
Termination of LCTRSs∗

Cynthia Kop1

1 Department of Computer Science, University of Innsbruck
Technikerstraße 21a, 6020 Innsbruck, Austria
Cynthia.Kop@uibk.ac.at

Abstract
Logically Constrained Term Rewriting Systems (LCTRSs) provide a general framework for term
rewriting with constraints. We discuss a simple dependency pair approach to prove termination
of LCTRSs. We see that existing techniques transfer to the constrained setting in a natural way.

1 Introduction

In [4], logically constrained term rewriting systems are introduced (building on [3] and [2]).
These LCTRSs combine many-sorted term rewriting with constraints in an arbitrary theory,
and can be used for analysing for instance imperative programs.

Termination is an important part of such analysis, both for its own sake (to guarantee
finite program evaluation), and to create an induction principle that can be used as part of
other analyses (for instance proofs of confluence [6] or function equality [3]).

In unconstrained term rewriting, many termination techniques exist, often centred around
dependency pairs [1]. Some of these methods have also been transposed to integer rewriting
with constraints [2]. However, that setting is focused purely on proving termination for its
own sake, and thus poses very strong restrictions on term and rule formation.

In this paper, we will see how a basic dependency pair approach can be defined for
LCTRSs, and extend several termination methods which build around dependency pairs.

2 Preliminaries (from [4])

We assume standard notions of many-sorted term rewriting to be well-uderstood.
Let V be an infinite set of sorted variables, Σ = Σterms ∪ Σtheory be a many-sorted

signature, I a mapping which assigns to each sort occurring in Σtheory a set, and J a
function which maps each f : [ι1× . . .× ιn]⇒ κ ∈ Σtheory to a function Jf in Iι1 =⇒ . . . =⇒
Iιn =⇒ Iκ. For every sort ι occurring in Σtheory we also fix a set Valι ⊆ Σtheory of values:
function symbols a : []⇒ ι, where J gives a one-to-one mapping from Valι to Iι. A value c
is identified with the term c(). The elements of Σtheory and Σterms overlap only on values.

We call a term in T erms(Σtheory,V) a logical term. For ground logical terms, we define
Jf(s1, . . . , sn)K := Jf (Js1K, . . . , JsnK). A ground logical term s has value t if t is a value such
that JsK = JtK. Every ground logical term has a unique value. A constraint is a logical term
of some sort bool with Ibool = B, the set of booleans. A constraint s is valid if JsγKJ = >
for all substitutions γ which map the variables in Var(s) to a value.

A rule is a triple l→ r [ϕ] where l and r are terms with the same sort and ϕ is a constraint;
l is not a logical term (so also not a variable). If ϕ = true with J (true) = >, the rule is
just denoted l→ r. We define LVar(l→ r [ϕ])) as Var(ϕ)∪(Var(r)\Var(l)). A substitution
γ respects l→ r [ϕ] if γ(x) is a value for all x ∈ LVar(l→ r [ϕ]) and ϕγ is valid.

∗ The research described in this paper is supported by the Austrian Science Fund (FWF) international
project I963 and the Japan Society for the Promotion of Science.



2 Termination of LCTRSs

Given a set of rules R, the rewrite relation →R is the union of →rule and →calc, where:
C[lγ]→rule C[rγ] if l→ r [ϕ] ∈ R and γ respects l→ r [ϕ];
C[f(s1, . . . , sn)]→calc C[v] if f ∈ Σtheory \Σterms, all si values and v is the value of f(~s)

A reduction step with →calc is called a calculation. In an LCTRS with rules R, the
defined symbols are all symbols f such that a rule f(~l) → r [ϕ] exists in R. Symbols
f ∈ Σtheory \ Val are called calculation symbols and all other symbols are constructors.

I Example 1. We consider an LCTRS with sorts int and bool, with Ibool = B and int
mapped to the set of 16-bit signed integers; addition is sensitive to overflow. The rules are
a naive implementation of the Ackermann function (which will likely fall prey to overflows):

A(m,n) → A(m− 1,A(m,n− 1)) [m 6= 0 ∧ n 6= 0] A(0, n) → n+ 1
A(m, 0) → A(m− 1, 1) [m 6= 0]

A is a defined symbols, +,−, 6=,∧ calculation symbols, and all integers are constructors.

3 Dependency Pairs

As the basis for termination analysis, we will consider dependency pairs [1]. We first intro-
duce a fresh sort dpsort, and for all defined symbols f : [ι1× . . .× ιn]⇒ κ also a new symbol
f ] : [ι1 × . . .× ιn]⇒ dpsort. If s = f(s1, . . . , sn) with f defined, then s] := f ](s1, . . . , sn).

