
KBCV–Knuth-Bendix Completion Visualizer?

Thomas Sternagel1 and Harald Zankl2

1 Master Program in Computer Science, University of Innsbruck, Austria
2 Institute of Computer Science, University of Innsbruck, Austria

Abstract This paper describes a tool for Knuth-Bendix completion.
In its interactive mode the user only has to select the orientation of
equations into rewrite rules; all other computations (including necessary
termination checks) are performed internally. Apart from the interactive
mode, the tool also provides a fully automatic mode. Moreover, the gen-
eration of (dis)proofs in equational logic is supported. Finally, the tool
outputs proofs in a certifiable format.

Keywords: term rewriting, completion, equational logic, automation.

1 Introduction

The Knuth-Bendix Completion Visualizer (KBCV) is an interactive/automatic
tool for Knuth-Bendix completion and equational logic proofs. This paper de-
scribes KBCV version 1.7, which features a command-line and a graphical user
interface as well as a Java-applet version. The tool is available under the GNU
Lesser General Public License 3 at

http://cl-informatik.uibk.ac.at/software/kbcv

Completion is a procedure which takes as input a finite set of equations E
(and nowadays optionally a reduction order >) and attempts to construct a
terminating and confluent term rewrite system (TRS) R which is equivalent
to E, i.e., their equational theories coincide. In case the completion procedure
succeeds, R represents a decision procedure for the word problem of E. Now two
terms are equivalent with respect to E if and only if they reduce to the same
normal form with respect to R.

The computation is done by generating a finite sequence of intermediate
TRSs which constitute approximations of the equational theory of E. Following
Bachmair and Dershowitz [2] the completion procedure can be modeled as an
inference system like system C in Figure 1. The inference rules work on pairs
(E,R) where E is a finite set of equations and R is a finite set of rewrite rules.
The goal is to transform an initial pair (E, ∅) into a pair (∅, R) such that R is
terminating, confluent and equivalent to E. In our setting a completion procedure
based on these rules may succeed (find R after finitely many steps), loop, or fail.
In Figure 1 a reduction order > is provided as part of the input. We use s

A→R u

? This research is supported by FWF P22467 and a grant of the Hypo Tirol Bank.

http://cl-informatik.uibk.ac.at/software/kbcv


DEDUCE
(E, R)

(E ∪ {s ≈ t}, R)
if s R← u→R t

COMPOSE
(E, R ∪ {s→ t})
(E, R ∪ {s→ u}) if t→R u

COLLAPSE
(E, R ∪ {s→ t})
(E ∪ {u = t}, R)

if s
A→R u

ORIENT
(E ∪ {s

.
≈ t}, R)

(E, R ∪ {s→ t}) if s > t

DELETE
(E ∪ {s ≈ s}, R)

(E, R)

SIMPLIFY
(E ∪ {s

.
≈ t}, R)

(E ∪ {u
.
≈ t}, R)

if s→R u

Figure 1: Inference rules for completion with a fixed reduction order (C).

to express that s is reduced by a rule `→ r ∈ R such that ` cannot be reduced
by another rule s→ t ∈ R. The notation s

·
≈ t denotes either of s ≈ t and t ≈ s.

Writing (E,R) `C (E′, R′) to indicate that (E′, R′) is obtained from (E,R)
by one of the inference rules of system C we define a completion procedure:

Definition 1. A completion procedure is a program that accepts as input a
finite set of equations E0 (together with a reduction order >) and uses the in-
ference rules of Figure 1 to construct a sequence

(E0, ∅) `C (E1, R1) `C (E2, R2) `C (E3, R3) `C · · ·

Such a sequence is called a run of the completion procedure on input E0 and >.
A finite run (E0, ∅) `n

C (∅, Rn) is successful if Rn is locally confluent.

The following result follows from [1, Theorem 7.2.8] specialized to finite runs.

Lemma 2. Let (E0, ∅) `n
C (∅, Rn) be a successful run of completion. Then Rn

is terminating, confluent, and equivalent to E0. ut

In the sequel we assume familiarity with term rewriting, equational logic,
and completion [1]. The remainder of this paper is organized as follows. In the
next section the main features of KBCV are presented before Section 3 addresses
implementation issues and experimental results. Section 4 concludes.

