
Generalized and Formalized Uncurrying?

Christian Sternagel and René Thiemann

Institute of Computer Science, University of Innsbruck, Austria
{christian.sternagel|rene.thiemann}@uibk.ac.at

Abstract Uncurrying is a termination technique for applicative term
rewrite systems. During our formalization of uncurrying in the theorem
prover Isabelle, we detected a gap in the original pen-and-paper proof
which cannot directly be filled without further preconditions. Our final
formalization does not demand additional preconditions, and generalizes
the existing techniques since it allows to uncurry non-applicative term
rewrite systems. Furthermore, we provide new results on uncurrying for
relative termination and for dependency pairs.

Keywords: uncurrying, termination, formalization, interactive theorem
proving, dependency pairs, term rewriting

1 Introduction

In recent years, the way to prove termination of term rewrite systems (TRSs)
has changed. Current termination tools no longer search for a single reduction
order containing the rewrite relation. Instead, they combine various termination
techniques in a modular way, resulting in large and tree-like termination proofs,
where at each node a specific technique is applied.

On the one hand, this combination makes termination tools more powerful.
On the other hand, it makes them more complex and error-prone. It is regularly
demonstrated that we cannot blindly trust the output of termination provers.
Every now and then, some prover delivers a faulty proof. Often, this is only
detected if there is another prover giving a contradictory answer for the same
input, as a manual inspection of proofs is infeasible due to their size.

The problem is solved by combining two systems. For a given TRS, we first
use a termination tool to automatically detect a termination proof (which may
contain errors). Then, we use a highly trusted certifier which checks whether the
detected proof is indeed correct. In total, the combination yields a powerful and
trustable workflow to prove termination.

To obtain a highly trustable certifier, a common approach is to first formalize
the desired termination techniques once and for all (thereby ensuring their sound-
ness) and then, for a given proof, check that the used techniques are applied cor-
rectly [2,3,14]. We formalized the dependency pair framework (DP framework)
[5] and many termination techniques in our Isabelle/HOL [11] library IsaFoR [14]

? This research is supported by FWF (Austrian Science Fund) project P22767-N13.



(in the remainder we just write Isabelle, instead of Isabelle/HOL). From IsaFoR,
we code-extract CeTA, an automatic certifier for termination proofs.

In this paper, we present one of the latest additions to IsaFoR: the formal-
ization of uncurrying, as described in [8]. However, we did not only formalize
uncurrying, but also generalized it. Furthermore, we found a gap in one of the
original proofs, which we could fortunately close.

Note that all the proofs that are presented (or omitted) in the following, have
been formalized as part of IsaFoR. Hence, in this paper, we merely give sketches
of our “real” proofs. Our goal is to show the general proof outlines and help
to understand the full proofs. The library IsaFoR with all formalized proofs, the
executable certifier CeTA, and all details about our experiments are available at
CeTA’s website: http://cl-informatik.uibk.ac.at/software/ceta.

The paper is structured as follows. In Sect. 2, we shortly recapitulate some
required notions of term rewriting. Afterwards, in Sect. 3, we describe applicative
rewriting, give an overview of approaches using uncurrying for proving termina-
tion, and present our generalization of uncurrying for TRSs. Then, in Sect. 4,
we show how to lift uncurrying to the DP framework. We present heuristics and
our experiments in Sect. 5, before we conclude in Sect. 6.

2 Preliminaries

We assume familiarity with term rewriting [1]. Still, we recall the most important
notions that are used later on. A (first-order) term t over a set of variables V
and a set of (function) symbols F is either a variable x ∈ V or a function
symbol f ∈ F applied to argument terms f(t1, . . . , tn) where the arity of f is
ar(f) = n. A context C is a term containing exactly one hole �. Replacing � in
a context C by a term t is denoted by C[t].

A rewrite rule is a pair of terms `→ r and a TRS R is a set of rewrite rules.
The set of defined symbols (of R) is DR = {f | f(. . .) → r ∈ R}. The rewrite
relation (induced by R)→R is the closure under substitutions and contexts of R,
i.e., s→R t iff there is a context C, a rewrite rule `→ r ∈ R, and a substitution
σ such that s = C[`σ] and t = C[rσ]. A term t is root-stable w.r.t. R iff there is
no derivation t→∗R `σ for some `→ r ∈ R and substitution σ.

We say that a term t is terminating w.r.t. R (SNR(t)) if it cannot start an
infinite derivation t = t1 →R t2 →R t3 →R · · · . A TRS is terminating (SN(R))
iff all terms are terminating w.r.t. R. A TRS R is terminating relative to a
TRS S iff there is no infinite R∪ S-derivation with infinitely many R-steps.

3 Applicative Rewriting and Uncurrying

An applicative term rewrite system (ATRS) is a TRS over an applicative signa-
ture F = {◦}∪C, where ◦ is a unique binary symbol (the application symbol) and
all symbols in C are constants. ATRSs can be used to encode many higher-order
functions without explicit abstraction as first-order TRSs. In the remainder we

http://cl-informatik.uibk.ac.at/software/ceta


use ◦ as an infix-symbol which associates to the left (s ◦ t ◦ u = (s ◦ t) ◦ u). In
examples we omit ◦ whenever this increases readability.

Example 1. The following ATRS R (a variant of [8, Example 7], replacing addi-
tion by subtraction) contains the map function (which applies a function to all
arguments of a list) and subtraction on Peano numbers in applicative form.

1: sub 0 → K 0
2: sub x 0 → x
3: sub x x → 0
4: sub (s x) (s y) → sub x y

5: K x y → x
6: map z nil → nil
7: map z (cons x xs) → cons (z x) (map z xs)

Proving termination of ATRSs is challenging without dedicated termination
techniques (e.g., for reduction orders, we cannot interpret sub ◦ x ◦ y as x, since
sub is a constant and not binary).

Until now, there have at least been three approaches to tackle this problem.
All of them try to uncurry a TRS such that, for example, Rule 4 from above
becomes sub(s(x), s(y))→ sub(x, y).

