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complexity of term rewrite systems. In particular, triangular matrix in-
terpretations over the natural numbers are known to induce polynomial
upper bounds on the derivational complexity of (compatible) rewrite
systems. Recently two different improvements were proposed, based on
the theory of weighted automata and linear algebra. In this paper we
strengthen and unify these improvements by using joint spectral radius
theory.

Keywords: derivational complexity, matrix interpretations, weighted
automata, joint spectral radius

1 Introduction

This paper is concerned with automated complexity analysis of term rewrite
systems. Given a terminating rewrite system, the aim is to obtain information
about the maximal length of rewrite sequences in terms of the size of the initial
term. This is known as derivational complexity. Developing methods for bound-
ing the derivational complexity of rewrite systems has become an active and
competitive3 research area in the past few years (e.g. [6, 11–15,19,21]).

Matrix interpretations [4] are a popular method for automatically proving
termination of rewrite systems. They can readily be used to establish upper
bounds on the derivational complexity of compatible rewrite systems. However,
in general, matrix interpretations induce exponential (rather than polynomial)
upper bounds. In order to obtain polynomial upper bounds, the matrices used in
a matrix interpretation must satisfy certain (additional) restrictions, the study
of which is the central concern of [14,15,19].

So what are the conditions for polynomial boundedness of a matrix inter-
pretation? In the literature, two different approaches have emerged. On the one
hand, there is the automata-based approach of [19], where matrices are viewed as

? This research is supported by FWF (Austrian Science Fund) project P20133.
Friedrich Neurauter is supported by a grant of the University of Innsbruck.

3 http://www.termination-portal.org/wiki/Complexity

http://www.termination-portal.org/wiki/Complexity


2

weighted (word) automata computing a weight function, which is required to be
polynomially bounded. The result is a complete characterization (i.e., necessary
and sufficient conditions) of polynomially bounded matrix interpretations over
N. On the other hand, there is the algebraic approach pursued in [15] (originat-
ing from [14]) that can handle matrix interpretations over N, Q, and R but only
provides sufficient conditions for polynomial boundedness. In what follows, we
shall see, however, that these two seemingly different approaches can be unified
and strengthened with the help of joint spectral radius theory [9, 10], a branch
of mathematics dedicated to studying the growth rate of products of matrices
taken from a set.

The remainder of this paper is organized as follows. In the next section we re-
call preliminaries from linear algebra and term rewriting. We give a brief account
of the matrix method for proving termination of rewrite systems. In Section 3
we introduce the algebraic approach for characterizing the polynomial growth of
matrix interpretations. We improve upon the results of [15] by considering the
minimal polynomial associated with the component-wise maximum matrix of
the interpretation. We further show that the joint spectral radius of the matri-
ces in the interpretation provides a better characterization of polynomial growth
and provide conditions for the decidability of the latter. Section 4 is devoted to
automata-based methods for characterizing the polynomial growth of matrix
interpretations. We revisit the characterization results of [19] and provide pre-
cise complexity statements. In Section 5 we unify the two approaches and show
that, in theory at least, the joint spectral radius theory approach subsumes the
automata-based approach. Automation of the results presented in earlier sec-
tions is the topic of Section 6. To this end we extend the results from [15, 19].
We also provide experimental results. We conclude with suggestions for future
research in Section 7.

2 Preliminaries

As usual, we denote by N, Z, Q and R the sets of natural, integer, rational and
real numbers. Given D ∈ {N,Z,Q,R} and m ∈ D, >D denotes the standard
order of the respective domain and Dm abbreviates {x ∈ D | x > m}.

Linear Algebra: Let R be a ring (e.g., Z, Q, R). The ring of all n-dimensional
square matrices over R is denoted by Rn×n and the polynomial ring in n indeter-
minates x1, . . . , xn by R[x1, . . . , xn]. In the special case n = 1, any polynomial
p ∈ R[x] can be written as p(x) =

∑d
k=0 akx

k for some d ∈ N. For the largest
k such that ak 6= 0, we call akxk the leading term of p, ak its leading coefficient
and k its degree. The polynomial p is said to be monic if its leading coefficient
is one. It is said to be linear, quadratic, cubic if its degree is one, two, three.

In case R is equipped with a partial order >, the component-wise extension of
this order to Rn×n is also denoted as >. We say that a matrix A is non-negative
if A > 0 and denote the set of all non-negative n-dimensional square matrices of
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Zn×n by Nn×n. The n× n identity matrix is denoted by In and the n× n zero
matrix is denoted by 0n. We simply write I and 0 if n is clear from the context.

The characteristic polynomial χA(λ) of a square matrix A ∈ Rn×n is defined
as det(λIn − A), where det denotes the determinant. It is monic and its degree
is n. The equation χA(λ) = 0 is called the characteristic equation of A. The
solutions of this equation, i.e., the roots of χA(λ), are precisely the eigenvalues
of A, and the spectral radius ρ(A) of A is the maximum of the absolute values
of all eigenvalues. A non-zero vector x is an eigenvector of A if Ax = λx for
some eigenvalue λ of A. We say that a polynomial p ∈ R[x] annihilates A if
p(A) = 0. The Cayley-Hamilton theorem [16] states that A satisfies its own
characteristic equation, i.e., χA annihilates A. The unique monic polynomial of
minimum degree that annihilates A is called the minimal polynomial mA(x) of
A. The multiplicity of a root λ of p ∈ R[x] is denoted by #p(λ).

With any matrix A ∈ Rn×n we associate a directed (weighted) graph G(A)
on n vertices numbered from 1 to n such that there is a directed edge (of weight
Aij) in G(A) from i to j if and only if Aij 6= 0. In this situation, A is said to be
the adjacency matrix of the graph G(A). The weight of a path in G(A) is the
product of the weights of its edges.

With a finite set of matrices S ⊆ Rn×n we associate the directed (weighted)
graph G(S) := G(M), where M denotes the component-wise maximum of the
matrices in S, i.e., Mij = max {Aij | A ∈ S and 1 6 i, j 6 n}. Following [10],
we define a directed graph Gk(S) for k > 2 on nk vertices representing ordered
tuples of vertices of G(S), such that there is an edge from vertex (i1, . . . , ik)
to (j1, . . . , jk) if and only if there is a matrix A ∈ S with Ai`j` > 0 for all
` = 1, . . . , k. This is akin to the k-fold Kronecker product of the matrix A.