The dependency pairs of a given rule l→ r [ϕ] are all rules of the form l] → p] [ϕ] where
p is a subterm of r which is headed by a defined symbol. The set of dependency pairs for a
given set of rules R, notation DP(R), consists of all dependency pairs of any rule in R.

I Example 2. Noting that for instance A](m, 0)→ m−] 1 is not a dependency pair, since
− is a calculation symbol and not a defined symbol, Example 1 has three dependency pairs:

1. A](m, 0) → A](m− 1, 1) [m 6= 0]
2. A](m,n) → A](m− 1,A(m,n− 1)) [m 6= 0 ∧ n 6= 0]
3. A](m,n) → A](m,n− 1) [m 6= 0 ∧ n 6= 0]

Fixing a set R of rules, and given a set P of dependency pairs, a P-chain is a sequence
ρ1, ρ2, . . . of dependency pairs such that all ρi are elements of P, but with distinctly renamed
variables, and there is some γ which respects all ρi, such that for all i: if ρi = li → pi [ϕi] and
ρi+1 = li+1 → pi+1 [ϕi+1], then piγ →∗R li+1γ. Also, the strict subterms of liγ terminate.
We call P a DP problem and say that P is chain-free if there is no infinite P-chain.12

I Theorem 3. An LCTRS R is terminating if and only if DP(R) is chain-free.

4 The Dependency Graph

To prove chain-freeness of a DP problem, we might for instance use the dependency graph:

I Definition 4. A dependency graph approximation of a DP problem P is a graph G whose
nodes are the elements of P and which has an edge between ρ1 and ρ2 if (ρ1, ρ

′
2) is a P-chain,

where ρ′2 is a copy of ρ2 with fresh variables. G may have additional edges.

I Theorem 5. A DP problem P with graph approximation G is chain-free if and only if P ′
is chain-free for every strongly connected component (SCC) P ′ of G.

1 In the literature, we consider tuples of sets and flags, which is necessary if we also want to consider
non-minimal chains, innermost termination or non-termination. For simplicity those are omitted here.

2 In the literature, the word finite is used instead of chain-free. Since we have a single set instead of a
tuple, we used a different word to avoid confusion (as “finite” might refer to the number of elements).



C. Kop 3

I Example 6. Consider an LCTRS with rules R = {f(x) → f(0 − x) [x > 0]}. Then
DP(R) = {f ](x) → f ](−x) [x > 0]}. The dependency graph of DP(R) has one node, and
no edges, since there is no substitution γ which satisfies both γ(x) > 0 and γ(y) > 0 and
yet has (−x)γ →∗R yγ (as logical terms reduce only with →calc). Thus, clearly every SCC
of this graph is terminating, so DP(R) is chain-free, so R is terminating!

Of course, manually choosing a graph approximation is one thing, but finding a good
one automatically is more difficult. We consider one way to choose such an approximation:

Given a DP problem P, let GP be the graph with the elements of P as nodes, and with
an edge from l1 → r1 [ϕ1] to l2 → r2 [ϕ2] if the formula ϕ1∧ϕ′2∧ψ(r1, l

′
2,LVar(l1 → r1 [ϕ1])

∪ LVar(l′2 → r′2 [ϕ′2])) is satisfiable (or its satisfiability cannot be determined). Here, l′2 →
r′2 [ϕ′2] is a copy of l2 → r2 [ϕ2] with fresh variables, and ψ(s, t, L) is given by the clauses:

ψ(s, t, L) = > if either s is a variable not in L, or s = f(s1, . . . , sn) and one of:
f is a defined symbol, and s /∈ T erms(Σtheory, L),
f is a calculation symbol, t a value or variable, and s /∈ T erms(Σtheory, L),
f is a constructor and t a variable not in L;

ψ(s, t, L) =
∧n
i=1 ψ(si, ti, L) if s = f(s1, . . . , sn) and t = f(t1, . . . , tn) and f not defined;

ψ(s, t, L) is the formula s = t if s ∈ T erms(Σtheory, L), t ∈ T erms(Σtheory,V) and s and
t are not headed by the same theory symbol (we already covered that case);
ψ(s, t, L) = ⊥ in all other cases.

I Theorem 7. GP is a graph approximation for P.

This graph result and the given approximation correspond largely with the result of [5].