2 Features

KBCV offers two modes for completion, namely the Normal Mode (Section 2.1)
and the Expert Mode (Section 2.2). In the GUI the user can change the mode via
the menu entry View at any time. Irregardless of the chosen mode, termination
checks are performed automatically, following the recent approach from [11].
By default, an incremental LPO is constructed and maintained by the tool but
also external termination tools are supported (this option is not available in
the applet version). For convenience KBCV stores a history that allows to step
backwards (and forwards again) in interactive completion proofs. Apart from
completion proofs, the tool can generate proofs in equational logic (Section 2.3)
and produces output in a certifiable format.

2



SIMPLIFY

DELETE ORIENT

COMPOSE

COLLAPSEDEDUCEE = ∅

complete failureto NF

new CPs

NO

YES

choose
s ≈ t

to NF

to NF

failed

Figure 2: Flow chart for the efficient completion procedure.

2.1 Normal Mode

In normal mode the user can switch between efficient and simple completion.
The efficient procedure executes all inference rules from Figure 1 in a fixed order,
while the simple procedure considers a subset only.

Efficient Completion The efficient completion procedure (following Huet [4],
see Figure 2) takes a set of equations E as input and has three possible outcomes:
It may terminate successfully, it may loop indefinitely, or it may fail because an
equation could not be oriented into a rewrite rule.

While E 6= ∅ the user chooses an equation s ≈ t from E. The terms in
this equation are simplified to normal form by using SIMPLIFY exhaustively.
In the next step the equation is deleted if it was trivial and if so the next
iteration of the loop starts. Otherwise (following the transition labeled NO) the
user suggests the orientation of the equation into a rule and ORIENT performs
the necessary termination check. Here the procedure might fail if the equation
cannot be oriented (in either direction) with the used termination technique. But
if the orientation succeeds the inferred rule is used to reduce the right-hand sides
of (other) rules to normal form (COMPOSE) while COLLAPSE rewrites the left-
hand sides of rules, which transforms rules into equations that go back to E. In
this way the set of rules in R is kept as small as possible at all times. Afterwards
DEDUCE is used to compute (all) critical pairs (between the new rule and the
old rules and between the new rule and itself). If still E 6= ∅ the next iteration of
the loop begins and otherwise the procedure terminates successfully yielding the
terminating and confluent (complete) TRS R equivalent to the input system E.

Simple Completion The simple procedure (following the basic completion
procedure [1, Figure 7.1]) makes no use of COMPOSE and COLLAPSE, which
means that the inference rule DEDUCE immediately follows ORIENT. Hence
although correct, this procedure is not particularly efficient.

3



SIMPLIFY

DELETE E = ∅

complete

ORIENT

COMPOSE

COLLAPSEDEDUCE

to NF

new CPs

YES

choose
s ≈ t

to NF

to NF

Figure 3: Flow chart for the automatic mode.

2.2 Expert Mode

Inference System In the expert mode the user can select the equations and
rewrite rules on which the desired inference rules from Figure 1 should be ap-
plied on. If no equations/rules are selected explicitly then all equations/rules are
considered. For efficiency reasons DEDUCE does only add critical pairs emerging
from overlaps that have not yet been considered. KBCV notifies the user if a
complete R equivalent to the input E is obtained.

Automatic Mode At any stage of the process the user can press the button
Completion which triggers the automatic mode of KBCV where it applies the
inference rules according to the loop in Figure 3. Pressing the button again (dur-
ing the completion attempt) stops the automatic mode and shows the current
state (of the selected thread, see below). It is also possible to specify an upper
limit on the loops performed in Figure 3 (Settings → Automatic Completion).
This is especially useful to step through a completion proof with limit 1.

In Figure 3 the rules SIMPLIFY and DELETE operate on all equations and
are applied exhaustively. If E = ∅ then R is locally confluent (since the previous
DEDUCE considered all remaining critical pairs) and the procedure successfully
terminates. Note that in contrast to the completion procedure from Figure 2
the automatic mode postpones the choice of the equation s ≈ t. Hence KBCV
can choose an equation of minimal length after simplification (which is typically
beneficial for the course of completion) for the rule ORIENT. To maximize power,
KBCV executes two threads in parallel which have different behavior for ORIENT.
The first thread prefers to orient equations from left-to-right and if this is not
possible it tries a right-to-left orientation (the second thread behaves dually).
If this also fails another equation is selected in the next turn. (Note that it
is possible that some later equation can be oriented which then simplifies the
problematic equation such that it can be oriented or deleted.) A thread fails if
no equation in E can be oriented in the ORIENT step.