For functions f, g : N → N we write f(n) = O(g(n)) if there are constants
M,N ∈ N such that f(n) 6 M · g(n) + N for all n ∈ N. Furthermore, f(n) =
Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)).

Rewriting: We assume familiarity with the basics of term rewriting [1,18]. Let V
denote a countably infinite set of variables and F a fixed-arity signature. The
set of terms over F and V is denoted by T (F ,V). The size |t| of a term t is
defined as the number of function symbols and variables occurring in it. The
set of positions Pos(t) of a term t is defined as usual. Positions are denoted as
sequences of natural numbers. A term rewrite system (TRS for short) R over
T (F ,V) is a finite set of rewrite rules `→ r such that ` /∈ V and Var(`) ⊇ Var(r).
The smallest rewrite relation that contains R is denoted by →R. The transitive
(and reflexive) closure of →R is denoted by →+

R (→∗R). Let s and t be terms. If
exactly n steps are performed to rewrite s to t, we write s→n t. The derivation
height of a term s with respect to a well-founded and finitely branching relation
→ is defined as dh(s,→) = max {n | s→n t for some term t}. The derivational
complexity function of R is defined as: dcR(k) = max {dh(t,→R) | |t| 6 k}.

Matrix Interpretations: An F-algebra A consists of a carrier set A and a col-
lection of interpretations fA : Ak → A for each k-ary function symbol in F .
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By [α]A(·) we denote the usual evaluation function of A according to an as-
signment α which maps variables to values in A. An F-algebra together with a
well-founded order > on A is called a monotone algebra if every function symbol
f ∈ F is monotone with respect to > in all arguments. Any monotone algebra
(A, >) (or just A if > is clear from the context) induces a well-founded order on
terms: s >A t if and only if [α]A(s) > [α]A(t) for all assignments α. A TRS R
and a monotone algebra A are compatible if ` >A r for all `→ r ∈ R.

For matrix interpretations, we fix a dimension n ∈ N \ {0} and use the set
Rn0 as the carrier of an algebraM, together with the order >δ on Rn0 defined as
(x1, x2, . . . , xn)T >δ (y1, y2, . . . , yn)T if x1 >R,δ y1 and xi >R yi for 2 6 i 6 n.
Here x >R,δ y if and only if x >R y + δ. Each k-ary function symbol f is
interpreted as a linear function of the following shape: fM(v1, . . . ,vk) = F1v1 +
· · ·+ Fkvk + f where v1, . . . ,vk are (column) vectors of variables, F1, . . . , Fk ∈
Rn×n0 and f is a vector in Rn0 . The F1, . . . , Fk are called the matrices of the
interpretation fM, while f is called the absolute vector of fM. We write abs(f)
for the f . To ensure monotonicity, it suffices that the top left entry (Fi)11 of
every matrix Fi is at least one. Then it is easy to see that (M, >δ) forms a
monotone algebra for any δ > 0. We obtain matrix interpretations over Q by
restricting to the carrier Qn

0 . Similarly, matrix interpretations over N operate on
the carrier Nn and use δ = 1.

Let α0 denote the assignment that maps every variable to 0. Let t be a term.
In the following we abbreviate [α0]M(t) to [t]M (or [t] ifM can be inferred from
the context) and we write [t]j (1 6 j 6 n) for the j-th element of [t].

LetM be a matrix interpretation of dimension n. Let S be the set of matrices
occurring in M and let Sk = {A1 · · ·Ak | Ai ∈ S, 1 6 i 6 k} be the set
of all products of length k of matrices taken from S. Here S0 consists of the
identity matrix. Further, S∗ denotes the (matrix) monoid generated by S, i.e.,
S∗ =

⋃∞
k=0 S

k.

3 Algebraic Methods for Bounding Polynomial Growth

In this section we study an algebraic approach to characterize polynomial growth
of matrix interpretations (over N, Q, and R). We employ the following definition
implicitly used in [14,15].

Definition 1. Let M be a matrix interpretation. We say that M is polynomi-
ally bounded (with degree d) if the growth of the entries of all matrix products
in S∗ is polynomial (with degree d) in the length of such products.

The relationship between polynomially bounded matrix interpretations and
the derivational complexity of compatible TRSs is as follows (cf. [15]).

Lemma 2. Let R be a TRS and M a compatible matrix interpretation. If M
is polynomially bounded with degree d then dcR(k) = O(kd+1). ut
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3.1 Spectral Radius

In this subsection we over-approximate the growth of entries of matrix products
of the form A1 · · ·Ak ∈ Sk by Mk where Mij = max {Aij | A ∈ S} for all
1 6 i, j 6 n. Then, by non-negativity of the matrices in S, we have

(A1 · · ·Ak)ij 6 (Mk)ij for all 1 6 i, j 6 n (1)

Thus, polynomial boundedness of the entries ofA1 · · ·Ak follows from polynomial
boundedness of the entries of Mk. In [15], the latter is completely characterized
by the spectral radius ρ(M) of M being at most one. Here we build on this result
(and its proof) but establish a lemma that allows to obtain a tight bound for
the degree of polynomial growth of the entries of Mk.

Lemma 3. Let M ∈ Rn×n0 and let p ∈ R[x] be a monic polynomial that annihi-
lates M . Then ρ(M) 6 1 if and only if all entries of Mk (k ∈ N) are asymptot-
ically bounded by a polynomial in k of degree d, where d := maxλ(0,#p(λ)− 1)
and λ are the roots of p with absolute value exactly one and multiplicity #p(λ).

Proof. Straightforward adaptation of the proof of [15, Lemma 4]. ut

Based on Lemma 3 (with p(x) = χM (x)), one obtains the following theorem
concerning complexity analysis via matrix interpretations.

Theorem 4 ([15, Theorem 6]). Let R be a TRS and M a compatible matrix
interpretation of dimension n. Further, let M denote the component-wise max-
imum of all matrices occurring in M. If the spectral radius of M is at most
one, then dcR(k) = O(kd+1), where d := maxλ(0,#χM (λ) − 1) and λ are the
eigenvalues of M with absolute value exactly one. ut

Obviously, the set of (monic) polynomials that annihilate a matrix M is infi-
nite. However, from linear algebra we know that this set is generated by a unique
monic polynomial of minimum degree that annihilates M , namely, the minimal
polynomial mM (x) of M . That is, if p(x) is any polynomial such that p(M) = 0
then mM (x) divides p(x). In particular, mM (x) divides the characteristic poly-
nomial χM (x). Moreover, mM (λ) = 0 if and only if λ is an eigenvalue of M ,
so every root of mM (x) is a root of χM (x). However, in case mM (x) 6= χM (x),
the multiplicity of a root in mM (x) may be lower than its multiplicity in χM (x)
(cf. [8]). In light of these facts, we conclude that in Lemma 3 one should use the
minimal polynomial mM (x) rather than the characteristic polynomial χM (x).
Then the corresponding analogon of Theorem 4 is as follows.

