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Abstract. We propose a new order-theoretic characterisation of the
class of polytime computable functions. To this avail we define the small
polynomial path order (sPOP∗ for short). This termination order entails
a new syntactic method to analyse the innermost runtime complexity of
term rewrite systems fully automatically: for any rewrite system compat-
ible with sPOP∗ that employs recursion upto depth d, the (innermost)
runtime complexity is polynomially bounded of degree d. This bound is
tight.
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1 Introduction

In this paper we are concerned with the complexity analysis of term rewrite
systems (TRSs for short). Based on a careful investigation into the principle of
predicative recursion as proposed by Bellantoni and Cook [1] we introduce a new
termination order, the small polynomial path order (sPOP∗ for short). The order
sPOP∗ provides a new characterisation of the class FP of polytime computable
functions. Any function f computable by a TRS R compatible with sPOP∗ is
polytime computable. On the other hand for any polytime computable function
f , there exists a TRS Rf computing f such that R is compatible with sPOP∗.
Furthermore sPOP∗ directly relates the depth of recursion of a given TRS to the
polynomial degree of its runtime complexity. More precisely, we call a rewrite
systemR predicative recursive of degree d ifR is compatible with sPOP∗ and the
depth of recursion of all function symbols in R is bounded by d (see Section 3
for the formal definition). We establish that any predicative recursive rewrite
system of degree d admits runtime complexity in O(nd).
⋆ This work is partially supported by FWF (Austrian Science Fund) project I-608-N18
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grant from the John Templeton Foundation for the project “Philosophical Frontiers
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Thus we obtain a direct correspondence between a syntactic (and easily ver-
ifiable) condition of a program and the asymptotic worst-case complexity of the
program. In this sense our work is closely related to similar studies in the field
of implicit computational complexity (ICC for short). On the other hand the or-
der sPOP∗ entails a new syntactic criteria to automatically establish polynomial
runtime complexity of a given TRS.

This criteria extends the state of the art in runtime complexity analysis
as it is more precise or more efficient than related techniques. Note that the
proposed syntactic method to analyse the (innermost) runtime complexity of
rewrite systems is fully automatic. For any given TRS, compatibility with sPOP∗

can be efficiently checked by a machine. Should this check succeed, we get an
asymptotic bound on the runtime complexity directly from the parameters of
the order. It should perhaps be emphasised that compatibility of a TRS with
sPOP∗ implies termination and thus our complexity analysis technique does not
presuppose termination.

In sum, in this work we make the following contributions:

– We propose a new recursion-theoretic characterisation Bwsc over binary words
of the class FP. We establish that those Bwsc functions that are definable with
d nestings of predicative recursion can be computed by predicative recursive
TRSs of degree d (cf. Theorem 13). Note that these functions are computable
on a register machine operating in time O(nd).

– We propose the new termination order sPOP∗; sPOP∗ captures the recursion-
theoretic principles of the class Bwsc. Thus we obtain a neworder-theoretic
characterisation of the class FP. Moreover, for any predicative recursive TRS
of degree d its runtime complexity lies in O(nd) (cf. Theorem 3). Further-
more this bound is tight, that is, we provide a family of TRSs, delineated
by sPOP∗, whose runtime complexity is bounded from below by Ω(nd),
cf. Example 5.

– We extend upon sPOP∗ by proposing a generalisation of sPOP∗, admitting
the same properties as above, that allows to handle more general recursion
schemes that make use of parameter substitution (cf. Theorem 16).

– sPOP∗ gives rise to a new syntactic method for polynomial runtime com-
plexity method. This method is fully automatic. We have implemented the
order sPOP∗ in the Tyrolean Complexity Tool TCT, version 1.9, an open
source complexity analyser.3 The experimental evidence obtained indicates
the efficiency of the method and the obtained increase in precision.

Related Work. There are several accounts of predicative analysis of recursion in
the (ICC) literature. We mention only those related works which are directly
comparable to our work. See [2] for an overview on ICC.

Notable the clearest connection of our work is to Marion’s light multiset
path order (LMPO for short) [3] and the polynomial path order (POP∗ for
short) [4,5,6]. Both orders form a strict extension of the here proposed order
sPOP∗, but lack the precision of the latter. Although LMPO characterises FP,
3 Available at http://cl-informatik.uibk.ac.at/software/tct.
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the runtime complexity of compatible TRSs is not polynomially bounded in
general. POP∗ induces polynomial runtime complexities, but the obtained com-
plexity certificate is usually very imprecise. In particular, due to the multiset
status underlying POP∗, for each d ∈ N one can form a TRS compatible with
POP∗ that defines only a single function, but whose runtime is bounded from
below by nd.

In Bonfante et. al. [7] restricted classes of polynomial interpretations are
studied that can be employed to obtain polynomial upper bounds on the run-
time complexity of TRSs. None of the above results are applicable to relate the
depth of recursion to the runtime complexity, in the sense mentioned above. We
have also drawn motivation from [8] which provides a related fine-grained clas-
sification of the polytime computable functions, but which lacks applicability in
the context of runtime complexity analysis.

Polynomial complexity analysis is an active research area in rewriting. Start-
ing from [9] interest in this field greatly increased over the last years, see for ex-
ample [10,11,12,13,14]. This is partly due to the incorporation of a dedicated cat-
egory for complexity into the annual termination competition (TERMCOMP).4

However, it is worth emphasising that the most powerful techniques for runtime
complexity analysis currently available, basically employ semantic considerations
on the rewrite systems, which are notoriously inefficient.

