Communicating Formal Proofs:
The Case of Flyspeck

Carst Tankink!, Cezary Kaliszyk?, Josef Urban', and Herman Geuvers'-3

1 ICIS, Radboud Universiteit Nijmegen, Netherlands
2 Institut fiir Informatik, Universitit Innsbruck, Austria
3 Technical University Eindhoven, Netherlands

Abstract. We introduce a platform for presenting and cross-linking for-
mal and informal proof developments together. The platform supports
writing natural language ‘narratives’ that include islands of formal text.
The formal text contains hyperlinks and gives on-demand state infor-
mation for each proof step. We argue that such a system significantly
lowers the threshold for understanding formal development and facili-
tates collaboration on informal and formal parts of large developments.
As an example, we show the Flyspeck formal development (in HOL Light)
and the Flyspeck informal mathematical text as a narrative linked to the
formal development. To make this possible, we use the Agora system,
a MathWiki platform developed at Nijmegen which has so far mainly
been used with the Coq theorem prover: we show that the system itself
is generic and easily adapted to the HOL Light case.

1 Introduction

Formal proof development is gradually becoming accepted as a means for es-
tablishing the correctness of a mathematical theory. Large repositories of formal
proof have been created in various proof assistants to prove impressive results,
for example, the development of the odd order theorem in Coq [I], the proof of
the 4 color theorem in Coq [2] and the proof of the Kepler conjecture [3] in HOL
Light. A major issue is how to communicate these large formalizations: to people
that want to cooperate or want to build further on the development, to people
who want to understand the precise choices (of definitions and proofs) chosen
in the formalization and to people who want to convince themselves that it is
really the proper theorem that has been proven. At the moment, communicating
a formal proof is hard, as can also be noticed from the fact that the number of
publications about the impressive formalizations mentioned above is low. More-
over, these publications hardly give access to the formalization, but describe
the project on a rather high level of abstraction. The Journal of Formalized
Reasoningﬂ the Archive of Formal Proofsﬂ and the Journal of Formalized Math-
ematicsﬁ try to improve on this by explicitly giving a platform for formalizations
(the latter for Mizar), but that is not really taking off.

4 http://jfr.unibo.it/
® http://afp.sf.net
S http://fm.mizar.org/

http://jfr.unibo.it/
http://afp.sf.net
http://fm.mizar.org/

In the present paper we present a wiki based approach towards the commu-
nication of large formal proof developments. Formal proofs are close to program
code in a high-level programming language, which needs to be documented to
be understandable and maintainable. However, a proof development is also spe-
cial, because there (almost always) already is a documentation, which is the
mathematical document (a book or an article) describing the mathematics (def-
initions, notation, lemmas, proofs, examples). This is what we call the informal
mathematics as opposed to the formal mathematics which is the mathematics
as it lives inside a proof assistant. These days, informal mathematics consists of
ITEX files and formal mathematics usually consist of a set of text files that are
given as input to a proof assistant to be checked for correctness. Our approach
is to provide tools that allow one to do the following.

1. One can automatically generate wiki files from formal proof developments.
These wiki files can then be displayed in a browser, where we maintain
all linking that is inherently available in the formal development (e.g. via
definitions and applications of lemmas).

2. When hovering over the formal proofs, one sees the proof state at that point,
so a reader can observe what the action of the proof commands is. This uses
the Proviola technology that we have previously developed and described [4].

3. One can also automatically generate wiki files from a set of XTEX files. These
wiki files can then be displayed in a browser, where we maintain the linking
inside the I/TEX files, but more importantly, also the linking with the formal
proof development.

4. One can write a wiki document about mathematics and include snippets
of formal proof text via an antiquotation mechanism. This allows one to
dynamically insert a piece of formal proof, by referencing the formal object
in a repository, which is then automatically rendered and displayed inside
the wiki document.

The tools we describe in this paper are part of the Agora system we are
developing in Nijmegen, which aims at being a “Wiki for Formal Mathematics”:
a web platform to present and document formalizations, but also to cooperate on
joint formalizations. With Agora, we want to lower the threshold for participating
in formalization projects by:

— Providing an easy-to-use web interface to a proof assistant [5].

— Marking up formal mathematics for the Web without requiring effort by
proof authors [6] and allowing users to browse this database for examples
and inspiration.

Providing tools for linking informal and formal text [7].

Providing additional tools for users of proof assistants, like automation or
proof advice.

The system is designed to support the dissemination of formal mathematics to an
audience that does not necessarily have prior exposure to an interactive theorem
prover. Our general claim is that this type of technology is crucial to further

the field of formalized mathematics. One has to develop computer support for
documenting and communicating formal proofs and for linking formal proofs to
a high level ‘narrative’.

Until recently, the system only fully supported formalizations written for
the Coq theorem prover, having been tested on smaller test cases. However, the
system is designed to be generic, reusing components that can be specialized for
specific theorem provers. This paper describes the extension of Agora to include
the HOL Light theorem prover [§], to allow the system to serve the files of the
Flyspeck project in a Wiki.