Theorem 5. Let R be a TRS and M a compatible matrix interpretation of
dimension n. Further, let M denote the component-wise maximum of all matri-
ces occurring in M. If the spectral radius of M is at most one then dcR(k) =
O(kd+1), where d := maxλ(0,#mM (λ)−1) and λ are the eigenvalues of M with
absolute value exactly one. ut

Next we illustrate the usefulness of Theorem 5 on an example.
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Example 6. Consider the TRS R consisting of the following two rewrite rules:4

h(x, c(y, z))→ h(c(s(y), x), z)
h(c(s(x), c(s(0), y)), z)→ h(y, c(s(0), c(x, z))) M =


1 1 1 1
0 0 0 0
0 1 1 0
0 1 0 1


There is a compatible matrix interpretation such that the component-wise max-
imum matrix M (given above) has characteristic polynomial χM (x) = x(x− 1)3

and minimal polynomial mM (x) = x(x − 1)2. Thus, the upper bound for the
derivational complexity ofR derived from Theorem 4 is cubic, whereas the bound
obtained by Theorem 5 is quadratic.

Next we present an example that demonstrates the conceptual limitations
arising from the over-approximation of matrix products by the powers of the
corresponding maximum matrix.

Example 7. Consider the TRS R consisting of the rules

f(f(x))→ f(g(f(x))) g(g(x))→ x b(x)→ x

Lemma 8. There is a matrix interpretation compatible with R that is polynomi-
ally bounded (in the sense of Definition 1), but there is no matrix interpretation
compatible with R where all entries in the component-wise maximum matrix are
polynomially bounded.

Proof. For the first item consider the following matrix interpretation M estab-
lishing linear derivational complexity of R (cf. Theorem 16) from Example 7:

fM(x) =

1 1 0
0 0 0
0 0 0

x +

0
4
0

 gM(x) =

1 0 0
0 0 1
0 1 0

x +

1
0
3

 bM(x) = x+

4
4
0


For the second item assume a compatible matrix interpretationM of dimension
n with bM(x) = Bx + b, fM(x) = Fx + f and gM(x) = Gx + g. Assume
G > In. To orient the first rule, the constraint Ff > FGf must be satisfied, but
by (weak) monotonicity of matrix multiplication we obtain the contradiction
Ff > FGf > FInf = Ff and hence G 6> In, i.e., there exists an index l
such that Gll < 1. Since GG > In is needed to orient the second rule, we have∑
j GljGjl > 1 and consequently

∑
j 6=lGljGjl > 0. The third rule demands

B > In and for the maximum matrix M we have M > max(In, G). From
(In)ll > 1 and

∑
j 6=lGljGjl > 0 we conclude (M2)ll > 1, which gives rise to

exponential growth of (Mk)ll since all entries in M are non-negative. ut

4 TPDB problem TRS/Endrullis 06/direct.xml



7

3.2 Joint Spectral Radius

Instead of using a single maximum matrix to over-approximate the growth of
finite matrix products taken from a set of matrices S, in this subsection we pro-
vide a concise analysis using joint spectral radius theory [9, 10]. In particular,
we shall see that the joint spectral radius of S completely characterizes polyno-
mial growth of all such products, just like the spectral radius of a single matrix
characterizes polynomial growth of the powers of this matrix (cf. Lemma 3).

Definition 9. Let S ⊆ Rn×n be a finite set of real square matrices, and let ‖·‖
denote a matrix norm. The growth function growth associated with S is defined
as follows:

growthS(k, ‖·‖) := max { ‖A1 · · ·Ak‖ | Ai ∈ S, 1 6 i 6 k }

The asymptotic behaviour of growthS(k, ‖·‖) can be characterized by the
joint spectral radius of S.

Definition 10. Let S ⊆ Rn×n be finite, and let ‖·‖ denote a matrix norm. The
joint spectral radius ρ(S) of S is defined by the limit

ρ(S) := lim
k→∞

max { ‖A1 · · ·Ak‖1/k | Ai ∈ S, 1 6 i 6 k }

It is well-known that this limit always exists and that it does not depend on
the chosen norm, which follows from the equivalence of all norms in Rn; e.g.,
one could take the norm given by the sum of the absolute values of all matrix
entries. Further, if S = {A} is a singleton set, the joint spectral radius ρ(S) of
S and the spectral radius ρ(A) of A coincide:

ρ(S) = lim
k→∞

‖Ak‖1/k = max { |λ| | λ is an eigenvalue of A } = ρ(A)

Since Definition 10 is independent of the actual norm, from now on we simply
write growthS(k). The following theorem (due to [2]) provides a characterization
of polynomial boundedness of growthS(k) by the joint spectral radius of S.

Theorem 11 ([2, Theorem 1.2]). Let S ⊆ Rn×n be a finite set of matrices.
Then growthS(k) = O(kd) for some d ∈ N if and only if ρ(S) 6 1. In particular,
d 6 n− 1. ut

Hence, polynomial boundedness of growthS(k) is decidable if ρ(S) 6 1 is
decidable. But it is well-known that in general the latter is undecidable for
arbitrary, but finite sets S ⊆ Rn×n, even if S contains only non-negative ra-
tional (real) matrices (cf. [10, Theorem 2.6]). However, if S contains only non-
negative integer matrices then ρ(S) 6 1 is decidable. In particular, there exists a
polynomial-time algorithm that decides it (cf. [10, Theorem 3.1]). This algorithm
is based on the following lemma.

Lemma 12 ([10, Lemma 3.3]). Let S ⊆ Rn×n0 be a finite set of non-negative,
real square matrices. Then there is a product A ∈ S∗ such that Aii > 1 for some
i ∈ {1, . . . , n} if and only if ρ(S) > 1. ut
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According to [10], for S ⊆ Nn×n, the existence of such a product can be
characterized in terms of the graphs G(S) and G2(S) one can associate with S.
More precisely, there is a product A ∈ S∗ with Aii > 1 if and only if

1. there is a cycle in G(S) containing at least one edge of weight w > 1, or
2. there is a cycle in G2(S) containing at least one vertex (i, i) and at least one

vertex (p, q) with p 6= q.