We also want to mention ongoing approaches for the automated analysis of
resource usage in programs. Notably, Hoffmann et al. [15] provide an automatic
multivariate amortised cost analysis exploiting typing, which extends earlier re-
sults on amortised cost analysis. To indicate the applicability of our method we
have employed a straightforward (and complexity preserving) transformation of
the RAML programs considered in [15] into TRSs. Equipped with sPOP∗ our
complexity analyser TCT can handle all examples from [15] and yields (asymp-
totically) optimal bounds. Finally Albert et al. [16] present an automated com-
plexity tool for Java Bytecode programs, Alias et al. [17] give a complexity and
termination analysis for flowchart programs, and Gulwani et al. [18] as well as
Zuleger et al. [19] provide an automated complexity tool for C programs.

Outline. We present the main intuition behind sPOP∗ and provide an informal
account of the technical results obtained.

The order sPOP∗ essentially embodies the predicative analysis of recursion
set forth by Bellantoni and Cook [1]. In [1] a recursion-theoretic characterisation
B of the class of polytime computable functions is proposed. This analysis is
connected to the important principle of tiering introduced by Simmons [20] and
Leivant [21]. The essential idea is that the arguments of a function are separated
into normal and safe arguments (or correspondingly into arguments of different
tiers). Building on this work we present a subclass Bwsc of B. Crucially the class
Bwsc admits only a weak form of composition. Inspired by a result of Handley and
Wainer [22], we show that Bwsc captures the polytime functions. We formulate

4 http://termcomp.uibk.ac.at/.
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the class Bwsc over the set {0,1}∗ of binary words, where we write ε to denote
the empty sequence and Si(;x) to denote the word xi.

The arguments of every function are partitioned into normal and safe ones.
Notationally we write f(t1, . . . , tk ; tk+1, . . . , tk+l) where normal arguments are
to the left, and safe arguments to the right of the semicolon. Abbreviate x =
x1, . . . , xk and y = y1, . . . , yl. The class Bwsc, depicted in Fig. 1, is the small-
est class containing certain initial functions and closed under safe recursion on
notation (SRN) and weak safe composition (WSC). By the weak form of com-
position only values are ever substituted into normal argument positions.

Initial Functions Si(;x) = xi (i = 0,1)
P (; ε) = ε
P (;xi) = x (i = 0,1)
Ik,lj (x ;y) = xj (j ∈ {1, . . . , k})
Ik,lj (x ;y) = yj−k (j ∈ {k + 1, . . . , l + k})
C(; ε, y, z0, z1) = y
C(;xi, y, z0, z1) = zi (i = 0,1)
O(x ;y) = ε

Weak Safe Composition f(x ;y) = h(xi1 , . . . , xin ;g(x ;y))
Safe Recursion on Notation f(ε,x ;y) = g(x ;y)

f(zi,x ;y) = hi(z,x ;y, f(z,x ;y)) (i = 0,1)

Fig. 1. Defining initial functions and operations for Bwsc

Suppose the definition of a TRS R is based on the equations in Bwsc. It
is not difficult to deduce a precise bound on the runtime complexity of R
by measuring the number of nested applications of safe recursion. In contrast
Bellantoni and Cooks definition [1] of B is obtained from Fig. 1 by replacing
weak safe composition with the more liberal scheme of safe composition (SC):
f(x ;y) = h(i(x ; ) ; j(x ;y)). Hence in B, normal, that is recursion, parameters
can grow and consequently one cannot in general relate the number of nested
applications of safe recursion to the runtime complexity of the defined function.

Our central observation is that from the function algebra Bwsc, one can distill
a termination argument for the TRS R. With sPOP∗, this implicit termination
argument is formalised as a termination order.

In order to employ the separation of normal and safe arguments, we fix for
each defined symbol in R a partitioning of argument positions into normal and
safe positions. For constructors we fix (as in Bwsc) that all argument positions
are safe. Moreover sPOP∗ restricts recursion to normal argument. Dual, only
safe argument positions allow the substitution of recursive calls. Via the order
constraints we can also guarantee that only normal arguments are substituted
at normal argument positions. We emphasise that our notion of predicative re-
cursive TRS is more liberal than the class Bwsc. Notably values are not restricted
to words, but can be formed from an arbitrary constructors. We allow arbitrary



deep right-hand sides, and implicit casting from normal to safe arguments. Still
the main principle underlying Bwsc remains reflected.

The remainder of the paper is organised as follows. After giving some prelim-
inaries, Section 3 introduces the order sPOP∗. In Section 4 we prove correctness
of sPOP∗ with respect to runtime complexity analysis. In Section 5 we show that
the order is complete for FP, in particular we precisely relate sPOP∗ to the class
Bwsc. In Section 6 we incorporate parameter substitution. Finally in Section 7
we conclude and provide ample experimental evidence. Due to space restrictions
some proofs have been omitted. These can be found in the full version [23].

2 Preliminaries

We denote by N the set of natural numbers {0,1,2, . . .}. For a binary relation R
we denote by R+ the transitive, by R∗ the transitive and reflexive closure, and
Rn denotes for n ∈ N the n-fold composition of of R. We write a R b for (a, b) ∈ R
and call R well-founded if there exists no infinite sequence a1 R a2 R a3 R . . . .

