
Noname manuscript No.
(will be inserted by the editor)

Proof Pearl – A Mechanized Proof of GHC’s Mergesort

Christian Sternagel

Received: date / Accepted: date

Abstract We present our Isabelle/HOL formalization of GHC’s sorting algorithm
for lists, proving its correctness and stability. This constitutes another example
of applying a state-of-the-art poof assistant to real-world code. Furthermore, it
allows users to take advantage of the formalized algorithm in generated code.

Keywords Mergesort · Theorem Proving · Code Generation

CR Subject Classification D.1.1 · D.2.4 · F.2.2 · F.3.1

1 Introduction

In proof assistants, like Isabelle/HOL [4], it is common to use definitions of al-
gorithms that look more like specifications than actual implementations, in the
following sense: Specifications are typically easy to understand (but possibly in-
efficient) and prefer abstract datatypes (like sets) over concrete datatypes (like
lists). In contrast, implementations are often tuned for performance and incom-
prehensible for the uninitiated.

Specifications facilitate high-level proofs that are mostly concerned with ab-
stract properties and avoid “implementation details” that tend to be tedious. From
the logical viewpoint this is mostly the end of the story: we define an algorithm and
prove its desired properties. For actual use in real-world code, however, such spec-
ifications are often not efficient enough. This is where algorithm refinement comes
into play. That is, we implement an alternative, more efficient, variant of our algo-
rithm and formally prove that both versions are equivalent, i.e., their extensional
behaviors coincide. Or put differently: given equal arguments, both variants yield
the same results.

Additionally, Isabelle/HOL, allows for code generation [2], i.e., to automatically
generate actual source code in various target languages (currently, Haskell, OCaml,

This research is supported by the Austrian Science Fund (FWF): J3202

Christian Sternagel
School of Information Science, Japan Advanced Institute of Science and Technology, Japan
E-mail: c-sterna@jaist.ac.jp

2 Christian Sternagel

Scala, and StandardML) from a given formalization of an algorithm. The resulting
code is correct by construction.

Together with algorithm refinement, code generation allows for the following
workflow for obtaining efficient verified programs in three steps: First formalize
easy variants of the constituting algorithms and prove all desired properties. Then,
formalize efficient variants of the same algorithms and prove them equivalent.
Finally, use code generation and obtain an efficient program that is guaranteed to
satisfy all properties that have been proven in the initial formalization.

In the following we present our Isabelle/HOL1 formalization of GHC’s sorting
algorithm for lists2 (for brevity, referred to as sort in the remainder). Along the
way, we prove its correctness and stability. In this work, we just give an overview
of the most important ideas and refer to the Archive of Formal Proofs [7] for details.

The remainder is structured as follows. In Section 2, we describe the implemen-
tation of sort in GHC’s standard library. Before we enter the main section, we give
some preliminaries (Section 3) that are related to sorting and already provided by
Isabelle/HOL. Our formalization is given in Section 4, where we prove correctness
and stability of sort . We finally conclude in Section 5.

Motivation. Our original motivation was to tune CeTA,3 a fully verified program
whose code is generated from an underlying Isabelle/HOL formalization [8]. CeTA

is a certifier for termination proofs of first-order term rewrite systems (TRSs). Such
proofs are highly modular, i.e., a given TRS is split into several TRSs for which
termination is proven separately, and often use transformation techniques (like
semantic labeling) that can blow up the number of rewrite rules exponentially.
Moreover, for reduction pairs, which are employed to delete rewrite rules from
TRSs that cannot be the cause of nontermination, a common task for a certifier
is to check that the remaining TRS is a subset of the original one. Since in CeTA,
TRSs are represented as lists of rewrite rules, this check incorporates sorting those
lists and was identified as one of the bottle-necks. Our first step was to replace
Isabelle/HOL’s default sorting algorithm (an insertsort variant provided in the
List theory) by a supposedly more efficient version from the library (a quicksort
variant provided in Multiset). Since this did not give the desired speedup (unfor-
tunately, CeTA does not work properly together with Efficient_Nat ; see also the
remark in Section 5) and our target programming language is Haskell, we decided
to formalize the sorting algorithm of GHC’s standard library.