To distinguish the three approaches, we need the following definitions:

Definition 2. A term t is head variable free iff t does not contain a subterm
of the form x ◦ s where x is a variable. The applicative arity of a constant f in
an ATRS R (aaR(f)) is the maximal number n, such that f ◦ t1 ◦ · · · ◦ tn occurs
as a subterm in R. Uncurrying an application f ◦ t1 ◦ · · · ◦ tn with aaR(f) = n
yields the term f(t1, . . . , tn). A term t is proper w.r.t. aaR iff t is a variable or
t = f ◦ t1 ◦ · · · ◦ tn where aaR(f) = n and each ti is proper.

The oldest of the three approaches is from [9]. It requires that all terms in
a TRS are proper w.r.t. aaR, and shows that then termination of R is equiv-
alent to termination of the TRS obtained by uncurrying all terms of R. Since
proper terms do not contain any partial applications, the application symbol is
completely eliminated by uncurrying. However, requiring proper terms is rather
restrictive: Essentially, it is demanded that the TRS under consideration is a
standard first-order TRS which is just written in applicative form. For example,
the approach is not applicable to Example 1, since there is a head variable in
the right-hand side of Rule 7 (z ◦ x) and sub as well as K are applied to a single
argument in Rule 1, even though aaR(sub) = 2 and aaR(K) = 2.

The second approach was given in [6,13]. Here, the same preconditions as in
[9] apply, but the results are extended to innermost rewriting and to the DP
framework. The latter has the advantage, that only the current subproblem has
to satisfy the preconditions. For example, when treating the dependency pair

map ◦ z ◦] (cons ◦ x ◦ xs)→ map ◦ z ◦] xs (1)

for the recursive call of map, we can perform uncurrying (since there are no
usable rules and (1) satisfies the preconditions). Moreover, in [13] uncurrying is
combined with the reduction pair processor to further relax the preconditions.



The third approach is given in [8]. Here, the preconditions for uncurrying
have been reduced drastically as only the left-hand sides of the TRS R must
be head variable free. In return, we have to η-saturate R and add uncurrying
rules. Moreover, for each constant f with aaR(f) = n we obtain n new function
symbols f1, . . . , fn of arities 1, 2, . . . , n which handle partial applications.

Example 3. When η-saturating the TRS R of Example 1, we have to add the
rule sub ◦ 0 ◦ y → K ◦ 0 ◦ y. The uncurried TRS consists of the following rules:

8: sub1(0) → K1(0)
9: sub2(0, y) → K2(0, y)

10: sub2(x, 0) → x
11: sub2(x, x) → 0

12: sub2(s1(x), s1(y)) → sub2(x, y)
13: K2(x, y) → x
14: map2(z, nil) → nil
15: map2(z, cons2(x, xs)) → cons2(z ◦ x,map2(z, xs))

Moreover, we have to add the following uncurrying rules:

16: s ◦ x → s1(x)
17: K ◦ x → K1(x)
18: K1(x) ◦ y → K2(x, y)
19: sub ◦ x → sub1(x)
20: sub1(x) ◦ y → sub2(x, y)

21: cons ◦ x → cons1(x)
22: cons1(x) ◦ y → cons2(x, y)
23: map ◦ x → map1(x)
24: map1(x) ◦ y → map2(x, y)

Also [8] gives an extension to the DP framework.
To summarize, the traditional technique of uncurrying of [9] is completely

subsumed by [6,13], but [6,13] and [8] are incomparable. The advantage of [6,13]
is that the generated TRSs and DP problems are smaller, and that uncurrying
is also available in a combination with the reduction pair processor, whereas [8]
supports head variables (see [13, Chap. 6] for a more detailed comparison).

Since [8] is used in more termination tools (it is used in at least Jambox [4]
and TTT2 [10] whereas we only know of AProVE [7] that implements all uncurrying
techniques of [6,13]), we incorporated the techniques of [8] in our certifier CeTA.

During our formalization we have

– detected a gap in a proof of [8] which could not directly be closed without
adding further preconditions to one of the main results,

– generalized the technique of uncurrying which now entails the result of [8]
even without adding any additional precondition, and

– generalized the technique of freezing from [8].

The structure in [8] is as follows. First, uncurrying is developed for TRSs over
applicative signatures {◦}∪C. Then, it is extended to DP problems, introducing
a second application symbol ◦] that may only occur at root-positions of P and
is not uncurried at all. Finally, freezing is applied to uncurry applications of ◦].

Following this structure, we first fully formalized uncurrying on TRSs. How-
ever, in the extension to DP problems there is a missing step which is illustrated
in more detail in Example 14 on page 9. The main problem is that signature
restrictions on DP problems are in general unsound.

To fill the gap, one option is to use the results of [12] about signature restric-
tions, which can however only be applied if R is left-linear. This clearly weakens
the applicability of uncurrying, e.g., Example 1 is not left-linear.



Alternatively, one can try to perform uncurrying without restricting to ap-
plicative signatures. This is what we did. All uncurrying techniques that we
formalized work on terms and TRSs over arbitrary signatures.

The major complication is the increase of complexity in the cases that have
to be considered. For example, using an applicative signature, we can assume
that every term is of the form x◦ t1 ◦ · · · ◦ tn or f ◦ t1 ◦ · · · ◦ tn where n ∈ N, x is a
variable, and f is a constant. Generalizing this to arbitrary signatures we have
to consider the two cases x ◦ t1 ◦ · · · ◦ tn and f(s1, . . . , sm) ◦ t1 ◦ · · · ◦ tn instead,
where f is an m-ary symbol. Hence, when considering a possible rewrite step,
we also have to consider the new case that the step is performed in some si.

We not only generalized uncurrying to work for arbitrary signatures and
relative rewriting, but also to a free choice of the applicative arity aa(f). This
is in contrast to [8], where the applicative arity is fixed by Definition 2. We will
elaborate on this difference after presenting our main theorem.