We assume at least nodding acquaintance with the basics of term rewrit-
ing [24]. We fix a countably infinite set of variables V and a finite set of function
symbols F , the signature. The set of terms formed from F and V is denoted by
T (F ,V). The signature F contains a distinguished set of constructors C, ele-
ments of T (C,V) are called values. Elements of F that are not constructors are
called defined symbols and collected in D. For a term t, the size of t is denoted
by ∣t∣ and refers to the number of symbols occurring in t, the depth dp(t) is
given recursively by dp(t) = 1 if t ∈ V, and dp(f(t1, . . . , tn)) = 1 +max{dp(ti) ∣
i = 1, . . . , n}. Here we employ the convention that the maximum of an empty set
is equal to 0. A rewrite rule is a pair (l, r) of terms, in notation l → r, such that
the left-hand side l = f(l1, . . . , ln) is not a variable, the root f is defined, and all
variables appearing in the right-hand r occur also in l. A term rewrite system
(TRS for short) R is a set of rewrite rules.

We adopt call-by-value semantics and define the rewrite relation Ð→R by

(i) f(l1, . . . , ln) → r ∈ R, σ ∶ V → T (C,V)
f(l1σ, . . . , lnσ) Ð→R rσ

(ii) sÐ→R t
f(. . . , s, . . . ) Ð→R f(. . . , t, . . . )

.

If sÐ→R t we say that s reduces to t in one step. For (i) we make various assump-
tions on R: we suppose that there is exactly one matching rule f(l1, . . . , ln) →
r ∈ R; li (i = 1, . . . , n) contains no defined symbols; and variables occur only once
in f(l1, . . . , ln). That is, throughout this paper we fix R to denote a completely
defined,5 orthogonal constructor TRS [24]. Furthermore we are only concerned
with innermost rewriting. Note that orthogonality enforces that our model of
computation is deterministic,6 in particular when R is terminating, i.e. when
Ð→R is well-founded, the semantics given as follows is well defined. For every n-
ary defined symbol f ∈ D, R defines a partial function JfK ∶ T (C,V)n → T (C,V)
5 The restriction is not necessary, but simplifies our presentation, compare [6].
6 As in [6] it is possible to adopt nondeterministic semantics, dropping orthogonality.



where

JfK(u1, . . . , un) ∶= v ∶⇔ ∃v.f(u1, . . . , un) Ð→R . . .Ð→R v with v ∈ T (C,V)

and JfK(u1, . . . , un) is undefined otherwise.
Following [10] we adopt a unitary cost model. Reductions are of course mea-

sured in the size of terms. Let Tb(F ,V) denote the set of basic terms f(u1, . . . , un)
where f ∈ D and u1, . . . , un ∈ T (C,V). We define the (innermost) runtime com-
plexity function rcR ∶ N→ N as

rcR(n) ∶=max{` ∣ ∃s ∈ Tb(F ,V), ∣s∣ ⩽ n and s = t0 Ð→R t1 Ð→R . . .Ð→R t`}

Hence rcR(n) maximises over the derivation height of terms s of size up to
n, regarding only basic terms. The latter restriction accounts for the fact that
computations start only from basic terms. The runtime complexity function is
well-defined if R is terminating. If rcR is asymptotically bounded from above
by a polynomial, we simply say that the runtime of R is polynomially bounded.
In [25,26] it has been shown that the unitary cost model is reasonable: all func-
tions JfK computed by R are computable on a conventional models of compu-
tation in time related polynomial to rcR. In particular, if the runtime of R is
polynomially bounded then JfK is polytime computable on a Turing machine for
all f ∈ D.

We say that a function symbol f is defined based on g (f ⊣R g for short), if
there exists a rewrite rule f(l1, . . . , ln) → r ∈ R where g occurs in r. We call f
recursive if f ⊣+R f holds, i.e., is defined based on itself. Noteworthy our notion
also captures mutual recursion. Recursive functions are collected in D≽

rec ⊆ D. We
denote by ≽ least preorder, i.e., reflexive and transitive relation, on F containing
⊣R and where constructors are equivalent, i.e., c ≽ d for all constructors c, d ∈ C.
The preorder ≽ is called the precedence of R. We denote by ≻ and ∼ the usual
separation of ≽ into a proper order ≻ an an equivalence ∼. Kindly note that for
f ∼ g, if g ∈ C then also f ∈ C; similar if g ∈ D≽

rec then also f ∈ D≽
rec. The depth of

recursion rd(f) of f ∈ F is defined as follows: let d = max{rd(g) ∣ f ≻ g} be the
maximal recursion depth of a function symbol g underlying the definition of f ;
then rd(f) ∶= 1 + d if f is recursive, otherwise rd(f) ∶= d.

Example 1. Consider following TRS Rarith, written in predicative notation.

1∶ +(0 ; y) → y 3∶ +(s(x) ; y) → s(+(x ; y)) 5∶ f(x, y ; ) → +(x ;×(y, y ; ))
2∶ ×(0, y ; ) → 0 4∶ ×(s(x), y ; ) → +(y ;×(x, y ; ))

The TRS Rarith follows along the line of Bwsc from Figure 1. The functions J+K
and J×K denote addition and multiplication on natural numbers, in particular
JfK(sm(0), sn(0)) = sr(0) where r =m + n2. The precedence is given by f ≻ (×) ≻
(+) ≻ S ∼ 0 where addition (+) and multiplication (×) are recursive, but f is not.
Conclusively rd(+) = 1, as f is not recursive we have rd(f) = rd(×) = 2.



3 The Small Polynomial Path Order

We arrive at the formal definition of sPOP∗. Technically this order is a tamed
recursive path order with product status, embodying predicative analysis of re-
cursion set forth by Bellantoni and Cook [1]. We assume the arguments of defined
symbol are separated into two kinds (by semicolon), normal and safe argument
positions, cf. Fig. 1. For constructors we fix that all argument positions are safe.
We denote by >spop∗ the particular sPOP∗ based on the precedence ≽ underlying
the analysed TRS R and the aforementioned separation of argument positions.

