
Matching concepts across HOL libraries ?

Thibault Gauthier and Cezary Kaliszyk

University of Innsbruck, Austria
{thibault.gauthier,cezary.kaliszyk}@uibk.ac.at

Abstract. Many proof assistant libraries contain formalizations of the
same mathematical concepts. The concepts are often introduced (de-
fined) in different ways, but the properties that they have, and are in
turn formalized, are the same. For the basic concepts, like natural num-
bers, matching them between libraries is often straightforward, because
of mathematical naming conventions. However, for more advanced con-
cepts, finding similar formalizations in different libraries is a non-trivial
task even for an expert.

In this paper we investigate automatic discovery of similar concepts
across libraries of proof assistants. We propose an approach for normal-
izing properties of concepts in formal libraries and a number of similar-
ity measures. We evaluate the approach on HOL based proof assistants
HOL4, HOL Light and Isabelle/HOL, discovering 398 pairs of isomorphic
constants and types.

1 Introduction

Large parts of mathematical knowledge formalized in various theorem provers
correspond to the same informal concepts. Basic structures, like integers, are of-
ten formalized not only in different systems, but sometimes also multiple times
in the same system. There are many possible reasons for this: the user may for
example want to investigate special features available only for certain represen-
tations (like code extraction [4]), or simply check if the formal proofs can be
done in a more straightforward manner with the help of alternate definitions.
With multiple proof assistants, even the definitions of basic concepts may be
significantly different: in Isabelle/HOL [21] the integers are defined as a quotient
of pairs of naturals, while in HOL Light [6] they are a subset of the real num-
bers. Typically the proofs concerning a mathematical concept formalized in one
system are not directly usable in the other, so a re-formalization is necessary.

The idea of exchanging formal developments between systems has been in-
vestigated both theoretically and practically many times [10, 14, 16]. Typically
when a concept from the source systems is translated to a target system, and
the same concept exists in the target system already, a new isomorphic structure
is created and the relation between the two is lost. The properties that the two
admit are the same and it is likely that the user formalized many similar ones.

? The final publication is available at http://link.springer.com.



In this work we investigate automatic discovery of such isomorphic structures
mostly in the context of higher order logic. Specifically the contributions of this
work are:

– We define patterns and properties of concepts in a formal library and export
the data about constants and types from HOL Light, HOL4, and Isabelle/HOL
together with the patterns.

– We investigate various scoring functions for automatic discovery of the same
concepts in a library and across formal libraries and evaluate their perfor-
mance.

– We find 398 maps between types and constants of the three libraries and
show statistics about the same theorems in the libraries, together with nor-
malization of the shape of theorems.

There exists a number of translations between formal libraries. The first
translation of proofs that introduced maps between concepts was the one of
Obua and Skalberg [16]. There, two commands for mapping constructs were
introduced: type-maps and const-maps that let a user map HOL Light and HOL4
concepts to corresponding ones in Isabelle/HOL. Given a type (or constant) in
the maps, during the import of a theorem all occurrences of this type in the
source system are replaced by the given type of the target system. In order
for this construction to work, the basic properties of the concepts must already
exist in the target system, and their translation must be avoided. Due to the
complexity of finding such existing concepts and specifying the theorems which
do not need to be translated, Obua and Skalberg were able to map only small
number of concepts like booleans and natural numbers, leaving integers or real
numbers as future work.

The first translation that mapped concepts of significantly different systems
was the one of Keller and Werner [14]. The translation from HOL Light to Coq
proceeds in two phases. First, the HOL proofs are imported as a defined struc-
tures. Second, thanks to the reflection mechanism, native Coq properties are
built. It is the second phase that allows mapping the HOL concepts like natural
numbers to the Coq standard library type N.

The translation that maps so far the biggest number of concepts has been
done by the second author [10]. The translation process consists of three phases,
an exporting phase, offline processing and an import phase. The offline processing
provides a verification of the (manually defined) set of maps and checks that all
the needed theorems will be either skipped or mapped. This allows to quickly add
mappings without the expensive step of performing the actual proof translation,
and in turn allows for mapping 70 HOL Light concepts to their corresponding
Isabelle/HOL counterparts. All such maps had to be provided manually.

