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Abstract
This paper describes the automatic mode of the new version of the Knuth-Bendix
Completion Visualizer. The internally used data structures have been overhauled and the
performance was dramatically improved by introducing caching, parallelization, and term-
indexing in the computation of critical pairs and simplification. The new version is much
faster and can complete three more systems.

1 Introduction

The Knuth-Bendiz Completion Visualizer (KBCV) is an interactive/automatic tool for Knuth-
Bendix completion and equational logic proofs. The basic functions of the previous release
are described in detail in [5l [7]. This paper addresses implementation issues to improve the
performance of the automatic completion mode and reports on experiments of the new release
KBCV 2.0. The tool is available under the GNU Lesser General Public License 3 at

http://cl-informatik.uibk.ac.at/software/kbcv

In the sequel we assume familiarity with term rewriting, and completion [I]. Nevertheless
we recall the basics.

Completion is a procedure which takes as input a (finite) set of equations £ and a reduction
order > (or it tries to construct this reduction order on the fly with the help of an external
termination tool, see [§]) and attempts to construct a terminating and confluent term rewrite
system (TRS) R with the same equational theory as £. In case the completion procedure
succeeds, two terms are equivalent with respect to £ if and only if they reduce to the same
normal form with respect to R, that is, R represents a decision procedure for the word problem
of £.

The computation is done by generating a finite sequence of intermediate TRSs which consti-
tute approximations of the equational theory of £. Following Bachmair and Dershowitz [2] the
completion procedure can be modeled as an inference system (see Figure[l)). The inference rules
work on pairs (£, R) where £ is a finite set of equations and R is a finite set of rewrite rules.
The goal is to transform an initial pair (£,2) into a pair (&, R) such that R is terminating,
confluent and equivalent to £. In our setting a completion procedure based on these rules may
succeed (find R after finitely many steps), loop, or fail. In Figure [l| a reduction order > is
provided as part of the input. We use s 373 u to express that s is reduced by arule f - r € R
such that ¢ cannot be reduced by another rule with left-hand side s. The notation s ~ ¢ denotes
either of s ~ ¢ and t ~ s.

KBCV internally uses indexed equations ¢: [ =~ r and rules j: [ — r, where ¢ and j are unique
positive integers and [ and r are terms, called the left- and right-hand side respectively.
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Figure 1: The inference rules of completion.

2 Optimizing Automatic Completion

KBCV 2.0 is implemented in Scala 2.10.0,! an object-functional programming language which
compiles to Java bytecode. For this reason KBCV is portable and runs on Windows and Linux
machines. The developed term library (scala-termlib, available from KBCV’s homepage) was
completely overhauled and consists of approximately 2100 lines of code. The new KBCV builds
upon this library and has an additional 5000 lines of code.

The main goal for this release was to improve the performance of KBCV especially in au-
tomatic mode. Some more details on the automatic mode can be found in [, Section 5.2.1]
and [7, Section 2.2]. Looking at the flow chart of the automatic mode depicted in Figure [2| we
first had to identify critical parts, where speed-up would be possible.

1. The procedure starts in the SIMPLIFY-phase, where both sides of equations are rewritten
as far as possible.

2. Trivial equations, that is, equations where both sides are the same are dropped in the
DELETE-phase.

3. The third phase checks if £ is empty and if all critical pairs between left-hand sides of
rules in R are joinable.?

4. Then the procedure chooses a single equation which it tries to orient. The used heuristic
is to select an equation where the length of the left- and right-hand sides is minimal. The
cost for orientation mainly depends on the used termination tool.

5. Now in the COMPOSE-phase the procedure simplifies all right-hand sides of rules as far
as possible.

6. After that, in the COLLAPSE-phase, it tries to simplify left-hand sides of rules.

7. Finally DEDUCE computes critical pairs and adds them to the set of equations.

From this assessment we see that (2) is trivial and already very fast and (4) mainly depends
on an external program. So we focus on the remaining phases. In the sequel we will some-
times refer to (3) and (7) collectively as critical pair computation and to (1), (5), and (6) as
simplification.

Thttp://www.scala-lang.org/
2The computation and check for joinability of critical pairs is only needed because of KBCV’s interactive mode
in which inference rules may be fired in an arbitrary order.
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Figure 2: KBCV’s automatic completion procedure.

The first idea (which was already partly implemented in versions 1.7 and 1.8 of KBCV) was
to prevent re-computation by introducing caching. Next the independent parts of the procedure
were parallelized to make the most of modern multi-core/processor architectures. Finally we
also introduced term-indexing in order to speed up unification and matching of terms. These
steps are described in some more detail in the next three sections. We compare the resulting
speed-ups for various combinations of these methods in Section

2.1 Caching

In order to avoid redundancy in critical pair computations and simplifications we introduced
four new data structures for caching.

Each time a critical pair is computed KBCV stores the pair of indices of the overlapping rules
which caused the new equation. The next time automatic completion has to compute critical
pairs (in phases (3) or (7) of the procedure) it only computes critical pairs from overlaps which
are not already stored.