Spoiler. Note that we do not prove anything about the runtime or space complexity
of sort (in the sources of GHC’s library it is claimed, that the current version
performs better than earlier ones on several benchmarks; however, we are not
aware of any formal proof). For us it suffices that on the examples we tested, sort

actually outperforms Isabelle/HOL’s quicksort variant. Furthermore, sort is part
of GHC’s standard library and thus our formalization constitutes a verification of
real-world code that is (at least implicitly) used in many Haskell programs.

1 Our development is based on version Isabelle2012 (May 2012).
2 www.haskell.org/ghc/docs/7.0-latest/html/libraries/base-4.3.1.0/src/Data-List.html#sort
3 More precisely, to make its runtime scale better on huge inputs.

www.haskell.org/ghc/docs/7.0-latest/html/libraries/base-4.3.1.0/src/Data-List.html#sort

Proof Pearl – A Mechanized Proof of GHC’s Mergesort 3

sort = sortBy compare
sortBy cmp = mergeAll . sequences
where

sequences (a:b:xs)
| a `cmp` b == GT = descending b [a] xs
| otherwise = ascending b (a:) xs

sequences xs = [xs]

descending a as (b:bs)
| a `cmp` b == GT = descending b (a:as) bs

descending a as bs = (a:as) : sequences bs

ascending a as (b:bs)
| a `cmp` b /= GT = ascending b (\ys -> as (a:ys)) bs

ascending a as bs = as [a] : sequences bs

mergeAll [x] = x
mergeAll xs = mergeAll (mergePairs xs)

mergePairs (a:b:xs) = merge a b : mergePairs xs
mergePairs xs = xs

merge as@(a:as') bs@(b:bs')
| a `cmp` b == GT = b : merge as bs'
| otherwise = a : merge as' bs

merge [] bs = bs
merge as [] = as

Listing 1: GHC’s Sort

2 GHC’s Sorting Algorithm

Consider GHC’s sorting algorithm for lists depicted in Listing 1. It is a merge-
sort variant that takes advantage of (reverse) sorted subsequences occurring in
the input. The three mutually recursive functions sequences, descending, and
ascending take care of transforming an input list into a list of sorted lists. To this
end, ascending detects sorted subsequences and returns them unchanged, while
descending detects reverse sorted subsequences and flips them along the way. The
resulting sequence of sorted lists is merged into a single list by mergeAll. Note
that this implementation behaves especially well on typically problematic cases
like sorted lists or reverse sorted lists as input. In both cases sequences just needs
a single traversal and no merging is required.

Before we treat our Isabelle/HOL formalization of sort , some words on it’s
origin. According to the GHC sources, the algorithm is rumored to be based on
code by Lennart Augustsson4 and possibly to bear similarities to an algorithm of
[5] (which does not seem to be available any longer) by Richard O’Keefe. This
rumor is supported by the chapter about sorting of [6]. However, we could not find
any definite answer.

In our Isabelle/HOL formalization we define sequences and merge_all as
shown in Figure 1 and Figure 2, respectively. When comparing this definitions
to the one from Listing 1, there are some differences that may need explanation.

4 www.mail-archive.com/haskell@haskell.org/msg01822.html

www.mail-archive.com/haskell@haskell.org/msg01822.html

4 Christian Sternagel

sequences key (a # b # xs) =
(if gt key a b then desc key b [a] xs else asc key b (op # a) xs)

sequences key [] = [[]]
sequences key [v] = [[v]]

asc key a as (b # bs) =
(if ¬ gt key a b then asc key b (λx. as (a # x)) bs

else as [a] # sequences key (b # bs))
asc key a as [] = as [a] # sequences key []

desc key a as (b # bs) =
(if gt key a b then desc key b (a # as) bs

else (a # as) # sequences key (b # bs))
desc key a as [] = (a # as) # sequences key []

Fig. 1: Formalization of sequences.

merge key (a # as) (b # bs) =
(if gt key a b then b # merge key (a # as) bs

else a # merge key as (b # bs))
merge key [] bs = bs
merge key (v # va) [] = v # va

merge_pairs key (a # b # xs) = merge key a b # merge_pairs key xs
merge_pairs key [] = []
merge_pairs key [v] = [v]

merge_all key [] = []
merge_all key [x] = x
merge_all key (v # vb # vc) = merge_all key (merge_pairs key (v # vb # vc))

Fig. 2: Formalization of merge_all.