Definition 4 (Symbol maps and applicative arity). Let F be a signature.
A symbol map is a mapping π : F → [F ] from symbols to non-empty lists of
symbols. It is injective if for all f and g, π(f) contains no duplicates, π(f) does
not contain ◦, and whenever f 6= g then π(f) and π(g) do not share symbols. If
π(f) = [f0, . . . , fn], then the applicative arity of f w.r.t. π is aaπ(f) = n. The
applicative arity of a term is defined by aaπ(t) = aaπ(f) .− n, where x .− y =
max(x− y, 0), for t = f(s1, . . . , sm) ◦ t1 ◦ · · · ◦ tn and is undefined otherwise.

Intuitively, if π(f) = [f0, . . . , fn] then every application of f on i 6 n argu-
ments t1, . . . , ti will be fully uncurried to fi(t1, . . . , ti). If more than n arguments
are applied, then we obtain fn(t1, . . . , tn) ◦ tn+1 ◦ . . . ◦ ti. A symbol map con-
taining an entry for f , uniquely determines the applicative arity n as well as the
names of the (partial) applications f0, . . . , fn of f .

In the following we assume a fixed symbol map π and just write aa(f) and
aa(t) instead of aaπ(f) and aaπ(t), respectively. Additionally, we assume that
π(f) = [f0, . . . , faa(f)] where in examples we write f instead of f0. Now we can
define the uncurrying TRS w.r.t. π.

Definition 5. The uncurrying TRS U contains the rule

fk(x1, . . . , xm, y1, . . . , yk) ◦ yk+1 → fk+1(x1, . . . , xm, y1, . . . , yk+1)

for every f ∈ F with ar(f) = m and aa(f) = n, and every k < n. The variables
x1, . . . , xm, y1, . . . , yk+1 are pairwise distinct.

In [8], terms are uncurried by computing the unique normal form w.r.t. U .
For our formalization we instead used the upcoming uncurrying function for the
following two reasons: First, we do not have any results about confluence of TRSs.
Hence, to even define the normal form w.r.t. U would require to formalize several
additional lemmas which show that every term has exactly one normal form.
This would be quite some effort which we prefer to avoid. The second reason
is efficiency. When certifying the application of uncurrying in large termination



proofs, we have to compute the uncurried version of a term. It is just more
efficient to use a function which performs uncurrying directly, than to compute
a normal form w.r.t. a TRS where possible redexes have to be searched, etc.

Definition 6. The uncurrying function x·y on terms is defined as

– xx ◦ t1 ◦ · · · ◦ tny = x ◦ xt1y ◦ · · · ◦ xtny
– xf(s1, . . . , sm) ◦ t1 ◦ · · · ◦ tny = fk(xs1y, . . . , xsmy, xt1y, . . . , xtky) ◦ xtk+1y ◦
· · · ◦ xtny where k = min(n, aa(f))

It is homomorphically extended to operate on rules, TRSs, and substitutions.

We establish the link between U and x·y in the following lemma which gen-
eralizes the corresponding results in [8].

Lemma 7.

– if k < aa(f) and ar(f) = m then fk(s1, . . . , sm+k)◦t→U fk+1(s1, . . . , sm+k, t)
– if k + n 6 aa(f) and ar(f) = m then fk(s1, . . . , sm+k) ◦ t1 ◦ . . . ◦ tn →∗U
fk+n(s1, . . . , sm+k, t1, . . . , tn)

– xsy ◦ xt1y ◦ · · · ◦ xtny→∗U xs ◦ t1 ◦ · · · ◦ tny
– if aa(s) = 0 or aa(s) is undefined then xs ◦ t1 ◦ · · · ◦ tny = xsy◦xt1y◦· · ·◦xtny
– xsy · xσy→∗U xs · σy
– if t is head variable free then xs · σy = xsy · xσy

The last two results show how uncurrying can be exchanged with applying
substitutions. As we will often need the equality x` · σy = x`y · xσy for left-hand
sides `, it is naturally to demand that left-hand sides are head variable free.

Definition 8. A TRS is left head variable free if all left-hand sides are head
variable free.

Termination of xRy∪U does not suffice to conclude termination of R, cf. [8,
Example 13]. The reason is that first we have to η-saturate R.

Definition 9. A TRS R is η-closed iff for every rule `→ r with aa(`) > 0 there
is a rule ` ◦ x → r ◦ x ∈ R where x is fresh w.r.t. ` → r. The η-saturation Rη
of R is obtained by adding new rules ` ◦ x→ r ◦ x until the result is η-closed.

The upcoming theorem is the key to use uncurrying for termination proofs.
It allows to simulate one R-step by many steps in the uncurried system.

Theorem 10. Let R be η-closed and left head variable free. Let there be no
left-hand side of R which is a variable. If s→R t then xsy→+

xRy∪U xty.

Proof. Let s = C[`σ]→R C[rσ] = t where `→ r ∈ R. We show xsy→+
xRy∪U xty

by induction on the size of C.



– If C = f(s1, . . . , D, . . . , sm)◦t1◦· · ·◦tn for some f 6= ◦ then by the induction
hypothesis we know that xD[`σ]y→+

xRy∪U xD[rσ]y. Moreover,

xsy = xf(s1, . . . , D[`σ], . . . , sm) ◦ t1 ◦ · · · ◦ tny
= fk(xs1y, . . . , xD[`σ]y, . . . , xsmy, xt1y, . . . , xtky) ◦ xtk+1y ◦ · · · ◦ xtny
→+

xRy∪U fk(. . . , xD[rσ]y, . . . , xsmy, xt1y, . . . , xtky) ◦ xtk+1y ◦ · · · ◦ xtny
= xf(s1, . . . , D[rσ], . . . , sm) ◦ t1 ◦ · · · ◦ tny
= xty

where k = min(n, aa(f)).
– If C = t0 ◦D ◦ t1 ◦ · · · ◦ tn then by the induction hypothesis we know that
xD[`σ]y→+

