
CSI – A Confluence Tool?

Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp

Institute of Computer Science, University of Innsbruck, 6020 Innsbruck, Austria

Abstract This paper describes a new confluence tool for term rewrite
systems. Due to its modular design, the few techniques implemented so
far can be combined flexibly. Methods developed for termination analysis
are adapted to prove and disprove confluence. Preliminary experimental
results show the potential of our tool.

Key words: term rewriting, confluence, automation.

1 Introduction

We describe a new automatic tool for (dis)proving confluence of first-order re-
write systems (TRSs for short). Our tool is developed in Innsbruck, the city at
the confluence of the two rivers Sill and Inn, and abbreviated CSI. It is available
from

http://cl-informatik.uibk.ac.at/software/csi

and supports two new techniques for disproving confluence and very few but
recent techniques for establishing confluence. CSI is open-source, equipped with
a strategy language, and accessible via a simple web interface.

We assume familiarity with term rewriting and confluence [3, 15]. The re-
mainder of this paper is organized as follows. In Section 2 the main techniques
supported by CSI are summarized. Implementation issues are addressed in Sec-
tion 3 and Section 4 concludes with preliminary experimental results.

2 Techniques

Besides Knuth and Bendix’ criterion [9] (joinability of critical pairs for termin-
ating systems), CSI supports the techniques described below.

Non-Confluence To disprove confluence of a TRS R we consider peaks

t 6m← t1 ← s→ u1 →6n u (1)

such that t1 = s[r1σ]p ← s[`1σ]p = s = s[`2σ]q → s[r2σ]q = u1 with `1 → r1,
`2 → r2 ∈ R, q 6 p, and p ∈ Pos(s[`2]q). This includes critical overlaps and some

? This research is supported by FWF (Austrian Science Fund) project P22467.

2 Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp

variable overlaps. In order to test non-joinability of t and u we consider ground
instances of t and u. Let cx be a fresh constant for every variable x and let t̂
denote the result of replacing every variable in a term t by the corresponding
constant. Since for terms s and w we have s →R w if and only if ŝ →R ŵ, it
follows that terms t and u are joinable if and only if t̂ and û are joinable. In
order to test non-joinability of t̂ and û we overapproximate the sets of reducts
for t̂ and û and check if the intersection is empty.

The first approach is based on TCAP, which was introduced to obtain a bet-
ter approximation of dependency graphs [7]. Let t be a term. The term TCAP(t)
is inductively defined as follows. If t is a variable, TCAP(t) is a fresh variable.
If t = f(t1, . . . , tn) then we let u = f(TCAP(t1), . . . ,TCAP(tn)) and define
TCAP(t) to be u if u does not unify with the left-hand side of a rule in R, and
a fresh variable otherwise.

Lemma 1. If t̂ and û are joinable then TCAP(t̂) and TCAP(û) unify. ut

In the sequel we use the result in its contrapositive form, i.e., whenever
TCAP(t̂) and TCAP(û) are not unifiable then t̂ and û are not joinable.

The following example motivates why replacing variables by constants is
beneficial.

Example 2. Consider the TRS R consisting of the rules f(x, y) → g(x) and
f(x, y) → g(y). Note that TCAP(g(x)) = g(x′) and TCAP(g(y)) = g(y′) are
unifiable but since x and y are different normal forms it is beneficial to replace
them by fresh constants such that unification fails. We have TCAP(g(cx)) =
g(cx) is not unifiable with g(cy) = TCAP(g(cy)).

The next example illustrates Lemma 1.

Example 3. Consider the TRS R = {a→ f(a, b), f(a, b)→ f(b, a)} from [16] and
the peak t̂ = f(f(b, a), b) 2← f(a, b)→ f(b, a) = û. Since TCAP(t̂) = f(f(b, x), b)
and TCAP(û) = f(b, y) are not unifiable R is not confluent.

We remark that Lemma 1 subsumes the case that t and u are different normal
forms or that t and u have different root symbols which do not occur at the root of
any left-hand side in R. The latter amounts to t(ε) 6= u(ε) and t(ε) 6= `(ε) 6= u(ε)
for all `→ r ∈ R, which is the test performed in [2].

Our second approach is based on tree automata. Let R be a left-linear TRS
and L a set of ground terms. A tree automaton A = (F , Q,Qf , ∆) is compat-
ible [6] with R and L if L ⊆ L(A) and for each `→ r ∈ R and state substitution
σ : Var(`) → Q, rσ →∗∆ q whenever `σ →∗∆ q. The extension to arbitrary TRSs
that we use in our implementation is described in [10]. Here L(A) is the lan-
guage accepted by a tree automaton A. In the following →∗R(L) denotes the set
{t | s→∗R t for some s ∈ L}.