Bortin et al. [1] implemented the AWE framework which allows the reuse of
Isabelle/HOL formalization recorded as a proof trace multiple times for different
concepts. Theory morphisms and parametrization are added to a theorem prover
creating objects with similar properties. The use of theory morphisms together
with concept mappings is one of the basic features of the MMT framework [17].



This allows for mapping concepts and theorems between theories also in different
logics. So far all the mappings have been done completely manually.

Hurd’s OpenTheory [9] aims to share specifications and proofs between dif-
ferent HOL systems by defining small theory packages. In order to write and
read such theory packages by theorem prover implementations a fixed set of
concepts is defined that each prover can map to. This provides highest quality
standard among the HOL systems, however since the procedure requires manual
modifications to the sources and inspection of the libraries in order to find the
mappings, so far only a small number of constants and types could be mapped.
Similar aims are shared by semi-formal standardizations of mathematics, for
example in the OpenMath content dictionaries. For a translation between semi-
formal mathematical representation again concept lookup tables are constructed
manually [2, 19].

The proof advice systems for interactive theorem proving have studied sim-
ilar concepts using various similarity measures. The methods have so far been
mostly restricted to similarity of theorems and definitions. They have also been
limited to single prover libraries. Heras and Komendantskaya in the proof pat-
tern work [8] try to find similar Coq/SSReflect definitions using machine learn-
ing. Hashing of definitions in order to discover constants with same definitions
in Flyspeck has been done in [12]. Using subsumption in order to find duplicate
lemmas has been explored in the MoMM system [20] and applied to HOL Light
lemmas in [11].

The rest of this paper is organized as follows: in Section 2 we describe the
process of exporting the concepts like types and constants from three provers. In
Section 3 we discuss the classification of patterns together with the normalization
of theorems, while in Section 4 we define the scoring functions and an iterative
matching algorithm.We present the results of the experiments in Section 5 and
in Section 6 we conclude and present an outlook on the future work.

2 The theorem and constant data

In this section we shortly describe the data that we will perform our experiments
on and the way the theorems and constants are normalized and exported. We
chose three proof assistants based on higher-order logic: HOL4 [18], HOL Light [6]
and Isabelle/HOL [21]. The sizes of the core libraries of the three are significantly
different, so in order to get more meaningful results we export library parts of
the same order of magnitude. This amounts to all the theories included with
the standard distribution of HOL4. In case of HOL Light we include multivariate
analysis [7], HOL in HOL [5] and the 67 files that include the proofs of the 100
theorems [22] compatible with the two. For Isabelle we export the theory Main.

The way to access all the theorems and constants in HOL Light has been
described in detail in [13] and for HOL4 and Isabelle/HOL accessing values of
theories can be performed using the modules provided by the provers (DB.thms
and @{theory} object respectively). We first perform a minimal normalization of
the forms of theorems (a further normalization will be performed on the common



representation in Section 3) and export the data. We will focus on HOL4, the
procedures in the other two are similar.

The hypotheses of the theorems are discharged and all free variables are
generalized. In order to avoid patterns arising from known equal constants, all
theorems of the form ` c1 = c2 (in HOL4 four of them are found by calling
DB.match) are used to substitute c1 by c2 in all theorems.

The named theorems and constants are prefixed with theory names and ex-
plicit category classifiers (c for constants, t for theorems) to avoid ambiguities.
Similarly, variables are explicitly numbered with their position of the binding λ
(this is equivalent to the de Bruijn notation, but possible within the data struc-
ture used by each of the three implementations). We decided to include the type
information only at the constant level, and to skip it inside the formulas.

Example 1. ∀x : int. x = x −→ cHOL4.bool.∀ (λV.((cHOL4.min.= V ) V ))

Analogously, for all the constants their most general types are exported. Type
variables are normalized using numbers that describe their position and type
constructors are prefixed using theory identifiers and an explicit type constructor
classifier.

