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Abstract. Matrix interpretations are a powerful technique for proving
termination of term rewrite systems. Depending on the underlying do-
main of interpretation, one distinguishes between matrix interpretations
over the real, rational and natural numbers. In this paper we clarify the
relationship between all three variants, showing that matrix interpreta-
tions over the reals are more powerful than matrix interpretations over
the rationals, which are in turn more powerful than matrix interpreta-
tions over the natural numbers. We also clarify the ramifications of ma-
trix dimension on termination proving power. To this end, we establish a
hierarchy of matrix interpretations with respect to matrix dimension and
show it to be infinite, with each level properly subsuming its predecessor.
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1 Introduction

Since their inception in 2006, matrix interpretations have evolved into one of the
most important (that is, powerful) methods for termination analysis and com-
plexity analysis of term rewrite systems. While originally introduced by Hofbauer
and Waldmann as a stand-alone method for termination proofs in the context
of string rewriting [13,14], allowing them to solve challenging termination prob-
lems like {aa → bc, bb → ac, cc → ab}, problem #104 on the RTA list of open
problems,1 it was not long until Endrullis et al. [6] generalized (one particular
instance of) the matrix method to term rewriting and also incorporated it into
the dependency pair (DP) framework [3,9–11,23], the state-of-the-art framework
for establishing termination of term rewrite systems.

The matrix method is based on the well-known paradigm of interpreting
terms into a domain equipped with a suitable well-founded order. In the original
approach of [6], the authors consider the set of vectors of natural numbers as
underlying domain, together with a well-founded order that relates two vectors
if and only if there is a strict decrease in the respective first components and
a weak decrease in all other components. Function symbols are interpreted by
suitable linear mappings represented by square matrices of natural numbers.
Recently, another generalization appeared in [5] that employs matrices of natural
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numbers as underlying domain and interprets each function symbol by a linear
matrix polynomial. In principle, this approach also allows for non-linear matrix
polynomials. In [1, 7, 24] the method of Endrullis et al. was lifted to the non-
negative rational and real (algebraic) numbers using the same technique that
was already used to lift polynomial interpretations from the natural numbers
to the rationals and reals (cf. [12]). Thus, one distinguishes three variants of
matrix interpretations, matrix interpretations over the real, rational and natural
numbers. So the obvious question is: what is their relationship with regard to
termination proving power?

As a starting point, it is instructive to restrict to one-dimensional matrix
interpretations, that is, linear polynomial interpretations, for which the termi-
nation hierarchy is known (cf. [16,18]) and can be pictured as in Figure 1. That

terminating TRSs

R Q N

Fig. 1. Linear polynomial interpretations

is, linear polynomial interpretations over the real numbers subsume linear poly-
nomial interpretations over the rational numbers, which in turn subsume linear
polynomial interpretations over the natural numbers. Both inclusions are proper.
To this end, [16] introduces the rewrite systems RQ and RR, the first of which
can be shown terminating by a linear polynomial interpretation over the rational
numbers but not over the natural numbers. Similarly, the second system can be
shown terminating by a linear polynomial interpretation over the reals but not
over the rationals. Unfortunately, the usefulness of both RQ and RR is limited
to dimension one (cf. [17]) because, without restricting the dimension, both sys-
tems can be handled with 2-dimensional matrix interpretations over the natural
numbers. In this context, we also mention related work appearing in [8], where a
relative termination problem in the form of a string rewrite system is presented
that can be handled with matrix interpretations over the rationals but not with
matrix interpretations over the natural numbers. However, relative termination
is essential in this example because the relative component is the key ingredient
for precluding matrix interpretations over the natural numbers. As the latter
component consists of a single non-terminating rule, the entire example does
not readily generalize to (real) termination problems. Besides, there is no ev-
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idence in [8] demonstrating the benefit of using irrational numbers in matrix
interpretations. Thus, we conclude that new techniques are required to clarify
the relationship between the aforementioned variants of matrix interpretations.

One of the main results of this paper is to show that the termination hi-
erarchy depicted in Figure 1 does in fact extend from one-dimensional matrix
interpretations to arbitrary matrix interpretations. That is, matrix interpreta-
tions over the reals are more powerful with respect to proving termination than
matrix interpretations over the rationals, which are in turn more powerful than
matrix interpretations over the natural numbers. In particular, we show that
this relationship does not only hold in the context of direct termination (us-
ing matrix interpretations as a stand-alone method) but also in the setting of
the DP framework. Moreover, our results point out the limitations of a recent
attempt [17] to simulate matrix interpretations over the rationals with matrix
interpretations over the natural numbers (of higher dimension).