Theorem 4. Let R be a TRS, A a tree automaton, and L a set of ground terms.
If A is compatible with R and L then →∗R(L) ⊆ L(A). ut

CSI – A Confluence Tool 3

We overapproximate the sets of terms reachable from t̂ and û using tree
automata, i.e., we construct tree automata A1 and A2 (by tree automata com-
pletion [10]) such that →∗R({t̂ }) ⊆ L(A1) and →∗R({û}) ⊆ L(A2) and conclude
non-joinability of t̂ and û if L(A1) ∩ L(A2) = ∅, which is decidable.

Example 5. Consider Lévy’s TRS R from [8]

f(a, a)→ g(b, b) a→ a′ f(a′, x)→ f(x, x) f(x, a′)→ f(x, x)

g(b, b)→ f(a, a) b→ b′ g(b′, x)→ g(x, x) g(x, b′)→ g(x, x)

and t̂ = f(a′, a′) ∗← f(a, a) →∗ g(b′, b′) = û. We have →∗R({t̂ }) = {t̂ } and
→∗R({û}) = {û}. Consequently →∗R({t̂ }) ∩ →∗R({û}) = ∅ and hence we con-
clude non-joinability of t̂ and û which yields the non-confluence of R. Note that
TCAP(t̂) = x and TCAP(û) = y unify.

Order-Sorted Decomposition Next we focus on a criterion that allows to
decompose a TRS R into TRSs R1 ∪ · · · ∪ Rn where R is confluent whenever
all Ri are confluent. Order-sorted decomposition is a generalization of persistent
decomposition [2, Definition 2] to ordered sorts. It is based on a result in [5].

Theorem 6. Let R be a TRS and 〈F ,V〉 an order-sorted signature with sorts
S equipped with a strict order �. Assume that the following conditions hold:

1. R is compatible with S, i.e., rules `→ r ∈ R are well-sorted, with variables
bound strictly in ` and the sort of ` is � that of r.

2. If R is non-left-linear and duplicating then for `→ r ∈ R, variables in r are
bound strictly as well. Furthermore, if r ∈ V the sort of r must be maximal.

If R is confluent on well-sorted terms then R is confluent on all terms. ut

Each sort attachment satisfying the conditions of Theorem 6 gives rise to
a decomposition of R into max {R ∩ TEα(F ,V) × TEα(F ,V) | α ∈ S}, where
TEα(F ,V) denotes the subterms of terms of sort � α. Note that we can replace
proper subterms t|p : β by any other terms with sort � β. Hence TEα(F ,V) is
closed under adding terms of sort � that of any terms in TEα(F ,V). As in the
many-sorted persistence case, we can find a most general ordered sort attachment
consistent with any given TRS efficiently. Start by assigning sort variables to the
argument and result types of all function symbols and to the variables occurring
in the rules, after renaming them to ensure that no two rules share any variables.
The consistency conditions, except for the maximality condition for collapsing
rules, translate to inequalities α � β between these type variables. To solve a
system of such constraints, consider the graph with sort variables as nodes and
edges from α to β whenever there is a constraint α � β. Then assign a distinct
sort to the variables of each strongly connected component of the graph, ordered
strictly by the edges between the components. A maximality constraint on β can
be enforced in a second pass that equates α and β whenever α � β. This process
is demonstrated in the example below.

4 Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp

Example 7. Consider the TRS

1: f(x,A)→ G(x) 2 : f(x,G(x))→ B 3: G(C)→ C 4: F(x)→ F(G(x))

We start by assigning variables to the various sorts. Let xi be the sort of x in
rule i. Furthermore let A : A, B : B, C : C, f : f1 × f2 → f , F : F1 → F and
G : G1 → G. By well-sortedness we get constraints f1 � x1, f2 � A from the
left-hand side of the first rule. By strictness of left-hand sides, we require that
x1 � f1. We get similar constraints from the other rules, noting that since the
TRS is non-duplicating, we do not have strictness constraints on the right-hand
sides. By relating the sorts of left-hand sides and right-hand sides, we obtain
further constraints, namely f � G, f � B, G � C and F � F . Denoting α � β
by an edge α→ β, we obtain the following graph:

x2 f2 A

f1 G1 x4 F1 G C F

x1 f B

The strongly connected components are 8 = {f2}, 7 = {A}, 6 = {f}, 5 = {B},
4 = {G1, x1, f1, x2}, 3 = {F1, x4}, 2 = {G}, 1 = {C}, and 0 = {F}, ordered by
8 � 7, 2, 6 � 5, 2, and 4 � 3 � 2 � 1. The resulting signature is A : 7, B : 5,
C : 1, f : 4 × 8 → 6, F : 3 → 0, and G : 4 → 2 giving rise to the decomposition
into the TRSs {(1), (2), (3)} and {(3), (4)}.

