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Abstract In this paper we consider a hierarchy of three versions of
Knuth-Bendix orders. (1) We show that the standard definition can be
(slightly) simplified without affecting the ordering relation. (2) For the
extension of transfinite Knuth-Bendix orders we show that transfinite
ordinals are not needed as weights, as far as termination of finite rewrite
systems is concerned. (3) Nevertheless termination proving benefits from
transfinite ordinals when used in the setting of general Knuth-Bendix
orders defined over a weakly monotone algebra. We investigate the rela-
tionship to polynomial interpretations and present experimental results
for both termination analysis and ordered completion. For the latter it
is essential that the order is totalizable on ground terms.
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1 Introduction

The Knuth-Bendix order (KBO) [10] is a popular criterion for automated termin-
ation analysis and theorem proving. Consequently many extensions and general-
izations of this order have been proposed and investigated [2–4,6,12,13,15,18,19].
Despite the fact that this order is so well-studied we show that the definition of
KBO can be simplified without affecting the ordering relation.

Concerning generalizations of this ordering, Dershowitz [2,3] suggested to ex-
tend the semantic component beyond weight functions and Middeldorp and Zan-
tema [15] presented the generalized Knuth-Bendix order (GKBO) using weakly
monotone algebras. Independently in the theorem proving community, McCune
[14] suggested linear functions for computing weights of terms. Recently Lud-
wig and Waldmann [13] introduced the transfinite Knuth-Bendix order (TKBO),
which allows linear functions over the ordinals and Kovács et al. [12] show that
for finite signatures one can restrict to ordinals below ωω

ω

without losing power.
However, for finite rewrite systems (which is the typical case for proving termi-
nation) we show that finite weights suffice. This is in sharp contrast to GKBO
where transfinite ordinals are beneficial. We also show how a restricted version of
this ordering can be implemented. To this end (a fragment of) ordinal arithmetic
is encoded as a constraint satisfaction problem. The usefulness of the different
versions of KBO is illustrated by experimental results for both termination anal-
ysis and theorem proving.
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The remainder of this paper is organized as follows. In the next section we
recall preliminaries. In Section 3 we prove that the weight of variables can be
fixed a priori without affecting the power of KBO. Section 4 shows that for
finite rewrite systems no transfinite ordinals are needed for TKBO. Section 5
shows the benefit of transfinite ordinals for GKBO and studies the relationship
to polynomial interpretations. Implementation issues and experimental results
are discussed in Section 6. Section 7 concludes.

2 Preliminaries

Term Rewriting: We assume familiarity with term rewriting and termination [21].
Let F be a signature and V a set of variables. By T (F ,V) we denote the terms
over F and V. For a term t let Pos(t) be the set of positions in t and Posx(t) the
set of positions of the variable x in t. A (well-founded F-)algebra (A, >) consists
of a non-empty carrier A, a well-founded relation > on A, and an interpretation
function fA for every f ∈ F . By [α]A(·) we denote the usual evaluation function
of A according to an assignment α. An algebra (A, >) is called (weakly) mono-
tone if every fA is (weakly) monotone with respect to >. Any algebra (A, >)
induces an order on terms, as follows: s >A t if for any assignment α the con-
dition [α]A(s) > [α]A(t) holds. The order >A is defined similarly based on the
reflexive closure of >. We say that a TRS R is compatible with relation > (an
algebra A) if `→ r ∈ R implies ` > r (` >A r). It is well-known that every TRS
that is compatible with a monotone algebra is terminating.

An interpretation fA is simple if fA(a1, . . . , an) > ai for all a1, . . . , an ∈ A
and 1 6 i 6 n. An algebra A is simple if all its interpretation functions are
simple. A polynomial interpretation N is a monotone algebra over the car-
rier N = {0, 1, 2, . . .}, using >N as ordering and where every fN is a polyno-
mial. A polynomial interpretation where every fN is linear is called a linear
interpretation.

Ordinals: We assume basic knowledge of ordinals [9]. Let + and · denote standard
addition and multiplication on ordinals (and hence also on natural numbers).
Likewise let ⊕ and � denote natural addition and multiplication of ordinals.
Let O be the set of ordinals strictly less than ε0. Recall that every ordinal α ∈ O
can be uniquely represented in Cantor Normal Form (CNF):

α =
∑

16i6n

ωαi · ai

where a1, . . . , an ∈ N\{0} and α1, . . . , αn ∈ O are also in CNF, with α1 > · · · >
αn. Ordinals below ω—the natural numbers—are called finite.