Example 2. (num, a) −→ tHOL4.pair.prod(tHOL4.num.num,Aa)

The numbers of exported theorems and constants are presented in Table 1.

HOL Light HOL4 Isabelle/HOL

Number of theorems 11501 10847 18914

Number of constants 871 1962 2214

Table 1: Number of theorems and constants after the exporting phase

3 Patterns and classification

In this section we will look at the concept of patterns created from theorems,
which is crucial in our classification of concepts and the algorithms for deriving
patterns and matching them. In the following we will call the constants and
types already mapped to concepts as defined.

Definition 1 (pattern). Let f be a formula with no free variables and C the
set of its constants. Let D = {d1, . . . , dn} be a set of defined constants and
A = C \D = {a1, . . . , am} a set of undefined constants. Its pattern is defined by:

P (f [a1, . . . , am, d1, . . . , dn]) := λa1 . . . an.f [a1, . . . , an, d1, . . . , dn]



Example 3. The pattern of ∀x y. x ∗ y = y ∗ x is:
- with D = {∀,=}, λa1. ∀x y. a1 x y = a1 y x.
- with D = {∀}, λa1a2. ∀x y. a1(a2 x y)(a2 y x).
- with D = ∅, λa1a2a3. a1 λx y. a2(a3 x y)(a3 y x).

Patterns are equal when they are α-equivalent. In practice, we order the
variables and constants by the order in which they appear when traversing the
formula from top to bottom. This means that checking if two formulas are α-
equivalent amounts to verifying the equality of their patterns with no constants
abstracted.

The formulas exported from all proof assistant libraries are parsed to a stan-
dard representation (λ-terms). The basic logical operators of the different provers
are mapped to the set of defined constants and the theorems are rewritten us-
ing these mappings before further normalization. Finally, the patterns of the
normalized formulas are extracted according to the specified defined constants.

We define three ways in which patterns are derived from the formula, each
corresponding to a certain level of normalization:

norm0 : Given D = ∅ we can define a pattern corresponding to the theorem
without any abstraction (identity).

norm1 : With D = {∀,∃,∧,∨,⇒,¬,=} (⇔ is considered as =). The procedure
is similar to the normalization done by first order provers (to the conjunctive
normal form) with the omission of transformations on existential quantifiers, as
we do not want do perform skolemization. We additionally normalize associative
and commutative operations. The procedure performs the following steps at
every formula level:

– remove implication,
– move negation in,
– move universal quantifiers out (existential quantifiers are not moved out to

maximize the number of disjunctions in the last step),
– distribute disjunction over conjunctions,
– rewrite based on the associativity of ∀,∃,∧ and ∨,
– rewrite based on the commutativity of ∀,∃,∧,∨ and =,
– separate disjunctions at the top formula level (example below).

Example 4. ∀x y. (x ≥ 0 ∧ x ≤ y) −→ (∀x. x ≥ 0) ∧ (∀x y. x ≤ y)

norm2 : Aside from all the normalizations performed by norm1, we additionally
consider a given list of associative and commutative constants (see Table 2 in
Section 5) that is used to further normalize the formula. The set of defined con-
stants stays the same as norm1, which in particular means that the associative
- commutative (AC) constants stay undefined and can be abstracted over.

Given the normalized theorems we will look at patterns relative to constants.
In the following, we will assume that the constants are partitioned in ones that
have been defined (mapped to a constant) and undefined.