xRy∪U xD[rσ]y. If aa(t0) = 0 or aa(t0) is undefined then

xsy = xt0 ◦D[`σ] ◦ t1 ◦ · · · ◦ tny
= xt0y ◦ xD[`σ]y ◦ xt1y ◦ · · · ◦ xtny
→+

xRy∪U xt0y ◦ xD[rσ]y ◦ xt1y ◦ · · · ◦ xtny
= xt0 ◦D[rσ] ◦ t1 ◦ · · · ◦ tny
= xty

Otherwise, aa(t0) > 0 and hence, t0 = f(s1, . . . , sm)◦sm+1 ◦· · ·◦sm+k where
k < aa(f). It follows that

xsy = xf(s1, . . . , sm) ◦ sm+1 ◦ · · · ◦ sm+k ◦D[`σ] ◦ t1 ◦ · · · ◦ tny
= fk+1+n′(. . . , xsm+ky, xD[`σ]y, xt1y, . . . , xtn′y) ◦ xtn′+1y ◦ · · · ◦ xtny
→+

xRy∪U fk+1+n′(. . . , xsm+ky, xD[rσ]y, xt1y, . . . , xtn′y) ◦ xtn′+1y ◦ · · ·
= xf(s1, . . . , sm) ◦ sm+1 ◦ · · · ◦ sm+k ◦D[rσ] ◦ t1 ◦ · · · ◦ tny
= xty

where n′ = min(aa(f)− k − 1, n).
– If C = � ◦ t1 ◦ · · · ◦ tn and n = 0 ∨ aa(`) = 0 then

xsy = x` · σ ◦ t1 ◦ · · · ◦ tny
= x` · σy ◦ xt1y ◦ · · · ◦ xtny
= x`y · xσy ◦ xt1y ◦ · · · ◦ xtny
→xRy xry · xσy ◦ xt1y ◦ · · · ◦ xtny
→∗U xr · σy ◦ xt1y ◦ · · · ◦ xtny
→∗U xr · σ ◦ t1 ◦ · · · ◦ tny
= xty

since ` is head variable free and if n 6= 0 then aa(`σ) = aa(`) = 0.
– If C = �◦t1◦· · ·◦tn with n > 0 and aa(`) > 0 then `′ → r′ = `◦x→ r◦x ∈ R

since R is η-closed. Moreover, by changing σ to δ = σ ] {x/t1} we achieve
s = ` · σ ◦ t1 ◦ · · · ◦ tn = `′δ ◦ t2 ◦ · · · ◦ tn = D[`′δ] and r = r · σ ◦ t1 ◦ · · · ◦ tn =
r′δ ◦ t2 ◦ · · · ◦ tn = D[r′δ] for the context D = � ◦ t2 ◦ · · · tn which is strictly
smaller than C. Hence, the result follows by the induction hypothesis.



– If C = �◦t1◦· · ·◦tn with n > 0 and aa(`) is undefined then ` = x◦`1◦· · ·◦`k
with k ≥ 0. But if k > 0 then ` is not head variable free and if k = 0 then
R contains a variable as left-hand side. In both cases we get a contradiction
to the preconditions in the theorem. ut

Note that the condition that the left-hand sides of R are not variables is new
in comparison to [8]. Nevertheless, in the following corollary we can drop this
condition, since otherwise xRy is not terminating anyway.

Corollary 11. If Rη is left head variable free then termination of xRηy ∪ U
implies termination of R.

When using uncurrying for relative termination of R/S, it turns out that the
new condition on the left-hand sides can only be ignored for R – since otherwise
relative termination of xRy/xSy ∪ U does not hold – but not for S.

Corollary 12. If Rη ∪ Sη is left head variable free and the left-hand sides of S
are not variables, then relative termination of xRηy/xSηy ∪ U implies relative
termination of R/S.

Example 13. Let R = {f ◦ f ◦ x→ f ◦ x} and S = {x→ f ◦ x}. Then R/S is not
relative terminating since f ◦ f ◦ x →R f ◦ x →S f ◦ f ◦ x →R . . . is an infinite
R∪ S-derivation with infinitely many R-steps.

For π(f) = [f, f1, f2] we have Rη = R, Sη = S, xRηy = {f2(f, x) → f1(x)},
xSηy = {x → f1(x)}, and U = {f ◦ x → f1(x), f1(x) ◦ y → f2(x, y)}. It is easy
to see that xRηy/xSηy ∪ U is relative terminating by counting the number of
f-symbols. Since both Rη and Sη are head variable free, we have shown that
Corollary 12 does not hold if one would drop the new variable condition on S.

As already mentioned, Corollary 11 generalizes the similar result of [8, The-
orem 16] in two ways: first, there is no restriction to applicative signatures, and
second, one can freely choose the applicative arities. Since in principle the choice
of π does not matter (uncurrying preserves termination for every choice of π),
we can only heuristically determine whether the additional freedom increases
termination proving power and therefore refer to our experiments in Sect. 5.

4 Uncurrying in the Dependency Pair Framework

The DP framework [5] facilitates modular termination proofs. Instead of sin-
gle TRSs, we consider DP problems (P,R), consisting of two TRSs P and R
where elements of P are often called pairs to distinguish them from the rules
of R. The initial DP problem for a TRS R is (DP(R),R), where DP(R) =
{f ](s1, . . . , sn) → g](t1, . . . , tm) | f(s1, . . . , sn) → C[g(t1, . . . , tm)] ∈ R, g ∈
DR} is the set of dependency pairs of R, incorporating a fresh tuple symbol f ]

for each defined symbol f . The initial DP problem is also a standard DP prob-
lem, i.e., root symbols of pairs do not occur elsewhere in P orR.1 A (P,R)-chain
1 Several termination provers only work on standard DP problems.



is a possibly infinite derivation of the form:

s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R s3σ3 →P · · · (?)

where si → ti ∈ P for all i > 0. If additionally every tiσi is terminating w.r.t. R,
then the chain is minimal. A DP problem (P,R) is called finite [5], if there is
no minimal infinite (P,R)-chain. Proving finiteness of a DP problem is done by
simplifying (P,R) using so called processors recursively. A processor transforms
a DP problem into a new DP problem. The aim is to reach a DP problem
with empty P-component (such DP problems are trivially finite). To conclude
finiteness of the initial DP problem, the applied processors need to be sound.
A processor Proc is sound whenever for all DP problems (P,R) we have that
finiteness of Proc(P,R) implies finiteness of (P,R).