3 KBO

A precedence is a strict order on a signature. A weight function for a signature F
is a pair (w,w0) consisting of a mapping w : F → N and a positive constant
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w0 ∈ N such that w(c) > w0 for every constant c ∈ F . A weight function (w,w0)
is admissible for a precedence � if for every unary f ∈ F with w(f) = 0 we
have f � g for all g ∈ F \ {f}. The weight of a term is computed as follows:
w(x) = w0 for x ∈ V and w(f(t1, . . . , tn)) = w(f) + w(t1) + · · ·+ w(tn). By |t|x
we denote how often a variable x occurs in a term t.

Definition 1. Let � be a precedence and (w,w0) a weight function. We define
the Knuth-Bendix order �kbo inductively as follows: s �kbo t if |s|x > |t|x for all
variables x ∈ V and either w(s) > w(t), or w(s) = w(t) and one of the following
alternatives holds:

(1) s = fk(x) and t = x for some k > 0, or
(2) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f � g, or
(3) s = f(s1, . . . , sn), t = f(t1, . . . , tn), s1 = t1, . . . , sk−1 = tk−1, and sk �kbo tk

with 1 6 k 6 n.

To indicate the weight function (w,w0) used for �kbo we write �(w,w0)
kbo . A

TRS R is called compatible with KBO if there exists a weight function (w,w0)
admissible for a precedence � such that R is compatible with �(w,w0)

kbo .

Theorem 2 ([4, 10]). A TRS is terminating if it is compatible with KBO. ut

Below we examine if restricting w0 to one decreases the power of KBO. We
are not aware of any earlier investigations in this direction. A bit surprisingly
indeed w0 can be chosen one, which simplifies the definition of KBO. Note that
it does not suffice to just replace w0 by one. Consider the rule h(x, x) → f(x)
and w(h) = 0, w(f) = 2. Using w0 = 3 the constraints on the weight give 6 > 5
but w0 = 1 yields 2 6> 3. But a KBO proof with w0 > 1 can be transformed into
a KBO proof with w0 = 1 by adapting (according to their arity) the weights of
function symbols. Formally, we define a new weight function with

(w0)1 := 1 w1(f) := w(f) + (n− 1) · (w0 − 1) (1)

for every n-ary function symbol f . Obviously w1(f) > 0 for all f ∈ F and in
particular w1(c) > (w0)1 for constants c ∈ F since w(c) > w0. Note that this
transformation is not invertible since one could get negative weights for function
symbols of higher arity. To cope with the reverse direction, i.e., transforming a
KBO proof with arbitrary w0 into a KBO proof with w0 = k for some k ∈ N\{0}
we define a weight function with

(w0)k := k wk(f) := w1(f) · k (2)

Lemma 3. For terms s and t we have w(s) > w(t) if and only if w1(s) > w1(t)
if and only if wk(s) > wk(t) for any k ∈ N \ {0}.

Proof. The first statement follows from w(s) = w1(s) + w0 − 1, which we show
by induction on the term s. In the base case s ∈ V and w(s) = w0 = w1(s)+w0−1
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since w1(s) = 1. In the step case s = f(s1, . . . , sn) and we have

w(s) = w(f) + w(s1) + · · ·+ w(sn)

= w(f) + w1(s1) + w0 − 1 + · · ·+ w1(sn) + w0 − 1

= w1(f)− (n− 1) · (w0 − 1) + w1(s1) + w0 − 1 + · · ·+ w1(sn) + w0 − 1

= w1(f) + w1(s1) + · · ·+ w1(sn) + w0 − 1 = w1(s) + w0 − 1

where the induction hypothesis is used in the second step. The reasoning for the
second statement is similar and based on wk(s) = w1(s) · k. ut

Note that Lemma 3 implies that for terms s and t we have w(s) = w(t) if
and only if w1(s) = w1(t) if and only if wk(s) = wk(t) for any k ∈ N \ {0}.

Corollary 4. We have �(w,w0)
kbo = �(w1,1)

kbo = �(wk,k)
kbo for all k ∈ N \ {0}. ut

Lemma 5. The weight function (w,w0) is admissible for a precedence � if and
only if the weight functions (w1, 1) and (wk, k) are admissible for �.

Proof. The result follows from the fact that w1(f) = w(f) for unary f ∈ F and
w(f) 6= 0 if and only if wk(f) = w1(f) · k 6= 0. ut

From the above results we immediately obtain that fixing the value of w0

does not affect the power of KBO. Our implementation (see Section 6) benefited
slightly from fixing w0 = 1.