The order >spop∗ relies on some auxiliary relations. First of all, we lift equiva-
lence ∼ underlying the precedence ≽ to terms in the obvious way, but additionally
disregarding the order on arguments: s and t are equivalent, in notation s ∼ t,
if s = t, or s = f(s1, . . . , sn) and t = g(t1, . . . , tn) where f ∼ g and si ∼ tπ(i) for
all arguments and some permutation π. Safe equivalence s∼ ⊆ ∼ takes also the
separation of argument positions into account: we additionally require that i is
a normal argument position of f if and only if π(i) is normal argument position
of g. We emphasise that ∼ (and consequently s∼) preserves values: if s ∼ t and
s ∈ T (C,V) then t ∈ T (C,V). We extend the (proper) subterm relation to term
equivalence. Consider s = f(s1, . . . , sk ; sk+1, . . . , sk+l). Then s ⊳/∼ t if si ⊵/∼ t for
some si (i = 1, . . . k + l), where ⊵/∼ = ∼ ∪ ⊳/

∼
. Further s ⊳n/

∼
t if si ⊵/∼ t for some

normal argument position (i = 1, . . . , k).

Definition 2. Let s and t be terms such that s = f(s1, . . . , sk ; sk+1, . . . , sk+l).
Then s >spop∗ t if one of the following alternatives holds.

1. si ⩾spop∗ t for some argument si of s.
2. f ∈ D, t = g(t1, . . . , tm ; tm+1, . . . , tm+n) where f ≻ g and the following holds:

– s ⊳n/
∼
tj for all normal arguments t1, . . . , tm;

– s >spop∗ tj for all safe arguments tm+1, . . . , tm+n;
– t contains at most one (recursive) function symbols g with f ∼ g.

3. f ∈ D≽
rec, t = g(t1, . . . , tk ; tk+1, . . . , tk+l) where f ∼ g and the following holds:

– ⟨s1, . . . , sk⟩ >spop∗ ⟨tπ(1), . . . , tπ(k)⟩ for some permutation π on {1, . . . , k};
– ⟨sk+1, . . . , sk+l⟩ ⩾spop∗ ⟨tτ(k+1), . . . , tτ(k+l)⟩ for some permutation τ on

{k + 1, . . . , k + l}.

Here s ⩾spop∗ t denotes that either s s∼ t or s >spop∗ t holds. In the last clause
we use >spop∗ also for the extension of >spop∗ to products: ⟨s1, . . . , sn⟩ ⩾spop∗
⟨t1, . . . , tn⟩ means si ⩾spop∗ ti for all i = 1, . . . , n, and ⟨s1, . . . , sn⟩ >spop∗ ⟨t1, . . . , tn⟩
indicates that additionally si0 >spop∗ ti0 holds for at least one i0 ∈ {1, . . . , n}.

We say that the TRS R is compatible with >spop∗ if rules are oriented from left
to right: l >spop∗ r for all rules l → r ∈ R. As sPOP∗ forms a restriction of the
recursive path order, compatiblity with sPOP∗ implies termination. Furthermore
we call the TRS R predicative recursive (of degree d) if R is compatible with an
instance of sPOP∗ and the maximal recursion depth rd(f) of f ∈ F is d.

We write >⟨i⟩spop∗ to refer to the ith case in Definition 2. Consider the ori-
entation of a rule f(l1, . . . , ln) → r ∈ R. The case >⟨2⟩spop∗ is intended to capture



functions f defined by weak safe composition (WSC), compare Fig. 1 on page 4.
In particular the use of ⊳n/

∼
allows only the substitution of normal arguments of

f in normal argument positions of g. The last restriction put onto >⟨2⟩spop∗ is used
to prohibit multiple recursive calls. Finally, >⟨3⟩spop∗ accounts for recursive calls,
in combination with >⟨2⟩spop∗ we capture safe recursion (SRN). The next theorem
provides our main result.

Theorem 3. Let R be a predicative recursive TRS of degree d. Then the inner-
most derivation height of any basic term f(u ;v) is bounded by a polynomial of
degree rd(f) in the sum of the depths of normal arguments u. In particular, the
innermost runtime complexity of R is bounded by a polynomial of degree d.

The admittedly technical proof is postponed to the next section. We finish
this section with an informal account of Definition 2 in our running example.

Example 4. We show that the TRS Rarith depicted in Example 1 is predicative
recursive. Recall that the precedence underlying Rarith is given by f ≻ (×) ≻ (+) ≻
S ∼ 0, and that D≽

rec = {(×), (+)}. The degree of recursion of Rarith is thus 2.
The case >⟨1⟩spop∗ is standard in recursive path orders and allows the treatment

of projections as in rules 1 and 2. We have +(0 ; y) >⟨1⟩spop∗ y using y s∼ y and likewise
×(0, y ; ) >⟨1⟩spop∗ 0 using 0 s∼ 0. Observe that rule 5 defining f by composition is
oriented by >⟨2⟩spop∗ only: f(x, y ; ) >⟨2⟩spop∗ +(x ;×(y, y ; )) as f ≻ +, f(x, y ; ) ⊳n/

∼
x,

i.e., x occurs as a normal argument of f, and recursively f(x, y ; ) >⟨2⟩spop∗ ×(y, y ; ),
using f ≻ (×) and f(x, y ; ) ⊳n/

∼
y (twice).

