
First-Order Formative Rules?

Carsten Fuhs1 and Cynthia Kop2

1 University College London, Dept. of Computer Science, London WC1E 6BT, UK
2 University of Innsbruck, Institute of Computer Science, 6020 Innsbruck, Austria

Abstract This paper discusses the method of formative rules for first-
order term rewriting, which was previously defined for a higher-order set-
ting. Dual to the well-known usable rules, formative rules allow dropping
some of the term constraints that need to be solved during a termination
proof. Compared to the higher-order definition, the first-order setting
allows for significant improvements of the technique.

1 Introduction

In [12,13] C. Kop and F. van Raamsdonk introduce the notion of formative rules.
The technique is similar to the method of usable rules [1,9,10], which is commonly
used in termination proofs, but has different strengths and weaknesses.

Since, by [15], the more common first-order style of term rewriting, both
with and without types, can be seen as a subclass of the formalism of [13], this
result immediately applies to first-order rewriting. In an untyped setting, we will,
however, lose some of its strength, as sorts play a relevant role in formative rules.

On the other hand, by omitting the complicating aspects of higher-order term
rewriting (such as λ-abstraction and “collapsing” rules l→ x ·y) we also gain pos-
sibilities not present in the original setting; both things which have not been done,
as the higher-order dependency pair framework [11] is still rather limited, and
things which cannot be done, at least with current theory. Therefore, in this paper,
we will redefine the method for (many-sorted) first-order term rewriting.

New compared to [13], we will integrate formative rules into the dependency
pair framework [7], which is the basis of most contemporary termination provers
for first-order term rewriting. Within this framework, formative rules are used
either as a stand-alone processor or with reduction pairs, and can be coupled with
usable rules and argument filterings. We also formulate a semantic characterisation
of formative rules, to enable future generalisations of the definition. Aside from
this, we present a (new) way to weaken the detrimental effect of collapsing rules.

This paper is organised as follows. After the preliminaries in Section 2, a first
definition of formative rules is given and then generalised in Section 3. Section 4
shows various ways to use formative rules in the dependency pair framework.
Section 5 gives an alternative way to deal with collapsing rules. In Section 6
we consider innermost termination, Section 7 describes implementation and
experiments, and in Section 8 we point out possible future work and conclude.
All proofs and an improved formative rules approximation are provided in [5].

? Support by EPSRC & the Austrian Science Fund (FWF) international project I963.

2 Preliminaries

We consider many-sorted term rewriting : term rewriting with sorts, basic types.
While sorts are not usually considered in studies of first-order term rewrite systems
(TRSs) and for instance the Termination Problems Data Base3 does not include
them (for first-order TRSs),4 they are a natural addition; in typical applications
there is little need to allow untypable terms like 3+apple. Even when no sorts are
present, a standard TRS can be seen as a many-sorted TRS with only one sort.5

Many-sorted TRSs We assume given a non-empty set S of sorts; these are
typically things like Nat or Bool, or (for representing unsorted systems) S might
be the set with a single sort {o}. A sort declaration is a sequence [κ1×. . .×κn]⇒ ι
where ι and all κi are sorts. A sort declaration []⇒ ι is just denoted ι.

A many-sorted signature is a set Σ of function symbols f , each equipped with
a sort declaration σ, notation f : σ ∈ Σ. Fixing a many-sorted signature Σ and
an infinite set V of sorted variables, the set of terms consists of those expressions
s over Σ and V for which we can derive s : ι for some sort ι, using the clauses:

x : ι if x : ι ∈ V
f(s1, . . . , sn) : ι if f : [κ1 × . . .× κn]⇒ ι ∈ Σ and s1 : κ1, . . . , sn : κn

We often denote f(s1, . . . , sn) as just f(s). Clearly, every term has a unique sort.
Let Var(s) be the set of all variables occurring in a term s. A term s is linear if
every variable in Var(s) occurs only once in s. A term t is a subterm of another
term s, notation s�t, if either s = t or s = f(s1, . . . , sn) and some si�t. A substi-
tution γ is a mapping from variables to terms of the same sort; the application
sγ of a substitution γ on a term s is s with each x ∈ domain(γ) replaced by γ(x).