By now we have the machinery to show that KBO cannot demand lower
bounds on weights (apart from unary function symbols to have weight zero).
This can be supported as follows. Consider �(w2,2)

kbo . By Corollary 4

�(w2,2)
kbo = �((w2)

1,1)
kbo = �(((w2)

1)k,k)
kbo

for any k ∈ N \ {0}. Note that (w2)1(f) > 1 for all non-unary f ∈ F due to (1).
Now choosing an appropriate k, all f ∈ F (with the possible exception of a unary
function symbol of weight zero) satisfy ((w2)1)k(f) > k by (2). This does not
contradict [23, Theorem 1], which allows to compute an a priori upper bound
on the weights.

A KBO with w0 = 0 is not well-founded. The nonterminating TRS consist-
ing of the rule h(h(a, a), a) → h(a, h(h(a, a), a)) is compatible with �(w,0)

kbo where
w(a) = w(h) = 0 and h � a.

4 Transfinite KBO

We will now consider the transfinite Knuth-Bendix order (TKBO) [13]. In this
setting a weight function for a signature F is a pair (w,w0) consisting of a
mapping w : F → O and a positive constant w0 ∈ N such that w(c) > w0 for
every constant c ∈ F . A subterm coefficient function is a mapping s : F×N→ O
such that for a function symbol f of arity n we have s(f, i) > 0 for all 1 6 i 6 n.
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A TKBO where w0,1 all weights and subterm coefficients are finite will be called
finite. Let (w,w0) be a weight function and s a subterm coefficient function.
We define the weight of a term inductively as follows: w(t) = w0 for t ∈ V
and w(t) = w(t1) � s(f, 1) ⊕ · · · ⊕ w(tn) � s(f, n) ⊕ w(f) if t = f(t1, . . . , tn).
Given a term t and a subterm coefficient function s, the coefficient of a position
p ∈ Pos(t) is inductively defined by coeff(p, t) = 1 if p = ε and s(f, i)�coeff(q, ti)
if t = f(t1, . . . , tn) and p = iq. The variable coefficient of x ∈ V is vcoeff(x, t) =⊕

p∈Posx(t) coeff(p, t).

Definition 6. Let � be a precedence, (w,w0) a weight function and s a subterm
coefficient function. We define the transfinite Knuth-Bendix order �tkbo induc-
tively as follows: s �tkbo t if vcoeff(x, s) > vcoeff(x, t) for all variables x ∈ V and
either w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

(1) s = fk(x) and t = x for some k > 0, or
(2) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f � g, or
(3) s = f(s1, . . . , sn), t = f(t1, . . . , tn), s1 = t1, . . . , sk−1 = tk−1, and sk �tkbo tk

with 1 6 k 6 n.

A TRS R is called compatible with TKBO if there is a weight function
(w,w0) admissible for a precedence � and a subterm coefficient function s such
that R is compatible with �tkbo.

Theorem 7 ([12,13]). A TRS is terminating if it is compatible with TKBO. ut

In fact �tkbo still satisfies the subterm property if admissibility is relaxed to
requiring that a unary function symbol f with w(f) = 0 and s(f, 1) = 1 satisfies
f � g for all g ∈ F \ {f}. Hence Theorem 7 remains valid. Thus in the sequel
we will use this less restrictive definition of admissibility.

One motivation in [13] for allowing subterm coefficients is to cope with du-
plicating rules such as f(x)→ h(x, x). We agree with this observation but show
that the benefit is not limited to this case, i.e., subterm coefficients are even
useful for string rewrite systems (where all function symbols are unary).

Example 8. Consider the SRS consisting of the following rule

f(g(x))→ g(g(f(x)))

For KBO this rule demands w(g) = 0 and the admissibility condition induces
g � f which does not orient the rule from left to right. On the other hand the
SRS is compatible with the TKBO using weights w(f) = 1 and w(g) = 1 and a
subterm coefficient function satisfying s(f, 1) = 3 and s(g, 1) = 1.

In the remainder of this section we show that if a finite TRS is compatible
with a TKBO then it also is compatible with a finite TKBO. Assume termination
of a finite rewrite system R is shown by a TKBO with weight function (w,w0)
and subterm coefficient function s. If some weights or subterm coefficients are
1 Although w0 ∈ N by definition, Theorem 13 is valid also for transfinite w0.
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infinite then R is compatible with the finite TKBO which is obtained if one
“substitutes” a large enough natural number for ω in the given weight and
subterm coefficient functions. The next example demonstrates the proof idea
while the proof of Theorem 13 provides a suitable choice for this natural number.