We also investigate the ramifications of matrix dimension on termination
proving power. Clearly, by increasing the dimension, one can never lose power (in
theory; in practice the increased search space may prohibit finding a termination
proof). But what is the exact shape of the inherent dimension hierarchy? A
partial answer to this question was given in [8], where the authors show that
the hierarchy is infinite. Yet no exact information is provided as to which levels
are actually inhabited. We close this gap in the second part of this paper, thus
giving a complete answer to the question raised above. To this end, we establish a
hierarchy of matrix interpretations with respect to matrix dimension and show
it to be infinite, with each level properly subsuming its predecessor. In other
words, we show that matrix interpretations of dimension (n+1) are strictly more
powerful for proving termination than n-dimensional matrix interpretations (for
any n > 1). The construction we use for this purpose is entirely different from the
one proposed in [8]. Apart from the fact that it allows to infer the exact shape
of the dimension hierarchy, it has the additional advantage that it produces
witnesses (that is, rewrite systems) that are substantially smaller than the ones
of [8]. To be precise, the construction employed in [8] gives rise to a family of
string rewrite systems (Sd)d>2 having the property that any of its members S2d

(of even index) cannot be handled with matrix interpretations of dimension d or
less (as a consequence of the Amitsur-Levitzki theorem [2]), but can be handled
with dimension d′ = 2d+ 3. Each system Sd consists of the following rules over
the finite alphabet Σd = {s, 1, . . . , d, f}: s ek f → s ok f for all 1 6 k 6 d!

2 . Here,
e1, e2, . . . (o1, o2, . . .) is any enumeration of even (odd)2 permutations of the
symbols {1, . . . , d}. Hence, the number of rewrite rules in Sd exhibits factorial
growth in the dimension d. In contrast, the systems created by our approach
have constant size and the dimension d′ is optimal, i.e., d′ = d+ 1.

The remainder of this paper is organized as follows. In the next section we
recall preliminaries from linear algebra and term rewriting. In particular, we
review the matrix method for establishing termination of term rewrite systems.

2 A permutation is called even (odd) if it can be written as a composition of an even
(odd) number of transpositions.
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Then, in Section 3, we show that matrix interpretations over the reals are more
powerful than matrix interpretations over the rationals, which are in turn more
powerful than matrix interpretations over the natural numbers. Subsequently, we
present our results on the dimension hierarchy related to matrix interpretations
in Section 4, before concluding with suggestions for future research in Section 5.

2 Preliminaries

As usual, we denote by N, Z, Q and R the sets of natural, integer, rational and
real numbers. A real number is said to be algebraic if it is a root of a non-zero
polynomial in one indeterminate with integer coefficients, otherwise it is said to
be transcendental. The set of all real algebraic numbers is denoted by Ralg. Given
D ∈ {N,Z,Q,Ralg,R} and m ∈ D, >D (resp. > if D is clear from the context)
denotes the natural order of the respective domain, >D (resp. >) its reflexive
closure, and Dm abbreviates {x ∈ D | x > m}; for example, Q0 (R0) refers to
the set of all non-negative rational (real) numbers.

2.1 Linear Algebra

Let R be a commutative ring (e.g., Z, Q, Ralg, R). The ring of all n-dimensional
square matrices over R is denoted by Rn×n and the polynomial ring in n indeter-
minates x1, . . . , xn by R[x1, . . . , xn]. In the special case n = 1, any polynomial
p ∈ R[x] can be written as p(x) =

∑d
k=0 akx

k for some d ∈ N. For the largest
k such that ak 6= 0, we call akxk the leading term of p, ak its leading coefficient
and k its degree. The polynomial p is said to be monic if its leading coefficient
is one. It is said to be linear, quadratic, cubic if its degree is one, two, three.

In case R is equipped with a partial order >, the component-wise extension
of this order to Rn×n is also denoted by >. The n×n identity matrix is denoted
by In and the n × n zero matrix by 0n. We simply write I and 0 if n is clear
from the context. We say that a matrix A is non-negative if A > 0 and denote
the set of all non-negative n-dimensional square matrices of Zn×n by Nn×n. As
usual, we write AT for the transpose of a matrix (vector) A.

For a square matrix A ∈ Rn×n, the characteristic polynomial χA(λ) is defined
as det(λIn − A), where det denotes the (matrix) determinant. It is a monic
polynomial of degree n with coefficients in R. The equation χA(λ) = 0 is called
the characteristic equation of A. The solutions of this equation, that is, the roots
of χA(λ), are precisely the eigenvalues of A. If R is a subset of an algebraically
closed field (where each polynomial of degree n with coefficients in the field
is guaranteed to have exactly n roots), then A has exactly n (not necessarily
distinct) eigenvalues in this field.