I Example 8. The graph in Example 6 is calculated with this method: ψ(f ](−x), f ](y), {x,
y})∧ x > 0∧ y > 0 evaluates to −x = y ∧ x > 0∧ y > 0 (as f ] is a constructor with respect
to R), which is not satisfiable (as any decent SMT-solver over the integers can tell us).

5 The Value Criterion

To quickly handle DP problems, we consider a technique similar to the subterm criterion
in the unconstrained case. This value criterion can also be seen as a simpler version of
polynomial interpretations, which does not require ordering rules (see Section 6).

I Definition 9. Fixing a set P of dependency pairs, a projection function for P is a function
ν which assigns to each symbol f ] : [ι1 × . . .× ιn]⇒ dpsort a number ν(f ]) ∈ {1, . . . , n}. A
projection function is extended to a function on terms as follows: ν(f ](s1, . . . , sn)) = sν(f]).

I Theorem 10. Let P be a set of dependency pairs, ι a sort and ν a projection function
for P, with the following property: for any dependency pair l → r [ϕ] ∈ P, if ν(l) has sort
ι and is a logical term (this includes variables), then the same holds for ν(r). Let moreover
� be a well-founded ordering relation on Iι and � a quasi-ordering such that � · � ⊆ �.
Suppose additionally that we can write P = P1 ∪ P2, such that for all ρ = l→ r [ϕ] ∈ P:

if ν(l) is a logical term of sort ι, then so is ν(r), and Var(ν(r)) ⊆ Var(ν(l));
if ρ ∈ P1, then ν(l) has sort ι and ν(l) ∈ T erms(Σtheory,LVar(ρ));
if ν(l) has sort ι and ν(l) ∈ T erms(Σtheory,V), then ϕ⇒ ν(l) � ν(r) is valid if ρ ∈ P1,
and ϕ⇒ ν(l) � ν(r) is valid if ρ ∈ P2.

Then P is chain-free if and only if P2 is chain-free.

Proof. A chain with infinitely many elements of P1 gives an infinite �∗ · � reduction. J



4 Termination of LCTRSs

I Example 11. Using the value criterion, we can complete termination analysis of the
Ackermann example. Choosing for � the unsigned comparison on bitvectors (so n � m if
either n is negative and m is not, or sign(n) = sign(m) and n > m), and ν(A) = 1, we have:

A](m, 0)→ A](m− 1, 1) [m 6= 0]: (m 6= 0)⇒ m � m− 1
A](m,n)→ A](m− 1,A(m,n− 1)) [m 6= 0 ∧ n 6= 0]: (m 6= 0 ∧ n 6= 0)⇒ m � m− 1
A](m,n)→ A](m,n− 1) [m 6= 0 ∧ n 6= 0] (m 6= 0 ∧ n 6= 0)⇒ m � m

All three are valid, so P is chain-free if P2 = {A](m,n)→ A](m,n− 1) [m 6= 0∧ 0∧n 6= 0]}
is. This we prove with another application of the value criterion, now taking ν(A]) = 2.

Note that the difficulty to apply the value criterion is in finding a suitable value ordering.
There are various systematic techniques for doing this (depending on the underlying theory),
but their specifics are beyond the scope of this paper.

6 Reduction Pairs

Finally, the most common method to prove chain-freeness is the use of a reduction pair.
A reduction pair (%,�) is a pair of a monotonic quasi-ordering and a well-founded partial

ordering on terms such that s � t % q implies s � q. Note that it is not required that �
is included in %; % might also for instance be an equivalence relation. A rule l → r [ϕ] is
compatible with R ∈ {%,�} if for all substitutions γ which respect the rule we have: lγ R rγ.
I Theorem 12. A set of dependency pairs P is chain-free if and only if there is a reduction
pair (%,�) and we can write P = P1 ∪ P2 such that P2 is chain-free, and:

all ρ ∈ P1 are compatible with � and all ρ ∈ P2 are compatible with %;
either all ρ ∈ R are compatible with %,
or all ρ ∈ P have the form l→ f(s1, . . . , si) [ϕ] with all si ∈ T erms(Σtheory,LVar(ρ));
f(~v) % w if f is a calculation symbol, v1, . . . , vn are values and w is the value of f(~v).

Note that all rules must be compatible with %, unless the subterms of the right-hand sides
in P can only be instantiated to ground logical terms; in this (reasonably common!) case,
we can ignore the rules in the termination argument. This is a weak step in the direction of
usable rules, a full treatment of which is beyond the scope of this short paper.