First, partly for brevity and partly to conform to Isabelle/HOL’s naming con-
ventions, we changed the names of some functions. Furthermore, Isabelle/HOL’s
syntax is slightly different from Haskell’s. More specifically, ‘# ’ denotes list-cons
(‘:’ in Haskell) and the notation op f is used to turn an infix operator into a
function (i.e., op # corresponds to (:) in Haskell). Another difference is that in-
stead of Haskell’s Ord typeclass, we are using Isabelle/HOL’s built-in typeclass
linorder, whose instances are all linearly ordered types. As a consequence we do
not parametrize our functions over a compare-function, but rather over a key-
function that turns list-elements into elements of some linearly ordered type. For
brevity, we use the abbreviation gt key ≡ λy x. key x < key y (later, we will
also use lt key ≡ λx y. key x < key y and ge key ≡ λy x. key x ≤ key y).

Further note that Isabelle/HOL disambiguates the patterns on the left-hand
sides of equations such that at most one defining equation is applicable on any
term. In Haskell, on the other hand, this is guaranteed by trying patterns from
top to bottom.

Apart from this rather cosmetic changes, we hope that it is still sufficiently
obvious that our formalization is indeed handling the function of Listing 1. (By
the way, if you want to see the Haskell code that can be generated from the
formalization, just use

export code sequences merge_all in Haskell file -

Proof Pearl – A Mechanized Proof of GHC’s Mergesort 5

inside Isabelle/HOL.)

Note. The Haskell implementation of mergeAll is possibly nonterminating (when
called on the empty list), however, by construction the result of sequences contains
at least one element. Hence there is no problem. In Isabelle/HOL all functions must
be terminating and hence the Haskell version is not accepted. That is, why our
formalization of merge_all contains an extra case for the empty list (which is never
used for sorting).

3 Preliminaries

Before we describe the default sorting algorithm of Isabelle/HOL, let us have a
closer look at the properties that we are interested in. The two properties of main
interest are correctness and stability. In the following, we investigate each of them
in turn and show how they are formalized in Isabelle/HOL’s library.

Correctness. Probably the first thing that comes to our mind, when we think about
the correctness of a sorting algorithm, is that its result should be, well, sorted.

Definition 1 (Sortedness) A list is sorted when every two consecutive elements
are in order. In Isabelle/HOL this is expressed as an inductive predicate given by
the rules:

sorted []

[[∀ y∈set xs. x ≤ y; sorted xs]] =⇒ sorted (x # xs)

Note, however, that sortedness on its own is not sufficient to describe the correct-
ness of a sorting algorithm. Consider, e.g., the function wrongsort xs = []. Besides
its result being sorted, it is clearly not a correct sorting algorithm. It turns out
that we have to make sure that a potential sorting algorithm does not add or
remove elements. This property is formulated using multisets in Isabelle/HOL.
Where a multiset is like a set in that the order of elements is not important, but
may contain multiple copies of equal elements.

Definition 2 (Element Invariance) A function f ::α list ⇒ α list is element

invariant if it does neither add nor remove elements. More formally, f has to satisfy

multiset_of (f xs) = multiset_of xs

where multiset_of (defined in theory Multiset) turns a list into a multiset.

Together, the above two properties allow us to define the correctness of a sorting
algorithm.

Definition 3 (Correctness) A function f ::α list ⇒ α list is a correct sorting
algorithm whenever it is element invariant and produces only sorted results.

In the standard Isabelle/HOL distribution an archetypical sorting algorithm is
provided by

sort_key f xs = foldr (insort_key f) xs [] (1)

(in theory List) where insort_key is defined by the equations

6 Christian Sternagel

insort_key f x [] = [x]

insort_key f x (y # ys) =

(if ge f y x then x # y # ys else y # insort_key f x ys)

with corresponding sortedness and element invariance proofs in the theories List

and Multiset, respectively:

sorted_sort_key : sorted (map f (sort_key f xs))

multiset_of_sort : multiset_of (sort_key f xs) = multiset_of xs

Stability. Informally, a sorting algorithm is stable when it does not change the
relative order of equal elements. Since in Isabelle/HOL equality is built-in (and
hence there is no way to distinguish between two equal elements), stability of
a sorting algorithm can only be expressed in presence of a key-function, i.e., a
function that, given an element, produces a key according to which this element
should be sorted.