A rule is a pair ` → r of terms with the same sort such that ` is not a
variable.6 A rule is left-linear if ` is linear, and collapsing if r is a variable. Given
a set of rules R, the reduction relation →R is given by: `γ →R rγ if `→ r ∈ R
and γ a substitution; f(. . . , si, . . .)→R f(. . . , s′i, . . .) if si →R s′i. A term s is in
normal form if there is no t such that s→R t.

The relation →∗R is the transitive-reflexive closure of →R. If there is a rule
f(l)→ r ∈ R we say that f is a defined symbol ; otherwise f is a constructor.

A many-sorted term rewrite system (MTRS) is a pair (Σ,R) with signature Σ
and a setR of rules `→ r with Var(r) ⊆ Var(`). A term s is terminating if there is
no infinite reduction s→R t1 →R t2 . . . An MTRS is terminating if all terms are.

Example 1. An example of a many-sorted TRS (Σ,R) with more than one sort
is the following system, which uses lists, natural numbers and a RESULT sort:

3 More information on the TPDB : http://termination-portal.org/wiki/TPDB
4 This may also be due to the fact that currently most termination tools for first-order

rewriting only make very limited use of the additional information carried by types.
5 However, the method of this paper is stronger given more sorts. We may be able to

(temporarily) infer richer sorts, however. We will say more about this in Section 6.
6 Often also Var(r) ⊆ Var(`) is required. However, we use filtered rules π(`)→ π(r)

later, where the restriction is inconvenient. As a rule is non-terminating if Var(r) 6⊆
Var(`), as usual we forbid such rules in the input R and in dependency pair problems.

2

O : NAT Cons : [NAT× LIST]⇒ LIST Run : [LIST]⇒ RESULT

S : [NAT]⇒ NAT Ack : [NAT× NAT]⇒ NAT Return : [NAT]⇒ RESULT

Nil : LIST Big : [NAT× LIST]⇒ NAT Rnd : [NAT]⇒ NAT

Err : RESULT Upd : [LIST]⇒ LIST

1. Rnd(x)→ x 6. Big(x, Nil)→ x
2. Rnd(S(x))→ Rnd(x) 7. Big(x, Cons(y, z))→ Big(Ack(x, y), Upd(z))
3. Upd(Nil)→ Nil 8. Upd(Cons(x, y))→ Cons(Rnd(x), Upd(y))
4. Run(Nil)→ Err 9. Run(Cons(x, y))→ Return(Big(x, y))
5. Ack(O, y)→ S(y) 10. Ack(S(x), y)→ Ack(x, S(y))

11. Ack(S(x), S(y))→ Ack(x, Ack(S(x), y))

Run(lst) calculates a potentially very large number, depending on the elements
of lst and some randomness. We have chosen this example because it will help to
demonstrate the various aspects of formative rules, without being too long.

The Dependency Pair Framework As a basis to study termination, we will
use the dependency pair (DP) framework [7], adapted to include sorts.

Given an MTRS (Σ,R), let Σ] = Σ∪{f] : [ι1× . . .× ιn]⇒ dpsort | f : [ι1×
. . .×ιn]⇒ κ ∈ Σ ∧ f a defined symbol ofR}, where dpsort is a fresh sort. The set
DP(R) of dependency pairs (DPs) ofR consists of all rules of the form f](l1, . . . , ln)
→ g](r1, . . . , rm) where f(l)→ r ∈ R and r � g(r) with g a defined symbol.