We say that a polynomial p ∈ R[x] annihilates a square matrix A ∈ Rn×n
if p(A) = 0. The Cayley-Hamilton theorem [21] states that A satisfies its own
characteristic equation, that is, χA annihilates A. Let R be a field and consider
the set { p ∈ R[x] | p(A) = 0 } of annihilating polynomials of A ∈ Rn×n. This
set is generated by the minimal polynomial mA(x) of A, which is the unique
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monic polynomial of minimum degree that annihilates A. Any polynomial that
annihilates A is a (polynomial) multiple of mA(x). In other words, if p(A) = 0 for
p ∈ R[x], then mA(x) divides p(x). In particular, mA(x) divides the characteristic
polynomial of A, and mA(λ) = 0 if and only if λ is an eigenvalue of A (cf. [15]).

2.2 Term Rewriting

We assume familiarity with the basics of term rewriting [4, 22]. Let V denote a
countably infinite set of variables and F a signature, that is, a set of function
symbols equipped with fixed arities. The set of terms over F and V is denoted
by T (F ,V). A rewrite rule is a pair of terms written as `→ r such that ` is not
a variable and all variables of r are contained in `. A term rewrite system (TRS
for short) R over T (F ,V) is a finite set of rewrite rules. The rewrite relation
induced by → is denoted by →R. As usual, →∗R denotes the reflexive transitive
closure of →R.

2.3 Monotone Algebras and Matrix Interpretations

We use the following notation for monotone algebras [6]. An F-algebra A con-
sists of a non-empty carrier set A and a collection of interpretation functions
fA : Ak → A for each k-ary function symbol f ∈ F . By [α]A(·) we denote the
usual evaluation function of A with respect to a variable assignment α : V → A.
A weakly monotone F-algebra (A, >,>) is an F-algebra A together with two
binary relations > and > on A such that > is well-founded, > · > ⊆ > and for
each f ∈ F , fA is monotone with respect to > (in all arguments). If, in addition,
each fA is monotone with respect to >, then we speak of an extended monotone
algebra. Any monotone algebra (A, >,>) (or just A if > and > are clear from
the context) induces the following relations on T (F ,V):

– s >A t if and only if [α]A(s) > [α]A(t) for all assignments α, and
– s >A t if and only if [α]A(s) > [α]A(t) for all assignments α.

We say that a monotone algebra A is compatible with a rewrite rule ` → r if
` >A r, it is said to be weakly compatible if ` >A r. In the same vein, we say
that A is (weakly) compatible with a TRS R if it is (weakly) compatible with all
rewrite rules of R. We use the following abbreviations: R ⊆ >A for compatibility
and R ⊆ >A for weak compatibility.

It is well-known that a TRS is terminating if and only if there is an extended
monotone algebra that is compatible with it (cf. [6, Theorem 2]). Moreover,
extended monotone algebras facilitate incremental termination proofs (cf. [6,
Theorem 3]). To this end, let A be an extended monotone algebra and suppose
R is a TRS such that R ⊆ >A and S ⊆ >A for some non-empty subset S of R.
Then, after removing all S-rules fromR, termination ofR\S implies termination
of R. Thus, one is free to choose a different extended monotone algebra for the
remaining rules R\S. This process is continued until eventually all rewrite rules
have been removed.
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Weakly monotone algebras play an important role in the context of termi-
nation analysis in the DP framework. In this modular framework, the problem
of establishing termination of a TRS is typically split into several subproblems
called DP problems. A DP problem is a pair (P,S), where P and S are finite
sets of rewrite rules such that the root symbols of the rules in P neither occur
in S nor in proper subterms of the left- and right-hand sides of the rules in P.
In the sequel, we sometimes write ( ,S) to indicate that we are only interested
in the second component of a DP problem. A DP processor is a mapping that
takes a DP problem as input and returns a set of DP problems as output. In the
context of this paper, we only consider DP processors based on reduction pairs.
Given a DP problem (P,S), the aim of such a processor is to return a simplified
version of its input by removing rules from the P component. It is well-known
that weakly monotone algebras give rise to reduction pairs. One can use them to
simplify DP problems as follows. Let A be a weakly monotone algebra and (P,S)
a DP problem. If P ∪ S ⊆ >A and P ′ ⊆ >A for some non-empty subset P ′ of
P, then one may remove all rules of P ′ from P, thus simplifying the original DP
problem to the DP problem (P \ P ′,S) containing less rules. In this situation,
we say that the weakly monotone algebra A succeeds on the DP problem (P,S),
otherwise it fails.