4



2.3 Equational Logic and Certification

Since KBCV stores how rules have been deduced from equations [9], in command-
line mode the command showh lists how rules/equations have been derived and
allows to trace back the completion steps that gave rise to a rule/equation. The
same mechanism facilitates KBCV to automatically transform a join s→∗R · ∗R← t
with respect to the current system R (which need not be complete yet) into a
conversion with respect to the input system E, i.e., s↔∗E t, and further into
equational proofs with respect to E (File → Equational Proof ).

If E could be completed into a TRS R, the recent work in [9] allows KBCV
to export proof certificates (File → Export Equational Proof and File → Export
Completion Proof ) in CPF, a certification proof format for rewriting.3 These
proof certificates can be certified by CeTA [10], i.e., checked by a trustable program
generated from the theorem prover Isabelle. Apart from the input system E and
the completed TRS R such certificate must also contain a proof that E and R
are equivalent, e.g., by giving an explicit conversion `↔∗E r for each `→ r ∈ R.

3 Implementation and Experiments

KBCV is implemented in Scala,4 an object-functional programming language
which compiles to Java Byte Code. For this reason KBCV is portable and runs
on Windows and Linux machines. We have developed a term library in Scala
(scala-termlib, available from KBCV’s homepage) of approximately 1700 lines
of code. KBCV builds upon this library and has an additional 4500 lines of code.

Besides the stand-alone version of KBCV there also is a Java-Applet version
available online. The stand-alone version has three different modes: The text
mode where one can interact with KBCV via the console, the graphic mode
using a graphical user interface implemented in java.swing, and the hybrid
mode where the text mode and the graphic mode are combined.

In text mode typing help yields a list of all available commands, whereas in
graphic (hybrid) mode or the Java-Applet you can select Help → User Manual
to get a description of the user interface.

The stand-alone version of KBCV is able to call third party termination
checkers whereas the Java-Applet version is limited to the internal LPO for
termination proofs. As input KBCV supports the XML-format for TRSs5 and
also a subset of the older TRS-format.6 (Only one VAR and one RULES section
are allowed in this order. No theory or strategy annotations are supported.) In
both cases rules are interpreted as equations.

In addition KBCV supports another file format for the export and import of
command logs to save and load user specific settings of KBCV. This format lists
all executed commands within KBCV in a human readable form, like:

3 http://cl-informatik.uibk.ac.at/software/cpf
4 http://www.scala-lang.org/
5 http://www.termination-portal.org/wiki/XTC_Format_Specification
6 http://www.lri.fr/~marche/tpdb/format.html

5

http://cl-informatik.uibk.ac.at/software/cpf
http://www.scala-lang.org/
http://www.termination-portal.org/wiki/XTC_Format_Specification
http://www.lri.fr/~marche/tpdb/format.html


LPO termination tool
KBCV MKBTT MAXCOMP KBCV MKBTT Slothrop

completed 85 70 86 86 81 71

LS94 P1 X X
SK90 3.26 X X
Slothrop cge X
Slothrop equiv proof or X
WS06 proofreduction X

Table 1: Experimental results on 115 systems.

load ../examples/gene.trs
orient > 1
simplify
...

Saving the current command log is done via (File → Export Command Log) and
loading works alike (File → Load Command Log). Command logs saved in the
file .kbcvinit are loaded automatically on program startup.