Example 2. The dependency pairs of the system in Example 1 are:

Rnd](S(x))→ Rnd](x) Big](x, Cons(y, z))→ Big](Ack(x, y), Upd(z))
Upd](Cons(x, y))→ Rnd](x) Big](x, Cons(y, z))→ Ack](x, y)
Upd](Cons(x, y))→ Upd](y) Big](x, Cons(y, z))→ Upd](z)
Run](Cons(x, y))→ Big](x, y) Ack](S(x), S(y))→ Ack](x, Ack(S(x), y))

Ack](S(x), y)→ Ack](x, S(y)) Ack](S(x), S(y))→ Ack](S(x), y)

For sets P and R of rules, an infinite (P,R)-chain is a sequence [(`i → ri,
γi) | i ∈ N] where each `i → ri ∈ P and γi is a substitution such that riγi →∗R
`i+1γi+1. This chain is minimal if each riγi is terminating with respect to →R.

Theorem 3. (following [1,7,9,10]) An MTRS (Σ,R) is terminating if and only
if there is no infinite minimal (DP(R),R)-chain.

A DP problem is a triple (P,R, f) with P and R sets of rules and f ∈ {m, a}
(denoting {minimal, arbitrary}).7 A DP problem (P,R, f) is finite if there is no
infinite (P,R)-chain, which is minimal if f = m. A DP processor is a function
which maps a DP problem to a set of DP problems. A processor proc is sound if,
for all DP problems A: if all B ∈ proc(A) are finite, then A is finite.

The goal of the DP framework is, starting with a set D = {(DP(R),R,m)},
to reduce D to ∅ using sound processors. Then we may conclude termination of
the initial MTRS (Σ,R).8 Various common processors use a reduction pair, a pair

7 Here we do not modify the signature Σ] of a DP problem, so we leave Σ] implicit.
8 The full DP framework [7] can also be used for proofs of non-termination. Indeed,

by [7, Lemma 2], all processors introduced in this paper (except Theorem 17 for
innermost rewriting) are “complete” and may be applied in a non-termination proof.

3

(%,�) of a monotonic, stable (closed under substitutions) quasi-ordering % on
terms and a well-founded, stable ordering � compatible with % (i.e., � · % ⊆ �).

Theorem 4. (following [1,7,9,10]) Let (%,�) be a reduction pair. The processor
which maps a DP problem (P,R, f) to the following result is sound:

– {(P \ P�,R, f)} if:
• ` � r for `→ r ∈ P� and ` % r for `→ r ∈ P \ P� (with P� ⊆ P);
• ` % r for `→ r ∈ R.

– {(P,R, f)} otherwise

Here, we must orient all elements of R with %. As there are many processors
which remove elements from P and few which remove from R, this may give many
constraints. Usable rules, often combined with argument filterings, address this:

Definition 5. (following [9,10]) Let Σ be a signature and R a set of rules. An
argument filtering is a function that maps each f : [ι1 × . . . × ιn] ⇒ κ to a
set {i1, . . . , ik} ⊆ {1, . . . , n}.9 The usable rules of a term t with respect to an
argument filtering π are defined as the smallest set UR(t,R, π) ⊆ R such that:

– if R is not finitely branching (i.e. there are terms with infinitely many direct
reducts), then UR(t,R, π) = R;

– if t = f(t1, . . . , tn), then UR(ti,R, π) ⊆ UR(t,R, π) for all i ∈ π(f);
– if t = f(t1, . . . , tn), then {`→ r ∈ R | ` = f(. . .)} ⊆ UR(t,R, π);
– if `→ r ∈ UR(t,R, π), then UR(r,R, π) ⊆ UR(t,R, π).

For a set of rules P, we define UR(P,R, π) =
⋃
s→t∈P UR(t,R, π).

Argument filterings π are used to disregard arguments of certain function
symbols. Given π, let fπ : [ιi1 × . . .× ιik]⇒ κ be a fresh function symbol for all f
with π(f) = {i1, . . . , ik} and i1 < . . . < ik, and define π(x) = x for x a variable,
and π(f(s1, . . . , sn)) = fπ(π(si1), . . . , π(sik)) if π(f) = {i1, . . . , ik} and i1 < . . . <
ik. For a set of rules R, let π(R) = {π(l) → π(r) | l → r ∈ R}. The idea of
usable rules is to only consider rules relevant to the pairs in P after applying π.

