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Abstract

Unravelings are a class of transformations of conditional term rewriting systems into
unconditional systems. Such transformations have been used to analyze and simulate
conditional rewrite steps by unconditional rewrite steps for properties like (operational)
termination. In this paper, we show how to prove confluence of conditional term rewriting
systems via unravelings.

1 Introduction and Overview

Conditional term rewriting systems (CTRSs) are term rewriting systems in which rules may
be constrained by equations over terms. Such systems arise naturally in many settings like
functional programming and they have been used in applications like program inversion [8].

Yet, CTRSs are more difficult to analyze and many criteria that hold for unconditional TRSs
do not hold for CTRSs. Therefore, several transformations have been defined that eliminate
conditions in CTRSs [6, 14, 1, 12].

There are some results on confluence of CTRSs like [2, 13], yet there are no results known
to us that use transformations to prove confluence of CTRSs.

The main difficulty in using transformations to prove confluence is that the transformed
TRS may give rise to derivations that are not possible in the original CTRS. Another difficulty
is that in order to encode conditions, the signature of the transformed system is different from
the signature of the original CTRS. This might lead to derivations in which terms occur that
are not defined in the original system.

In this paper, we show how to prove confluence of CTRSs via unravelings, the simplest
class of transformations of CTRSs into TRSs. We focus on so-called oriented, deterministic
3-CTRSs, a class of CTRSs in which extra variables are allowed to a certain extent. We will
use common notions and notations, like they are used in e.g. [10].

2 Unravelings

Unravelings are a class of transformations of CTRSs into unconditional TRSs that have been
introduced in [6]. They have been the subject of interest in several publications [8, 4, 9, 5].

In an unraveling, a conditional rule is split into several unconditional rules. The conditions
are encoded in new function symbols, called U -symbols, along with some variables. If the
conditions are satisfied, then the rhs of the original conditional rule is reproduced.
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In the unraveling Useq , that is defined in [10] (based on [7]), one new function symbol is
introduced for each condition in a conditional rule. By sequentially encoding the conditions, this
unraveling can transform deterministic CTRSs (DCTRSs) into TRSs without extra variables.
In DCTRSs, extra variables must occur on the rhs of a condition first so that their matchers
can be determined by plain rewriting.

A conditional rule α : l → r ⇐ s1 →
∗ t1, . . . , sk →

∗ tk is transformed into unconditional
rules as follows:

Useq(α) = { l→ Uα
1 (s1,

~X1), Uα
1 (t1,

~X1)→ Uα
2 (s2,

~X2), . . . , Uα
k (tk,

~Xk)→ r }

where Xi = Var(l, t1, . . . , ti−1). Here, ~X denotes the unique sequence of variables in X under
some fixed order on variables.

In order to distinguish terms in the unraveling that contain U -symbols, we will refer to such
terms as mixed terms while we refer to terms without U -symbols as original terms.

It is easy to show that a derivation in a CTRS u →∗
R

v has a corresponding derivation in
the unraveling u →∗

Useq(R) v (for all original terms u, v). This property is called completeness.

While completeness is easy to prove and satisfied in general, its counterpart soundness only
holds in certain cases (see e.g. [6, 4, 9, 5]).

3 Soundness for Joinability

We prove confluence of a CTRS R via derivations in the unraveling of R in the following
way: for all original terms s, t1, t2 such that t1 ←

∗
R

s →∗
R

t2, we know by completeness that
t1 ←

∗

U(R) s →∗

U(R) t2; if there is an original term u such that t1 →
∗

U(R) u ←∗

U(R) t2, then by
soundness we obtain that t1 →

∗
R

u←∗
R

t2 in the original CTRS R.
One difficulty in this approach is that we need to prove that t1 and t2 have a common

descendant in U(R) that is an original term. We will therefore use another notion of soundness:

Definition 1 (Soundness for joinability). An unraveling U is sound for joinability of a CTRS
R if for all original terms s, t such that s ↓U(R) t, also s ↓R t.

