26. Similar as in the proof of Lemma 5.10, we use

137

B Supplementary Proofs

the rewrite relation _ to obtain detailed information about derivations.

Proof of Lemma 5.26. We prove the statement of the lemma by showing a
slightly stronger result:

Let P and R be two TRSs and s→ t ∈ P a rewrite rule. If P and
R are right-linear then the TRS P ∪ R admits a minimal rewrite
sequence of the form s1

ε−→α1 t1 →∗R s2
ε−→α2 t2 →∗R · · · with infinitely

many ε−→s→t-steps if and only if there is a term w ∈ RFCt(P ∪ R)
starting a minimal rewrite sequence w ε−→αi · →∗R ·

ε−→αi+1 · →∗R · · ·
for some i > 1.

The if direction of the claim holds trivially. To prove the only-if direction, let

s1
ε−→α1 t1 →∗R s2

ε−→α2 t2 →∗R · · ·

be a minimal rewrite sequence with infinitely many ε−→s→t-steps. Without loss
of generality we assume that α1 = s → t. To trace the application of rewrite
rules in this sequence we switch from → to _. Let s′1 be the term obtained
from s1 by marking the root symbol as active. Lemma B.8 yields an i > 1
such that all rewrite steps in the rewrite sequence starting from s′i are strongly
active. Let l1 → r1, . . . , ln → rn be (fresh variants of) rewrite rules in P ∪ R
such that

s′1 _a s→t t
′
1 _i ∗R u1 _a l1→r1 v1 _i ∗R u2 _a l2→r2 v2 _i ∗R · · ·_a ln→rn vn _i ∗R s

′
i

with all active steps displayed and let p1, . . . , pn be the positions at which the
rewrite rules l1 → r1, . . . , ln → rn are applied. To prove the lemma we first show
that we can characterize the active region of s′i with the help of the definition
of the right-hand sides of forward closures. Let v0 = t′1. We define linear terms
wj ∈ T (F ,V) and substitutions τj : V → T (F ,V) for j ∈ {0, . . . , n} such that
the following properties hold: (1) vj = wjτj and (2) unlabel(wj) ∈ RFCt(P∪R).

We perform induction on j. First consider j = 0. Define w0 = label(t).
Since unlabel(w0) = t, property (2) holds trivially. Since P is right-linear, w0

is linear. Obviously, w0 ∈ T (F ,V). Since v0 = t′1 is an instance of label(t),
there exists a substitution τ0 such that v0 = w0τ0. We may assume that τ0

maps variables in V to terms in T (F ,V) as there are no other active symbols
in v0 besides the ones in label(t). Hence property (1) also holds. Now let
j ∈ {1, . . . , n}. Since all steps that take place between vj−1 and uj are inactive,
we infer that the active part part of uj is identical to the active part of vj−1.
Since the active rewrite step uj _a lj→rj vj requires that the root symbol of the
contracted redex is active we know that pj is an active position in vj−1 and
thus a non-variable position in wj−1. Note that wj−1 satisfies properties (1)
and (2). Let l′j → r′j be the rule in P ∪R that is used to rewrite uj to vj . (So
lj = unlabel(l′j) and r′j = label(rj).) Since wj−1 is linear, it follows that wj−1|pj
unifies with l′j . Let σj be an idempotent most general unifier of these two
terms. Define wj = wj−1[r′j]pjσj . Since wj−1 is linear, Var(wj−1)∩Var(l′j) = ∅,
and σj is idempotent, (Var(wj−1) \ Var(wj−1|pj)) ∩ Dom(σj) = ∅ and thus
wj = wj−1[r′jσj]pj . Because wj−1 contains only active function symbols, xσj =

138

B.3 Soundness of Forward Closures

label(xσj) for all x ∈ Var(l′j) and hence wj ∈ T (F ,V). Since P and R are right-
linear, it follows that wj is linear. We have wj−1[l′jσj]pj _a wj−1[r′jσj]pj = wj .
It follows that wj represents the active region of vj and thus vj = wjτj for some
substitution τj : V → T (F ,V), which proves property (1). Property (2) holds
by construction.