Hence, we have ρ(S) 6 1 if and only if neither of the two conditions holds, which
can be checked in polynomial time according to [10]. Furthermore, as already
mentioned in [10, Chapter 3], this graph-theoretic characterization does not only
hold for non-negative integer matrices, but for any set of matrices such that all
matrix entries are either zero or at least one (because then all paths in G(S)
have weight at least one).

Lemma 13. Let S ⊆ Rn×n0 be a finite set of matrices such that all matrix
entries are either zero or at least one. Then ρ(S) 6 1 is decidable in polynomial
time. ut

So, in the situation of Lemma 13, polynomial boundedness of growthS(k) is
decidable in polynomial time. In addition, the exact degree of growth can be
computed in polynomial time (cf. [10, Theorem 3.3]).

Theorem 14. Let S ⊆ Rn×n0 be a finite set of matrices such that ρ(S) 6 1 and
all matrix entries are either zero or at least one. Then

growthS(k) = Θ(kd)

where the growth rate d is the largest integer possessing the following property:
there exist d different pairs of indices (i1, j1), . . . , (id, jd) such that for every
pair (is, js) the indices is, js are different and there is a product A ∈ S∗ for
which Aisis , Aisjs , Ajsjs > 1, and for each 1 6 s 6 d − 1, there exists B ∈ S∗
with Bjsis+1 > 1. Moreover, d is computable in polynomial time. ut

Next we elaborate on the ramifications of joint spectral radius theory on
complexity analysis of TRSs via polynomially bounded matrix interpretations.
To begin with, we observe that the characterization of polynomially bounded
matrix interpretations given in Definition 1 can be rephrased as follows: A ma-
trix interpretation M is polynomially bounded if the joint spectral radius of
the set of matrices occurring in M is at most one. This follows directly from
Theorem 11 (using as ‖·‖ in growthS(k, ‖·‖) the matrix norm given by the sum
of the absolute values of all matrix entries). Due to the relationship between
polynomially bounded matrix interpretations and the derivational complexity of
compatible TRSs expressed in Lemma 2, we immediately obtain the following
theorem, which holds for matrix interpretations over N, Q, and R.

Theorem 15. Let R be a TRS and M a compatible matrix interpretation of
dimension n. Further, let S ⊆ Rn×n0 denote the set of all matrices occurring in
M. If the joint spectral radius of S is at most one then dcR(k) = O(kn). ut
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As this theorem assumes the worst-case growth rate for growthS(k), the in-
ferred degree of the polynomial bound may generally be too high (and unnec-
essarily so). Yet with the help of Theorem 14, from which we obtain the exact
growth rate of growthS(k), Theorem 15 can be strengthened, at the expense of
having to restrict the set of permissible matrices.

Theorem 16. Let R be a TRS and M a compatible matrix interpretation of
dimension n. Further, let S ⊆ Rn×n0 denote the set of all matrices occurring in
M and assume that all matrix entries are either zero or at least one. If the joint
spectral radius of S is at most one then dcR(k) = O(kd+1), where d refers to the
growth rate obtained from Theorem 14. ut

4 Automata Methods for Bounding Polynomial Growth

In this section we study automata-based methods to classify polynomial growth
of matrix interpretations. Complementing Definition 1, we employ the following
definition of polynomial growth [19].

Definition 17. The growth function of a matrix interpretation M is defined as
growthM(k) := max {[t]1 | t is a term and |t| 6 k}. We say that M is polyno-
mially bounded with degree d if growthM(k) = O(kd) for some d ∈ N.

We recall basic notions of automata theory (cf. [3,17]). A weighted automaton
(over R) is a quintuple A = (Q,Σ, λ, µ, γ) where Q is a finite set of states, Σ a
finite alphabet, and the mappings λ : Q→ R, γ : Q→ R are weight functions for
entering and leaving a state. The transition function µ : Σ → R|Q|×|Q| associates
with any letter in Σ a (|Q| × |Q|)-matrix over R. For a ∈ Σ, µ(a)p,q denotes
the weight of the transition p

a−→ q. We often view λ and γ as row and column
vectors, respectively. We also write weight(p, a, q) for µ(a)p,q and extend the
transition function µ homomorphically to words. The weight of x ∈ Σ∗, denoted
by weightA(x), is the sum of the weights of paths in A labelled with x. We define

weightA(x) =
∑
p,q∈Q

λ(p) · µ(x)p,q · γ(q) = λ · µ(x) · γ

where the weight of the empty word is just λ · γ.
A weighted automaton A = (Q,Σ, λ, µ, γ) is called normal if the row vector

λ is (1, 0) and the column vector γ contains only entries with weight 0 or 1. Here
0 denotes a sequence of |Q| − 1 zeros. Let A be a normal weighted automaton.
The unique state q0 such that λ(q0) 6= 0 is called initial and the states in
F := {q | γ(q) 6= 0} are called final. We call a state p ∈ Q useful if there exists
a path in A from q0 to q ∈ F that contains p. An automaton A is trim if all
states are useful. In the sequel all considered automata will be normal.

The main result of this section is a complete (and polytime decidable) charac-
terization of polynomial growth of matrix interpretations over N, thus re-stating
the main result in [19]. We extend upon [19] by clarifying the polytime decid-
ability of the properties involved. Given a matrix interpretation M, we denote
by CM the component-wise maximum of all absolute vectors in M.
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Definition 18. With every n-dimensional matrix interpretation M for a sig-
nature F we associate a weighted automaton A = (Q,Σ, λ, µ, γ) as follows: Q =
{1, . . . , n}, Σ = {fi | f ∈ F has arity k and 1 6 i 6 k}, λ = (1, 0), γ ∈ {0, 1}n
such that γ(i) = 1 if and only if CMi > 0, and µ(fi) = Fi where Fi denotes the
i-th matrix of fM.

Example 19. Consider the matrix interpretation M of dimension 3 with

aM(x) =

1 1 0
0 1 0
0 0 0

x bM(x) =

1 0 0
0 1 1
0 0 1

x +

0
0
1


The following automaton A = (Q,Σ, λ, µ, γ) corresponds to M:

1 2 3

a1 : 1, b1 : 1

a1 : 1

a1 : 1, b1 : 1

b1 : 1

b1 : 1

As A is normal, we represent λ and γ by indicating the input and output states
as usual for finite automata.

In analogy to Definition 17 we define the growth function of a weighted
automaton.