We define matrix interpretations as follows. For matrix interpretations over R,
we fix a dimension n ∈ N \ {0}, some positive real number δ and use the set Rn0
as the carrier of an algebra M, together with the orders >δ and > on Rn0 :

(x1, . . . , xn)T >δ (y1, . . . , yn)T ⇐⇒ x1 >R,δ y1 ∧ xi >R yi for i = 2, . . . , n
(x1, . . . , xn)T > (y1, . . . , yn)T ⇐⇒ xi >R yi for i = 1, . . . , n

Here, x >R,δ y if and only if x >R y + δ. Each k-ary function symbol f is
interpreted by a linear function of the shape

fM : (Rn0 )k → Rn0 , (x1, . . . ,xk) 7→ F1x1 + · · ·+ Fkxk + f

where x1, . . . ,xk are (column) vectors of variables, F1, . . . , Fk ∈ Rn×n0 and
f ∈ Rn0 . In this way, (M, >δ,>) forms a weakly monotone algebra. If, in ad-
dition, the top left entry (Fi)11 of each matrix Fi is at least one, then we call
M a monotone matrix interpretation over R, in which case (M, >δ,>) becomes
an extended monotone algebra. Note that in any case we have >M ⊆ >M since
>δ ⊆ > (independently of δ).

We obtain matrix interpretations over Ralg by restricting the carrier to the
set of vectors of non-negative real algebraic numbers. Similarly, matrix interpre-
tations over Q operate on the carrier Qn

0 . For matrix interpretations over N, one
uses the carrier Nn and δ = 1, such that

(x1, . . . , xn)T >δ (y1, . . . , yn)T ⇐⇒ x1 >N y1 ∧ xi >N yi for i = 2, . . . , n

According to [20], matrix interpretations over R are equivalent to matrix in-
terpretations over Ralg with respect to proving termination. So transcendental
numbers are not relevant for termination proofs based on matrix interpretations.
Nevertheless, for the sake of brevity of notation, we will stick to the term “matrix
interpretations over the real numbers” for the rest of this paper.
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3 The Domain Hierarchy

In this section we show that matrix interpretations over the real numbers are
more powerful with respect to proving termination than matrix interpretations
over the rational numbers, which are in turn more powerful than matrix inter-
pretations over the natural numbers. To begin with, we show that matrix inter-
pretations over R subsume matrix interpretations over Q, which in turn subsume
matrix interpretations over N. Then, in Sections 3.1 and 3.2, both inclusions are
proved to be proper.

Lemma 1. Let M be an n-dimensional matrix interpretation over N (not nec-
essarily monotone), and let S1 and S2 be finite sets of rewrite rules such that
S1 ⊆ >M and S2 ⊆ >M. Then there exists an n-dimensional matrix interpreta-
tion N over Q such that S1 ⊆ >N and S2 ⊆ >N . Moreover, N is monotone if
and only if M is monotone.

Proof. Let F denote the signature associated with S1 ∪ S2. Then, by assump-
tion, M associates each k-ary function symbol f ∈ F with a linear function
fM(x1, . . . ,xk) = F1x1 + · · ·+Fkxk +f , where F1, . . . , Fk ∈ Nn×n and f ∈ Nn,
such that S1 ⊆ >M and S2 ⊆ >M. Based on this interpretation, we define
the matrix interpretation N by letting δ = 1 and taking the same interpreta-
tion functions, i.e., fN (x1, . . . ,xk) = fM(x1, . . . ,xk) for all f ∈ F . Then N is
well-defined, and it is monotone if and only if M is monotone.

As to compatibility of N with S1, let us consider an arbitrary rewrite rule
`→ r ∈ S1 and show that ` >M r implies ` >N r, i.e., [α]N (`) >δ [α]N (r) for all
variable assignments α. Because of linearity of the interpretation functions, we
can write [α]N (`) = L1x1+· · ·+Lmxm+` and [α]N (r) = R1x1+· · ·+Rmxm+r,
where x1, . . . , xm are the variables occurring in `, r and xi = α(xi) for i =
1, . . . ,m. Thus, it remains to show that the inequality

L1x1 + · · ·+ Lmxm + ` >δ R1x1 + · · ·+Rmxm + r

holds for all x1, . . . ,xm ∈ Qn
0 . This is exactly the case if Li > Ri for i = 1, . . . ,m

and ` >δ r, i.e., `i > ri for i = 2, . . . , n and `1 > r1 + δ = r1 + 1. Indeed, all
these conditions follow from compatibility of M with ` → r because, by the
same reasoning as above (and since the interpretation functions of M and N
coincide), ` >M r holds in (M, >,>) if and only if