In the following we explain how uncurrying is used as processor in the DP
framework. In Sect. 3 it was already mentioned that in [8] the notion of ap-
plicative TRS was lifted to applicative DP problem by allowing a new binary
application symbol ◦] (where we sometimes just write ] in examples). The symbol
◦] naturally occurs as tuple symbol of ◦.

To prove soundness of the uncurrying processor, in [8] it is assumed that there
is a minimal (P,R)-chain s1σ1 →P t1σ1 →∗R s2σ2 →P · · · , which is converted
into a minimal (xPy, xRηy∪U)-chain by reusing the results for TRSs. However,
there is a gap in this reasoning. Right in the beginning it is silently assumed that
all terms siσi and tiσi have tuple symbols as roots and that their arguments are
applicative terms, i.e., terms over an applicative signature {◦}∪C. Without this
assumption it is not possible to apply the results of uncurrying for TRSs, since
those are only available for applicative terms in [8].

The following variant of [12, Example 14] shows that in general restricting
substitutions in chains to an applicative signature {◦} ∪ C is unsound.

Example 14. Consider the applicative and standard DP problem (P,R) where
P = {g ] (f x y z z u v)→ g ] (f x y x y x (h y u))} and R contains the rules:

a → b
a → c

h x x → h x x

f a x2 x3 x4 x5 → f a x2 x3 x4 x5

f x1 a x3 x4 x5 → f x1 a x3 x4 x5

f (y z) x2 x3 x4 x5 → f (y z) x2 x3 x4 x5

f x1 (y z) x3 x4 x5 → f x1 (y z) x3 x4 x5

There is a minimal (P,R)-chain taking si = g ] (f x y z z u v), ti = g ]

(f x y x y x (h y u)), and σi = {x/k(a), y/k(b), z/k(b), u/k(c), v/h (k(b)) (k(c))}
where k is a unary symbol. However, there is no minimal (P,R)-chain using
substitutions over the signature {◦} ∪ C, regardless of the choice of constants C.

Since our generalizations in Sect. 3 do not have any restrictions on the signa-
ture, we were able to correct the corresponding proofs in [8] such that the major
theorems are still valid.2 It follows the generalization of [8, Theorem 33].

2 After the authors of [8] where informed of the gap, they independently developed an
alternative fix, which is part of an extended, but not yet published version of [8].



Theorem 15. The uncurrying processor U ′1 is sound where U ′1(P,R) ={
(xPy, xRηy ∪ U) if P ∪Rη is left head variable free and π is injective,
(P,R) otherwise.

Proof. The proof mainly uses the results from the previous section. We assume
an infinite minimal (P,R)-chain s1σ1 →P t1σ1 →∗R s2σ2 →P t2σ2 →∗R · · · and
construct an infinite minimal (xPy, xRηy ∪ U)-chain as follows.

We achieve xsiσiy = xsiy · xσiy and xtiy · xσiy→∗U xtiσiy since P is left head
variable free. Moreover, using tiσi →∗R si+1σi+1 and Theorem 10 we conclude
xtiσiy→∗xRηy∪U xsi+1σi+1y. Here, the condition that Rη must not contain vari-
ables as left-hand sides is ensured by the minimality of the chain: if x→ r ∈ Rη
then SNR(tiσ) does not hold. Hence, we constructed a (xPy, xRηy∪U)-chain as

xsiσiy = xsiy · xσiy→xPy xtiy · xσiy→∗U xtiσiy→∗xRηy∪U xsi+1σi+1y

for all i. To ensure that the chain is minimal it is demanded that π is injective.
Otherwise, two different symbols can be mapped to the same new symbol which
clearly can introduce nontermination. The structure of the proof that minimality
is preserved is similar to the one in [8] and we just refer to IsaFoR for details.

The uncurrying processor of Theorem 15 generalizes [8, Theorem 33] in three
ways: the signature does not have to be applicative, we can freely choose the
applicative arity via π, and we can freely choose the application symbol. The
last generalization lets Theorem 15 almost subsume the technique of freezing [8,
Corollary 40] which is used to uncurry ◦].

Definition 16 (Freezing [8]). A simple freeze f is a subset of F .3 Freezing
is applied on non-variable terms as follows

f(f(t1, . . . , tn)) =

{
f(t1, . . . , tn) if n = 0 or f /∈ f

fg(s1, . . . , sm, t2, . . . , tm) if t1 = g(s1, . . . , sm) and f ∈ f

where each fg is a new symbol. It is homomorphically extended to rules and
TRSs. The freezing DP processor is defined as f(P,R) =

(f(P),R) if (P,R) is a standard DP problem where for all s→ f(t1, . . . , tn)
∈ P with f ∈ f, both t1 /∈ V and all instances of t1 are root-stable,

(P,R) otherwise.

In [8, Theorem 39], it is shown that freezing is sound.

Example 17. In the following we use numbers to refer to rules from previous ex-
amples. We consider the DP problem (P,R) where P = {sub (s x)](s y)→ sub x]

y} and R = {2–4}. Uncurrying ◦ with π(s) = [s, s1], π(sub) = [sub, sub1, sub2],
3 In [8] one can also specify an argument position for each symbol. This can be simu-

lated by permuting the arguments accordingly.



π(0) = [0], and π(]) = []] yields the DP problem (xPy, xRηy ∪ U) where xPy =
{sub1(s1(x)) ] s1(y)→ sub1(x) ] y} and xRηy∪U consists of {10–12, 16, 19, 20}.