Definition 20. Let A = (Q,Σ, λ, µ, γ) be a weighted automaton. The growth
function of A is defined as growthA(k) := max {weight(x) | x ∈ Σk}.

The following theorem restates [19, Theorem 3.3] in connection with the
remark immediately following the theorem.

Theorem 21. Let M be a matrix interpretation and A the corresponding au-
tomaton. Then growthA(k) = O(kd) if and only if growthM(k) = O(kd+1). ut

As a consequence of Theorem 21 we observe that the growth of matrix in-
terpretations and weighted automata are polynomially related. Hence if we can
decide the polynomial growth rate of automata, we can decide the polynomial
growth rate of matrix interpretations. In the remainder of this section we restrict
to matrix interpretations over N (and therefore to weighted automata over N).

The growth rate of automata has been studied in various contexts. Here we
only mention two independent developments. Weber and Seidl provide in [20] a
complete characterization of the degree of growth of the ambiguity of nondeter-
ministic finite automata (NFAs). If we restrict to weights over {0, 1}, weighted
automata simplify to NFAs. Furthermore, if the degree of growth of the ambi-
guity of an NFA A is d then growthA(k) = O(kd) and vice versa. Jungers [10]
completely characterises polynomial growth rates of matrix products in the con-
text of joint spectral radius theory (cf. Theorem 14). Due to the closeness of
weighted automata to finite automata we follow the account of Weber and Seidl
here. To make full use of the results in [20] it suffices to observe that weighted
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automata over N can be represented as finite automata with parallel edges. This
will also allow to place later developments (see Section 5) into context.

Consider the following criterion for a weighted automatonA = (Q,Σ, λ, µ, δ):

∃ q ∈ Q ∃x ∈ Σ∗ such that weight(q, x, q) > 2 and q is useful (EDA)

The criterion was introduced in [20] for NFAs. A similar criterion can be distilled
from the decision procedures given in [10, Chapter 3]. Note that the conditions
given after Lemma 12 are equivalent to EDA if we restrict our attention to trim
automata. Without loss of generality let Q = {1, . . . , n} and let S be the set
of transition matrices in A. By definition, there exists a product A ∈ S∗ with
Aii > 2 if and only if there exists x ∈ Σ∗ such that weight(i, x, i) > 2. Hence A
fulfills EDA if and only if condition 1 or condition 2 is fulfilled. In the following
we sometimes refer to EDA as the collection of these conditions.

Condition EDA is sufficient to decide the polynomial growth of N-weighted
automata. The following theorem embodies Theorem 5.2 in [19]. The polytime
decision procedure stems from [20].

Theorem 22. Let A = (Q,Σ, λ, µ, γ) be a weighted automaton over N. Then
there exists d ∈ N such that growthA(k) = O(kd) if and only if A does not admit
EDA. Furthermore this property is decidable in time O(|Q|4 · |Σ|). ut

To determine the degree of polynomial growth, the following criterion intro-
duced in [20] is used:

∃ p1, q1, . . . , pd, qd ∈ Q ∃ v1, u2, v2, . . . , ud, vd ∈ Σ∗ such that ∀ i > 1 ∀ j > 2
pi 6= qi, pi

vi−→ pi, pi
vi−→ qi, qi

vi−→ qi, qj−1
uj−→ pj , pi and qi are useful (IDAd)

The criterion IDAd can be visualized as follows:

p1 q1 · · · pd qd

v1

v1

v1

u2 ud

vd

vd

vd

In the same vein as for EDA, one easily sees that the condition IDAd is closely
linked (on trim automata) to the conditions stated in Theorem 14. This will be
detailed in Section 5.

Example 23 (continued from Example 19). It is easy to see that A complies with
IDA2, where p1 = 1, q1 = p2 = 2, and q2 = 3. Moreover, an easy calculation
gives weightA(anbm) = weightA(1, anbm, 3) = nm and thus the growth rate of A
is quadratic.

The next theorem essentially follows from a close inspection of the proof of
[20, Theorem 4.2] in connection with Theorem 21.

Theorem 24. Let M be a matrix interpretation of dimension n and let A =
(Q,Σ, λ, µ, γ) be the corresponding weighted automaton. Then growthM(k) =
Θ(kd+1) if and only if A does not comply with EDA nor with IDAd+1, but complies
with IDAd. Furthermore this property is decidable in time O(|Q|6 · |Σ|). ut
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As a direct consequence of the theorem together with Theorem 21 we obtain
the following corollary.

Corollary 25. Let R be a TRS and letM be a compatible matrix interpretation
of dimension n. Further, let A be the corresponding weighted automaton such
that A does not comply with EDA nor with IDAd+1. Then dcR(k) = O(kd+1).
Furthermore the conditions given are decidable in polynomial time. ut

Example 26 (continued from Example 23). The automaton A complies with
IDA2. It is easy to see that A does not comply with EDA nor with IDA3. Hence
the growth of the matrix interpretation M is at most cubic, i.e., growthM(k) =
O(k3).

5 Unifying Algebraic and Automata-based Methods

In this section we unify the algebraic and the automata-based approach presented
in Sections 3 and 4. We start by relating the two different notions of polynomial
growth of matrix interpretations that have been studied in the literature (cf.
Definitions 1 and 17). The next example shows that these two definitions are
not polynomially related.

Example 27. Consider the TRS f(x)→ x together with the following compatible
matrix interpretation M:

fM(x) =
(

1 1
0 2

)
x +

(
1
0

)
It is easy to see that the growth of the entries in the second column of the matrix
is exponential, so M is not of polynomial growth with respect to Definition 1.
However, [t]1 < |t| for any term t and thus M is of polynomial growth with
respect to Definition 17.

Still, morally both definitions are equal. Observe that the entries that grow
exponentially in the matrix in Example 27 are irrelevant when computing the
value [t]1. In order to prove this we exploit the connection between matrix in-
terpretations and weighted automata emphasised in Section 4.

Example 28 (continued from Example 27). The weighted automaton A corre-
sponding to M can be pictured as follows:

1 2

f1 : 1

f1 : 1

f1 : 2

Observe that A is not trim because state 2 is not useful.