Combining usable rules, argument filterings and reduction pairs, we obtain:

Theorem 6. ([9,10]) Let (%,�) be a reduction pair and π an argument filtering.
The processor which maps a DP problem (P,R, f) to the following result is sound:

– {(P \ P�,R,m)} if f = m and:
• π(`) � π(r) for `→ r ∈ P� and π(`) % π(r) for `→ r ∈ P \ P�;
• π(`) % π(r) for `→ r ∈ UR(P,R, π) ∪ Cε,

where Cε = {cι(x, y)→ x, cι(x, y)→ y | all sorts ι}.
– {(P,R, f)} otherwise

We define UR(P,R) as UR(P,R, πT), where πT is the trivial filtering :
πT (f) = {1, . . . , n} for f : [ι1× . . .× ιn]⇒ κ ∈ Σ. Then Theorem 6 is exactly the
standard reduction pair processor, but with constraints on UR(P,R)∪Cε instead
of R. We could also use a processor which maps (P,R,m) to {(P,UR(P,R) ∪
Cε, a)}, but as this loses the minimality flag, it is usually not a good idea (various
processors need this flag, including usable rules!) and can only be done once.

9 Usual definitions of argument filterings also allow π(f) = i, giving π(f(s)) = π(si),
but for usable rules, π(f) = i is treated the same as π(f) = {i}, cf. [9, Section 4].

4

3 Formative Rules

Where usable rules [1,9,10] are defined primarily by the right-hand sides of P and
R, the formative rules discussed here are defined by the left-hand sides. This has
consequences; most importantly, we cannot handle non-left-linear rules very well.

We fix a signature Σ. A term s : ι has shape f with f : [κ]⇒ ι ∈ Σ if either
s = f(r1, . . . , rn), or s is a variable of sort ι. That is, there exists some γ with
sγ = f(. . .): one can specialise s to have f as its root symbol.

Definition 7. Let R be a set of rules. The basic formative rules of a term t are
defined as the smallest set FRbase(t,R) ⊆ R such that:

– if t is not linear, then FRbase(t,R) = R;
– if t = f(t1, . . . , tn), then FRbase(ti,R) ⊆ FRbase(t,R);
– if t = f(t1, . . . , tn), then {`→ r ∈ R | r has shape f} ⊆ FRbase(t,R);
– if `→ r ∈ FRbase(t,R), then FRbase(`,R) ⊆ FRbase(t,R).

For rules P, let FRbase(P,R) =
⋃
s→t∈P FRbase(s,R). Note that FRbase(x,R) = ∅.

Note the strong symmetry with Definition 5. We have omitted the argument
filtering π here, because the definitions are simpler without it. In Section 4 we will
see how we can add argument filterings back in without changing the definition.

Example 8. In the system from Example 1, consider P = {Big](x, Cons(y, z))→
Big](Ack(x, y), Upd(z))}. The symbols in the left-hand side are just Big] (which
has sort dpsort, which is not used in R) and Cons. Thus, FRbase(P,R) = {8}.

Intuitively, the formative rules of a dependency pair ` → r are those rules
which might contribute to creating the pattern `. In Example 8, to reduce a
term Big](Ack(S(O), O), Upd(Cons(O, Nil))) to an instance of Big](x, Cons(y, z)),
a single step with the Upd rule 8 gives Big](Ack(S(O), O), Cons(Rnd(O), Upd(Nil)));
we need not reduce the Ack() or Rnd() subterms for this. To create a non-linear
pattern, any rule could contribute, as a step deep inside a term may be needed.