Example 1 Consider the list [2, 3, 2]. After sorting we obtain [2, 2, 3]. It is
impossible to say inside Isabelle/HOL whether the first 2 in the result is the same
as the first one in the input. Having a key-function, we can apply a simple trick.
First we add the indices of elements to the input [(2, 0), (3, 1), (2, 2)]. Then
we sort the list using the key-function fst (i.e., projecting to the first components
of the pairs). Finally, we can see for each 2, from which index in the input list it
originates. If the result is [(2, 0), (2, 2), (3, 1)] sorting was indeed stable.

Definition 4 (Stability) A sort function f ::(α ⇒ β) ⇒ α list ⇒ α list is
stable (w.r.t. the key-function key ::α ⇒ β) whenever the relative order of elements
having the same key does not change between xs and f key xs. In Isabelle/HOL
this is expressed as follows:

x ∈ set xs =⇒ [y←f key xs. key x = key y] = [y←xs. key x = key y]

We sometimes (as above) use the convenience syntax [x←xs. P x] instead of
filter P xs (where filter keeps just those elements of a list that satisfy the
given predicate).

Why are we actually interested in the above properties? Correctness should be
clear, we want to make sure that sort really is a sorting algorithm. But why do we
need stability? In principle there are several reasons why stability is interesting:
only stable sorting algorithms allow for incremental sorting (e.g., sort according to
key A and for those with equal A, sort according to key B), swapping elements may
cause memory updates on physical media, etc. However, our interest in stability
has more ad hoc reasons. Those will become clear after showing the following
lemma (which is to be found in theory Multiset)

[[multiset_of (f key xs) = multiset_of xs;V
k. k ∈ set (f key xs) =⇒

[x←f key xs. key k = key x] = [x←xs. key k = key x];

sorted (map key (f key xs))]]
=⇒ sort_key key xs = f key xs

(2)

which states that it is sufficient for a function f to be a correct (w.r.t. the key-
function key) and stable sorting algorithm, in order to be logically equivalent to

Proof Pearl – A Mechanized Proof of GHC’s Mergesort 7

sort_key. Hence, if we succeed in proving the above three assumptions for some
function f, we may use it interchangeably with sort_key. This, in turn, allows us to
install a more efficient sorting algorithm than (1) for code generation. Thus, every
formalization using sort_key can take advantage of the more efficient algorithm
in generated code for free.

4 Efficient Mergesort

The definition of sorting as given in (1) is a reasonable implementation and a good
compromise between efficiency and ease of specification. In the end, efficiency
is irrelevant for the logic and hence definitions should be as natural and easy
as possible. For code generation on the other hand, efficiency is a concern. The
typical way of handling this situation is starting with a natural, (maybe) inefficient,
but easy to use definition and use it throughout the formalization. Then, before
generating code, prove so called code equations that show the equivalence of this
natural definition to some more efficient variant. The remainder of this article does
exactly this, i.e., provide a code equation for sort_key that tunes its performance.
As we have seen at the end of Section 3, we need to show element invariance,
stability, and sortedness in order to prove a function equivalent to sort_key.

In the following, we describe our corresponding formalization and mention
how we managed to turn an initial formalization with tedious manual proofs and
having more than a thousand lines into a mere 400 lines (at least 100 lines less,
if we disregard auxiliary definitions that might be of general interest) where most
of the proofs are automatic (i.e., solved by automatic methods like auto, blast,
simp, etc., after indicating the used induction schema).