Lemma 29. Let R be a TRS and let M be a compatible matrix interpretation.
There exists a matrix interpretation N compatible with R such that the corre-
sponding automaton is trim. Furthermore, growthM(k) = growthN (k).
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Proof. Following [19], with every position p ∈ Pos(t) we associate a word tp
over Σ: tε = ε and if p = i · q and t = f(t1, . . . , tn), then tp = fi · tq. The
set Path(t) consists of all these words. We write t(p) for the root symbol of the
subterm of t at position p. LetM be a matrix interpretation of dimension n and
let A = (Q,Σ, λ, µ, γ) be the corresponding normal weighted automaton. A key
observation is the following identity, which holds for all assignments α of vectors
in Nn to the variables in t:

[α]M(t) =
∑

p∈Pos(t)

µ(tp) · abs(α, t(p))

where abs(α, t(p)) = abs(t(p)) if t(p) ∈ F and abs(α, t(p)) = α(t(p)) otherwise.
Without loss of generality we assume that R is non-empty. AsM is compatible
with R, there must be a word in Σ∗ of positive weight. This implies in particular
that state 1 is useful. Now suppose that A is not trim. Let B = (Q′, Σ, λ′, µ′, γ′)
denote an equivalent trim automaton. We have λ′ = λ�Q′ , γ′ = γ�Q′ , and for
all a ∈ Σ, µ′(a) = µ(a)�Q′×Q′ . To simplify notation we assume (without loss of
generality; recall that state 1 is useful) that Q′ = {1, . . . ,m} for some m < n.

Let N be the matrix interpretation corresponding to B, where the absolute
vector of every fN equals abs(f)�Q′ . We prove that N is compatible with R. Let
`→ r be a rule in R and let β : V → Nm be an arbitrary assignment. Let α : V →
Nn be the assignment that is obtained from β by zero padding, i.e., β(x)i = α(x)i
for 1 6 i 6 m and β(x)i = 0 for m < i 6 n. From the compatibility ofM and R
we obtain [α]M(`)1 > [α]M(r)1 and [α]M(`)j > [α]M(r)j for all 1 < j 6 n. We
claim that [α]M(t)i = [β]N (t)i for all 1 6 i 6 m. From the claim we immediately
obtain [β]N (`)1 > [β]N (r)1 and [β]N (`)j > [β]N (r)j for all 1 < j 6 m. It follows
that N is compatible with R and by Definition 17, growthM(k) = growthN (k).

To prove the claim, fix i ∈ {1, . . . ,m} and let λi = (0, 1, 0) be the row vector
of dimension n where the 1 is at position i. Let p ∈ Pos(t). We have

λi · µ(tp) · abs(α, t(p)) = (µ(tp) · abs(α, t(p)))i
= (µ′(tp) · abs(α, t(p))�Q′)i
= (µ′(tp) · abs(β, t(p)))i = λ′i · µ′(tp) · abs(β, t(p))

where λ′i = λi�Q′ . It follows that [α]M(t)i = [β]N (t)i for all 1 6 i 6 m. ut

Example 30 (continued from Example 28). Because state 2 in the weighted au-
tomaton A is useless, it is removed to obtain an equivalent trim automaton B.
This one-state automaton gives rise to the 1-dimensional matrix interpretation
(i.e., linear polynomial interpretation) N with fN (x) = x+ 1.

An immediate consequence of Theorem 21 and Lemma 29 is that Definitions 1
and 17 are equivalent in the following sense.

Corollary 31. Let R be a TRS. The following statements are equivalent.

1. There exists a matrix interpretation M compatible with R that is polynomi-
ally bounded according to Definition 1.
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2. There exists a matrix interpretation N compatible with R that is polynomi-
ally bounded according to Definition 17.

Furthermore the entries of all products of matrices in M are polynomial with
degree d in the length of such products if and only if growthN (k) = O(kd+1).

Proof. First, assume thatM is a compatible matrix interpretation that is poly-
nomially bounded according to Definition 1. Further assume the entries of all
matrix products of matrices in M are polynomial with degree d in the length
of such products. Since the matrices occurring in M form the transitions of
the automaton A corresponding to M, growthA(k) = O(kd). Hence, by Theo-
rem 21, growthM(k) = O(kd+1), which means that M is polynomially bounded
according to Definition 17.

As to the converse statement, assume that N is a compatible matrix in-
terpretation that is polynomially bounded according to Definition 17 and let
growthN (k) = O(kd+1). By Lemma 29 there exists a compatible matrix inter-
pretation M such that growthN (k) = growthM(k) and the corresponding au-
tomaton A is trim. By Theorem 21, we have growthA(k) = O(kd). This entails
that all entries of all matrix products of matrices in M are polynomial with
degree d, asM is trim, which means thatM is polynomially bounded according
to Definition 1. ut

In what follows we show that the algebraic approach presented in Section 3
readily subsumes the automata theory based approach of Section 4. To be precise,
we show that the restriction of Theorem 16 to matrix interpretations over N
applies in any situation where Corollary 25, the main result of Section 4, applies.

Theorem 32. Let R be a TRS. If one can establish polynomial derivational
complexity of some degree via Corollary 25, then one can also establish polyno-
mial derivational complexity of the same degree via Theorem 16.

Proof. LetM be a compatible matrix interpretation over N of dimension n and
let S ⊆ Nn×n denote the set of all matrices occurring in M. By Lemma 29
we may assume that the automaton A = (Q,Σ, λ, µ, γ) corresponding to M
is trim. By assumption A does not comply with EDA nor with IDAd+1 and
dcR(k) = O(kd+1). As one obtains the tightest bound for dcR(k) if d+ 1 is the
least integer such that ¬IDAd+1 holds in A, or, equivalently, if d is the largest
integer such that IDAd holds in A, this will be assumed in what follows.

First we show that ¬EDA implies ρ(S) 6 1. By Lemma 12 we have ρ(S) > 1
if and only if there is a product A ∈ S∗ such that Aii > 1 for some i ∈ {1, . . . , n}.
By construction of A the latter is equivalent to the existence of a word x ∈ Σ∗
(corresponding to the product A ∈ S∗) such that µ(x)i,i > 1 for some state
i ∈ Q = {1, . . . , n}, or, equivalently, µ(x)i,i = weight(i, x, i) > 2 since A is
N-weighted. This means that A complies with EDA because state i is useful.