Example 9. Consider Σ = {a, b : A, f] : [B × B] ⇒ dpsort, h : [A] ⇒ B}, R =
{a→ b} and P = {f](x, x)→ f](h(a), h(b))}. Without the linearity restriction,
FRbase(P,R) would be ∅, as dpsort does not occur in the rules and FRbase(x,R) =
∅. But there is no infinite (P, ∅)-chain, while we do have an infinite (P,R)-chain,
with γi = [x := h(b)] for all i. The a→ b rule is needed to make h(a) and h(b)
equal. Note that this happens even though the sort of x does not occur in R!

Thus, as we will see, in an infinite (P,R)-chain we can limit interest to rules in
FRbase(P,R). We call these basic formative rules because while they demonstrate
the concept, in practice we would typically use more advanced extensions of the
idea. For instance, following the TCap idea of [8, Definition 11], a rule l→ f(O)
does not need to be a formative rule of f(S(x))→ r if O is a constructor.

To use formative rules with DPs, we will show that any (P,R)-chain can be
altered so that the riγi →∗R `i+1γi+1 reduction has a very specific form (which
uses only formative rules of `i+1). To this end, we consider formative reductions.
A formative reduction is a reduction where, essentially, a rewriting step is only
done if it is needed to obtain a result of the right form.

5

Definition 10 (Formative Reduction). For a term `, substitution γ and term
s, we say s→∗R `γ by a formative `-reduction if one of the following holds:

1. ` is non-linear;
2. ` is a variable and s = `γ;
3. ` = f(l1, . . . , ln) and s = f(s1, . . . , sn) and each si →∗R liγ by a formative

li-reduction;
4. ` = f(l1, . . . , ln) and there are a rule `′ → r′ ∈ R and a substitution δ such

that s →∗R `′δ by a formative `′-reduction and r′δ = f(t1, . . . , tn) and each
ti →∗R liγ by a formative li-reduction.

Point 2 is the key: a reduction s→∗R xγ must be postponed. Formative reductions
are the base of a semantic definition of formative rules:

Definition 11. A function FR that maps a term ` and a set of rules R to a set
FR(`,R) ⊆ R is a formative rules approximation if for all s and γ: if s→∗R `γ
by a formative `-reduction, then this reduction uses only rules in FR(`,R).

Given a formative rules approximation FR, let FR(P,R) =
⋃
s→t∈P FR(s,R).

As might be expected, FRbase is indeed a formative rules approximation:

Lemma 12. A formative `-reduction s→∗R `γ uses only rules in FRbase(`,R).

Proof. By induction on the definition of a formative `-reduction. If ` is non-linear,
then FRbase(`,R) = R, so this is clear. If s = `γ then no rules play a part.

If s = f(s1, . . . , sn) and ` = f(l1, . . . , ln) and each si →∗R liγ by a formative li-
reduction, then by the induction hypothesis each formative li-reduction si →∗R liγ
uses only rules in FRbase(li,R). Observing that by definition FRbase(li,R) ⊆
FRbase(`,R), we see that all steps of the reduction use rules in FRbase(`,R).

If s→∗R `′δ →R r′δ = f(t1, . . . , tn)→∗R f(l1, . . . , ln)γ = `γ, then by the same
reasoning the reduction r′δ →∗R `γ uses only formative rules of `, and by the
induction hypothesis s →∗R `′δ uses only formative rules of `′. Noting that r′

obviously has the same sort as `, and either r′ is a variable or a term f(r′1, . . . , r
′
n),

we see that r′ has shape f , so `′ → r′ ∈ FRbase(`,R). Therefore FRbase(`
′,R) ⊆

FRbase(`,R), so all rules in the reduction are formative rules of `. ut
In the following, we will assume a fixed formative rules approximation FR.

The relevance of formative rules is clear from their definition: if we can prove
that a (P,R)-chain can be altered to use formative reductions in the →R steps,
then we can drop all non-formative rules from a DP problem.

The key result in this paper is the following technical lemma, which allows us
to alter a reduction s→∗R `γ to a formative reduction (by changing γ):

Lemma 13. If s →∗R `γ for some terms s, ` and a substitution γ on domain
Var(`), then there is a substitution δ on the same domain such that s→∗FR(`,R) `δ
by a formative `-reduction.