Finally, consider the recursive cases of addition (rule 3) and multiplication
(rule 4). These can be oriented by a combination of >⟨2⟩spop∗ and >⟨3⟩spop∗, we exem-
plify this on rule 4: ×(s(x), y ; ) >⟨2⟩spop∗ +(y ;×(x, y ; )) simplifies using (×) ≻ (+) to
×(s(x), y ; ) ⊳n/

∼
y and ×(s(x), y ; ) >spop∗ ×(x, y ; ). As (×) ∈ D≽

rec, using >⟨3⟩spop∗ the
constraint reduces to ⟨s(x), y⟩ >spop∗ ⟨x, y⟩ (which follows as s(x) >⟨1⟩spop∗ x and
y s∼ y) and ⟨⟩ ⩾spop∗ ⟨⟩. The careful reader might ask why both arguments position
of (×) are normal. Clearly the former constraint dictates that the first position
is normal. By similar reasoning the orientation +(s(x) ; y) >spop∗ s(+(x ; y)) of
rule 3 dictates that the first argument position of (+) is normal. As the second
argument to multiplication is substituted into the normal argument position of
addition, ×(s(x), y ; ) ⊳n/

∼
y correctly propagates that y is a recursion parameter.

Reconsidering the orientation of rule 5 defining f, ⊳n/
∼
propagates that f takes

only normal arguments.
We conclude that Rarith is predicative recursive, with degree 2. By Theorem 3

runtime of Rarith is thus bounded by a quadratic polynomial.

As a consequence of our main theorem, any predicative recursive (and or-
thogonal) TRS R of degree d computes a function from FP, compare [26]. These
functions are even computable on a register machine operating in time O(nd),
provided R computes functions over a word algebra [23,27]. The latter restric-
tion allows storing values in registers without significant encoding overhead. We
emphasise also that the bound provided in Theorem 3 is tight in the sense that
for any d we can define a predicative TRS Rd of degree d admitting runtime
complexity Ω(nd).



Example 5. We define a family of TRSs Ri (i ∈ N) inductively as follows: R0 ∶=
{f0(x ; ) → a} and Ri+1 extends Ri by the rules

fi+1(x ; ) → gi+1(x,x ; ) gi+1(s(x), y ; ) → b( ; fi(y ; ),gi+1(x, y ; )) .

Let d ∈ N. It is easy to see that Rd is predicative recursive (with underlying
precedence fd ≻ gd ≻ fd−1 ≻ gd−1 ≻ . . . ≻ f0 ≻ a ∼ b). As only gi (i = 1, . . . , d) are
recursive, the recursion depth of Rd is d.

But also the runtime complexity of Rd is in Ω(nd): For d = 0 this is im-
mediate. Otherwise, consider the term fd+1(sn(a)) (n ∈ N) which reduces to
gd+1(sn(a), sn(a) ; ) in one step. As the latter iterates fd(sn(a)) for n times, the
lower bound is established by inductive reasoning.

4 Soundness

We now show that sPOP∗ is correct, i.e., we prove Theorem 3. Let R denote
a predicative recursive TRS. Our proof makes use of a variety of ingredients.
In Definition 7 we define predicative interpretations S that flatten terms to se-
quences of terms, separating safe from normal arguments. In Definition 8 we
introduce a family of orders (▸`)`∈N on sequences of terms. The definition of ▸`
(for fixed `) does not explicitly mention predicative notions and is conceptually
simpler than >spop∗. In Lemma 11 we show that predicative interpretations S
embeds rewrite steps into ▸`:

s

S(s)

s1

S(s1)

. . .

. . .

s`

S(s`)

Ð→R

▸`

Ð→R

▸`

Ð→R

▸`

Consequently the derivation height of s is bounded by the length of ▸` descend-
ing sequences, which in turn can be bounded sufficiently whenever s is basic
(cf. Theorem 10).

Consider a step C[f(uσ ;vσ)] Ð→R C[rσ] = t. Due to the limitations imposed
by >spop∗, it is not difficult to see that if rσ is not a value itself, then at least all
normal arguments are values. We capture this observation in the set T →b , defined
as the least set such that (i) T (C,V) ⊆ T →b , and (ii) if f ∈ F , v ⊆ T (C,V) and
t ⊆ T →b then f(v ; t) ∈ T →b . This set is closed under rewriting.

Lemma 6. Let R be a completely defined TRS compatible with >spop∗. If s ∈ T →b
and sÐ→R t then t ∈ T →b .

Since T →b contains in particular all basic terms, it follows that the runtime com-
plexity function rcR depends only on terms from T →b . The predicative interpre-
tation S maps terms from T →b to sequences of normalised terms by separating
normal from safe arguments. We sometimes write fn for the symbol f if it occurs
in a normalised term. If f has k normal arguments, then fn has arity k. To de-
note sequences of terms, we use a fresh variadic function symbol ○. Here variadic



means that the arity of ○ is finite but arbitrary. We always write [a1 ⋯ an] for
○(a1, . . . , an), and if we write f(a1, . . . , an) then f /= ○. We denote by T* the set
of sequences [t1 ⋯ tn] of normalised terms t1, . . . , tn. We lift terms equivalence
to sequences by disregarding order of elements: [s1 ⋯ sn] ∼ [t1 ⋯ tn] if si ∼ tπ(i)
for all i = 1, . . . , n and some permutation π on {1, . . . , n}. We define concatena-
tion as [s1 ⋯ sn] ⌢ [t1 ⋯ tn] ∶= [ s1 ⋯ sn t1 ⋯ tm ], and extend it to terms by
identifying terms t with the singleton sequences [ t ], for instance s⌢t = [ s t ].