Obviously most non-trivial proofs about sequences require induction. Since we
have a mutual dependency on asc and desc this requires to prove simultaneously
according facts about those two functions. The induction schema that is provided
by Isabelle/HOL can be seen in Figure 3 in the appendix. Applying this schema
turned out to be quite tedious and required to strengthen the induction hypoth-
esis and introduce additional assumptions (both modifications were however only
necessary for asc, because of its function argument). We achieved a drastic sim-
plification by introducing an alternative induction schema for sequences. Before
giving this schema, we need two auxiliary functions which are generalizations of the
well known functions takeWhile and dropWhile (whose definitions are, e.g., avail-
able in theory List or Haskell’s standard prelude), where takeWhile p xs returns
the longest prefix of xs in which every element satisfies the predicate p and its
counterpart dropWhile p xs returns the remaining elements after removing such a
prefix. In the generalization, the predicate that decides whether we still take/drop
does not only depend on the current element, but additionally on the previous
one. Since in this way, starting from some default element, we can take/drop a
sequence in which every two consecutive elements are linked by the predicate, we
call such a sequence a chain. Here are the corresponding definitions:

take_chain a P [] = []

take_chain a P (x # xs) = (if P a x then x # take_chain x P xs else [])

drop_chain a P [] = []

drop_chain a P (x # xs) = (if P a x then drop_chain x P xs else x # xs)

8 Christian Sternagel

It is easily shown by induction that takeWhile and dropWhile are just special cases
of take_chain and drop_chain, i.e.,

take_chain a (λx. P) xs = takeWhile P xs

drop_chain a (λx. P) xs = dropWhile P xs

A characteristic property of take_chain and drop_chain that we will need later
(and which is easily proven by induction) is the following:

take_chain a P xs @ drop_chain a P xs = xs (3)

Having take_chain and drop_chain, we can get rid of all occurrences of asc and
desc inside the definition of sequences as is shown by the lemmas

asc key b (op # a) xs =

(a # b # take_chain b (λx y. ge key y x) xs) #

sequences key (drop_chain b (λx y. ge key y x) xs)

desc key a bs xs =

(rev (take_chain a (gt key) xs) @ a # bs) #

sequences key (drop_chain a (gt key) xs)

and (relatively) easily proven by induction over xs (we need to generalize the first
equation to an arbitrary f satisfying f (xs @ ys) = f xs @ ys and an arbitrary
list as, instead of op # and a, for the induction to run through). This gives rise to
an alternative induction schema for sequences

[[
V
key. P key [];

V
key x. P key [x];V

key a b xs.

[[ge key b a =⇒ P key (drop_chain b (λx y. ge key y x) xs);

¬ ge key b a =⇒ P key (drop_chain b (gt key) xs)]]
=⇒ P key (a # b # xs)]]

=⇒ P key xs

Now, this looks much better! We will no longer bother with asc and desc.
Our next step on the way to sortedness is a generalization of the sorted pred-

icate that works well together with take_chain and drop_chain. We call the in-
ductive predicate linked and define it by the rules:

linked P []

linked P [x]

[[P x y; linked P (y # ys)]] =⇒ linked P (x # y # ys)

In contrast to sorted, it makes tests on consecutive elements explicit (whereas for
sorted, all remaining elements are checked in a single rule) and allows us to use an
arbitrary predicate (which is a perfect fit for our take and drop generalizations).
Having linked, it is easy to show

linked P (x # take_chain x P xs)

linked op ≤ xs = sorted xs

Proof Pearl – A Mechanized Proof of GHC’s Mergesort 9

thereby showing that sorted is just a special case of linked and that the result of
take_chain is always a chain (w.r.t. the given predicate), which is needed in the
proof that sequences generates a list of sorted lists.

Now we have the main ingredients to prove two important facts, sequences

does not remove or add elements and generates a list of sorted lists. Both proofs
are by induction using our newly introduced induction schema for sequences and
run through automatically in Isabelle/HOL. Hence, we just give the lemmas

∀ x∈set (sequences key xs). sorted (map key x) (4)

multiset_of (concat (sequences key xs)) = multiset_of xs (5)

where concat concatenates all elements of a list of lists into a single list.
The corresponding facts for merge_all are automatically proven by induction:

∀ x∈set xs. sorted (map key x) =⇒
sorted (map key (merge_all key xs))

(6)

multiset_of (merge_all key xs) = multiset_of (concat xs) (7)