L1x1 + · · ·+ Lmxm + ` > R1x1 + · · ·+Rmxm + r

holds for all x1, . . . ,xm ∈ Nn, which implies Li > Ri for i = 1, . . . ,m and ` > r,
i.e., `i > ri for i = 2, . . . , n and `1 >N r1, the latter being equivalent to `1 > r1+1
as `, r ∈ Nn. This shows compatibility of N with S1. Weak compatibility with
S2 follows in the same way. ut

The essence of the proof of this lemma is that any matrix interpretation
over N can be conceived as a matrix interpretation over Q. Likewise, any matrix
interpretation over Q can be conceived as a matrix interpretation over R.
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Lemma 2. Let M be an n-dimensional matrix interpretation over Q (not nec-
essarily monotone), and let S1 and S2 be finite sets of rewrite rules such that
S1 ⊆ >M and S2 ⊆ >M. Then there exists an n-dimensional matrix interpreta-
tion N over R such that S1 ⊆ >N and S2 ⊆ >N . Moreover, N is monotone if
and only if M is monotone.

Proof. Similar to the proof of Lemma 1, with N defined as follows: δN = δM = δ
and fN (x1, . . . ,xk) = fM(x1, . . . ,xk) for all f ∈ F . ut

As an immediate consequence of the previous lemmata, we obtain the fol-
lowing corollary stating that matrix interpretations over N are no more powerful
than matrix interpretations over Q, which are in turn no more powerful than
matrix interpretations over R.

Corollary 3. Let R be a TRS and (P,S) a DP problem.

1. If there is an (incremental) termination proof for R using monotone matrix
interpretations over N (resp. Q), then there is also one using monotone
matrix interpretations over Q (resp. R).

2. If a matrix interpretation over N (resp. Q) succeeds on (P,S), then there
is also a matrix interpretation over Q (resp. R) of the same dimension that
succeeds on (P,S). ut

In the remainder of this section we show that the converse statements do not
hold.

3.1 Matrix Interpretations over Q

In order to show that matrix interpretations over Q are indeed more powerful
than matrix interpretations over N, let us first consider the TRS S consisting of
the following rewrite rules:

x+ a→ x (1)
x+ a→ (x+ b) + b (2)
a + x→ x (3)
a + x→ b + (b + x) (4)

This TRS will turn out to be very helpful for our purposes, not only in the
current subsection but also in the subsequent one. This is due to the following
property, which holds for matrix interpretations over N, Q and R.

Lemma 4. Let M be a matrix interpretation (not necessarily monotone) with
carrier set M such that S ⊆ >M. Then +M(x,y) = x + y + v, v ∈M .

Proof. Without loss of generality, let +M(x,y) = A1x + A2y + v, v ∈ M .
As M is weakly compatible with rule (1), we obtain A1 > I; hence, A2

1 > A1

due to non-negativity of A1. Similarly, by weak compatibility with (2), we infer
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A1 > A2
1, which implies A2

1 = A1 > I together with the previous result. Yet this
means that A1 must in fact be equal to I. To this end, we observe that A1 > I
implies (A1− I)2 > 0, which simplifies to I > 2A1−A2

1 = A1; hence, A1 = I. In
the same way, we obtain A2 = I from the compatibility constraints associated
with (3) and (4). ut

So in any matrix interpretation that is weakly compatible with the TRS S
the symbol + must be interpreted by a function +M(x,y) = x + y + v that
models addition of two elements of the underlying carrier set (modulo adding
a constant). The inherent possibility to count objects can be exploited to show
that matrix interpretations over Q are indeed more powerful than matrix inter-
pretations over N. To this end, we extend the TRS S with the rules (5) and (6),
calling the resulting system R1:

((x+ x) + x) + a→ g(x+ x) (5)
g(x+ x)→ (x+ x) + x (6)

By construction, this TRS is not compatible, not even weakly compatible, with
any matrix interpretation over N.

Lemma 5. Let M be an n-dimensional matrix interpretation (not necessarily
monotone) with carrier set M such that R1 ⊆ >M. Then M 6= Nn.