We can use soundness for joinability to prove confluence for every CTRS:

Lemma 2. Let R be a DCTRS and U be an unraveling. If U(R) is confluent and U is sound
for joinability of R, then R is confluent.

Proof. Consider two terms s, t such that s↔∗
R

t. Completeness of U implies s↔∗

U(R) t. Since

U(R) is confluent, therefore s ↓U(R) t, and by soundness of joinability s ↓R t.

Although there is a strong connection between soundness and soundness for joinability,
soundness does not imply soundness for joinability in general:

Example 3. Consider the following CTRS R that contains one conditional rule that is unrav-
eled into two unconditional rules (using Useq):

Useq(































a→ c→ e
րց ց

b→ d→ k

f(x)→ x⇐ x→∗ e

g(x, x)→ h(x, x)

h(d, x)→ A(x)































) =



















...

f(x)→ Uα
1 (x, x), Uα

1 (e, x) → x

...
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Useq is sound for non-erasing 2-DCTRSs ([5, Theorem 18] and [9, Corollary 5.5]), therefore the
unraveling is sound. In Useq(R), terms g(f(a), f(b)) and A(f(k)) are joinable:

g(f(a), f(b))→∗ h(Uα
1 (c, d), U

α
1 (c, d))→

∗ h(d, Uα
1 (c, d))→ A(Uα

1 (c, d))→
∗A(Uα

1 (k, k))← A(f(k))

In R, A(f(k)) is irreducible, therefore g(f(a), f(b)) ↓R A(f(k)) only if g(f(a), f(b)) →∗
R

A(f(k)).
Yet, for this we need some common reduct s of f(a) and f(b) such that s→∗

R
d and s→∗

R
f(k),

but there is no original term satisfying these properties.

In the previous example, the derivation in Useq(R) contains mixed terms. In order to
prove soundness for joinability, we use a mapping t that translates terms in U(R) (including
mixed terms) into original terms. Using such a translation we obtain a more general soundness
criterion: an unraveling U is sound w.r.t. t for a DCTRS R, if for all original terms u and
all mixed terms v′ such that u →∗

U(R) v′, t(v′) is defined and u →∗
R

t(v′). Soundness w.r.t. t
implies soundness for joinability:

Lemma 4. If an unraveling U is sound w.r.t. t for a DCTRS R, then U is also sound for
joinability of R.

Proof. Let s, t be two original terms such that there is some (possibly mixed) term u′ such that
s→∗

U(R) u
′ ←∗

U(R) t. Then, soundness w.r.t. t implies s→∗
R

t(u′)←∗
R

t.

4 A New Unraveling

For many CTRSs, in particular overlay CTRSs, Useq returns a non-confluent TRS so that we
cannot use Useq to prove confluence of the original CTRSs.

Example 5 ([11]). The following CTRS defines even and odd predicates for natural number
encoded by 0 and s:

Reven =







even(0)→ true odd(0)→ false

even(s(x))→ false⇐ odd(x)→∗ true odd(s(x))→ false⇐ even(x)→∗ true

even(s(x))→ true⇐ odd(x)→∗ false odd(s(x))→ true⇐ even(x)→∗ false







The CTRS is unraveled into the following TRS using Useq :

Useq(Reven) =























even(0)→ true odd(0)→ false

even(s(x))→ Uα
1 (odd(x), x) odd(s(x))→ U

γ
1 (even(x), x)

Uα
1 (true, x)→ false U

γ
1 (true, x)→ false

even(s(x))→ U
β
1 (odd(x), x) odd(s(x))→ U

η
1 (even(x), x)

U
β
1 (false, x)→ true U

η
1 (false, x)→ true























The unraveled TRS is not confluent, for instance even(s(0)) rewrites to Uα
1 (odd(s(0), 0) and

U
β
1 (odd(s(0), 0) that are not joinable. Note that a more complicated and practical example

with the non-confluence problem can be found in [10, Example 7.2.49].