2 Presenting Flyspeck in Agora

In the present paper we will not go into the general goals or design of Agora,
but only show the tools that support the 4 activities mentioned above. We show
the practical usability of the tools by presenting a page of the Flyspeck formal
development in HOL Light, together with the page of the informal mathematical
description (Figure . By discussing these pages, the links between them and
how they have been created, we describe our tools.

An example document resides in Agoram and is shown in part in Figure For
the best experience, we suggest the reader follows along at the demonstration
page while reading this section. Implementing low-threshold interactive web-
editing of formal HOL Light code is currently work in progress.

2.1 Description of a Formal Proof

The first noticeable feature of the document is that it is almost isomorphic to
Chapter 5 of the text accompanying the Flyspeck formalization [9] (our source
document). As mentioned above, important formalizations are not merely tech-
nical proof scripts: they go hand-in-hand with informal (in this case Hales’s)
mathematical narrative. To obtain the informal text, we have processed the
KTEX sources of Hales’s text, transforming it into the Creole syntax [10]. This
syntax is similar to Wikipedia’s input language: a light-weight markup language
that is easy to translate to HTML. The formulae in the source document are
kept largely intact: they are processed at render-time by MathJaﬂ a JavaScript
tool for rendering mathematics in a browser-independent way. This approach
makes the resulting document editable as a wiki page written in Creole. A more
complete approach would be to also accept IHTEX as input language for writing
the documentation, something we intend to address as a follow-up.

2.2 Integration with Formal Proof

A nicely marked up paper, whether or not it appears as a Web page, is not a
description of a formal proof: for this, it needs to include parts of the formal-
ization, in order to showcase and document them. So, the second feature of the

" http://mws.cs.ru.nl/agora_flyspeck/flyspeck/f1ly_demo
8 http://mathjax.org

http://mws.cs.ru.nl/agora_flyspeck/flyspeck/fly_demo
http://mathjax.org

Lemma [node partition] VBTIKLP (disjoint) [edit]

Let (V, E) beafan. Let v € V. Then a disjoint sum decomposition of R? is given by

R® =aff{o,viu |J Wou(@u |J aftf({0,v},w).

node(z)=v {v,w}cE
Proof [edit]

We start the proof with the existence of the disjoint sum decomposition. First of all, R3 is the disjoint
union of aff{0, v} and its complement.

The case when card(E(v)) < 1follows immediately from the definitions. Therefore, assume that
card(E(v)) > 1 Fix u such that {v, u} € E, and let o be the azimuth cycle on E(v). Let

a(i) = azim(0, v, c'u, o' 1u) By Lemma 2pi-sum , the sum of the angles (%) is 27. Every

let VBTIKLP=prove(' (!(x:real”3) (V:real”3->bool) (E:(real”3->bool)->bool) (v:real”3) (u:real”3).

FAN(x,V,E)/\ ({v,u}IN E)

==>

(UNIV:real”3->bool) = aff {x,v} UNION (UNIONS {w dart_fan x V E (x,v,w,(sigma_fan x V E v w))|w| {v,w} IN E })
UNION

(UNIONS {aff_gt {x,v} {w} |w| {v,w} IN E}))

/\

(!(x:real”3) (V:real~3->bool) (E:(real”3->bool)->bool) (v:real”3) (w:real”3).
FAN(x,V,E)/\ ({v,w}IN E)

==>

w_dart_fan x V E (x,v,w, (sigma_fan x V E v w)) INTER aff {x,v}={})

/\

Fig. 1. An informal proof together with its formal counterpart. Cropped screenshots
from document pages at http://mws.cs.ru.nl/agora_flyspeck/flyspeck/fly_demo.

document is that the definitions and lemmas in it are surrounded by a box, and
marked with buttons marked “formal” and “informal”: using these buttons, a
reader can toggle between the informal text of such a text and the corresponding
formalization.

This functionality is made possible thanks to (Hales’s) annotations of the
source text, combined with a previously developed technology for Agora. For
(almost) each island of ‘mathematics’ (definitions, lemmas, theorems...), the
Flyspeck text defines the corresponding entity or entities in the formal devel-
opment. The corresponding entity can be included in the page using Agora’s
inclusion facility [7]. The necessary syntax can be also hand-written in the wiki
(this can be used for gradual addition of more and more cross-links to the formal
code), but so far everything was generated from the source text annotations.