Proof. As M is weakly compatible with R1, it is also weakly compatible with
the TRS S. So, by Lemma 4, the function symbol + must be interpreted by
+M(x,y) = x + y + v, v ∈ M . Assuming gM(x) = Gx + g without loss
of generality, we obtain 3I > 2G from weak compatibility of M with (5) and
2G > 3I from weak compatibility with (6); hence, G = 3

2I /∈ Nn×n. Therefore,
M cannot be a matrix interpretation over N. ut

The previous lemma, together with the observation that the TRS R1 admits
a compatible matrix interpretation over Q, directly leads to the main result of
this subsection.

Theorem 6.

1. The TRS R1 is terminating. In particular, R1 is compatible with a monotone
matrix interpretation over Q.

2. There cannot be an (incremental) termination proof of R1 using only mono-
tone matrix interpretations over N.

3. No matrix interpretation over N succeeds on the DP problem ( ,R1).

Proof. The last two statements are immediate consequences of Lemma 5. As to
the first claim, the following monotone one-dimensional matrix interpretation
(i.e., linear polynomial interpretation) over Q is compatible with R1: δ = 1,
aM = 2, bM = 0, gM(x) = 3

2x+ 1 and +M(x, y) = x+ y. ut
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3.2 Matrix Interpretations over R

Next we show that matrix interpretations over R are more powerful than ma-
trix interpretations over Q. To this end, we extend the TRS S of the previous
subsection with the rules (7) – (9) and call the resulting system R2:

(x+ x) + a→ k(k(x)) (7)
k(k(x))→ x+ x (8)

k(x)→ x (9)

By construction, this TRS admits only matrix interpretations over R.

Lemma 7. Let M be an n-dimensional matrix interpretation (not necessarily
monotone) with carrier set M such that R2 ⊆ >M. Then M 6= Nn and M 6= Qn

0 .

Proof. As the TRS S is a subsystem of R2, R2 ⊆ >M implies S ⊆ >M. Hence,
by Lemma 4, the function symbol + must be interpreted by +M(x,y) = x +
y +v, v ∈M . Assuming kM(x) = Kx+k without loss of generality, the (weak)
compatibility constraint associated with rule (7) implies 2I > K2. We also have
K2 > 2I by weak compatibility with (8) and K > I due to (9). Hence, the n×n
square matrix K must satisfy the following conditions:

K2 = 2I and K > I (10)

Clearly, for dimension n = 1, the unique solution is K =
√

2; in particular, K
is not a rational number. In fact, for any dimension n > 1, the unique solution
turns out to be K =

√
2I. To this end, let us first show that the conditions

given in (10) imply that K is a diagonal matrix. Because of K > I, we can
write K = I +N for some non-negative matrix N . Then K2 = 2I if and only if
N2 + 2N = I. Now non-negativity of N implies I > N . Hence, N is a diagonal
matrix and therefore also K. So all entries of K2 are zero except its diagonal
entries: (K2)ii = K2

ii for i = 1, . . . , n. But then Kii must be
√

2 in order to
satisfy K2 = 2I and K > I. In other words, K =

√
2I /∈ Qn×n

0 . Therefore, M
cannot be a matrix interpretation over N or Q. ut

Remark 8. Rule (9) is essential for the statement of Lemma 7. Without it, the
conditions given in (10) would turn into K2 = 2I and K > 0, the conjunction
of which is satisfiable over Nn×n; for example, by choosing

aM =
(

2
1

)
bM =

(
0
0

)
kM(x) =

(
0 2
1 0

)
x +

(
1
0

)
+M (x,y) = x + y

we obtain a non-monotone 2-dimensional matrix interpretation over N that is
compatible with the TRSR2\{(9)}. However, in case monotonicity of the matrix
interpretation in Lemma 7 is explicitly required, rule (9) becomes superfluous
because K11 > 1 and K2 = 2I imply that all entries of the first row and the first
column of K are zero except K11 (as K must be non-negative). This means that
(K2)11 = K2

11, so K11 must be equal to
√

2, hence irrational, in order to satisfy
K2 = 2I.
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Lemma 7 shows that no matrix interpretation over N or Q is weakly compat-
ible with the TRS R2. However, R2 can be shown terminating by a compatible
matrix interpretation over R.

Theorem 9.