Next we show that d is exactly the growth rate mentioned in Theorem 16,
that is, the growth rate inferred from Theorem 14. As A complies with IDAd,
there are useful states p1, q1, . . . , pd, qd ∈ Q and words v1, u2, v2, . . . , ud, vd ∈ Σ∗
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such that ps 6= qs, ps
vs−→ ps, ps

vs−→ qs, and qs
vs−→ qs for all s = 1, . . . , d and

qs−1
us−→ ps for all s = 2, . . . , d. Letting As = µ(vs) ∈ S∗ for s = 1, . . . , d and

Bs = µ(us) ∈ S∗ for s = 2, . . . , d (by the one-to-one correspondence between
letters in Σ and matrices in S), this is equivalent to the existence of d pairs
of indices (p1, q1), . . . , (pd, qd) and matrix products A1, B2, A2, . . . , Bd, Ad ∈ S∗
such that ps 6= qs and (As)psps

, (As)psqs
, (As)qsqs

> 1 for all s = 1, . . . , d and
(Bs)qs−1ps

> 1 for all s = 2, . . . , d. Note that all pairs of indices (states) must
be different because otherwise A would comply with EDA, contradicting our
assumption. Hence, all conditions concerning the growth rate in Theorem 14 are
satisfied and Theorem 16 yields dcR(k) = O(kd+1). ut

6 Automation and Experimental Results

6.1 Automation

In this section we describe certificates for polynomial boundedness of matrix
interpretations. These certificates will be described by finite-domain constraint
systems and are solved by machine. The constraint domain consists of relations
on the state set of an automaton. In our implementations, the constraint system
is solved via translation to a constraint system in propositional logic. This is mo-
tivated by the intended application in conjunction with a constraint system for
the entries in the matrices that describes its compatibility with a given TRS [4].
So if there is a solution, it fulfills both properties (compatibility and polynomial
growth).

First we focus on how to ensure ρ(A) 6 1 for a single n-dimensional matrix
with non-negative real entries, which is needed to implement Theorem 5. We
base our encoding of the minimal polynomial mA on the factorization approach
(C) from [15] but instead of demanding certain properties of the characteristic
polynomial we encode a monic polynomial p that annihilates A such that |λ| 6 1
for every root λ of p. One candidate for p is the characteristic polynomial of A,
so the degree of p can be chosen n. To cancel some factors we introduce variables
C,Cj ∈ {0, 1} such that

p(λ) = (Cλ− Cr + 1− C)b ·
∏
j

(Cjλ2 + Cjpjλ+ Cjqj + 1− Cj)

Here r, pj , qj ∈ R and b = 0 if n is even and b = 1 otherwise. Note that if C
is zero then this factor simplifies to one and hence does not affect the product,
while if C is one, the factor contributes to p. The same property holds for the Cj .
We add a constraint p(A) = 0 to the encoding which ensures that p annihilates
A. By the shape of the factorization, p is automatically monic. The condition
|λ| 6 1 is encoded based on Cr, Cjpj , Cjqj as in [15] if Cj = 1, while Cj = 0 does
not require additional constraints. Finding the minimal polynomial mA is then
an optimization problem, i.e., it amounts to minimize the maximum multiplicity
of roots with absolute value exactly one.



16

Next we sketch how to count the number of roots equal to one. We abbreviate
(Cjpj)2 − 4Cjqj by Dj . Obviously Cr = 1 corresponds to an occurrence of root
one and Cr = −1 to an occurrence of root minus one. For the other factors,
inspecting the quadratic formula gives root one if Cjpj + Cjqj = −1. Then
Dj = 0 corresponds to a double occurrence and Dj > 0 to a single occurrence.
The reasoning for root minus one is similar and based on Cjpj = Cjqj + 1. To
keep the encoding simple, we over-approximate the multiplicity of a complex
root with absolute value one (i.e., we possibly identify different complex roots
for counting). This counter is incremented by one if Dj < 0 and Cjqj = 1.

The following example shows that computing the minimal polynomial af-
ter establishing a compatible matrix interpretation may not result in optimal
bounds.

Example 33. Consider the TRS consisting of the single rule f(x)→ x and assume
a compatible matrix interpretation of dimension n having maximum matrix A
with Aij = 0 if i > j and Aij = 1 otherwise. Then χA(x) = mA(x) and
hence Theorem 5 establishes a polynomial bound of degree n. However, if the
maximum matrix equals In then Theorem 5 establishes a linear upper bound on
the derivational complexity.

Next we aim to describe polynomial growth of arbitrary matrix products with
entries from N. Section 4 gives polynomial-time algorithms for checking polyno-
mial boundedness and computing the degree of growth for weighted automata.
We will express these algorithms as constraint systems. By Cook’s theorem, we
know that any P (even NP) computation can be simulated by a polynomially-
sized SAT formula. The size of the formula is the product of space and time of
the computation. Thus a straightforward translation of the decision procedure
for polynomial boundedness (¬EDA) results in a formula size of O(n6), and for
polynomial boundedness of a fixed degree (¬IDAd+1), in a formula size of O(n9),
where n is the dimension of the matrices.

Note that Cook’s translation produces a formula where the number of vari-
ables is of the same order as the number of clauses. We will strive to reduce
theses numbers, and in particular, the number of variables. E.g., we implement
the criterion ¬IDAd+1 by O(n8) clauses but only O(n5) variables. The fewer vari-
ables, the less choice points there are for the SAT solver, and for a fixed set of
variables, more constraints allow for more unit propagations, hopefully speeding
up the solver even more.

The formula size is reduced by replacing parts of the original algorithms by
approximations, but using them in such a way as to still ensure correctness and
completeness. E.g., for reachability with respect to a set of matrices S, we specify
a relation R ⊆ Q2 such that R is reflexive and transitive and, for all p, q ∈ Q,
G(S)p,q > 0 implies (p, q) ∈ R,

While the presence of patterns (EDA, IDAd) is easily described by a constraint
system in existential logic, the challenge is to specify the absence of those pat-
terns.
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¬EDA: By the algorithm given right after Lemma 12, we use the following
constraints, for a given set S of matrices:

– Condition 1 follows from the constraint G(S)i,j > 1 ⇒ (j, i) /∈ R, for all i
and j, where R is the over-approximation of reachability discussed above.

– For condition 2, denote by G2 the adjacency relation of G2(S). A cycle
from (i, i) through some (p, q) for p 6= q means that (p, q) is strongly G2-
connected to (i, i). Therefore, we set D = {(q, q) | q ∈ Q} and specify an
over-approximation D1 of the index pairs reachable from the main diagonal
by D ⊆ D1 and G2(D1) ⊆ D1, and an over-approximation D2 of the index
pairs that can reach the main diagonal by D ⊆ D2 and G−2 (D2) ⊆ D2, and
then require D1 ∩D2 ⊆ D.