For the reduction pair, we might for instance use the recursive path ordering described
in [4]. Alternatively, we could consider polynomial interpretations:
I Theorem 13. Given a mapping µ which assigns to each function symbol f : [ι1×. . .×ιn]⇒
κ ∈ Σterms∪Σtheory an n-ary polynomial over Z, and a valuation α which maps each variable
to an integer, every term s corresponds to an integer µα(s). Let s � t if for all α: µα(s) >
max(0, µα(t)), and s % t if for all α: µα(s) = µα(t). Then (%,�) is a reduction pair.

Here, % is an equivalence relation. Alternatively we might base % on the ≥ relation in
Z, but then we must pose an additional weak monotonicity requirement on µ.
I Example 14. We consider an LCTRS over the integers, without overflow. This example
uses bounded iteration, which is common in systems derived from imperative programs:

sum(x, y)→ 0 [x > y] sum(x, y)→ x+ sum(x+ 1, y) [x ≤ y]

This system admits one dependency pair: sum](x, y) → sum](x + 1, y) [x ≤ y]. Neither
the dependency graph nor the value criterion can handle this pair. We can orient it using
polynomial interpretations, with µ(sum) = λnm.m − n + 1; integer functions and integers
are interpreted as themselves. Then x ≤ y ⇒ y − x + 1 > max(0, y − (x + 1) + 1) is valid,
so the pair is compatible with � as required.

Thus, DP(R) is chain-free if and only if ∅ is chain-free, which is obviously the case!



C. Kop 5

7 Related Work

The most important related work is [2], where a constrained term rewriting formalism over
the integers is introduced, and methods are developed to prove termination similar to the
ones discussed here. The major difference with the current work is that the authors of [2]
impose very strong type restrictions: they consider only theory symbols (of sort int) and
defined symbols (of sort unit). Rules have the form f(x1, . . . , xn) → g(s1, . . . , sn), where
the xi are variables and all si are logical terms. This significantly simplifies the analysis (for
example, the dependency pairs are exactly the rules), but has more limited applications; it
suffices for proving termination of simple (imperative) integer programs, but does not help
directly for analysing confluence or function equivalence.

8 Conclusion

In this paper, we have seen how termination methods for normal TRSs, and in particular the
dependency pair approach, extend naturally to the setting of LCTRSs. Decision procedures
are handled by solving validity of logical formulas. While this is undecidable in general,
many practical cases can be handled using today’s powerful SMT-solvers.

Considering termination results, we have only seen the tip of the iceberg. In the fu-
ture, we hope to extend the constrained dependency pair framework to handle also inner-
most termination and non-termination. Moreover, the dependency pair approach can be
strengthened with various techniques for simplifying dependency pair processors, both ad-
aptations of existing techniques for unconstrained term rewriting (such as usable rules) and
specific methods for constrained term rewriting (such as the chaining method used in [2] or
methods to add constraints in some cases).

In addition, we hope to provide an automated termination tool for LCTRSs in the near
future. Such a tool could for instance be coupled with a transformation tool from e.g. C or
Java to be immediately applicable for proving termination of imperative programs, or can
be used as a back-end for analysis tools of confluence or function equivalence.

References
1 T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. TCS, 236(1-

2):133–178, 2000.
2 S. Falke and D. Kapur. A term rewriting approach to the automated termination analysis

of imperative programs. In R. Schmidt, editor, Proc. CADE 09, volume 5663 of LNCS,
pages 277–293. Springer, 2009.

3 Y. Furuichi, N. Nishida, M. Sakai, K. Kusakari, and T. Sakabe. Approach to procedural-
program verification based on implicit induction of constrained term rewriting systems.
IPSJ Transactions on Programming, 1(2):100–121, 2008. In Japanese.

4 C. Kop and N. Nishida. Term rewriting with logical constraints. In Proc. FroCoS 13, 2013.
To Appear, http://cl-informatik.uibk.ac.at/users/kop/frocos13.pdf.

5 T. Sakata, N. Nishida, and T. Sakabe. On proving termination of constrained term re-
write systems by eliminating edges from dependency graphs. In H. Kuchen, editor, Proc.
WFLP 11, LNCS, pages 138–155. Springer, 2011.

6 Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in TCS. Cambridge
University Press, 2003.

http://cl-informatik.uibk.ac.at/users/kop/frocos13.pdf

	Introduction
	Preliminaries (from kop:nis:13)
	Dependency Pairs
	The Dependency Graph
	The Value Criterion
	Reduction Pairs
	Related Work
	Conclusion