1. The TRS R2 is terminating. In particular, R2 is compatible with a monotone
matrix interpretation over R.

2. There cannot be an (incremental) termination proof of R2 using only mono-
tone matrix interpretations over N or Q.

3. No matrix interpretation over N or Q succeeds on the DP problem ( ,R2).

Proof. The last two claims are immediate consequences of Lemma 7. Finally, the
first claim holds by the following monotone 1-dimensional matrix interpretation
over R that is compatible with R2: δ = 1, aM = 4, bM = 0, kM(x) =

√
2x + 1

and +M(x, y) = x+ y. ut

4 The Dimension Hierarchy

Unlike the previous section, where we have established a hierarchy of matrix
interpretations regarding the domain of the matrix entries, the purpose of this
section is to examine matrix interpretations with respect to their dimension.
That is, we fix D ∈ {N,Q0,R0} and consider matrix interpretations over the
family of carrier sets (Dn)n>1. The main result is that the inherent termination
hierarchy is infinite with respect to the dimension n, with each level of the
hierarchy properly subsuming its predecessor. In other words, (n+1)-dimensional
matrix interpretations are strictly more powerful for proving termination than n-
dimensional matrix interpretations (for any n > 1). We show this by constructing
a family of TRSs (Tk)k>2 having the property that any of its members Tk can only
be handled with matrix interpretations of dimension at least k. The construction
is based on the idea of encoding (i.e., specifying) the degree of the minimal
polynomial mA(x) of some matrix A occurring in a matrix interpretation in
terms of rewrite rules. Thus, if M is an n-dimensional matrix interpretation
such that the degree of the minimal polynomial of some matrix is fixed to a
value of k, then the degree of the characteristic polynomial of this matrix must
be at least k, i.e., n > k (since the minimal polynomial divides the characteristic
polynomial whose degree is n). In other words, the dimension n of M must
then be at least k. The family of TRSs (Tk)k>2 mentioned above is made up as
follows. For any natural number k > 2, Tk denotes the union of the TRS S of
Section 3 and the following rewrite rules:

fk(x) + d→ fk−1(x) + c (11)

fk−1(x) + c→ fk(x) (12)

h(fk−2(h(x)))→ h(fk−1(h(x))) + x (13)

h(fk−1(h(x)))→ x (14)
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The intuition is that if M is an n-dimensional matrix interpretation that is
weakly compatible with all rules of Tk, then the minimal polynomial mF (x) of
the matrix F associated with the interpretation of the unary function symbol f
is forced to be equal to the polynomial pk(x) = xk − xk−1, a monic polynomial
of degree k. This is the purpose of the rules (11) – (14). More precisely, the first
two rules ensure that pk(x) annihilates F , whereas the latter two specify that
pk(x) is the monic polynomial of least degree having this property.

Lemma 10. Let M be an n-dimensional matrix interpretation (not necessarily
monotone), and let k > 2 be a natural number. Then Tk ⊆ >M implies n > k.

Proof. Let us assume Tk ⊆ >M. Then we also have S ⊆ >M because the TRS
S is contained in Tk. Therefore, the function symbol + must be interpreted
by +M(x,y) = x + y + v according to Lemma 4. Assuming fM(x) = Fx +
f and hM(x) = Hx + h without loss of generality, the (weak) compatibility
constraint associated with rule (11) implies F k > F k−1. We also have F k−1 >
F k due to rule (12); hence, F k = F k−1. Next we consider the compatibility
constraints associated with rule (13) and rule (14). From the former we infer
HF k−2H > HF k−1H + I, which implies F k−2 6= F k−1, whereas the latter
enforces HF k−1H > I, which implies F k−1 6= 0. Thus, the n× n square matrix
F must satisfy the following conditions:

F k = F k−1 F k−2 6= F k−1 F k−1 6= 0 (15)

These conditions imply that the minimal polynomial of F must be equal to the
polynomial pk(x) = xk−xk−1; i.e., mF (x) = xk−xk−1. In order to show this, we
first observe that F k = F k−1 means that the polynomial pk(x) annihilates the
matrix F . So mF (x) divides pk(x). Writing pk(x) = (x− 1)xk−1 as a product of
irreducible factors, we see that if mF (x) 6= pk(x) (i.e., mF (x) is a proper divisor of
pk(x) of degree at most k−1), then mF (x) must divide the polynomial (x−1)xk−2

or the polynomial xk−1 (depending on whether (x − 1) occurs as a factor in
mF (x) or not). As in both cases the corresponding polynomial annihilates F , we
obtain F k−2 = F k−1 or F k−1 = 0, contradicting (15). Consequently, pk(x) must
indeed be the minimal polynomial of F , and since it divides the characteristic
polynomial of F , the degree of the latter must be greater than or equal to the
degree of the former, that is, n > k. ut

Remark 11. If one explicitly requires monotonicity of the matrix interpretation
M in Lemma 10, then the condition F k−1 6= 0 is automatically satisfied, such
that rule (14) becomes superfluous in this case.

Lemma 10 shows that no matrix interpretation of dimension less than k can
be weakly compatible with the TRS Tk. However, Tk can be shown terminating
by a compatible matrix interpretation of dimension k.