Since vn _i ∗R s
′
i, the active part of s′i is the same as the active part of vn. It

follows that s′i = wnτ for some substitution τ : V → T (F ,V). Since all rewrite
steps in the infinite sequence starting from s′i are strongly active, these steps
can also be performed when starting from wn. Removing all labels produces a
minimal rewrite sequence starting at the term w = unlabel(wn) with the desired
properties.

By using the statement of the previous proof we can easily show the correct-
ness of Lemma 5.40.

Proof of Lemma 5.40. Assume that there is a minimal rewrite sequence

s1
ε−→α1 t1 →∗R s2

ε−→α2 t2 →∗R · · ·

in which infinitely many β-steps directly follow α-steps. According to Defini-
tion 5.39 we know that αi = α for infinitely many i > 1. Applying the statement
of the previous proof with s→ t = α yields a term w ∈ RFCrhs(α)(P ∪R) such
that

w ε−→αi · →∗R · ε−→αi+1 · →∗R · · ·

for some i > 1. Since the minimal rewrite sequence starting at si contains
infinitely many situations in which β directly follows α, we know that this also
holds for the minimal rewrite sequence starting at w.

139

Index

�, 33
�mul, 30
�cmul, 85
�φ, 19
�mul, 30
�cmul, 85
→, 6, 7
ε−→, 50
i−→, 69
r−→, 33, 55, 91
_, 134
_a , 134
_i , 134
↑, 33

_, 133
DG, 61
DGc, 62
DGe, 67
DGg, 67
DGi, 70
DGi

c, 72
DGi

e, 72
DGnv, 67
DGs, 67
DP, 50
Fun, 5
FunC , 6
FunD, 6
FunM, 30
IDG, 64
IDGc, 65
IDGi, 70
IDGi

c, 72
Mul(N), 30
NF, 6
Pos, 5
PosF , 5
PosR, 31

RFC, 43
Var, 5
base, 30
cp, 84
dl, 84
drop, 85
height, 30
icap, 72
label, 133
lift, 30
linear, 45
mark, 133
match, 31
match-DP, 52
match-RT, 88
raise, 33
roof, 31
tcap, 66
top, 31
top-DP, 52
unlabel, 133

approximation
equation, 15
function, 17, 99
rule, 16

CaT, 99, 128
compatibility violation, 10
compatible

orders, 85
quasi-

tree automaton, 40, 42
tree automaton, 10, 20

complete
complexity processor, 95
dependency pair processor, 51
innermost, 69

complexity, 84

141

Index

derivational, 84
framework, 95
problem, 95
processor, 95
runtime, 84

configuration file, 126
constructor

-based terms, 84
symbols, 6

context, 5
hole, 5
multi-, 5

defined symbols, 6
dependency graph, 61

innermost, 70
processor, 60

innermost, 70
dependency pair, 50

framework, 49
method, 49
problem, 50
processor, 51

innermost, 69
depth, 5
derivation length, 84
descendants, 6
directly follows, 63

finite, 50
innermost, 69
on, 50

forward closures, 43
dependency pair problem, 58

graph
direct, 50
sub-, 50

height-complete, 41

improved dependency graph, 64
innermost, 70
processor, 65

innermost, 71
innermost

dependency graph, 70
processor, 70

dependency pair processor, 69
complete, 69
sound, 69

finite, 69
improved dependency graph, 70

processor, 71
minimal rewrite sequence, 69
relation, 69
terminating, 69
unreachable, 71
usable rules, 74