Definition 2 (pattern relative to a constant). Let ai−1 be an undefined
constant appearing in a formula f in the ith position. The pattern of f relative
to ai−1 is defined by:

Pai−1(f) := (P (f), i− 1)

Example 5. Suppose D = ∅. Then the only two patterns that the reflexivity
principle induces are:

P∀(∀x. x = x) = (λa0a1. a0 (λv0. a1 v0 v0), 0)

P=(∀x. x = x) = (λa0a1. a0 (λv0. a1 v0 v0), 1)

Typically, we will be interested in patterns where D includes the predicate logic
constants, so the reflexivity principle will not produce any patterns. The patterns
will be properties of operations like commutativity or associativity. In order to
find all such properties we define:

Definition 3. The set of patterns associated with a constant c in a library lib
is defined by:

P set(lib, c) =
⋃

f∈lib

Pc(f)

Let (abs, i) be a relative pattern. Its associated set of constants, in library lib, is:

Cset(lib, (abs, i)) := {c ∈ lib,∃f ∈ lib, Pc(f) = (abs, i))}

We can now define one of the basic measures we will use for comparing similarity
of constants:

Definition 4. The set of common relative patterns shared by a constant c1 in
lib1, and a constant c2 in lib2 is:

P set(lib1, c1) ∩ P set(lib2, c2)

In the remaining part of this paper, we will not always specify if a pattern is
relative or not.

We proceed with forming type patterns. Type patterns are defined in a sim-
ilar way to formula patterns. Types are partitioned into already defined types
(initially the type of booleans – propositions) and undefined types. Type vari-
ables are also considered as undefined to enable their instantiation, and the list
of leaf and node types involved is saved to allow matching.

Example 6. Let Dtype = {fun} and a be a type variable. Then:

P type((a→ a, int→ int)) = P type((pair(fun(a, a), fun(int, int))))

= (λa0a1a2. (a0(fun(a1, a1), fun(a2, a2))), [pair, a, int])

Suppose we are given two types with respective patterns (abs1, [t1 . . . tn]) and
(abs2, [u1 . . . um]). They match if abs1 is α-equivalent to abs2. The list of their
derived type matches is [(t1, u1), . . . , (tn, un)], from which the pairs containing
at least one type variable are removed.



4 Matching concepts across libraries

In this section, we will investigate measures of similarity in order to find the
same types and constants between libraries. First, we will define a similarity
score for each pair of constants. Then, we will suppose that the best match is
correct and use it to update the similarity scores of the other pairs iteratively.

4.1 Similarity score

The easiest way to tell if two constants are related is to look at the number of
patterns they share. However, the more a pattern has associated constants, the
less relevant it is. To test each of these possibilities, two weighting functions are
defined:

w0(lib, p) = 1, w1(lib, p) =
1

card(Cset(lib, p))

where p is a pattern in library lib. The weighting functions presented here do
not consider the size of the pattern, nor the numbers of defined and undefined
constants. Considering more complicated weighting functions may be necessary
for formal libraries with significantly different logics.

Based on the weighting functions two scoring functions are defined. Let c1
be a constant from library lib1 and c2 a constant from library lib2. Let P =
{p1, . . . , pk} be the set of patterns c1 and c2 have in common. Then:

score0(c1, c2) =

k∑
i=1

w0(lib1, pi) ∗ w0(lib2, pi)

score1(c1, c2) =

k∑
i=1

w1(lib1, pi) ∗ w1(lib2, pi)

In order to account for the fact that constants with a high number of associated
patterns are more likely to have common patterns with unrelated constants, we
further modify score1. Let n1 be the number of patterns associated to c1 and n2
be the number of patterns associated to c2. We define a third similarity scoring
function by:

score2(c1, c2) =

k∑
i=1

w1(lib1, pi) ∗ w1(lib2, pi)

log(2 + n1 ∗ n2)

4.2 Iterative approach

In our initial experiments, a direct computation of the scorei functions for all
constants in two libraries after an initial number of correct pairs would find
incorrect pairs (false positive matches). Such pairs can be quickly eliminated if
the information coming from the first successful matches is propagated further.



theorems 1 patterns 1

ranked constant pairs

theorems 2 patterns 2

0

0

1

1

2

2

3

3

4

Fig. 1. Graphical representation of the iterative procedure

In order to do this, we propose an iterative approach (presented schematically
in Fig. 1):

The iterative approach returns a sorted list of pairs of constants and a sorted
list of pair of types from two libraries by following this steps:

0. Export theorems from a library as well as constants with their types and
parse them.

1. Normalize theorems and create theorem patterns, constant patterns and type
patterns according to the current defined constants and types.