Definition 7. We define the predicative interpretation S for all t ∈ T →b as fol-
lows. If t ∈ T (C,V), then S(t) ∶= [ ]. Otherwise

S(f(t1, . . . , tk ; tk+1, . . . , tk+l)) ∶= [ fn(t1, . . . , tk) ]⌢S(tk+1)⌢⋯⌢S(tk+l) .

We define the small polynomial path order on sequences T*. As these serve a
purely technical reason, it suffices to represent the order via finite approximations
▸` (compare also [4]). The parameter ` ∈ N controls the width of terms and
sequences.

Definition 8. Let ≽ denote a precedence. For all ` ⩾ 1 we define ▸` on terms
and sequences of terms inductively such that:

1. f(s1, . . . , sn) ▸` g(t1, . . . , tm) if f ∈ D, f ≻ g and the following conditions
hold:
– f(s1, . . . , sn) ⊳/∼ tj for all j = 1, . . . ,m;
– m ⩽ `.

2. f(s1, . . . , sn) ▸` g(t1, . . . , tn) if f ∈ D≽
rec, f ∼ g and for some permutation π

on {1, . . . , n}: ⟨s1, . . . , sn⟩ ⊳/∼ ⟨tπ(1), . . . , tπ(n)⟩.
3. f(s1, . . . , sn) ▸` [t1 ⋯ tm] if the following conditions hold:

– f(s1, . . . , sn) ▸` tj for all j = 1, . . . ,m;
– at most one element tj (j ∈ {1, . . . ,m}) contains a symbols g with f ∼ g;
– m ⩽ `.

4. [s1 ⋯ sn]▸` [t1 ⋯ tm] if there exists terms or sequences bi (i = 1, . . . , n) such
that:
– [t1 ⋯ tm] is equivalent to b1⌢⋯⌢bn;
– si ▸` bi for all i = 1, . . . , n;
– si0 ▸` bi0 for at least one i0 ∈ {1, . . . , n}.

Here a ▸` b denotes that either a ∼ b or a ▸` b holds, and ⊳/
∼
is also used for its

extension to products: ⟨s1, . . . , sn⟩ ⊳/∼ ⟨ti, . . . , tn⟩ if si ⊵/∼ ti for all i = 1, . . . , n,
and si0 ⊳/∼ ti0 for at least one i0 ∈ {1, . . . , n}.

The next lemma collects some facts about the order ▸`:

Lemma 9. For all ` ⩾ 1, (i) ▸` ⊆ ▸`+1, (ii) ∼ ⋅ ▸` ⋅ ∼ ⊆ ▸`, and (iii) a ▸` b implies
a⌢c ▸` b⌢c.

Let ` ⩾ 1. The function G` ∶ T*(F) → N measures the length of ▸` descending
sequence: G`(a) ∶= max{m ∣ a ▸` a1 ▸` ⋯ ▸` am}. Theorem 10 binds G`(s) for
(normalised) basic terms s sufficiently.



Theorem 10. Let f ∈ D. Then G`(fn(u1, . . . , uk)) ⩽ c ⋅ nrd(f) for all values
u1, . . . , uk, where n ∶= ∑ki=1 dp(ui). The constant c ∈ N depends only on f and `.

The remaining missing piece in our reasoning is to show that predicative
interpretations embed innermost rewrite steps into ▸`, where ` depends only on
the considered TRS R.

Lemma 11. Let R denote a predicative recursive TRS and let ` be the maximal
size of a right-hand side in R. If s ∈ T →b and sÐ→R t then S(s) ▸` S(t).

Putting things together, we arrive at the proof of the main theorem.

Proof (of Theorem 3). Let R denote a predicative recursive TRS. We prove the
existence of a constant c ∈ N such that for all values u,v, the derivation height
of f(u ;v) is bounded by c ⋅ nrd(f), where n is the sum of the depths of normal
arguments u.

Consider a derivation f(u ;v) Ð→R t1 Ð→R ⋯ Ð→R tn. Let i ∈ {0, . . . , n − 1}.
By Lemma 6 it follows that ti ∈ T →b , and consequently S(ti) ▸` S(ti+i) due
to Lemma 11. So in particular the length n is bounded by the length of ▸`
descending sequences starting from S(f(u ;v)) = [ fn(u) ]. One verifies that
G`([ fn(u) ]) = G`(fn(u)). Thus Theorem 10 gives the constant c ∈ N as desired.

5 Completeness Results

In this section we show that sPOP∗ is complete for FP. Indeed, we can even
show a stronger result. Let f be a function from Bwsc that makes only use of d
nestings of safe recursion on notation, then there exists a predicative recursive
TRS Rf of degree d that computes the function f .

By definition Bwsc ⊆ B for Bellantoni and Cooks predicative recursive charac-
terisation B of FP given in [1]. Concerning the converse inclusion, the following
Theorem states that the class Bwsc is large enough to capture all the polytime
computable functions. Here Bk,lwsc refers to the subclass of Bwsc with k normal and
l safe argument positions.

Theorem 12. Every polynomial time computable function belongs to ⋃k∈N Bk,0wsc.

One can show this fact by following the proof of Theorem 3.7 in [22], where the
unary variant of Bwsc is defined and the inclusion corresponding to Theorem 12
is shown, cf. [23].

Theorem 13. For any Bwsc-function f there exists an orthogonal TRS Rf that
is predicative recursive of degree d, where d equals the maximal number of nested
application of (SRN) in the definition of f .