Together, (5) and (7) yield element invariance of merge_all key ◦ sequences key

(where ‘◦’ denotes function composition, i.e., (f ◦ g) x = f (g x)), whereas (4)
and (6) yield sortedness, i.e.,

multiset_of (merge_all key (sequences key xs)) = multiset_of xs (8)

sorted (map key (merge_all key (sequences key xs))) (9)

showing that merge_all key ◦ sequences key is a correct sorting algorithm.
At this point (corresponding roughly to the first half of our formalization), we

turn our attention to stability. Stability (or at least a very similar property) of
sequences is proven by the lemma

[y←concat (sequences key xs). key x = key y] =

[y←xs. key x = key y]
(10)

again, using our custom induction schema together with (3) and the auxiliary
lemmas

ge key a b =⇒ [y←take_chain b (gt key) xs. key a = key y] = []

filter P (take_chain x Q xs) @ filter P (drop_chain x Q xs) = filter P xs

[y←rev (take_chain b (gt key) xs). key x = key y] =

[y←take_chain b (gt key) xs. key x = key y]

all of which are automatically proven by induction.
The first step towards stability of merge_all, is proving the lemma

sorted (map key xs) =⇒
[y←merge key xs ys. key x = key y] =

[y←xs. key x = key y] @ [y←ys. key x = key y]

(11)

which states that for sorted lists xs, merge behaves like list-append on lists that
are filtered corresponding to a specific key. To this end, we apply the same ideas
that were already used for sequences : First, we introduce an alternative induction
schema that combines several recursive calls into a single one by means of an

10 Christian Sternagel

auxiliary function. (In the case of merge the auxiliary function is dropWhile rather
than the slightly more complicated drop_chain.) Then, we prove some easy lemmas
about the auxiliary function and its comrade (takeWhile instead of take_chain,
in the case of merge). Finally, we put everything together by applying the new
induction schema. Since you have seen all this for sequences, we just give the
alternative induction schema

[[sorted (map key xs);
V
xs. P xs [];V

xs y ys.

[[sorted (map key xs); P (dropWhile (ge key y) xs) ys]]
=⇒ P xs (y # ys)]]

=⇒ P xs ys

This induction schema allows us to prove facts about merge in a context where its
first argument is sorted (which is the case for all lists in the result of sequences, as
we showed earlier) and combines multiple recursive calls (as if merge took elements
from the first argument as long as all of them were greater than or equal to the
head of the second argument).

We have to show the corresponding properties for merge_pairs and merge_all,
which are

∀ xs∈set xss. sorted (map key xs) =⇒
[y←concat (merge_pairs key xss). key x = key y] =

[y←concat xss. key x = key y]

(12)

∀ xs∈set xss. sorted (map key xs) =⇒
[y←merge_all key xss. key x = key y] =

[y←concat xss. key x = key y]

(13)

and proven by induction using (11). An easy consequence of (13) and (4) is

[x←merge_all key (sequences key xs). key y = key x] =

[x←xs. key y = key x]
(14)

showing stability of merge_all key ◦ sequences key.
Finally, using (2), whose assumptions are discharged by (8), (14), and (9), we

can establish the equation:

sort_key key = merge_all key ◦ sequences key

5 Conclusions and Related Work

We have given an Isabelle/HOL formalization of GHC’s mergesort algorithm,
showing correctness and stability. On the one hand, this showcases once more that
state-of-the-art proof assistants, like Isabelle/HOL, can be used to verify real-world
code. On the other hand, our formalization allows existing theories that rely on
Isabelle/HOL’s default sorting algorithm to take advantage of the more efficient
sort during code generation. Doing this is as easy as importing Efficient_Sort

(from the Archive of Formal Proofs) in the header of your theory.
The key points to achieve such a compact formalization are custom induc-

tion schemes and generalizations. The former is greatly alleviated by a bunch of
Isabelle/HOL commands that were originally developed as part of the function

Proof Pearl – A Mechanized Proof of GHC’s Mergesort 11

Haskell OCaml Scala StandardML
#-elements is qs is qs is qs is qs

100,000 6.9 1.2 0.8 4.7 1.1 17.2 1.4 3.6
inc 500,000 ∞ 1.5 2.4 9.9 2.4 61.2 1.5 4.2