2. Score every pair of constants.
3. Take the highest ranked pair of constants (c1, c2). Check if their type matches,

if not take the next one and so on. When their type matches, rewrite all the
theorems inside lib1 with the substitution c1 → d and all the theorems inside
lib2 with the substitution c2 → d, where d is a fresh defined constant. Then,
get the derived pairs of types from the pair of constant and substitute every
pair member with the same fresh defined type as for the other member.

4. Return the pairs of constants and the pairs of types, in the order they were
created, when you have reached the number of iteration desired.

The single-pass approach is defined by doing only one iteration, where the list
of pairs of constants are returned ranked by their score. A type check performed
after a single-pass can discard a number of wrong matches efficiently.

In the presented approach, we assume that the constants and types inside
one library are all different, which we tried to ensure by the initial normaliza-
tion. Thus, we will not match constant from the same library. Furthermore, if
a constant is matched, then it can no longer be matched again and the same
reasoning applies for types. This first statement will turn out not to be true for
a few constants in Section 5.

The complexity of the iterative approach is obviously larger than that of the
single-pass approach. On an IntelM 2.66GHz CPU, the single-pass approach be-
tween HOL4 and HOL Light with score2 and norm2 takes 6 minutes to complete.
The main reason is that it has to compare the patterns of all possible pairs of
constants (about two million). Thus, the bottleneck is the time taken by the
comparison function which intersects the set of patterns associated with each
constant and scores the resulting set. However, the iterative method can use



HOL Light HOL4 Isabelle/HOL

Pattern Consts Thms Pattern Consts Thms Pattern Consts Thms

Inj 37 37 Inj 54 68 Inj 83 137

Asso 32 36 Asso 50 65 App 17 18

Comm 25 44 Comm 40 48 Inj1 16 16

Refl 22 22 Trans 32 33 Comm 14 51

Lcomm 19 20 Refl 23 23 Inj2 12 35

Idempo 12 12 Idempo 20 20 App2 11 12

Table 2: Most frequent properties of one constant

the first pass to remove pairs of constants that have no common patterns. This
reduces the number of possible matches to ten thousand. As a consequence, it
takes only 3 minutes more to do 100 iterations.

5 Experiments

In order to verify the correctness of our approach we first investigate the most
common patterns and shapes of theorems in each of the three formal libraries
and then we look at the results of the matching constants across libraries. The
data given by these experiments is available at http://cl-informatik.uibk.

ac.at/users/tgauthier/matching/.

5.1 Single library results

Tables 2 and 3 show the most common properties when applying the standard
normalization norm1 of a single constant and of two constants respectively in the
three considered proof assistant libraries. The tables are sorted with respect to
the total number of different constants in the theorems from which the patterns
are derived. In Table 2, Inj stands for injectivity, Asso for associativity and
Comm for commutativity. In Table 3, the pattern Class and Inv are defined by
Class (c0, c1) = c0 c1, Inv(c0, c1) = ∀x0. c0 (c1 x0) = x0.

As expected, HOL Light and HOL4 show the most similar results and injec-
tivity is the most frequent property. Commutativity and associativity are also
very common, and their associated constants are used to apply norm2 as stated
in Section 3.

The common patterns immediately show constants defined to be equivalent
to the defined equality in each of the libraries, through an extensional definition.
There is one such constant in HOL4, one in HOL Light and three in Isabelle/HOL.
In order to avoid missing or duplicate patterns we mapped all these constants
to equality manually.