The completeness of sPOP∗ for the polytime computable functions is an im-
mediate consequence of Theorem 12 and Theorem 13. The witnessing TRS Rf
for f ∈ Bwsc in Theorem 13 is obtained via a term rewriting characterisation of



the class Bwsc depicted in Fig. 1 on page 4. The term rewriting characterisation
expresses the definition of Bwsc as an infinite TRS RBwsc .

We define a one-to-one correspondence between functions from Bwsc and the
set of function symbols for RBwsc as follows. Constructor symbols ε, S0 and S1
are used to denote binary words.

The function symbols P, Ik,lj , C and Ok,l correspond respectively to the initial
functions P , Ik,lj , C and Ok,l of Bwsc. The symbol SUB[h, i1, . . . , in,g] is used to
denote the function obtained by composing functions h and g according to the
schema of (WSC). Finally, the function symbol SRN[g,h0,h1] corresponds to the
function defined by safe recursion on notation from g, h0 and h1 in accordance
to the schema (SRN).

With this correspondence, RBwsc is obtained by orienting the equations in
Fig. 1 from left to right. It is easy to see that RBwsc is a constructor TRS.
Further RBwsc is orthogonal, thus any finite restriction Rf ⊆ RBwsc is confluent.

Proof (of Theorem 13). Let f be a function coming from Bwsc. By induction
according to the definition of f in Bwsc we show the existence of a TRS Rf and
a precedence ≽f such that

1. Rf is a finite restriction of RBwsc ,
2. Rf contains the rule(s) defining the function symbol f corresponding to f ,
3. Rf is compatible with >spop∗ induced by ≽f ,
4. f is maximal in the precedence ≽f underlying Rf , and
5. the depth of recursion rd(f) equals the maximal number of nested application

of (SRN) in the definition of f in Bwsc.

The assertion of the theorem follows from Condition (1), (3)) and (5). To ex-
emplify the construction we consider the step case that f is defined from some
functions g, h0, h1 ∈ Bwsc by the schema (SRN). By induction hypothesis we
can find witnessing TRSs Rg,Rh0 ,Rh1 and witnessing precedences ≽g,≽h0 ,≽h1

respectively for g, h0, h1. Extend the set of function symbols by a new recursive
symbol f ∶≡ SRN[g,h0,h1]. Let Rf be the TRS consisting of Rg, Rh0 , Rh1 and
the following three rules:

f(ε,x ;y) → g(x ;y) f(Si(;x),x ;y) → hi(z,x ;y, f(z,x ;y)) (i = 0,1) .

Define the precedence ≽f extending ≽g ∪ ≽h0 ∪ ≽h1 by f ∼ f and f ≻ g′ for any
g′ ∈ {g,h0,h1}. Note that the union ≽g ∪ ≽h0 ∪ ≽h1 is still a precedence. This
can be seen as follows. Assume that both f0 ≻ f1 and f1 ≻ f0 hold for some
symbols f0 and f1. Then by definition f0 ≡ O0[⋯f1⋯] and f1 ≡ O1[⋯f0⋯] for some
operations O0,O1 ∈ {SUB,SRN}. This means that the function corresponding to
f0 is defined by either (WSC) or (SRN) via the function corresponding to f1
and vice versa, but these contradict. Let >spop∗ be the sPOP∗ induced by ≽f .
Then it is easy to check that Rf enjoys Condition (1) and (2).

In order to show Condition (3), it suffices to orient the three new rules by
>spop∗. For the first rule, f(ε,x;y) >⟨2⟩spop∗ g(x;y) holds by the definition of ≽f .
For the remaining two rules we only orient the case i = 0. Since f is a recur-
sive symbol and S0(; z) >⟨1⟩spop∗ z holds, f(S0(; z),x ;y) >⟨3⟩spop∗ f(z,x ;y) holds.



This together with the definition of the precedence ≽f allows us to conclude
f(S0(; z),x ;y) >⟨2⟩spop∗ h0(z,x ;y, f(z,x ;y)).

Consider Condition (4). For each g′ ∈ {g, h0, h1}, g′ is maximal in the prece-
dence ≽g′ by induction hypothesis for g′. Hence by the definition of ≽f , f is
maximal in ≽f .

It remains to show Condition (5). Since f is a recursive symbol rd(f) = 1 +
max{rd(g), rd(h0), rd(h1)}. Without loss of generality let us suppose rd(g) =
max{rd(g), rd(h0), rd(h1)}. Then by induction hypothesis for g, rd(g) equals the
maximal number of nested application of (SRN) in the definition of g in Bwsc.
Hence rd(f) = 1 + rd(g) equals the one in the definition of f in Bwsc.

6 A Non-Trivial Closure Property of the Polytime
Functions

Bellantoni already observed that his definition of FP is closed under safe recur-
sion on notation with parameter substitution. Here a function f is defined from
functions g, h0, h1 and p by

f(ε,x ;y) = g(x ;y)
f(zi,x ;y) = hi(z,x ;y, f(z,x ;p(z,x ;y))) (i = 0,1) . (SRNPS)

We introduce small polynomial path order with parameter substitution (sPOP∗PS
for short), that extends clause >⟨3⟩spop∗ to account for the schema (SRNPS).

Definition 14. Let s and t be terms such that s = f(s1, . . . , sk ; sk+1, . . . , sk+l).
Then s >spop∗ps t if one of the following alternatives holds.