If we required maximality of the sort 2 = {G}, then we would equate 2 and
3 (since 3 � 2), and further with 4 (as 4 � 3), 6 (as 6 � 2) and 8 (as 8 �
2), obtaining 8′ = {G,F1, x4, G1, x1, f1, x2, f, f2}, ordered by 8′ � 7, 5, 1. The
resulting signature is A : 7, B : 5, C : 1, f : 8′ × 8′ → 8′, F : 8′ → 0, and
G : 8′ → 8′. Note that here no (non-trivial) decomposition is possible.

Decreasing Diagrams The decreasing diagrams technique [12, 14] is a com-
plete method for confluence on countable abstract rewrite systems. The next res-
ult employs decreasing diagrams for TRSs and follows immediately from [17, Co-
rollary 3.16]. It also serves to demonstrate the design of our tool which typically
implements one criterion by combining smaller pieces via a strategy language
(cf. Section 3). Here Rd (Rnd) denotes the (non)duplicating rules in a TRS R.

Theorem 8. A left-linear TRS R is confluent if Rd is terminating relative
to Rnd and all critical peaks of R are decreasing with respect to the rule
labeling. ut

To exploit this theorem we need to solve relative termination problems. In [17]
we show that relative termination techniques can additionally be used for la-
beling diagrams (also in combination with the rule labeling).

CSI – A Confluence Tool 5

3 Implementation

CSI is implemented based on the open source termination tool TTT2 [11] and
written in OCaml. As explained in the preceding section, several criteria from
termination analysis are useful for confluence. Our tool is based on few tech-
niques, but a strategy language (akin to the one to control TTT2) allows one to
combine different criteria flexibly and to obtain a powerful tool. For a grammar
of this strategy language, consult [11] or pass the option -h to the tool.

Automatic Mode In its automatic mode CSI executes the strategy

(KB || NOTCR || (((CLOSED || DD) | add)2*)! || sorted -order)*

Here identifiers in capital letters abbreviate combinations of techniques. We skip
details for brevity. The command KB refers to Knuth and Bendix’ criterion [9],
NOTCR is a test for non-confluence as described in Section 2, and sorted -order

aims for an order-sorted decomposition (cf. Section 2 and [5]). The operator
|| executes all those criteria in parallel—to make use of modern multi-core
architectures—and the first substrategy that succeeds is used to make progress
on the given problem. Since a successful call to sorted -order returns a list of
problems, the trailing * ensures that the above strategy is iterated on all sub-
problems until no further progress can be achieved. Finally we describe the part
that is still missing. CLOSED tests whether the critical pairs of a left-linear system
are development closed [13] and DD implements decreasing diagrams (Section 2
and [17]). If these methods do not succeed the alternative | executes add, which
adds new rules that might enable the other criteria to succeed ([17, Lemma 4.3
and Example 4.4]) while the postfix 2* executes the strategy inside parentheses
at most two times, i.e., CLOSED || DD is run again, if some rules have been ad-
ded. The outermost ! ensures that the strategy inside only succeeds if confluence
could be (dis)proved.

Strategy Language We elaborate on the strategy language to show the flex-
ibility and modularity of our tool. In the strategy nonconfluence -steps 2

-tcap the flag -tcap tests non-joinability of terms with TCAP, as outlined in
Section 2. With -steps values for m and n in the peak (1) on page 1 are set.

The criterion from Theorem 8 allows one to use the decreasing diagrams
technique, provided some precondition is satisfied. To this end the composition
operator ; is employed, where A; B executes B only if A succeeds. Given an input
TRS R, in the strategy

cr -dup; matrix -dim 2*; rule labeling; decreasing

the expression cr -dup generates the relative TRSRd/Rnd, termination of which
is attempted with matrix interpretations of dimension 2. If this succeeds the crit-
ical diagrams are labeled with the rule labeling [14], before a test for decreasing-
ness is performed. We note that the strategy language allows to label increment-
ally combining different (relative termination) criteria [17]. Here a critical dia-
gram is a critical peak t← s→ u together with joining sequences t→∗ v ∗← u.

6 Harald Zankl, Bertram Felgenhauer, and Aart Middeldorp

CSI ACP
∑

CR 61 64 67
not CR 20 18 21

(a) 106 TRSs.

CSI ACP
∑

CR 43 42 43
not CR 47 47 47

(b) 99 TRSs.

CSI ACP
∑

CR 6 2 6
not CR 2 2 2

(c) 9 TRSs.