Example 9. The TRS R consisting of the following three rules

f(x)→ g(x) h(x)→ f(f(x)) k(x, y)→ h(f(x), f(y))

is compatible with the TKBO using the weight function

w0 = 1 w(g) = 0 w(f) = 5 w(h) = ω w(k) = ω2 + 1

and g greatest in the precedence. (All subterm coefficients are set to one.) Sub-
stituting 13 for ω makes R also compatible with the finite TKBO using

w0 = 1 w(g) = 0 w(f) = 5 w(h) = 13 w(k) = 132 + 1 = 170

and g greatest in the precedence.

Definition 10. For an ordinal α =
∑

16i6n ω
αi ·ai in CNF, let M(α) denote the

maximal natural number occurring as coefficient, i.e., the maximum of a1, . . . , an
and all coefficients occurring in α1, . . . , αn. (If α = 0 then M(α) = 0.) We denote
by α(k) the natural number obtained when α—considered as a function in ω—is
evaluated for the natural number k, i.e., α(k) :=

∑
16i6n k

αi(k) · ai.

Let α = ωω·3+ω2 ·2+1. Then M(α) = 3 and α(3) = 33·3+32 ·2+1 = 19, 702.
The next result follows from a statement in [7, p. 34].

Lemma 11. Let α, β ∈ O and k ∈ N with k > M(α),M(β). If α = β then
α(k) = β(k) and if α > β then α(k) > β(k). ut

Note that the restriction on k in Lemma 11 is essential: if k = 2, α = ω, and
β = 2 then α > β but α(k) = β(k) = 2.

Lemma 12. For α, β ∈ O we have

(1) (α⊕ β)(k) = α(k) + β(k)
(2) (α� β)(k) = α(k) · β(k)

Proof. Let α =
∑

16i6n ω
αi · ai and β =

∑
16j6m ω

βj · bj be in CNF.

(1) We may also write α =
∑

16i6l ω
γi · a′i and β =

∑
16i6l ω

γi · b′i such that
{γ1, . . . , γl} = {α1, . . . , αn} ∪ {β1, . . . , βm} where some a′i and b′i may be
zero. We then have

(α⊕ β)(k) =

 ∑
16i6l

ωγi · (a′i + b′i)

 (k) (definition of ⊕)

=
∑

16i6l

kγi(k) · (a′i + b′i)

=
∑

16i6l

kγi(k) · a′i +
∑

16i6l

kγi(k) · b′i

= α(k) + β(k)
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(2) We have

(α� β)(k) =

 n⊕
i=1

m⊕
j=1

ωαi⊕βj · ai · bj

 (k) (definition of �)

=
n∑
i=1

m∑
j=1

kαi(k)+βj(k) · ai · bj (?)

=

(
n∑
i=1

kαi(k) · ai

)
·

 m∑
j=1

kβj(k) · bj


= α(k) · β(k)

where in step (?) we used part (1). ut

Using Lemmata 11 and 12 we can prove the following result.

Theorem 13. If a finite TRS is compatible with TKBO then it is compatible
with a finite TKBO.

Proof. Let R be a finite TRS compatible with a TKBO using weight function
(w,w0) and subterm coefficient function s. Since R is finite the natural number

k := max{M(w(`)),M(w(r)) | `→ r ∈ R}+ 1

is well-defined (the maximum of the empty set is zero). We have k > M(w(t))
for all terms t occurring in R. Consider the weight function given by w′(f) :=
α(k) whenever w(f) = α and w′0 := β(k) if w0 = β together with the subterm
coefficient function s′(f, i) := α(k) whenever s(f, i) = α, which assigns only
natural numbers as weights and subterm coefficients. For any term t we then
have w′(t) = (w(t))(k), as is easily verified by induction: if t ∈ V then w′(t) =
w′0 = (w0)(k) = (w(t))(k) and

w′(f(t1, . . . , tn)) =

(
n∑
i=1

w′(ti) · s′(f, i)

)
+ w′(f)

=

(
n∑
i=1

(w(ti))(k) · (s(f, i))(k)

)
+ (w(f))(k)

=

((
n⊕
i=1

w(ti)� s(f, i)

)
⊕ w(f)

)
(k)

= (w(f(t1, . . . , tn)))(k)

where in the second step we used the induction hypothesis and the definition of
w′(f) and s′(f, i), respectively, and the last but one step applies Lemma 12. Thus
by Lemma 11 w(`) > w(r) implies w′(`) = (w(`))(k) > (w(r))(k) = w′(r) and
w(`) = w(r) implies w′(`) = (w(`))(k) = (w(r))(k) = w′(r) for each `→ r ∈ R.
Note that admissibility is not affected. Hence R is compatible with the TKBO
having weight function (w′0, w

′) and subterm coefficient function s′. ut
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We remark that Theorem 13 does not make transfinite ordinal weights in
TKBO superfluous since they are beneficial for hierarchic theorem proving [13].
Furthermore, Theorem 13 only applies to finite TRSs as [12, Theorem 5.8] shows
that there are TRSs over finite signatures that need transfinite ordinals (larger
than ωω

k

for any k ∈ N) for weights and subterm coefficients in TKBO. However,
due to Theorem 13 the TRS showing the need for transfinite weights is necessarily
infinite.