We use three different caches for COMPOSE, COLLAPSE, and SIMPLIFY respectively. The
first cache has an entry for each rule. In this entry we store the set of indices of rules which
have already been tried to simplify this rule. Next time automatic completion has to simplify
a rule it only tries the rules which are not cached yet. The other two caches work just in the
same way.

2.2 Parallelization

While automatic completion (Figure [2) executes the single phases sequentially, within a phase
there are completely independent computations which can be parallelized.

e DEDUCE: The computation of critical pairs.
e COMPOSE: The composition of rules.

e COLLAPSE: The collapsing of rules.

SIMPLIFY: The simplification of equations.

In order to get the most out of modern multi-core architectures we re-implemented those four
phases. Now each single step (e.g. the computation of critical pairs between two particular

3
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KBCV-b-i-u KBCV-i-u KBCV-b-u KBCV-b-i KBCV-u KBCV-i KBCV-b KBCV

completed 85 87 85 85 89 90 85 90
total time 1142.6 512.8 498.0 384.5 1163.4 1321.3 321.8 1116.2
avg. time 13.4 5.9 5.9 4.5 13.1 14.7 3.8 12.4
AD93_722 83.9 44.7 418 32.9
BGK94.D16 30.5 257 25.6 23.2
BGK94_Z22W 598.7  220.6 201.6
LS94 G1 583.6 514.5
SK90_3.09 168.1 161.1 90.1

Table 1: Experimental results on 115 systems, timeout: 600s.

rules, or one specific rewrite step on one side of an equation) are separate computations which
can be handled by a pool of worker threads. The main program waits until all results are
computed and then continues with the non-parallel part of the procedure.

2.3 Term Indexing

Both unification of terms (needed for the computation of critical pairs) and matching (needed
for rewriting of terms) can get very expensive for large systems with large left-hand sides of
rules. To counteract that we now store the left-hand sides of rules in a discrimination tree
(see for example [4]) which allows for very fast filtering of so called candidate sets (which are
typically very small). Getting a unifiable or matching term from this candidate set is much
faster than checking all left-hand sides of rules.

3 Experiments

The experiments we describe here were carried out on a 64bit GNU/Linux machine with 48
AMD Opteron™ 6174 processors and 315 GB of RAM. The kernel version is 2.6.32. The
version of Java on this machine is 1.7.0_.03. For the JVM we limited the stack size for each
thread to 10MB, set the initial heap size to 1GB, and the maximum heap size to 2GB. The
test-bed we worked with consists of 115 systems from the distribution of MKBTT.? KBCV was
launched using the following flags:

./kbcv -a -p -s 600 -m "./ttt2 -cpf xml - 1" <inputfile>

Here the -a flag tells KBCV to switch to automatic mode, —-p causes KBCV to output the CPF
proof of completion on stdout, -s 600 sets the timeout to 600 seconds and finally -m sets the
termination-check method to use, in our case calls to the external termination tool TTo. There
are three more flags we used in the experiments: -b disables caching, -i disables term-indexing,
and -u disables parallelization. The tool instances where parallelization was enabled used all
of the 48 processors.

The upper part of Table [I] gives the number of completed systems, the total time needed
to complete them and the average time for each of the completed systems for different configu-
rations of KBCV. The lower part lists systems which only certain configurations of KBCV could
complete together with the time. The detailed experiments are available online.* Here each

3http://cl-informatik.uibk.ac.at/software/mkbtt/index.php
“http://cl-informatik.uibk.ac.at/software/kbcv/experiments/kbcv2/
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column is labeled with KBCV plus the set flags. So the first column labeled KBCV-b-i-u gives
the results for KBCV without caching, term-indexing, and parallelization, while the last column
shows the results for KBCV using all three methods. What we see is that without optimization
KBCV can complete 85 out of the 115 systems and the average time for that is 13.4 seconds
per system. Without caching (columns three, four, and seven) we are not able to complete
additional systems, although we achieve a speed-up of about 2.6 using only term-indexing or
parallelization, and 3.5 using both of these methods. Only using caching (column two) already
establishes two more systems with a speed-up for the initial 85 systems of about 2.9. Caching
plus term-indexing (column five) already yields two more successful systems and a speed-up
with respect to the 85 systems of about 3.5. If we combine caching with parallelization (column
six) we get yet another system and a speed-up for the initial systems of about 4.0. Finally
KBCV using all three methods achieves a speed-up of 4.5 for the initial 85 systems. All found
proofs have been certified by CéA [6].

4 Conclusion

Three different methods to enhance KBCV’s automatic completion procedure have been investi-
gated and compared. We have seen that these methods, most notably caching, achieve a huge
performance boost for the automatic completion procedure of KBCV 2.0.

If we look at the 115 systems we tested, we see that most of them only consist of about
10 to 20 rules and that the left-hand sides of those are also pretty small. When we work with
much larger systems with more complicated left-hand sides parallelization and term-indexing
become more and more important. We for example tried to only compute critical pairs for a
subset of the HOL Light [3] simpset (about 3000) rules. Without parallelization we had to cancel
the experiment after several days. Using parallelization KBCV was able to compute the 300,000
critical pairs in less than two hours.

A next step to further push the procedure would be to investigate different heuristics for
the selection of equations in the ORIENT-phase.
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