international termination competi-
tion, 2, 103, 108, 111

language, 7
regular, 7

match
-DP-bounded, 53
-RT-bounded, 89
-bounded, 32
-raise

-DP-bounded, 56
-RT-bounded, 91
-bounded, 34

match-bound technique, 29, 51, 87
matching

algorithm, 11, 99
problem, 11
solution, 11

multiset, 30
difference, 30
sum, 30

normal form, 6

raise-rules, 33
relation

innermost, 69
rewrite, 6

rewrite relation, 6
rewrite rule, 6

collapsing, 6
duplicating, 6
left-linear, 6
linear, 6
right-linear, 6

rewrite sequence, 6

142

Index

minimal, 50
innermost, 69

rewrite step
active, 134

strongly, 134
inactive, 134

roof
-bounded, 32
-raise-bounded, 34

root symbol, 5

signature restriction, 30
size, 5
sound

complexity processor, 95
dependency pair processor, 51

innermost, 69
state-consistent, 25
strategies

CaT, 130
TTT2, 127

strategy language
CaT, 129
TTT2, 123

strongly connected component, 61
processor, 61

substitution, 5

term
inactive, 133
linear, 5
sub-, 5

proper, 5
term rewrite system, 6

collapsing, 6
duplicating, 6
left-linear, 6
relative, 84
right-linear, 6

terminating, 6
innermost, 69
locally, 30
on, 6

Termination Problem Data Base, 100
top

-DP-bounded, 53
-bounded, 32

-raise
-DP-bounded, 56
-bounded, 34

tree automata completion, 9, 29, 60
tree automaton, 7

compatible, 10, 20, 93
quasi-, 40, 42, 94

deterministic, 7
quasi-, 19

raise-consistent, 38
TTT2, 99, 121

unreachable, 62
innermost, 71

usable rules, 74
innermost, 74

variable condition, 100

143

	Introduction
	Motivation and Outline
	Structure

	Preliminaries
	Term Rewriting
	Tree Automata

	Tree Automata Completion
	Compatible Tree Automata
	Detecting Compatibility Violations
	Matching Algorithm
	Using Tree Automata Techniques

	Solving Compatibility Violations
	Approximation Equations
	Approximation Rules
	Approximation Functions

	Quasi-Deterministic Tree Automata
	Establishing Quasi-Determinism
	Constructing Quasi-Deterministic Tree Automata
	Approximating Quasi-Deterministic Tree Automata

	Summary

	The Match-Bound Technique
	Preliminaries
	Bounds for Left-Linear TRSs
	Raise-Bounds for Non-Left-Linear TRSs
	Automation
	Compatible Tree Automata
	Raise-Consistent Tree Automata
	Quasi-Compatible Tree Automata

	Forward Closures
	Summary

	The Dependency Pair Framework
	Preliminaries
	Combining Dependency Pairs and Bounds
	DP-Bounds for Left-Linear DP Problems
	Raise-DP-Bounds for Non-Left-Linear DP Problems
	Automation
	Forward Closures

	Beyond Dependency Graphs
	Using Dependency Graphs
	Estimating Dependency Graphs
	Incorporating Forward Closures
	Comparison
	Innermost Dependency Graphs

	Usable Rules
	Match-Bounds
	Dependency Graphs

	Summary

	Complexity Analysis
	Preliminaries
	Modular Complexity Analysis
	Relative Match-Bounds
	RT-Bounds for Left-Linear Relative TRSs
	Raise-RT-Bounds for Non-Left-Linear Relative TRSs
	Automation

	The Complexity Framework
	Summary

	Experiments
	Match-Bounds
	Raise-Bounds
	DP-Bounds and Raise-DP-Bounds

	Dependency Graphs
	Full Termination
	Innermost Termination

	Complexity Analysis
	Summary

	Conclusion
	Bibliography
	Termination and Complexity Tools
	The Termination Tool TTT2
	Design and Execution
	The Strategy Language

	The Complexity Tool CAT
	Design and Execution
	The Strategy Language

	Supplementary Proofs
	Preliminaries
	Soundness of Match(-Raise)-DP-Bounds
	Soundness of Forward Closures

	Index