Afterwards we uncurry the resulting DP problem using ◦] as application
symbol and π where π(sub1) = [sub1,−]] and π(f) = [f ] for all other symbols.
We obtain (P ′,R′) where P ′ = {s1(x) −] s1(x)) → x −] y} and R′ = xRηy ∪
U ∪ {sub1(x) ] y → −](x, y)}. Note that freezing returns nearly the same DP
problem. The only difference is that uncurrying produces the additional rule
sub1(x) ] y → x −] y which we do not obtain via freezing. However, since this
rule is not usable it also does not harm that much.

Moreover, uncurrying sometimes is applicable where freezing is not. If we
would have started with the DP problem (P,R′′) where R′′ = {1–5} then un-
currying would result in (xPy, xR′′ηy ∪ U ′) where xR′′ηy ∪ U ′ = {8–13, 16–20}.
On this DP problem freezing is not applicable (the instances of sub1(x) in the
right-hand side of the only pair in xPy are not root-stable due to Rule 8).
Nevertheless, one can uncurry ◦], resulting in (P ′, xR′′ηy ∪ U ′ ∪ Rnew) where
Rnew = {sub1(x) ] y → x −] y, 0 −] y → K1(0) ] y}. Note that the uncurrying of
◦] transformed a standard DP problem into a non-standard one, as −] occurs
as root of a term in P ′, but also within Rnew.

Whenever freezing with f = {◦]} is applicable, then also uncurrying of ◦]
is possible: the condition t1 /∈ V in Definition 16 implies that P ∪ Rη is left
head variable free. The only difference is that uncurrying produces more rules
than freezing, namely the uncurrying rules and the uncurried rules of those rules
which have to be added for the η-saturation. However, if freezing is applicable
then none of these additional rules are usable.4 Hence, all techniques which only
consider the usable rules (like the reduction pair processor) perform equally well,
no matter whether one has applied freezing or uncurrying. Still, one wants to get
rid of the additional rules, especially since they are also the reason why standard
DP problems are transformed into non-standard ones.

In Example 17 we have seen that sometimes uncurrying of tuple symbols is
applicable where freezing is not. Thus, to have the best of both techniques we
devised a special uncurrying technique for tuple symbols which fully subsumes
freezing without the disadvantage of U ′1: if freezing is applicable then standard
DP problems are transformed into standard DP problems by the new technique.

Before we describe the new uncurrying processor formally, we shortly list the
differences to the uncurrying processor of Theorem 15:

– Since the task is to uncurry tuple symbols, we restrict the applicative arities
to be at most one. Moreover, uncurrying is performed only on the top-level.
Finally, the application symbol may be of arbitrary non-zero arity.

– Rules that have to be added for the η-saturation and the uncurrying rules are
added as pairs (to the P-component), and not as rules (to theR-component).

– If freezing is applicable, we do neither add the uncurrying rules nor do we
apply η-saturation.

4 In detail: a technique that can detect that instances of a subterm of a right-hand
side of P are root-stable can also detect that the additional rules are not usable.



Example 18. We continue with the DP problems of Example 17.
If one applies the special uncurrying processor on (xPy, xRηy ∪ U) then one

obtains (P ′, xRηy ∪ U) which is the same as f(xPy, xRηy ∪ U) for f = {◦]}.
And if one applies the special uncurrying processor on (xPy, xR′′ηy∪U ′) then

one obtains the standard DP problem (P ′ ∪Rnew, xR′′ηy ∪ U ′).

Definition 19. Let ◦] be an n-ary application symbol where n > 0. Let π be an
injective symbol map where π(f) ∈ {[f ], [f, f ]]} for all f . The top-uncurrying
function p·q maps terms to terms. It is defined as ptq ={
f ](s1, . . . , sm, t2, . . . , tn) if t = ◦](f(s1, . . . , sm), t2, . . . , tn) and π(f) = [f, f ]]
t otherwise

and is homomorphically extended to pairs, rules, and substitutions. The top-
uncurrying rules are defined as

U t = {◦](f(x1, . . . , xm), y2, . . . , yn)→ f ](x1, . . . , xm, y2, . . . , yn) | π(f) = [f, f ]]}

Then the top-uncurrying processor is defined as top(P,R) =
(pPηq ∪ U t?,R) if ◦] is not defined w.r.t. R and for all s→ t ∈ Pη : s, t /∈ V,

s 6= ◦](x, s2, . . . , sn), and the root of t is not defined w.r.t. R
(P,R) otherwise

where U t? = ∅ and Pη = P if for all s → ◦](t1, . . . , tn) ∈ P and σ the term t1σ
is root-stable, and U t? = U t and Pη = P ∪ {◦](`, x2, . . . , xn)→ ◦](r, x2, . . . , xn) |
` → r ∈ R, root(`) = g, π(g) = [g, g]]}, otherwise. Here, x2, . . . , xn are distinct
fresh variables that do not occur in `→ r.

Theorem 20. The top-uncurrying processor top is sound.

Proof. The crucial part is to prove that whenever t = f(t1, . . . , tm) →∗R s, f /∈
DR, t is an instance of a right-hand side of P, and SNR(t), then ptq→∗pPηq∪Ut?∪R
psq where pPηq ∪ U t?-steps are root steps and all terms in this derivation are
terminating w.r.t. R.

Using this result, the main result is established as follows. Assume there
is an infinite minimal (P,R)-chain. Then every step sσ →P tσ →∗R s′σ′ in
the chain is transformed as follows. Since s → t ∈ P, we conclude that tσ =
f(t1σ, . . . , tmσ) where f /∈ DR and SNR(tσ). Hence, using the crucial step we
know that ptσq →∗pPηq∪Ut?∪R

ps′σ′q. Moreover, by case analysis on t one can
show that ptqσ →∗Ut? ptσq via root reductions, and similarly, by additionally
using the restrictions on s one derives psσq = psqσ. Hence,

psσq = psqσ →pPq ptqσ →∗Ut? ptσq→
∗
pPηq∪Ut?∪R

ps′σ′q

where all terms in this derivation right of →pPq are terminating w.r.t. R and
where all pPηq∪U t?-steps are root reductions. Thus, we can turn the root reduc-
tions into pairs, resulting in an infinite minimal (pPηq ∪ U t?,R)-chain.