Proof. For non-linear ` this is clear, choosing δ := γ. So let ` be a linear term.
By definition of FR, it suffices to see that s→∗R `δ by a formative `-reduction.
This follows from the following claim: If s −→‖ Rk `γ for some k, term s, linear
term ` and substitution γ on domain Var(`), then there is a substitution δ on
Var(`) such that s→∗R `δ by a formative `-reduction, and each δ(x) −→‖ Rk γ(x).

6

Here, the parallel reduction relation −→‖ R is defined by: x −→‖ R x; `γ −→‖ R rγ
for `→ r ∈ R; if si −→‖ R ti for 1 ≤ i ≤ n, then f(s1, . . . , sn) −→‖ R f(t1, . . . , tn).
The notation −→‖ Rk indicates k or fewer successive −→‖ R steps. Note that −→‖ R
is reflexive, and if each si −→‖ RNi ti, then f(s) −→‖ Rmax(N1,...,Nn) f(t).

We prove the claim by induction first on k, second on the size of `.
If ` is a variable we are immediately done, choosing δ := [` := s].
Otherwise, let ` = f(l1, . . . , ln) and γ = γ1 ∪ . . . ∪ γn such that all γi have

disjoint domains and each liγi = liγ; this is possible due to linearity.
First suppose the reduction s −→‖ Rk `γ uses no topmost steps. Thus, we can

write s = f(s1, . . . , sn) and each si −→‖ Rk liγ. By the second induction hypothesis
we can find δ1, . . . , δn such that each si →∗R liδi by a formative li-reduction and
each δi(x) −→‖ Rk γi(x). Choose δ := δ1 ∪ . . . ∪ δn; this is well-defined by the
assumption on the disjoint domains. Then s→∗R `δ by a formative `-reduction.

Alternatively, a topmost step was done, which cannot be parallel with other
steps: s −→‖ Rm `′γ′ →R r′γ′ −→‖ Rk−m−1 `γ for some `′ → r′ ∈ R and substitution
γ′; we can safely assume that r′γ′ −→‖ Rk−m−1 `γ does not use topmost steps
(otherwise we could just choose a later step). Since m < k, the first induction
hypothesis provides δ′ such that s→∗R `′δ′ by a formative `′-reduction and each
δ′(x) −→‖ Rm γ′(x). But then also r′δ′ −→‖ Rm r′γ′. Since r′γ′ −→‖ Rk−m−1 `γ, we
have that r′δ′ −→‖ Rk−1 `γ. Thus, by the first induction hypothesis, there is δ such
that r′δ′ →∗R `δ by a formative `-reduction, and each δ(x) −→‖ Rk−1 γ(x).

We are done if the full reduction s →∗R `′δ′ →R r′δ′ →∗R `δ is `-formative;
this is easy with induction on the number of topmost steps in the second part. ut

Lemma 13 lays the foundation for all theorems in this paper. To start:

Theorem 14. (Σ,R) is non-terminating if and only if there is an infinite min-
imal formative (DP(R),FR(DP(R),R))-chain. Here, a chain [(`i → ri, γi) | i ∈
N] is formative if always riγi →∗FR(`i+1,R) `i+1γi+1 by a formative `i+1-reduction.

Proof Sketch: Construct an infinite (DP(R),R)-chain following the usual
proof, but when choosing γi+1, use Lemma 13 to guarantee that riγi →∗FR(`i+1,R)

`i+1γi+1 by a formative `i+1-reduction. ut
Note that this theorem extends the standard dependency pairs result (The-

orem 3) by limiting interest to chains with formative reductions.

Example 15. The system from Example 1 is terminating iff there is no infinite min-
imal formative (P, Q)-chain, where P = DP(R) from Example 2 and Q = {1, 2, 3,
5, 6, 7, 8, 10, 11}. Rules 4 and 9 have right-hand sides headed by symbols Err and
Return which do not occur in the left-hand sides of DP or its formative rules.