1,000,000 ∞ 1.8 4.3 16.0 2.1 19.2 10.2 17.9
100,000 ∞ 1.2 ∞ 16.8 ∞ 15.0 ∞ 4.3

dec 500,000 ∞ 1.6 ∞ 41.4 ∞ 91.2 ∞ 5.0
1,000,000 ∞ 2.0 ∞ 74.3 ∞ 37.8 ∞ 18.9

100,000 ∞ 1.1 ∞ 1.4 ∞ 3.0 ∞ 1.2
rnd 500,000 ∞ 1.2 ∞ 1.7 ∞ 3.9 ∞ 1.2

1,000,000 ∞ 1.4 ∞ 1.8 ∞ 4.8 ∞ 1.4

Table 1: Relative speedup of sort .

package [3] and deserve broader attention: the induction_schema command to-
gether with pat_completeness and lexicographic_order (or any other way of
proving well-foundedness of the induction relation automatically) makes writing
customized induction schemes a breeze. The latter is of course well-known, nev-
ertheless, we think that the generalizations linked, take_chain, and drop_chain

constitute another nice example of this concept.

Assessment. In order to compare the generated code for sort to Isabelle/HOL’s
default insertsort (is) and the alternative quicksort (qs) from theory Multiset, we
conducted some experiments whose results can be seen in Table 1. We tested the
code generated for different target languages (Haskell, OCaml, Scala, and Stan-
dardML) on ascending (inc), descending (dec), and random (rnd) lists of integers of
various sizes (100,000 elements, 500,000 elements, and 1,000,000 elements, respec-
tively). In each column of the table, the speedup of sort with respect to the given
algorithm is listed (i.e., a number greater than 1 indicates that sort was faster),
where we aborted tests after a timeout of 60 seconds (indicated by a speedup of
∞). Each value corresponds to the average results on 100 samples. For every target
language, a small wrapper program reads a list of integers and applies the sorting
algorithm under consideration. Note that qs performs orders of magnitude worse,
if it is not used together with the theory Efficient_Nat, since the pivot of a list
is computed using Isabelle/HOL’s nat type which by default uses Peano numbers
(also in generated code).

A note on Efficient_Nat. The default representation of natural numbers in Is-
abelle/HOL is by the datatype

datatype nat = 0 | Suc nat

that is, a unary encoding by so called Peano numbers. Compared to the integer

types which are typically part of any programming language, arithmetic operations
on Peano numbers are quite slow. To solve this problem, the theory Efficient_Nat

(which in turn is based on Num) may be loaded to set up the code generator such
that it uses the following more efficient binary encoding of natural numbers:

datatype num = One | Bit0 num | Bit1 num

12 Christian Sternagel

In the quicksort variant of Isabelle/HOL, the pivot is computed by division on
natural numbers. An advantage of sort is that it does not involve any arith-
metic operations on natural numbers and thus performs well even without loading
Efficient_Nat.

It turns out that sort is the algorithm of choice, independent of the used target
language, performing slightly better than qs, even when Efficient_Nat is loaded.

Related Work. We are aware of two other formalizations of mergesort. The first
is a Coq formalization5 which does, however, not consider stability (which we
personally found to be the most challenging part). The second is an ACL2 formal-
ization6 which, again, does not consider stability and is based on a theory of so
called powerlists.

There are also formalizations of other sorting algorithms in various systems,
e.g., insertsort, quicksort, and heapsort in Coq [1]; insertsort (theory List) and
quicksort (theory Multiset) in Isabelle/HOL.

Acknowledgments. We thank the anonymous referees for helpful suggestions.

References

1. Filliâtre, J.C., Magaud, N.: Certification of sorting algorithms in the Coq system. In:
Theorem Proving in Higher Order Logics: Emerging Trends (1999). http://www-sop.inria.
fr/croap/TPHOLs99/proceeding.html

2. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: M. Blume,
N. Kobayashi, G. Vidal (eds.) Functional and Logic Programming, FLOPS 2010, Lec-
ture Notes in Computer Science, vol. 6009, pp. 103–117. Springer (2010). doi:10.1007/
978-3-642-12251-4_9

3. Krauss, A.: Partial and nested recursive function definitions in higher-order logic. Journal
of Automated Reasoning 44(4), 303–336 (2010). doi:10.1007/s10817-009-9157-2

4. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for Higher-
Order Logic, Lecture Notes in Computer Science, vol. 2283. Springer (2002). doi:10.
1007/3-540-45949-9