5 Generalized KBO

In this section we elaborate on the question if transfinite ordinals increase the
power of KBO. As long as natural addition and multiplication of ordinals are
considered, Theorem 13 shows that (for finite TRSs) coefficients beyond N can
be ignored. Although standard addition and multiplication of ordinals are only
weakly monotone, they can still be employed for KBO, as we recall in this section.
To this end we consider the generalized Knuth-Bendix order (GKBO) [15] which
computes weights of terms according to a weakly monotone simple algebra.2

Similar extensions have been presented in [2, 3, 6, 19].

Definition 14. Let (A, >) be a weakly monotone simple algebra and � a prece-
dence on F . We define the general Knuth-Bendix order �gkbo inductively as
follows: s �gkbo t if s >A t, or s >A t and either

(1) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f � g, or
(2) s = f(s1, . . . , sn), t = f(t1, . . . , tn), s1 = t1, . . . , sk−1 = tk−1, and sk �gkbo tk

with 1 6 k 6 n.

Theorem 15 ([15]). A TRS R is terminating if it is compatible with �gkbo. ut

The condition that A is simple ensures admissibility with � since it e.g.
rules out interpretations of the form fA(x) = x. Next we elaborate on the use of
standard addition and multiplication of ordinals for GKBO.

Example 16. Consider the SRS R containing the rules

1 : a(x)→ b(x) 2 : a(b(x))→ b(c(a(x))) 3 : c(b(x))→ a(x)

The following weakly monotone interpretation

aO(x) = x+ ω + 1 bO(x) = x+ ω cO(x) = x+ 2

is simple and induces a strict decrease between left- and right-hand sides:

x+ ω + 1 >O x+ ω x+ ω · 2 + 1 >O x+ ω · 2 x+ ω + 2 >O x+ ω + 1

2 Note that in contrast to [15] we restrict to the case where all function symbols have
lexicographic status and arguments are compared from left to right.
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Hence R can be oriented by GKBO.
Below we show that R cannot be shown terminating by GKBO using a

linear interpretation over N. To this end we assume abstract interpretations
fN (x) = f1x+ f0. Since N must be simple we need f1, f0 > 1. For rule (2) the
constraint on variable coefficients induces a1b1 > b1c1a1, which requires c1 = 1.
Rules (1) and (3) demand a1 > b1 and b1 > a1, so b1 = a1. Rule (2) further
requires a1b0 + a0 > b1a0 + b1c0 + b0. Because a0 > b0 due to rule (1), this
demands a0 > a1c0 + b0 = (a1− 1)c0 + (c0 + b0). Rule (3) demands c0 + b0 > a0,
and hence (a1−1)c0 = 0. Since N must be simple, c0 > 0 which requires a1 = 1.
But then rule (2) implies the constraint b0 + a0 > a0 + c0 + b0, which again
contradicts that c0 is positive.

Hence one might conclude that standard addition and multiplication of ordi-
nals is more useful for termination proving (where one usually deals with finite
TRSs) than their natural counterparts. But standard addition of ordinals might
cause problems for (at least) binary function symbols since the absolute posi-
tiveness approach [8] to compare polynomials no longer applies. To see this note
that f1 > g1 and f2 > g2 does not imply x ·f1 +y ·f2 > y ·g2 +x ·g1 for all values
of x and y if f1, f2, g1, g2 ∈ N and x, y ∈ O. Next we show that a combination
of standard and natural addition is helpful.

Example 17. Consider the TRS R consisting of the single rule

s(f(x, y))→ f(s(y), s(s(x)))

The weakly monotone interpretation fO(x, y) = (x ⊕ y) + ω and sO(x) = x + 1
is simple and induces a strict decrease between left- and right-hand side:

(x⊕ y) + ω + 1 >O ((y + 1)⊕ (x+ 2)) + ω = (x⊕ y) + 3 + ω = (x⊕ y) + ω

Hence R can be oriented by GKBO. Again, linear interpretations with coef-
ficients in N are not sufficient: Assuming abstract interpretations fN (x, y) =
f1x+ f2y + f0 and sN (x) = s1x+ s0, we get the constraints

s1f1 > f2s1s1 s1f2 > f1s1 s1f0 + s0 > f1s0 + f2(s0 + s1s0) + f0

Since sN and fN must be simple s1, f1, f2 > 1. From the first two constraints we
conclude s1 = 1, such that the third simplifies to f0 +s0 > f0 +(f1 +2f2)s0. This
contradicts f1, f2, and s0 being positive, which is needed for N being simple.