The following new unraveling returns a confluent TRS for certain overlay CTRSs. It strongly
resembles the unraveling Useq , but we introduce new U -symbols based on the lhs of the trans-
formed rule and terms in the conditions:
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Definition 6 (New unraveling). Let α be a conditional rule l → r ⇐ s1 →
∗ t1, . . . , sk →

∗ tk
(k ≥ 0), then its unraveling is defined as

Uconf (α) =



























l→ Ul,s1(s1,
~X1)

Ul,s1(t1,
~X1)→ Ul,s1,t1,s2(s2,

~X2)

...

Ul,s1,t1,...,tk−1,sk(tk,
~Xk)→ r



























where Xi = Var(l, t1, . . . , ti−1). Note that for Uα and Uα′ , we use the same symbol, e.g., Uα, if
α′ is a renamed variant of Uα. The unraveled TRS Uconf (R) then is

⋃

α∈R
Uconf (α).

In order to prove soundness for joinability of certain cases, we use the following backtrans-
lation that is also used in [5]:

tb(x) = x for all variables x

tb(Ul,...(v, ~Xiσ)) = l tb(σ) for all U-symbols Ul,...

tb(f(t1, . . . , tar(f))) = f(tb(t1), . . . , tb(tar(f))) for all non-U-symbols f

Useq is sound w.r.t. tb for weakly left-linear CTRSs and since tb is well-defined for Uconf we
can adapt the proof of [5, Theorem 3.28] to Uconf .

Lemma 7. Uconf is sound w.r.t. tb for a weakly left-linear CTRSs.

Proof (Sketch). Since tb is well-defined and derivations in the conditions can be extracted from
the U -symbols, we can use the proof of [5, Theorem 3.28].

Corollary 8. Uconf is sound for joinability of weakly left-linear CTRSs.

Finally, we obtain our main result:

Theorem 9. A weakly left-linear DCTRS R is confluent if so is Uconf (R).

Example 10. Consider the CTRS of Example 5. Its unraveling for Uconf has two rule less:

Uconf (Reven) =















































even(0)→ true

even(s(x))→ Ueven(s(x)),odd(x)(odd(x), x)
Ueven(s(x)),odd(x)(true, x)→ false

Ueven(s(x)),odd(x)(false, x)→ true

odd(0)→ false

odd(s(x))→ Uodd(s(x)),even(x)(even(x), x)
Uodd(s(x)),even(x)(true, x)→ false

Uodd(s(x)),even(x)(false, x)→ true















































The unraveled TRS is now confluent. It follows from left-linearity of Useq(Reven) that Reven is
weakly left-linear [5]. Therefore, by Theorem 9, Reven is confluent.

To show the usefulness of our approach, we want to repeat a result of [13] using Theorem 9:

Corollary 11. Orthogonal properly oriented right-stable 3-CTRSs are confluent.

Proof. Orthogonal properly oriented right-stable 3-CTRSs are unraveled into orthogonal and
therefore confluent TRSs by Uconf . Therefore, we can apply Theorem 9.
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5 Conclusion and Perspectives

We have shown that unravelings can be used to prove confluence of CTRSs. In order to do
this, we use soundness for joinability and a new unraveling, similar to the unraveling of [10],
but with better properties concerning confluence while retaining soundness properties.

In the future, we want to show soundness for joinability of other classes of CTRSs and also
use other transformations to analyze soundness properties.

A way to show joinability is the use of tree automata techniques developed to analyze
reachability. The techniques are well investigated for TRSs, and they are very useful. However,
the direct application of the techniques to CTRSs is very complicated and the constructed tree
automata are often overapproximations (cf. [3]). Thus, unravelings would be very useful to
analyze reachability and then confluence of CTRSs for which unravelings are sound. For this
reason, we will also work for soundness of unravelings, e.g., to find soundness conditions.
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