To prove the crucial part we perform induction on the number of steps where
the base case – no reductions – is trivial. Otherwise, t = f(t1, . . . , tm) →∗R
u →R s. Using SNR(t) we also know SNR(u) and since f /∈ DR we know that
u = f(u1, . . . , um) and ti →∗R ui for all 1 6 i 6 m. Moreover, s = f(s1, . . . , sm)
and s is obtained from u by a reduction ui →R si for some 1 6 i 6 m. Hence,
we may apply the induction hypothesis and conclude ptq→∗pPηq∪Ut?∪R

puq.
It remains to simulate the reduction u →R s. The simulation is easy if

f 6= ◦], since then puq = u →R s = psq. Otherwise, f = ◦] and m = n. We
again first consider the easy case where ui →R si for some i > 1. Then an
easy case analysis on u1 yields puq →R psq since u and s are uncurried in the
same way (since u1 = s1). Otherwise, u = ◦](u1, . . . , um), s = ◦](s1, u2, . . . , um)
and u1 →R s1. If u1 →R s1 is a reduction below the root then both s and
t are uncurried in the same way and again puq →R psq is easily established.
If however u1 = `σ → rσ = s1 for some rule ` → r ∈ R then we know that
u1 is not root-stable and hence also t1 is not root-stable. As t = ◦](t1, . . . , tn)
is an instance of a right-hand side of P we further know that there is a pair
s′ → ◦](t′1, . . . , t′n) ∈ P where t1 = t′1σ. Since t′1σ is not root-stable U t? = U t
and Pη ⊇ {◦](`, x2, . . . , xn) → ◦](r, x2, . . . , xn) | ` → r ∈ R, root(`) = g, π(g) =
[g, g]]}. Let ` = g(`1, . . . , `k). If π(g) = [g] then

puq = p◦](g(`1, . . . , `k)σ, u2, . . . , un)q

= ◦](g(`1, . . . , `k)σ, u2, . . . , un)

→R ◦](rσ, u2, . . . , un)

→∗Ut? p◦
](rσ, u2, . . . , un)q

= psq.

And otherwise, π(g) = [g, g]]. Hence, ◦](`, x2, . . . , xn) → ◦](r, x2, . . . , xn) ∈ Pη.
We define δ = σ ] {x2/u2, . . . , xn/un} and achieve

puq = p◦](g(`1, . . . , `k)σ, u2, . . . , un)q

= g](`1σ, . . . , `kσ, u2, . . . , un)

= g](`1, . . . , `k, x2, . . . , xn)δ

= p◦](g(`1, . . . , `k), x2, . . . , xn)qδ

= p◦](`, x2, . . . , xn)qδ

→pPηq p◦](r, x2, . . . , xn)qδ

→∗Ut? p◦
](r, x2, . . . , xn)δq

= p◦](rσ, u2, . . . , un)q

= psq.

Using that π is injective one can also show that termination of all terms in the
derivation is guaranteed where we refer to our library IsaFoR for details.

Note that the top-uncurrying processor fully subsumes freezing since the
step from (P,R) to (f(P),R) using f = {f1, . . . , fn} can be simulated by n



applications of top where in each iteration one chooses fi as application symbol
and defines π(g) = [g, fgi ] for all g 6= fi. The following example shows that top
is also useful where freezing is not applicable.

Example 21. Consider the TRS R where x÷ y computes d x2y e.

s(x)− s(y) → x− y
0− y → 0
x− 0 → x
0 + y → y

s(x) + y → s(x+ y)

double(x) → x+ x
double(0) → 0

double(s(x)) → s(s(double(x)))
0÷ s(y) → 0

s(x)÷ s(y) → s((s(x)− double(s(y)))÷ s(y))
Proving termination is hard for current termination provers. Let us consider the
interesting DP problem (P,R) where P = {s(x)÷]s(y)→ (s(x)−double(s(y)))÷]
s(y)}. The problem is that one cannot use standard reduction pairs with argu-
ment filters since one has to keep the first argument of −, and then the filtered
term of s(x) is embedded in the filtered term of s(x)−double(s(y)). Consequently,
powerful termination provers such as AProVE and TTT2 fail on this TRS.

However, one can uncurry the tuple symbol ÷] where π(−) = [−,−]], π(s) =
[s, s]], and π(f) = [f ], otherwise. Then the new DP problem (P ′,R) is created
where P ′ consists of the following pairs

(x− y)÷] z → −](x, y, z)
s(x)÷] y → s](x, y)

s](x, s(y)) → −](s(x), double(s(y)), s(y))

−](s(x), s(y), z) → −](x, y, z)
−](0, y, z) → 0÷] z
−](x, 0, z) → x÷] z

where the subtraction is computed via the new pairs, and not via the rules
anymore. The right column consists of the uncurried and η-saturated −-rules,
and the left column contains the two uncurrying rules followed by the uncurried
pair of P. Proving finiteness of this DP problem is possible using standard tech-
niques: linear 0/1-polynomial interpretations and the dependency graph suffice.
Therefore, termination of the whole example can be proven fully automatically
by using a new version of TTT2 where top-uncurrying is integrated.

5 Heuristics and Experiments

The generalizations for uncurrying described in this paper are implemented in
TTT2 [10]. To fix the symbol map we used the following three heuristics:
– π+ corresponds to the definition of applicative arity of [8]. More formally,
π+(f) = [f0, . . . , fn] where n is maximal w.r.t. all f(. . .)◦t1◦· · ·◦tn occurring
in R. The advantage of π+ is that all uncurryings are performed.

– π± is like π+, except that the applicative arity is reduced whenever we would
have to add a rule during η-saturation. Formally, π±(f) = [f0, . . . , fn] where
n = min(aaπ+(f),min{k | f(. . .) ◦ t1 ◦ · · · ◦ tk → r ∈ R}).