Table 1: Experiments.

system CSI ACP status

BN98/ex6.5f ×(∞) X(0.4) ¬CR
Der97/p204 ×(6.6) X(0.1) CR
GL06/ex3 X(0.6) ×(0.2) CR
GOO96/R2p ×(6.3) X(0.1) CR
Gra96caap/ex2 ×(3.0) X(0.1) CR
OO03/ex1 X(4.0) ×(7.0) CR
OO03/ex2 ×(6.3) X(0.1) CR
Ohl94caap/ex5.12 X(0.4) ×(0.1) ¬CR
TO01/ex6 ×(6.3) X(0.1) CR

system CSI ACP status

Tiw02/ex1 X(0.3) ×(0.1) ¬CR
Toy98/ex1 ×(6.1) X(0.1) CR
standards/AC X(2.7) ×(0.1) CR
standards/add C X(4.0) ×(0.1) CR
Transformed CSa X(4.6) ×(∞) CR
ZFM11/ex1.1 X(4.9) ×(7.0) CR
ZFM11/ex3.18 X(1.0) ×(0.1) CR
ZFM11/ex3.20 X(2.1) ×(0.5) CR
ZFM11/ex4.1 X(0.9) ×(0.1) CR

a Transformed CSR 04 PALINDROME nokinds-noand L

Table 2: Performance difference on the three testbenches.

In the implementation for every critical peak we consider all joining sequences
t→6n · 6n← u for which there is no smaller n that admits a common reduct.

4 Evaluation

For experiments1 we used the collection from [1] which consists of 106 TRSs from
the rewriting literature dealing with confluence (Table 1(a)), the 99 TRSs from
the 2010 edition of the termination competition which are non-terminating or
not known to be terminating (Table 1(b)), and the TRSs from [5,17] (Table 1(c)).
The time limit of 60 seconds was hardly ever reached.

In Table 1 we compare the automatic mode of our tool with ACP [2], a
confluence prover that implements various techniques from the literature. On
the testbench in Table 1(a) ACP can show more systems confluent than CSI
but our tool is superior for non-confluence. The last column shows that on this
testbench no tool subsumes the other one which is not the case for Tables 1(b)(c).

Table 2 elaborates on the differences of the tools’ performance. Here a ×
indicates that the corresponding tool failed to analyze the status of the given
TRS while a X means that confluence (or non-confluence) could be determined.
The numbers in parentheses refer to the time spent on this problem in seconds.
The different blocks in Table 2 correspond to the different testbeds employed.

1 Details are available from the CSI website.

CSI – A Confluence Tool 7

The rewriting toolkit CiME3 [4] also supports confluence analysis as one of
its many features. This tool exploits Newman’s Lemma, i.e., for a terminating
TRS confluence coincides with local confluence (the latter can then effectively be
checked [9]). While this test is also contained in ACP and CSI, the novel feature
of CiME3 is that it can (automatically) certify such confluence proofs in the
proof assistant Coq.

To conclude we stress the main attractions of CSI: To the best of our know-
ledge it is the only tool that implements order-sorted decomposition of rewrite
systems, it employs powerful criteria for disproving confluence, and due to the
modular design it allows to combine different labeling functions for the decreas-
ing diagrams technique.

References

1. Aoto, T.: Automated confluence proof by decreasing diagrams based on rule-
labelling. In: Proc. 21st RTA. LIPIcs, vol. 6, pp. 7–16 (2010)

2. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting systems
automatically. In: Proc. 20th RTA. LNCS, vol. 5595, pp. 93–102 (2009)

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press (1998)

4. Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certified
proofs with CiME3. In: Proc. 22nd RTA. LIPIcs. (2011). To appear.

5. Felgenhauer, B., Zankl, H., Middeldorp, A.: Proving confluence with layer systems
(2011). Submitted for publication.

6. Genet, T.: Decidable approximations of sets of descendants and sets of normal
forms. In: Proc. 9th RTA. LNCS, vol. 1379, pp. 151–165 (1998)

7. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: Proc. 5th FroCoS. LNCS (LNAI), vol. 3717, pp.
216–231 (2005)

8. Huet, G.: Confluent reductions: Abstract properties and applications to term
rewriting systems. JACM 27(4), 797–821 (1980)

9. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, 263–297. Pergamon Press
(1970)

10. Korp, M., Middeldorp, A.: Match-bounds revisited. I&C 207(11), 1259–1283 (2009)
11. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.

In: Proc. 20th RTA. LNCS, vol. 5595, pp. 295–304 (2009)
12. van Oostrom, V.: Confluence by decreasing diagrams. TCS 126(2), 259–280 (1994)
13. van Oostrom, V.: Developing developments. TCS 175(1), 159–181 (1997)
14. van Oostrom, V.: Confluence by decreasing diagrams – converted. In: Proc. 19th

RTA. LNCS, vol. 5117, pp. 306–320 (2008)
15. Terese: Term Rewriting Systems. vol. 55 of Cambridge Tracts in Theoretical Com-

puter Science. Cambridge University Press (2003)
16. Tiwari, A.: Deciding confluence of certain term rewriting systems in polynomial

time. In: Proc. 17th LICS. pp. 447–457 (2002)
17. Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams. In:

Proc. 22nd RTA. LIPIcs. (2011). To appear.