HOL Light HOL4 Isabelle/HOL

Pattern Consts Thms Pattern Consts Thms Pattern Consts Thms

Class 71 87 Inv 131 89 Class 188 642

Inv 64 34 Neutr 64 55 Inv 114 75

Imp 52 76 Class 63 70 Equal 58 40

Table 3: Most frequent properties of two constants

Furthermore, in Table 3, the third row of the Isabelle/HOL column shows 40
equalities between two different constants that were created during the normal-
ization. We have also found 10 such equalities in HOL4 and 1 in HOL Light. Often
a constant with a less general type can be replaced by the other, but without
type-class information in Isabelle/HOL we decided not to do such replacements
in general.

5.2 Cross-library results

The way we analyze the quality of the matching, is by looking at the number
of correct matches of types and constants between the libraries, in particular
we consider the occurrence of the first incorrect match, also called false positive
below. It is very hard to spot same concepts in two large libraries, therefore a
manual evaluation of the false negatives (pairs that could be mapped but are
not) is a very hard task and requires the knowledge of the whole libraries.

In the first three experiments, we test how much normalization, scoring,
iteration and types contribute to better matches. This will be used to choose the
best parameters for matching constants and types between each pair of provers.

The first experiment (Fig. 2) evaluates the similarity of the libraries. We
match the provers using the (a-priori) strongest normalization (norm2) with a
single-pass approach with no types. In this setting, the constant with the most
similar properties is 0 between HOL Light and HOL4, and between HOL4 and Is-
abelle/HOL. And it is ∅ between HOL Light and Isabelle/HOL. Form this perspec-
tive, the most similar pairs of provers are in decreasing order (HOL Light,HOL4),
(HOL4,Isabelle/HOL) and (HOL Light-Isabelle/HOL). We test the four other pa-
rameters relative to the pair of provers (HOL Light, HOL4) as we should have
most common patterns to work with.

The second experiment (Fig. 3) is meant to evaluate the efficiency of nor-
malization on the number of patterns. It is also run as a single-pass with no
types. We observe an increase in number of patterns from norm0 and norm1

which is mostly due to the splitting of disjunctions. Moreover, the difference
between norm2 and norm1 is negligible, which means that associative and com-
mutative constants are used in almost the same way across the two libraries. In
the following experiments we will only use norm2 assuming it is the strongest
normalization also in the other scenarios.



1 50 100

10

20

30

40

50

60

70

80

90

100

First hundred ranked constant pairs

N
u
m

b
er

o
f

co
m

m
o
n

p
a
tt

er
n
s

HOL Light− HOL4

HOL Light− Isabelle/HOL

HOL4− Isabelle/HOL

Fig. 2. Number of patterns by constant pairs in different provers

1 50 100

10

20

30

40

50

60

First hundred ranked constant pairs

N
u
m

b
er

o
f

co
m

m
o
n

p
a
tt

er
n
s

norm0

norm1

norm2

Fig. 3. The normalization effect

We next evaluate the scoring functions, the contribution of iterations, and
of the use of type information. Table 4 shows the effect of iterative method and
scoring function on the occurrence of the first wrong match (false positive). It
has been inspected manually. Fig. 4, shows the positive effects of the iterative
effect on the score1 and score2 curves. Some patterns are ranked higher after
an iteration, as they become more scarce. The iterative method also has an
opposite effect that is not directly visible in the figure: the score of pairs of



constants diminishes by removing false pattern matches. Table 5 shows how type
information contributes to matches. Types do help, but become less important
with better scoring functions combined with the iterative approach.

score0 score1 score2

Single-pass 39 69 88

Iterative 49 68 113

Table 4: Rank of the first wrong match for (HOL Light, HOL4)

score0 score1 score2

Single-pass 31 19 21

Iterative 224 18 6

Table 5: Number of pairs of constants discarded, due to type matching

5 50 100

10

20

30

40

50

Ranked constant pairs

P
er

ce
n
ta

g
e

o
f

th
e

b
es

t
sc

o
re

score0
score1
score2

Fig. 4. Effect of different scoring functions on the iterative approach



The last experiment is run with the best parameters found by the previous
experiments, namely norm2, score2 and the iterative approach with types. Three
numbers are presented in each cell of Tables 6 and 7. The first one is the number
of correct matches obtained before the first error. The second one is number
of correct matches we have found. In the case of constants, the third one is
the number of matches we have manually checked. We stop at a point where
a previously found error propagates. In the case of types, the third number is
the rank of the last correct match. As seen previously, the best results come
from comparing the HOL4 and HOL Light libraries, where we have verified 177
constant matches and 16 type matches.