2.3 Dynamic Display

The Proviola tool integrated in Agora’s rendering chain reduces the task of eval-
uating proof state to just pointing at parts of the proof: it shows a proof script
as HTMIEI and when the user points at a particular command, the associated
state is computed in the background, caching it for speedy retrieval. This in-
teraction model has two advantages: (i) it eliminates the overhead of installing,

9 E.g., http://mws.cs.ru.nl/agora_flyspeck/flyspeck/fan/fan_misc/index

http://mws.cs.ru.nl/agora_flyspeck/flyspeck/fly_demo
http://mws.cs.ru.nl/agora_flyspeck/flyspeck/fan/fan_misc/index

configuring, and learning about a theorem prover; inspection of an interesting
proof state or tactic is reduced to pointing a cursor at it, and (ii) it reduces the
amount of task switches a reader will have to make.

Proviola has a generic design, and the inclusion of HOL Light for its batch
task was simple: writing a parser that recognizes input to the prover, and some
glue that allows the Proviola to send these commands to HOL Light, and read
the output.

3 Conclusion and Future Work

Agora is an online platform that facilitates collaborative gradual formalization
of mathematical texts, and allows their dual presentation as both informal and
formal. In particular, the platform takes both IATEX and formal input, cross-links
both of them based on simple user-defined macros and on the formal syntax,
and allows one to easily browse the formal counterparts of an informal text.
One future direction is to allow even the non-mathematical parts of the wiki
pages to be written directly with (extended) IWTEX, as it is done for example in
PlanetMath. This could facilitate the presentation of the projects developed in
the wiki as standalone XTEX papers. On the other hand, it is straightforward
to provide a simple script that translates the wiki syntax to I TEX, analogously
to the existing script that translates from KTEX to wiki. We also still have to
instantiate the interactive editing capability (now available for Coq) to HOL
Light. This means that starting a HOL Light formal island inside an informal
wiki page launches HOL Light (with a reasonably advanced checkpointed state),
loads additional prerequisities (in particular the previous formal islands), and
shows the read-eval-print (REPL) loop states of HOL Light inside the interface.

We are working on integrating the recently developed proof advice system [11]
for HOL Light. The advisor uses machine learning to find lemmas that can be
useful in solving a goal, encodes the goal together with the advised lemmas in
TPTP format and runs a number of ATPs to find a minimal set of needed lemmas
to then reconstruct the goal in HOL. This can be especially useful in a Wiki
environment, where it can be used to automatically discover redundancies and
refactor the formalization. Another direction is adding good linguistic techniques
for translating informal texts to formal ones based on training on the annotated
corpora (arising through this work). We could also try to include (or even better:
track) informal wikis like ProofWiki, and start adding formal counterparts and
annotations to them. Similarly for papers and books that were formalized in
various systems: for example the books leading to the proof of Feit-Thomson
theorem and their recent Coq formalization, and the Compendium of Continuous
Lattices and its Mizar formalization.

References

1. Gonthier, G.: Engineering mathematics: the odd order theorem proof. In Gia-
cobazzi, R., Cousot, R., eds.: POPL, ACM (2013) 1-2

10.

11.

. Gonthier, G.: The four colour theorem: Engineering of a formal proof. In Kapur,

D., ed.: ASCM. Volume 5081 of LNCS., Springer (2007) 333

Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A
revision of the proof of the Kepler conjecture. Discrete & Computational Geometry
44(1) (2010) 1-34

Tankink, C., Geuvers, H., McKinna, J., Wiedijk, F.: Proviola: A tool for proof
re-animation. In Autexier, S., Calmet, J., Delahaye, D., Ton, P.D.F., Rideau, L.,
Rioboo, R., Sexton, A.P., eds.: AISC/MKM/Calculemus. Volume 6167 of Lecture
Notes in Computer Science., Springer (2010) 440-454

Tankink, C.: Proof in context — web editing with rich, modeless contextual feed-
back. Submitted to UITP 2012 (2012)

Tankink, C., McKinna, J.: Dynamic proof pages. In Lange, C., Urban, J., eds.: ITP
Workshop on Mathematical Wikis (MathWikis). Number 767 in CEUR Workshop
Proceedings, Aachen (2011) 45-48

Tankink, C., Lange, C., Urban, J.: Point-and-write - documenting formal mathe-
matics by reference. In Jeuring, J., Campbell, J.A., Carette, J., Reis, G.D., Sojka,
P., Wenzel, M., Sorge, V., eds.: AISC/MKM/Calculemus. Volume 7362 of LNCS.,
Springer (2012) 169-185

Harrison, J.: HOL Light: An overview. In Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M., eds.: Proceedings of the 22nd International Conference on Theorem
Proving in Higher Order Logics, TPHOLs 2009. Volume 5674 of LNCS., Munich,
Germany, Springer-Verlag (2009) 60-66

Hales, T.C.: Dense Sphere Packings - a blueprint for formal proofs. Cambridge
University Press (2012)

Sauer, C., Smith, C., Benz, T.: Wikicreole: a common wiki markup. In: WikiSym
'07. WikiSym ’07, New York, NY, USA, ACM (2007) 131-142

Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck.
CoRR abs/1211.7012 (2012)

	Communicating Formal Proofs: The Case of Flyspeck