GKBO vs. Polynomial Interpretations

Finally we investigate the relationship of polynomial interpretations and GKBO
using a weakly monotone simple algebra (N , >N) over N assigning polynomi-
als fN to every f ∈ F . In the sequel we refer to this restricted version of GKBO
by PKBO. We first show that there are TRSs that can be shown terminating by
PKBO but not by polynomial interpretations.
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Example 18. Consider the SRS R consisting of the rules

a(b(x))→ b(b(a(x))) a(c(x))→ c(c(a(x))) b(c(x))→ c(b(x))

The GKBO with aN (x) = 3x+1, bN (x) = cN (x) = x+1 and b � c is compatible
with R. To orient the first two rules by a polynomial interpretation N , bN and
cN must be linear and monic. But then the last rule is not orientable.

The open question deals with the reverse direction, i.e., can any TRS that
admits a compatible polynomial interpretation also be shown terminating by
PKBO? Polynomial interpretations are monotone and hence also weakly mono-
tone. Consequently polynomials can only exceed PKBO with respect to power
if a non-simple interpretation can be enforced. Below we show that linear in-
terpretations cannot enforce such an interpretation, in contrast to (non-linear)
polynomial interpretations.

Linear Interpretations: In this subsection we refer to a PKBO where all inter-
pretation functions are linear by LKBO. In the sequel we show that any linear
interpretation can be transformed into a linear interpretation where all interpre-
tation functions are simple.

Let N be a linear interpretation. For each fN (x1, . . . , xn) = f1x1 + · · · +
fnxn + f0 and m ∈ N let fNm(x1, . . . , xn) = f1x1 + · · ·+ fnxn +m · f0. Let α0

be the assignment such that α0(x) = 0 for all variables x.

Lemma 19. If s >N t then [α]Nm(s) > [α]Nm(t) + (m− 1) holds for all α.

Proof. We first prove

[α]Nm
(t) = [α]N (t) + (m− 1)[α0]N (t) (3)

by induction on t. In the base case t ∈ V and

[α]Nm(t) = α(t) = α(t) + (m− 1) · 0 = [α]N (t) + (m− 1)[α0]N (t)

In the step case let t = f(t1, . . . , tn). Then

[α]Nm(f(t1, . . . , tn)) = m · f0 +
∑

16i6n

fi · [α]Nm
(ti)

= m · f0 +
∑

16i6n

fi · ([α]N (ti) + (m− 1)[α0]N (ti))

= [α]N (t) + (m− 1)[α0]N (t)

where the induction hypothesis is applied in the second step.
From the assumption s >N t we obtain [α]N (s) > [α]N (t) and in particular

[α0]N (s) > [α0]N (t) + 1. Hence

[α]Nm(s) = [α]N (s) + (m− 1)[α0]N (s) > [α]N (t) + (m− 1)[α0]N (s)
> [α]N (t) + (m− 1)([α0]N (t) + 1) = [α]Nm(t) + (m− 1)

where the two equality steps follow from (3). ut
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Definition 20. Let A be an algebra. We define the algebra A′ to be as A but for
each function symbol g with [α0]A(g(x1, . . . , xn)) = 0 we define gA′(x1, . . . , xn) =
gA(x1, . . . , xn)+1. For a finite TRS R let M := max {[α0]A′(r) | `→ r ∈ R}+1.

Lemma 21. If a finite TRS is compatible with N then it is compatible with (NM )′.

Proof. A straightforward induction proof shows that any term t satisfies

[α]Nm(t) + [α0]N ′(t) > [α](Nm)′(t) (4)

Compatibility yields ` >N r for every ` → r ∈ R. The claim follows from
[α](NM )′(`) > [α]NM

(`) > [α]NM
(r)+M−1 > [α]NM

(r)+[α0]N ′(r) > [α](NM )′(r)
where Lemma 19 is used in the second step, M > [α0]N ′(r) in the third step,
and the last step is an application of (4). ut

As (NM )′ is simple we obtain the following result from Lemma 21.

Theorem 22. If a finite TRS is compatible with a linear interpretation then it
is compatible with an LKBO.