HOL Light-HOL4 HOL4-Isabelle/HOL HOL Light-Isabelle/HOL

112 177/203 65 109/131 55 78/98

Table 6: Number of constants accurately matched

HOL Light-HOL4 HOL4-Isabelle/HOL HOL Light-Isabelle/HOL

11 16/22 8 11/17 6 7/13

Table 7: Number of types accurately matched

6 Conclusion

We have investigated the formal mathematical libraries of HOL Light, HOL4 and
Isabelle/HOL searching for common types and constants. We defined a concept
of patterns that capture abstract properties of constants and types and normal-
ization on theorems that allow for efficient computation of such patterns. The
practical evaluation of the approach on the libraries let us find hundreds of pairs
of common patterns, with a high accuracy.

Formal mathematical libraries contain many instances of the same algebraic
structures. Such instances have many same properties therefore their matching
is non-trivial. Our proposed approach can match such instances correctly, be-
cause of patterns that link such concepts to other concepts. For example integers
and matrices are instances of the algebraic structure ring. However each of the
libraries we analyzed contains a theorem that states that each integers is equal
to a natural number or its negation. A pattern derived from this fact, together
with many other patterns that are unique to integers match them across libraries
correctly.



The work gives many correct matches between concepts that can be directly
used in translations between proof assistants. In particular HOL/Import would
immediately benefit from mapping the HOL Light types and constants to their
Isabelle/HOL counterparts allowing for further merging of the results.

The approach has been tested on three provers based on higher-order logic.
In principle the properties of the standard mathematical concepts defined in
many other logics are the same, however it remains to be seen how smoothly
does the approach extend to provers based on different logics.

In order to further decrease the number of false positive matches, more
weighting and scoring functions could be considered. One could imagine func-
tions that take into account the length of formulas, and numbers of mapped
concepts per pattern. Similarly, the scoring functions could penalize pairs of
constants with only one pattern in common (these have been the first false pos-
itives in all our experiments). Further, the equalities between constants created
during normalization could be used for further rewriting of theorems into normal
forms. Other ideas include normalizing relatively to distributive constants and
trying weaker kind of matching for example on atoms or subterms.

Building a set of basic mathematical concepts together with their founda-
tional properties has been on the MKM wish-list for a long time. It remains
to be seen if a set of common concepts across proof assistant libraries can be
extended by minimal required properties to automatically build such “interface
theories”, and if automatically found larger sets of theories can complement the
high-quality interface theories built in the MKM community.

Acknowledgments

We would like to thank Josef Urban for his comments on the previous version
of this paper.
This work has been supported by the Austrian Science Fund (FWF): P26201.

References

1. Maksym Bortin, Einar Broch Johnsen, and Christoph Lüth. Structured formal
development in Isabelle. Nordic Journal of Computing, 13:1– 20, 2006.

2. David Carlisle, James Davenport, Mike Dewar, Namhyun Hur, and William Nay-
lor. Conversion between MathML and OpenMath. Technical Report 24.969, The
OpenMath Society, 2001.

3. Ulrich Furbach and Natarajan Shankar, editors. Automated Reasoning, Third In-
ternational Joint Conference, IJCAR 2006, Seattle, WA, USA, August 17-20, 2006,
Proceedings, volume 4130 of Lecture Notes in Computer Science. Springer, 2006.

4. Florian Haftmann, Alexander Krauss, Ondrej Kuncar, and Tobias Nipkow. Data
refinement in Isabelle/HOL. In Sandrine Blazy, Christine Paulin-Mohring, and
David Pichardie, editors, Proc. of the 4th International Conference on Interactive
Theorem Proving (ITP’13), volume 7998 of LNCS, pages 100–115. Springer, 2013.