4 Formative Rules in the Dependency Pair Framework

Theorem 14 provides a basis for using DPs with formative rules to prove termin-
ation: instead of proving that there is no infinite minimal (DP(R),R)-chain, it
suffices if there is no infinite minimal formative (DP(R),FR(DP(R),R))-chain.
So in the DP framework, we can start with the set {(DP(R),FR(DP(R),R),m)}
instead of {(DP(R),R,m)}, as we did in Example 15. We thus obtain a similar

7

improvement to Dershowitz’ refinement [3] in that it yields a smaller initial DP
problem: by [3], we can reduce the initial set DP(R); by Theorem 14 we can reduce
the initial set R. However, there (currently) is no way to keep track of the inform-
ation that we only need to consider formative chains. Despite this, we can define
several processors. All of them are based on this consequence of Lemma 13:

Lemma 16. If there is a (P,R)-chain [(`i → ri, γi) | i ∈ N], then there are δi
for i ∈ N such that [(`i → ri, δi) | i ∈ N] is a formative (P,FR(P,R))-chain.

Proof. Given [(`i → ri, γi) | i ∈ N] we construct the formative chain as follows.
Let δ1 := γ1. For given i, suppose δi is a substitution such that δi →∗R γi, so still
riδi →∗R `i+1γi+1. Use Lemma 13 to find δi+1 such that riδi →∗FR(`i+1,R) `i+1δi+1

by a formative `i+1-reduction, and moreover δi+1 →∗R γi+1. ut
This lemma for instance allows us to remove all non-formative rules from a

DP problem. To this end, we use the following processor:

Theorem 17. The DP processor which maps a DP problem (P,R, f) to the set
{(P,FR(P,R), a)} is sound.

Proof Sketch: This follows immediately from Lemma 16. ut
Example 18. Let Q = FRbase(DP(R),R) from Example 15, and let P = {Big](x,
Cons(y, z))→ Big](Ack(x, y), Upd(z))} as in Example 8. If, during a termination
proof with dependency pairs, we encounter a DP problem (P, Q,m), we can
soundly replace it by (P, T, a), where T = FRbase(P, Q) = {8}.

Thus, we can (permanently) remove all non-formative rules from a dependency
pair problem. This processor has a clear downside, however: given a problem
(P,R,m), we lose minimality. This m flag is very convenient to have, as several
processors require it (such as reduction pairs with usable rules from Theorem 6).

Could we preserve minimality? Unfortunately, the answer is no. By modifying
a chain to use formative reductions, we may lose the property that each riγi
is terminating. This happens for instance for (P,R,m), where P = {g](x) →
h](f(x)), h](c) → g](a)} and R = {a → b, f(x) → c, f(a) → f(a)}. Here,
FRbase(P,R) = {f(x) → c, f(a) → f(a)}. While there is an infinite minimal
(P,R)-chain, the only infinite (P,FRbase(P,R))-chain is non-minimal.

Fortunately, there is an easy way to use formative rules without losing any
information: by using them in a reduction pair, as we typically do for usable
rules. In fact, although usable and formative rules seem to be opposites, there
is no reason why we should use either one or the other; we can combine them.
Considering also argument filterings, we find the following extension of Theorem 6.

Theorem 19. Let (%,�) be a reduction pair and π an argument filtering. The
processor which maps (P,R, f) to the following result is sound:

– {(P \ P�,R, f)} if:
• π(`) � π(r) for `→ r ∈ P� and π(`) % π(r) for `→ r ∈ P \ P�;
• u % v for u→ v ∈ FR(π(P), π(U)),

where U = R if f = a and U = UR(P,R, π) ∪ Cε if f = m;
– {(P,R, f)} otherwise.