Proof. Let R be a finite TRS that is compatible with a linear interpretation N
and by Lemma 21 also with (NM )′. By construction (NM )′ is simple and all its
interpretation functions are linear. Since (NM )′ is monotone it is also weakly
monotone. Hence based on (NM )′ we have ` �gkbo r for every ` → r ∈ R and
empty precedence �. ut

Non-linear Interpretations: To show that PKBO does not subsume polynomial
interpretations we give a TRS that can be shown terminating by a polynomial
interpretation but not by PKBO. The reason for failure is that compatibility
with PKBO can enforce interpretation functions that are not simple.

Theorem 23. The TRS R consisting of s(x)→ t(t(t(x))) and the rules

R1 f(0)→ 0 f(s(0))→ s(0) f(s2(0))→ s6(0)

R1 s2(0)→ f(0) s3(0)→ f(s(0)) s8(0)→ f(s2(0))
R2 g(x)→ h(x, x) s(x)→ h(x, 0) s(x)→ h(0, x)
R3 f(g(x))→ g(g(f(x))) g(s(x))→ s(s(g(x))) h(f(x), g(x))→ f(s(x))

can be shown terminating by a polynomial interpretation but not by PKBO.

Proof. The TRS R is compatible with the following polynomial interpretation:

fN (x) = 2x2 − x+ 1 sN (x) = x+ 1 gN (x) = 4x+ 5
hN (x, y) = x+ y tN (x) = x 0N = 0

To see thatR cannot be shown terminating by PKBO we adopt the idea from [16]
where the shape and the coefficients of a compatible polynomial interpretation
can be determined by the rewrite rules in R1 ∪R2 ∪R3. However, in our setting
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we have to re-inspect the results from [16] since PKBO allows ` >A r in contrast
to a polynomial interpretation which requires ` >A r for all rules. Furthermore
monotonicity has to be replaced by weak monotonicity and the algebra has to
be simple.

Next we investigate which interpretation functions are enforced by the rules
in R. Inspecting [16, Lemma 16] using the first two rules from R3 we obtain
that sN and gN must be linear. Moreover sN (x) = x + d for some d ∈ N and
fN is not linear. Since N must be simple we have d > 0. From [16, Lemma 21]
and R2 we obtain hN (x, y) = x + y + p. Now [16, Lemma 20] and the last rule
of R3 limit the degree of fN to at most two.

Next we focus on [16, Lemma 18]. Let z = 0N . The last rule of R1 yields

z + 8d > fN (z + 2d)

Note that f(x) >N x since fN must be simple. Since the degree of fN is two we
have fN (x) = ax2 +bx+c with a > 1. For well-definedness of fN we need a > −b
and c > 0. Next we show that d 6 2. To this end we assume d > 3 and arrive at
a contradiction. Now

fN (z + 2d) = a(z2 + 4zd+ 4d2) + b(z + 2d) + c = f(z) + a(4zd+ 4d2) + 2bd

> z + a(4zd+ 4d2) + 2bd > z + 4ad2 + 2bd = z + d(4ad+ 2b)
= z + d((4d− 2)a+ 2(a+ b)) > z + 10d

which is a contradiction to the constraint z+8d > fN (z+2d) from above. Hence
d 6 2. But then s(x) → t(t(t(x))) requires tN (x) = x. Hence PKBO cannot
prove termination of the TRS R. ut

6 Implementation and Evaluation

To establish a termination proof by KBO the task is to search for suitable weights
and a precedence. For efficiently finding a compatible KBO by linear program-
ming we refer to [23]. TKBO with finite weights can easily be encoded in non-
linear integer arithmetic (similarly to [23]) for which powerful but (necessarily)
incomplete tools exist [24]. Since these tools are typically overflow-safe the prob-
lems sketched in [12,13] do not appear in our setting (termination proving).

In the remainder of this section we sketch how one can implement a version
of GKBO using transfinite ordinal weights (below ωω) with the standard addi-
tion and multiplication of ordinals. This is sound by Theorem 15, provided the
interpretation functions are weakly monotone and simple. We restrict ourselves
to string rewrite systems and interpretations of the (canonical) form

fO(x) = x · f ′ + ωd · fd + · · ·+ ω1 · f1 + f0 (5)

where f ′, fd, . . . , f0 ∈ N. As illustration, we abstractly encode the rule

a(b(x))→ b(a(a(x)))
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with d = 1. For the left-hand side we get

x · b′ · a′ + ω1 · b1 · a′ + b0 · a′ + ω1 · a1 + a0

which can be written in the canonical form

x · b′ · a′ + ω1 · (b1 · a′ + a1) + (a1 > 0 ? 0 : b0 · a′) + a0

where the (·? · : ·) operator implements if-then-else, i.e., if a1 is greater than zero
then the summand b0 · a′ vanishes. To determine whether

x · l′ + ω1 · l1 + l0 > x · r′ + ω1 · r1 + r0

for all values of x, we use the criterion l′ > r′ ∧ (l1 > r1 ∨ (l1 = r1 ∧ l0 > r0)).
Finally, f ′ > 1 ∧ (f1 > 1 ∨ f0 > 1) ensures that the interpretation fO is simple
while the interpretation functions are then weakly monotone for free. Hence
the search for suitable weights, subterm coefficients, and the precedence can be
encoded in non-linear integer arithmetic, similar as in [24].