5. John Harrison. Towards self-verification of HOL Light. In Furbach and Shankar [3],
pages 177–191.



6. John Harrison. HOL Light: An overview. In Stefan Berghofer, Tobias Nipkow,
Christian Urban, and Makarius Wenzel, editors, TPHOLs, volume 5674 of Lecture
Notes in Computer Science, pages 60–66. Springer, 2009.

7. John Harrison. The HOL Light theory of euclidean space. J. Autom. Reasoning,
50(2):173–190, 2013.

8. Jónathan Heras and Ekaterina Komendantskaya. Proof pattern search in
Coq/SSReflect. arXiv preprint, CoRR, abs/1402.0081, 2014.

9. Joe Hurd. The OpenTheory standard theory library. In Mihaela Gheorghiu Bo-
baru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA For-
mal Methods, volume 6617 of Lecture Notes in Computer Science, pages 177–191.
Springer, 2011.

10. Cezary Kaliszyk and Alexander Krauss. Scalable LCF-style proof translation. In
Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, editors, Proc. of
the 4th International Conference on Interactive Theorem Proving (ITP’13), volume
7998 of LNCS, pages 51–66. Springer, 2013.

11. Cezary Kaliszyk and Josef Urban. Lemma mining over HOL Light. In Ken-
neth L. McMillan, Aart Middeldorp, and Andrei Voronkov, editors, Proc. of the
19th International Conference on Logic for Programming, Artificial Intelligence,
and Reasoning (LPAR’13), volume 8312 of LNCS, pages 503–517. Springer Verlag,
2013.

12. Cezary Kaliszyk and Josef Urban. HOL(y)Hammer: Online ATP service for HOL
Light. arXiv preprint abs/1309.4962, accepted for publication in Mathematics in
Computer Science, 2014.

13. Cezary Kaliszyk and Josef Urban. Learning-assisted automated reasoning with
Flyspeck. arXiv preprint abs/1211.7012, accepted for publication in Journal of
Automated Reasoning, 2014.

14. Chantal Keller and Benjamin Werner. Importing HOL Light into Coq. In Matt
Kaufmann and Lawrence C. Paulson, editors, ITP, volume 6172 of Lecture Notes
in Computer Science, pages 307–322. Springer, 2010.

15. Otmane Aı̈t Mohamed, César A. Muñoz, and Sofiène Tahar, editors. Theorem
Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008,
Montreal, Canada, August 18-21, 2008. Proceedings, volume 5170 of Lecture Notes
in Computer Science. Springer, 2008.

16. Steven Obua and Sebastian Skalberg. Importing HOL into Isabelle/HOL. In
Furbach and Shankar [3], pages 298–302.

17. Florian Rabe. The MMT API: A generic MKM system. In Jacques Carette, David
Aspinall, Christoph Lange, Petr Sojka, and Wolfgang Windsteiger, editors, Proc.
of the 6th Conference on Intelligent Computer Mathematics (CICM’13), volume
7961 of LNCS, pages 339–343. Springer, 2013.

18. Konrad Slind and Michael Norrish. A brief overview of HOL4. In Mohamed
et al. [15], pages 28–32.

19. Clare M. So and Stephen M. Watt. On the conversion between content MathML
and OpenMath. In Proc. of the Conference on the Communicating Mathematics
in the Digital Era, (CMDE’06), pages 169–182, 2006.

20. Josef Urban. MoMM - fast interreduction and retrieval in large libraries of formal-
ized mathematics. Int. J. on Artificial Intelligence Tools, 15(1):109–130, 2006.

21. Makarius Wenzel, Lawrence C. Paulson, and Tobias Nipkow. The Isabelle frame-
work. In Mohamed et al. [15], pages 33–38.

22. Freek Wiedijk, editor. The Seventeen Provers of the World, volume 3600 of Lecture
Notes in Computer Science. Springer, 2006.