Theorem 12. Let k > 2.

1. The TRS Tk is terminating. In particular, Tk is compatible with a monotone
matrix interpretation over N of dimension k.
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2. There cannot be an (incremental) termination proof of Tk using only mono-
tone matrix interpretations of dimension less than k.

3. No matrix interpretation of dimension less than k succeeds on the DP prob-
lem ( , Tk).

Proof. The last two claims are immediate consequences of Lemma 10. The first
claim holds by the following monotone k-dimensional matrix interpretation over
N that is compatible with Tk:

aM = cM = (1, 0, . . . , 0)T bM = 0 dM = 2 aM

+M(x,y) = x + y fM(x) = Fx hM(x) = Hx + h

where h = (1, . . . , 1)T, all rows of H have the shape (1, 2, 1, . . . , 1) and F is zero
everywhere except for the entries F11 and Fi,i+1, i = 1, . . . , k − 1, which are all
set to one:

F =



1 1 0 0 · · · 0
0 0 1 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 0 1 0
0 · · · 0 0 0 1
0 · · · 0 0 0 0

 H =



1 2 1 1 · · · 1
1 2 1 1 · · · 1
...

...
...

...
...

...
1 2 1 1 · · · 1
1 2 1 1 · · · 1
1 2 1 1 · · · 1


ut

5 Conclusion

In this paper we have established two hierarchies of matrix interpretations. On
the one hand, there is the domain hierarchy stating that matrix interpretations
over the real numbers are more powerful with respect to proving termination
than matrix interpretations over the rational numbers, which are in turn more
powerful than matrix interpretations over the natural numbers (cf. Figure 1).
On the other hand, we have established a hierarchy of matrix interpretations
with respect to matrix dimension, which was shown to be infinite, with each
level properly subsuming its predecessor (cf. Figure 2). Both hierarchies hold in
the context of direct termination (using matrix interpretations as a stand-alone
termination method) as well as in the setting of the DP framework. Concerning
the latter, we remark that the corresponding results in Theorems 6, 9 and 12 do
not only hold for standard reduction pairs (as described in Section 2) but also
for reduction pairs incorporating the basic version of usable rules [3], where the
set of usable rules of a DP problem (P,S) is computed as follows. First, for each
defined symbol f occurring in the right-hand side of some rule of P, all f -rules
of S are marked as usable. Then, whenever a rule is usable and its right-hand
side contains a defined symbol g, all g-rules of S become usable as well. In this
way, all rules of the TRSs R1, R2 and Tk are usable. It is an easy exercise to
make our TRSs also withstand reduction pairs that incorporate usable rules with
(implicit) argument filters [10] (induced by matrix interpretations).
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terminating TRSs

n = 2n = 3 n = 1

T2
···

T3
···

T4
···

· · ·

Fig. 2. The dimension hierarchy

Our results concerning the domain hierarchy provide a definitive answer to a
question raised in [17] whether rational numbers are somehow unnecessary when
dealing with matrix interpretations. The answer is in the negative, so the attempt
of [17] to simulate matrix interpretations over Q with matrix interpretations
over N (of higher dimension) must necessarily remain incomplete.

Moreover, we remark that the results of this paper do not only apply to
the standard variant of matrix interpretations of Endrullis et al. [6] (though
the technical part of the paper refers to it) but also to the kinds of matrix in-
terpretations recently introduced in [19] (which are based on various different
well-founded orders on vectors of natural numbers) and extensions thereof to
vectors of non-negative rational and real numbers. On the technical level, this
is due to the fact that our main Lemmata 5, 7 and 10 only require weak com-
patibility (rather than strict) and do not demand monotonicity of the respective
matrix interpretations. Also note that the interpretations given in the proofs of
Theorems 6, 9 and 12 can be conceived as matrix interpretations over the base
order >wΣ , which relates two vectors x and y if and only if there is a weak de-
crease in every single component of the vectors and a strict decrease with respect
to the sum of the components of x and y (cf. [19]). We expect our results to carry
over to the matrix interpretations of [5]. For linear interpretations, this should
be possible without further ado, whereas non-linear interpretations conceivably
require the addition of new rules enforcing linearity of the interpretations of
some function symbols (e.g. by using techniques from [18]).

We conclude with a remark on future work and related work. For future work,
we mention the extension of the results of this paper to more restrictive classes of
TRSs like left-linear ones and SRSs. In this context we also note that the partial
result of [8] showing that the dimension hierarchy is infinite applies without
further ado since the underlying construction is based on SRSs in contrast to
our approach of Section 4.
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