Termination: For termination analysis we considered the 1416 TRSs and 720
SRSs from TPDB 7.0.2.3 The experiments4 have been performed single-threaded
with TTT2 [11]. The leftmost part of Table 1 shows how many TRSs can be proved
terminating (column yes) and the average duration of finding a termination proof
(column time) in seconds.5 Coefficients for polynomials and weights/subterm
coefficients for (T)KBO have been represented by at most six bits (to get a
maximum number of termination proofs). As termination criteria we considered
Theorem 2 (row KBO) and Theorem 7 using finite weights and subterm coef-
ficients (row TKBO). We list the data for linear interpretations (POLY) and
the lexicographic path order (LPO) for reference. For SRSs the entry TKBOω

corresponds to an implementation of Theorem 15 using interpretation functions
as in (5) with d = 1 while for KBOω in addition we fixed f ′ = 1 in (5). Different
values for d did not increase the number of systems proved terminating in this
setting. However, it is possible to construct systems that need an arbitrarily
large d (based on the derivational complexity of the system). In both categories
(TRS and SRS) TKBO subsumes KBO and POLY (which is no surprise in light
of Theorem 22). Hence the additional systems stem from LPO.

Ordered Completion: Ordered completion [1] is one of the most frequently used
calculi in equational theorem proving. Classical ordered completion tools require
a reduction order as input that can be extended to a total order on ground terms.
This parameter is critical for the success of a run, but a suitable choice is hardly
predictable in advance. Ordered multi-completion with termination tools [22] ad-
dresses this challenge by employing automatic termination tools and exploring
different orientations in parallel, instead of sticking to one fixed ordering. This
3 http://termcomp.uibk.ac.at/status/downloads/tpdb-7.0.2.tar.gz
4 Details are available from http://colo6-c703.uibk.ac.at/ttt2/tkbo/.
5 This includes the “start-up time” of TTT2 which is around 0.3 seconds.

13

http://termcomp.uibk.ac.at/status/downloads/tpdb-7.0.2.tar.gz
http://colo6-c703.uibk.ac.at/ttt2/tkbo/


Table 1: Termination and Ordered Completion

Termination Ordered Completion

1416 TRSs 720 SRSs 42 TPTP theories
method yes time yes time yes time tc

KBO/KBOω 107/- 0.5 33/34 0.5/0.7 31/- 16 19%
TKBO/TKBOω 192/- 0.9 43/44 1.7/2.9 34/- 56 35%
POLY 149 0.9 22 1.6 15 4 70%
LPO 159 0.5 5 0.5 26 37 7%P

262 - 45 - 34

approach is implemented in the tool OMKBTT [22]. However, only termination
techniques that guarantee total termination [5] are applicable in order to ob-
tain a TRS that is indeed ground-complete. In practice, applicable termination
techniques are thus restricted to classical reduction orders such as LPO, KBO
or polynomial interpretations. We thus compared the power of OMKBTT using
TKBO besides other reduction orders on a test set of 42 theories underlying
TPTP [20]. Indeed TKBO is able to produce ground-complete systems for more
problems than any of the other reduction orders. The right part of Table 1 shows
that TKBO significantly extends the class of orientable TRSs, although more
time is required (column time). The column tc indicates the percentage of the
execution time spent on termination checks.

7 Conclusion

In this paper we considered three variants of the Knuth-Bendix order and showed
that some extensions do not add power (as far as termination proving of finite
TRSs is considered) while others do. We have implemented the finite version of
TKBO [12, 13] as an SMT problem in non-linear integer arithmetic. Since our
solver uses arbitrary precision arithmetic, overflows (as reported in [12, 13]) are
not an issue. However, since already standard KBO can demand arbitrarily large
weights (see [23, Example 2]) overflows are not specific to TKBO (as the discus-
sions in [12,13] convey). We have also implemented a KBO using ordinal weights,
which has been identified as one challenge in [12]. Also Vampire [17] uses ordinal
numbers (see [12, Section 7]), but only for weights of predicate symbols. Since
they occur at the root only no ordinal arithmetic is needed but only compari-
son. Hence the same effect could be achieved by allowing a (quasi-)precedence
on predicate symbols.
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