– π− is almost dual to π+. Formally, π−(f) = [f0, . . . , fn] where n is minimal
w.r.t. all maximal subterms of the shape f(. . .) ◦ t1 ◦ · · · ◦ tn occurring in R.
The idea is to reduce the number of uncurrying rules.

We conducted two sets of experiments to evaluate our work. Note that all
proofs generated during our experiments are certified by CeTA (version 1.18). Our



experiments were performed on a server with eight dual-core AMD Opteron R©

processors 885, running at a clock rate of 2.6 GHz and on 64 GB of main memory.
The time limit for the first set of experiments was 10 s (as in [8]), whereas the time
limit for the second set was 5 s (TTT2’s time limit in the termination competition).

The first set of experiments was run with a setup similar to [8]. Accordingly,
as input we took the same 195 ATRSs from the termination problem database
(TPDB). For proving termination, we switch from the input TRS to the initial
DP problem and then repeat the following as often as possible: compute the
estimated dependency graph, split it into its strongly connected components
and apply the “main processor.” Here, as “main processor” we incorporated
the subterm criterion and matrix interpretations (of dimensions one and two).
Concerning uncurrying, the following approaches were tested: no uncurrying
(none), uncurry the given TRS before computing the initial DP problem (trs),
apply U ′1/U ′2 as soon as all other processors fail (where U ′2 is the composition of U ′1
and top). The results can be found in Table 1. Since on ATRSs, our generalization
of uncurrying corresponds to standard uncurrying, it is not surprising that the
numbers of the first three columns coincide with those of [8] (modulo mirroring
and a slight difference in the used strategy for trs). They are merely included to
see the relative gain when using uncurrying on ATRSs.

With the second set of experiments, we tried to evaluate the total gain in
certified termination proofs. Therefore, we took a restricted version of TTT2’s
competition strategy that was used in the July 2010 issue of the international
termination competition5 (called base strategy in the following). The restriction
was to use only those termination techniques that where certifiable by CeTA be-
fore our formalization of uncurrying. Then, we used this base strategy to filter
the TRSs (we did ignore all SRSs) of the TPDB (version 8.0). The result were
511 TRSs for which TTT2 did neither generate a termination proof nor a non-
termination proof using the base strategy. For our experiments we extended the
base strategy by the generalized uncurrying techniques using different heuristics
for the applicative arity. The results can be found in Table 2. It turned out, that
the π− heuristic is rather weak. Concerning π±, there is at least one TRS that
could not be proven using π+, but with π±. The total of 35 in the first row of
Table 2 is already reached without taking U ′1 into account. This indicates that in
practice a combination of uncurrying as initial step (trs) and the processor U ′2,
gives the best results. Finally, note that in comparison to the July 2010 termina-
tion competition (where TTT2 could generate 262 certifiable proofs), the number
of certifiable proofs of TTT2 is increased by over 10 % using the new techniques.
In these experiments, termination has been proven for 10 non-applicative TRSs
where our generalizations of uncurrying have been the key to success.

6 Conclusions

This paper describes the first formalization of uncurrying, an important tech-
nique to prove termination of higher-order functions which are encoded as first-
5 http://termcomp.uibk.ac.at

http://termcomp.uibk.ac.at


Table 1. Experiments as in [8]

direct processor
none trs U ′1 U ′2

subterm criterion 41 53 41 66
matrix (dimension 1) 66 98 95 114
matrix (dimension 2) 108 137 133 138

Table 2. Newly certified proofs

direct processor total
trs U ′1 U ′2

π+ 26 16 22 35
π± 28 15 17 29
π− 24 14 14 24

total 28 16 24 36

order TRSs. The formalization revealed a gap in the original proof which is now
fixed. Adding the newly developed generalization of uncurrying to our certifier
CeTA, increased the number of certifiable proofs on the TPDB by 10 %.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press
(1999)

2. Blanqui, F., Delobel, W., Coupet-Grimal, S., Hinderer, S., Koprowski, A.: CoLoR,
a Coq library on rewriting and termination. In: WST’06. pp. 69–73 (2006)

3. Contejean, É., Paskevich, A., Urbain, X., Courtieu, P., Pons, O., Forest, J.:
A3PAT, an approach for certified automated termination proofs. In: Gallagher,
J.P., Voigtländer, J. (eds.) PEPM’10. pp. 63–72. ACM New York, NY, USA (2010)

4. Endrullis, J.: Jambox, available at http://joerg.endrullis.de
5. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving

dependency pairs. Journal of Automated Reasoning 37(3), 155–203 (2006)
6. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination

of higher-order functions. In: Gramlich, B. (ed.) FroCoS’05. LNAI, vol. 3717, pp.
216–231. Springer (2005)

7. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic termination
proofs in the DP framework. In: Furbach, U., Shankar, N. (eds.) IJCAR’06. LNAI,
vol. 4130, pp. 281–286. Springer (2006)

8. Hirokawa, N., Middeldorp, A., Zankl, H.: Uncurrying for termination. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR’08. LNAI, vol. 5330, pp. 667–
681. Springer (2008)

9. Kennaway, R., Klop, J.W., Sleep, R., de Vries, F.J.: Comparing curried and un-
curried rewriting. Journal of Symbolic Computation 21(1), 15–39 (1996)

10. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: Treinen, R. (ed.) RTA’09. LNCS, vol. 5595, pp. 295–304. Springer (2009)

11. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic, LNCS, vol. 2283. Springer (2002)

12. Sternagel, C., Thiemann, R.: Signature extensions preserve termination. In: Dawar,
A., Veith, H. (eds.) CSL’10. LNCS, vol. 6247, pp. 514–528. Springer (2010)

13. Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting.
Ph.D. thesis, RWTH Aachen University (2007), Technical Report AIB-2007-17

14. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs’09. LNCS, vol.
5674, pp. 452–468. Springer (2009)

http://joerg.endrullis.de

	Generalized and Formalized Uncurrying