The resulting constraint system is satisfiable if and only if A does not comply
with EDA. So we have a complete characterization of polynomial boundedness,
equivalently, of ρ(S) 6 1 for a set of non-negative integer matrices (cf. Lemma 13
and Theorem 22).

The constraint system has O(n2) variables and O(n4) constraints, which is
small in comparison to the size of the constraint system that describes compat-
ibility of the interpretation with the rewrite system [4].

¬IDAd+1: We use the relation I ⊆ Q2 given by

I = {(p, q) | p 6= q and p
x−→ p, p x−→ q, q x−→ q for some x ∈ Σ+}

and let J = I ◦ R, where R is an over-approximation of reachability as defined
previously. Then IDAd implies that there is a J-chain of length d, and conversely,
if there is no J-chain of length d + 1 then ¬IDAd+1 holds. To specify I, we use
the graph G3(S), and denote its adjacency relation by G3. For each (p, q) with
p 6= q we specify a set T ⊆ Q3 by (p, p, q) ∈ T and G3(T ) ⊆ T , Then (p, q, q) ∈ T
implies I(p, q). We bound the length of J-chains by encoding a height function
h : Q → {0, 1, . . . , d} and a monotonicity property J(p, q) ⇒ h(p) > h(q). Since
only comparison but no arithmetic is needed here, it is convenient to represent
numbers in unary notation.

The resulting constraint system is satisfiable if and only if ¬IDAd+1, so we
obtain a characterization of growth O(nd). The system has O(n5) variables and
O(n8) constraints. This is comparable in size to the compatibility constraints.

6.2 Experimental Results

The criteria proposed in this paper have been implemented in the complexity
tools CaT [21] and matchbox [19]. All tests have been performed on a server
equipped with 64 GB of main memory and eight dual-core AMD Opteron R© 885
processors running at a clock rate of 2.6 GHz with a time limit of 60 seconds per
system. For experiments5 the 295 non-duplicating TRSs in TPDB 8.0 for which
5 For full details see http://colo6-c703.uibk.ac.at/hzankl/11cai.

http://colo6-c703.uibk.ac.at/hzankl/11cai


18

Table 1. Polynomial bounds for 295 systems

O(k) O(k2) O(k3) O(kn)

triangular 92 194 208 210
Theorem 4 66 180 194 196
Theorem 5 72 187 193 194P

92 201 215 216

Theorem 15 (¬EDA) 73 173 188 213
Theorem 16 (¬EDA, ¬IDAd+1) 107 214 219 224P

110 225 231 236P
112 227 235 239

CaT could find a compatible matrix interpretation (not necessarily polynomially
bounded) have been considered.

We searched for matrix interpretations of dimension d ∈ {1, . . . , 5} by encod-
ing the constraints as an SMT problem (quantifier-free non-linear arithmetic),
which is solved by “bit-blasting”. That means the problem is transformed into
a finite domain problem by prescribing discrete and finite domains for numeri-
cal unknowns. Then we encode these discrete domains by propositional values,
to obtain a propositional satisfiability problem, for which efficient solvers are
available. For finding matrix interpretations, this is a successful method, even
with surprisingly small domains that can be represented by at most 5 bits. In the
experiments we only considered matrix interpretations over the natural numbers.

Table 1 indicates the number of systems where polynomial upper bounds on
the derivational complexity could be established. The rows in the table corre-
spond to different approaches to polynomially bound the derivational complexity
of rewrite systems and the columns give the degree of these polynomials. Trian-
gular matrix interpretations [14, 15, 19] serve as a reference (here the degree of
the polynomial is determined by the number of ones in the main diagonal).

The first three rows (and the accumulated results in row four) operate on
the component-wise maximum matrix. While in theory Theorem 4 allows to
establish strictly more polynomial bounds than triangular matrices, in practice
the constraints are harder to solve, resulting in a worse overall score. A similar
argument holds when comparing Theorems 4 and 5, i.e., explaining the better
performance of the latter for low bounds but worse result for polynomial bounds.
The accumulative score of the first three rows justifies each of the approaches.

The criteria in the next two rows are not restricted to the growth of the
maximum matrix. In the former row no explicit bounds on the degree are added
to the constraints (so the dimension of the matrices dominates the degree of
polynomial growth) while in the latter row upper bounds are explicitly added
to the search. Somehow surprisingly, the accumulated score of these two rows is
noticeable larger than the score for each row on its own.

The final row in Table 1 shows that the methods from the first block do not
significantly increase the power of the second block (in our experiments). How-
ever, the criteria from the first block are also suitable for matrix interpretations
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over R, while the methods involved in the second block become undecidable over
these domains.

7 Concluding Remarks

In this paper we employed joint spectral radius theory to unify as well as clarify
the different approaches to obtain upper bounds on the derivational complexity
of rewrite systems from compatible matrix interpretations. Our results are not
limited to the study of derivational complexity, but can also be employed in the
context of runtime complexity of rewrite systems [7].

It remains to be seen whether joint spectral radius theory will advance imple-
mentations (for matrix interpretations over Q and R). For matrices with rational
or real entries the joint spectral radius is not computable in general. In the future
we will investigate whether good approximations can be obtained to improve the
complexity bounds obtained from matrix interpretations over Q and R [5, 22].

We conclude the paper by observing that matrix interpretations are incom-
plete when it comes to establishing polynomial derivational complexity. This
shows that new ideas are necessary to obtain a complete characterization of
TRSs with polynomial derivational complexity (cf. RTA open problem #107).6

Lemma 34. There exists a TRS with linear derivational complexity that is com-
patible with a matrix interpretation but not with a polynomially bounded one.

Proof. To prove this result we extend the TRS R from Example 7 with the rule
b(x)→ g(x). The resulting TRS S has linear derivational complexity since it is
match-bounded by 3 [6]. To obtain a matrix interpretation compatible with S,
we change the interpretation of b in the proof of Lemma 8 to

bM(x) =

1 0 0
0 1 1
0 1 1

x +

4
4
3


That there cannot exist a polynomially bounded matrix interpretation for S
follows from Corollary 31 and the proof of Lemma 8 since B > max(In, G) and
hence entries in Bk grow exponentially. ut

Since the TRS in the proof of the above lemma is a string rewrite system
and match-bounded, this lemma also answers a question by Waldmann, cf. [19,
Section 10]: Do all match-bounded string rewrite systems have a polynomially
(even linearly) bounded matrix interpretation? Here linearly bounded refers to
Definition 17.

6 http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/107.html

http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/107.html
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