1. si ⩾spop∗ps t for some argument si of s.
2. f ∈ D, t = g(t1, . . . , tm ; tm+1, . . . , tm+n) where f ≻ g and the following holds:

– s ⊳n/
∼
tj for all normal arguments t1, . . . , tm;

– s >spop∗ps tj for all safe arguments tm+1, . . . , tm+n;
– t contains at most one (recursive) function symbols g with f ∼ g.

3. f ∈ D≽
rec, t = g(t1, . . . , tk ; tk+1, . . . , tk+l) where f ∼ g and the following holds:

– ⟨s1, . . . , sk⟩ >spop∗ps ⟨tπ(1), . . . , tπ(k)⟩ for some permutation π on {1, . . . , k};
– s >spop∗ps tj for all safe arguments tj;
– arguments t1, . . . , tk+l contain no (recursive) symbols g with f ∼ g.

Here s ⩾spop∗ps t denotes that either s s∼ t or s >spop∗ps t. In the last clause, we
use >spop∗ps also for the product extension of >spop∗ps (modulo permutation).

We adapt the notion of predicative recursive TRS of degree d to sPOP∗PS in
the obvious way. Parameter substitution extends the analytical power of sPOP∗

significantly. In particular, sPOP∗ can handle tail recursion as in the following
example.



Example 15. The TRS Rrev consists of the three rules

rev(xs ; ) → revtl(xs ; [ ]) revtl([ ] ; ys) → ys revtl(x ∶ xs ; ys) → revtl(xs ;x ∶ ys)

reverses lists formed from the constructors [ ] and (∶). Then Rrev is compatible
with >spop∗ps , but due to the last rule not with >spop∗.

Still sPOP∗PS induces polynomially bounded runtime complexity in the sense
of Theorem 3. As a consequence of the next theorem, the runtime of Rrev is
inferred to be linear.

Theorem 16. Let R be a predicative recursive TRS of degree d (with respect to
Definition 14). Then the innermost derivation height of any basic term f(u ;v)
is bounded by a polynomial of degree rd(f) in the sum of the depths of normal
arguments u. In particular, the innermost runtime complexity of R is bounded
by a polynomial of degree d.

Corollary 17. The class Bwsc is closed under safe recursion on notation with
parameter substitution. More precisely, for any functions g, h0, h1,p ∈ Bwsc, there
exists a unique polytime computable function f such that f(ε,x ;y) = g(x ;y) and
f(zi,x ;y) = hi(z,x ;y, f(z,x,p(z,x ;y))) for each i = 0,1.

Furthermore sPOP∗PS is complete for the polytime computable functions. To
state a stronger completeness result, we extend the class Bwsc to a class Bwsc+ps
that is also closed under the scheme (SRNPS). Then sPOP∗PS is complete for
Bwsc+ps in the sense of Theorem 13.

Theorem 18. For any Bwsc+ps-function f there exists a confluent TRS Rf that
is predicative recursive of degree d (with respect to Definition 14), where d equals
the maximal number of nested application of (SRNPS) in the definition of f .

7 Conclusion

We propose a new order, the small polynomial path order sPOP∗. Based on
sPOP∗, we delineate a class of rewrite systems, dubbed systems of predicative
recursion of degree d, such that for rewrite systems in this class we obtain that the
runtime complexity lies in O(nd). This termination order induces a new order-
theoretic characterisation of the class of polytime computable functions. This
order-theoretic characterisation enables a fine-grained control of the complexity
of functions in relation to the number of nested applications of recursion.

Moreover, sPOP∗ gives rise to a new, fully automatic, syntactic method for
polynomial runtime complexity analysis. We performed experiments on the rel-
ative power of sPOP∗ (respectively sPOP∗PS) with respect to LMPO [3] and
POP∗ [5]. We selected two test-suites: test-suite TC constitutes of 597 termi-
nating constructor TRSs and test-suite TCO, containing 290 examples, result-
ing from restricting test-suite TC to orthogonal systems.7 On the larger bench-
mark TC, LMPO proves an exponential bound on a subset of 57 examples. For
7 The test-suites are taken from the Termination Problem Database (TPDB), version
8.0; http://termcomp.uibk.ac.at.

http://termcomp.uibk.ac.at


four examples this bound is indeed tight, out of the remaining POP∗ can verify
polynomially bounded runtime complexity on 43 examples. 39 examples of these
can also be handled with sPOP∗ and for all these examples the runtime complex-
ity is at most cubic. Thus sPOP∗ brings about a significant increase in precision,
which accompanied with only minor decrease in power. This assessment remains
true, if we consider the smaller benchmark set TCO. sPOP∗PS increases the ana-
lytic power of POP∗ on test-suite TC from 39 to 54 examples, from the 15 new
examples 13 cannot be handled by any other technique.8

TCT TCT/sPOP∗PS

O(n) 3/ 2.84 3/ 3.65

O(n2) 14/ 13.78 15/ 14.70
O(n3) 15/ 38.80 16/ 39.68

unknown 6/ 36.41 5/ 41.94

Fig. 2. Empirical Evaluation on translated
RAML sources

To test the applicability of sPOP∗

in the context of program analysis,
we have employed a straightforward
(and complexity preserving) trans-
formation of RAML programs con-
sidered in [15] into TRSs. In Ta-
ble 2 we present the performance of
TCT on this test-suite. Equipped with
sPOP∗PS our complexity analyser TCT
can handle all examples in [15] and
all but 5 of the RAML test-suite [28].
This is a noteworthy performance as
the transformation from RAML programs to TRSs used amounts to a straight-
forward (almost naive) program transformation.Furthermore the dedicated pro-
totype crucially exploits the fact that RAML programs are typed. On the other
hand TCT works on standard, that is untyped, TRSs.
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