Although the major attraction of KBCV clearly is its interactive mode,
in the sequel experimental results demonstrate that its automatic mode can
compete with state-of-the-art completion tools. To this end we extend [5, Ta-
ble 1] with data for KBCV (considering 115 problems from the distribution
of MKBTT).7 Hence Table 18 compares KBCV with MKBTT [8], MAXCOMP [5],
and Slothrop [11]. Within a time limit of 300 seconds, KBCV completes 85 sys-
tems using its internal LPO and succeeds on an additional system when calling
the external termination tool TTT2 [6]. Slothrop [11] was the first tool to con-
struct reduction orders on the fly using external termination tools and obtains 71
completed systems. MKBTT [8] adopts this approach, but additionally features
multi-completion, i.e., considering multiple reduction orderings at the same time.
Finally, the strategy of MAXCOMP [5] is to handle all suitable candidate TRSs
(terminating and maximal) at once. MAXCOMP can complete 86 systems with
LPO but since the search for maximal TRSs is coupled with the search for the
reduction order this approach does not support external termination tools. All
tools together can complete 95 systems. The lower part of Table 1 shows those
systems which only one tool could complete within the given time limit. Here
KBCV completed two systems where all other tools failed.

All 86 completion proofs found by KBCV (Table 1) could be certified by
CeTA [10] (see Section 2.3). Since recently, MKBTT can also provide proof certifi-
cates but currently neither MAXCOMP nor Slothrop support them.

7 http://cl-informatik.uibk.ac.at/software/mkbtt
8 KBCV data available from http://cl-informatik.uibk.ac.at/software/kbcv/

experiments/12ijcar.

6

http://cl-informatik.uibk.ac.at/software/mkbtt
http://cl-informatik.uibk.ac.at/software/kbcv/experiments/12ijcar
http://cl-informatik.uibk.ac.at/software/kbcv/experiments/12ijcar


4 Conclusion

In this paper we have presented KBCV, a tool that supports interactive com-
pletion proofs. Hence it is of particular interest for students and users that are
exposed to the area of completion for the first time or want to follow a comple-
tion proof step by step. Its automatic mode can compete with modern comple-
tion tools (Slothrop, MKBTT, MAXCOMP) that use more advanced techniques
for completion (completion with external termination tools, multi-completion,
maximal-completion) but lack an interactive mode. Since KBCV records how
rules have been derived, it can produce certifiable output of completion proofs
and can construct (dis)proofs in equational logic.

Unfailing completion [3] is a variant of Knuth-Bendix completion, which sac-
rifices confluence for ground confluence. One possible direction for future work
would be to integrate unfailing completion into KBCV. Another issue is to gain
further efficiency by a smart design of the employed data structure [7].

Acknowledgments We thank Christian Sternagel and the reviewers for helpful
comments and suggestions concerning efficiency.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University
Press, New York (1999)

2. Bachmair, L., Dershowitz, N.: Equational inference, canonical proofs, and proof
orderings. Journal of the ACM 41(2), 236–276 (1994)

3. Bachmair, L., Dershowitz, N., Plaisted, D.: Completion without failure. In: Resolu-
tion of Equations in Algebraic Structures, Vol. 2: Rewriting Techniques. 1–30(1989)

4. Huet, G.P.: A complete proof of correctness of the Knuth-Bendix completion
algorithm. J. Comput. Syst. Sci. 23(1), 11–21 (1981)

5. Klein, D., Hirokawa, N.: Maximal completion. In: Schmidt-Schauß, M. (ed.) RTA.
LIPIcs, vol. 10, pp. 71–80. Schloss Dagstuhl, Dagstuhl (2011)

6. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: Treinen, R. (ed.) RTA. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009)

7. Lescanne, P.: Completion procedures as transition rules + control. In: Dı́az,
J., Orejas, F. (eds.) TAPSOFT. LNCS, vol. 351, pp. 28–41. Springer, Heidelberg
(1989)

8. Sato, H., Winkler, S., Kurihara, M., Middeldorp, A.: Multi-completion with termi-
nation tools (system description). In: Armando, A., Baumgartner, P., Dowek, G.
(eds.) IJCAR. LNCS (LNAI), vol. 5195, pp. 306–312. Springer, Heidelberg (2008)

9. Sternagel, T., Thiemann, R., Zankl, H., Sternagel, C.: Recording completion for
finding and certifying proofs in equational logic. In: IWC. (2012)

10. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs. LNCS, vol. 5674,
pp. 452–468. Springer, Heidelberg (2009)

11. Wehrman, I., Stump, A., Westbrook, E.: Slothrop: Knuth-Bendix completion with
a modern termination checker. In: Pfenning, F. (ed.) RTA. LNCS, vol. 4098, pp.
287–296. Springer, Heidelberg (2006)

7


	KBCV--Knuth-Bendix Completion Visualizer 