5. O’Keefe, R.: A smooth applicative merge sort. Tech. rep., Department of Artificial Intelli-
gence, University of Edinburgh (1982)

6. Paulson, L.C.: ML for the Working Programmer, second edn. Cambridge University Press,
New York, NY, USA (1996)

7. Sternagel, C.: Efficient Mergesort. In: G. Klein, T. Nipkow, L.C. Paulson (eds.) The Archive
of Formal Proofs. http://afp.sf.net/entries/Efficient-Mergesort.shtml (2011). For-
mal proof development

8. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In: S. Berghofer,
T. Nipkow, C. Urban, M. Wenzel (eds.) Theorem Proving in Higher Order Logics, TPHOLs
2009, Lecture Notes in Computer Science, vol. 5674, pp. 452–468. Springer (2009). doi:10.
1007/978-3-642-03359-9_31

5 http://coq.inria.fr/stdlib/Coq.Sorting.Mergesort.html
6 www.cs.utexas.edu/users/moore/acl2/books/books/powerlists/merge-sort.lisp

http://www-sop.inria.fr/croap/TPHOLs99/proceeding.html
http://www-sop.inria.fr/croap/TPHOLs99/proceeding.html
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1007/s10817-009-9157-2
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://afp.sf.net/entries/Efficient-Mergesort.shtml
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://coq.inria.fr/stdlib/Coq.Sorting.Mergesort.html
www.cs.utexas.edu/users/moore/acl2/books/books/powerlists/merge-sort.lisp

Proof Pearl – A Mechanized Proof of GHC’s Mergesort 13

Appendix

[[
V
key a b xs.

[[gt key a b =⇒ R key b [a] xs; ¬ gt key a b =⇒ Q key b (op # a) xs]]
=⇒ P key (a # b # xs);V

key. P key [];
V
key v. P key [v];V

key a f b bs.
[[¬ gt key a b =⇒ Q key b (f ◦ op # a) bs;
¬ ¬ gt key a b =⇒ P key (b # bs)]]

=⇒ Q key a f (b # bs);V
key a f. P key [] =⇒ Q key a f [];V
key a as b bs.

[[gt key a b =⇒ R key b (a # as) bs; ¬ gt key a b =⇒ P key (b # bs)]]
=⇒ R key a as (b # bs);V

key a as. P key [] =⇒ R key a as []]]
=⇒ P a0.0 a1.0
[[
V
key a b xs.

[[gt key a b =⇒ R key b [a] xs; ¬ gt key a b =⇒ Q key b (op # a) xs]]
=⇒ P key (a # b # xs);V

key. P key [];
V
key v. P key [v];V

key a f b bs.
[[¬ gt key a b =⇒ Q key b (f ◦ op # a) bs;
¬ ¬ gt key a b =⇒ P key (b # bs)]]

=⇒ Q key a f (b # bs);V
key a f. P key [] =⇒ Q key a f [];V
key a as b bs.

[[gt key a b =⇒ R key b (a # as) bs; ¬ gt key a b =⇒ P key (b # bs)]]
=⇒ R key a as (b # bs);V

key a as. P key [] =⇒ R key a as []]]
=⇒ Q a2.0 a3.0 a4.0 a5.0
[[
V
key a b xs.

[[gt key a b =⇒ R key b [a] xs; ¬ gt key a b =⇒ Q key b (op # a) xs]]
=⇒ P key (a # b # xs);V

key. P key [];
V
key v. P key [v];V

key a f b bs.
[[¬ gt key a b =⇒ Q key b (f ◦ op # a) bs;
¬ ¬ gt key a b =⇒ P key (b # bs)]]

=⇒ Q key a f (b # bs);V
key a f. P key [] =⇒ Q key a f [];V
key a as b bs.

[[gt key a b =⇒ R key b (a # as) bs; ¬ gt key a b =⇒ P key (b # bs)]]
=⇒ R key a as (b # bs);V

key a as. P key [] =⇒ R key a as []]]
=⇒ R a6.0 a7.0 a8.0 a9.0

Fig. 3: Default induction schema for sequences.

	Introduction
	GHC's Sorting Algorithm
	Preliminaries
	Efficient Mergesort
	Conclusions and Related Work