8

Proof Sketch: Given an infinite (P,R)-chain, we use argument filterings and maybe
usable rules to obtain a (π(P), π(U))-chain which uses the same dependency
pairs infinitely often (as in [9]); using Lemma 16 we turn this chain formative. ut

Note that we use the argument filtering here in a slightly different way than
for usable rules: rather than including π in the definition of FR and requiring that
π(`) % π(r) for `→ r ∈ FR(P,R, π), we simply use FR(π(P), π(R)). For space
reasons, we give additional semantic and syntactic definitions of formative rules
with respect to an argument filtering in the technical report [5, Appendix C].

Example 20. To handle (P, Q,m) from Example 18, we can alternatively use a
reduction pair. Using the trivial argument filtering, with a polynomial interpreta-
tion with Big](x, y) = x+ y, Ack(x, y) = 0, Upd(x) = x and Cons(x, y) = y + 1,
all constraints are oriented, and we may remove the only element of P.

Note that we could have handled this example without using formative rules;
Ack and Rnd can be oriented with an extension of %, or we might use an argument
filtering with π(Big]) = {2}. Both objections could be cancelled by adding extra
rules, but we kept the example short, as it suffices to illustrate the method.

Discussion It is worth noting the parallels between formative and usable rules.
To start, their definitions are very similar; although we did not present the seman-
tic definition of usable rules from [16] (which is only used for innermost termina-
tion), the syntactic definitions are almost symmetric. Also the usage corresponds:
in both cases, we lose minimality when using the direct rule removing processor,
but can safely use the restriction in a reduction pair (with argument filterings).

There are also differences, however. The transformations used to turn a
chain usable or formative are very different, with the usable rules transformation
(which we did not discuss) encoding subterms whose root is not usable, while the
formative rules transformation is simply a matter of postponing reduction steps.

Due to this difference, usable rules are useful only for a finitely branching
system (which is standard, as all finite MTRSs are finitely branching); formative
rules are useful mostly for left-linear systems (also usual, especially in MTRSs
originating from functional programming, but typically seen as a larger restriction).
Usable rules introduce the extra Cε rules, while formative rules are all included
in the original rules. But for formative rules, even definitions extending FRbase,
necessarily all collapsing rules are included, which has no parallel in usable rules;
the parallel of collapsing rules would be rules x→ r, which are not permitted.

To use formative rules without losing minimality information, an alternative to
Theorem 17 allows us to permanently delete rules. The trick is to add a new com-
ponent to DP problems, as for higher-order rewriting in [11, Ch. 7]. A DP problem
becomes a tuple (P,R, f1, f2), with f1 ∈ {m, a} and f2 ∈ {form, arbitrary}, and is
finite if there is no infinite (P,R)-chain which is minimal if f1 = m, and formative
if f2 = form. By Theorem 14, R is terminating iff (DP(R),R,m, form) is finite.

Theorem 21. In the extended DP framework, the processor which maps (P,R, f1,
f2) to {(P,FR(P,R), f1, f2)} if f2 = form and {(P,R, f1, f2)} otherwise, is sound.

Proof: This follows immediately from Lemma 12. ut

9

The downside of changing the DP framework in this way is that we have to
revisit all existing DP processors to see how they interact with the formative flag.
In many cases, we can simply pass the flag on unmodified (i.e. if proc((P,R, f1)) =
A, then proc′((P,R, f1, f2)) = {(P ′,R′, f ′1 , f2) | (P ′,R′, f ′1) ∈ A}). This is for
example the case for processors with reduction pairs (like the one in Theorem 19),
the dependency graph and the subterm criterion. Other processors would have
to be checked individually, or reset the flag to arbitrary by default.

Given how long the dependency pair framework has existed (and how many
processors have been defined, see e.g. [16]), and that the formative flag clashes
with the component for innermost rewriting (see Section 6), it is unlikely that
many tool programmers will make the effort for a single rule-removing processor.

5 Handling the Collapsing Rules Problem

A great weakness of the formative rules method is the matter of collapsing rules.
Whenever the left-hand side of a dependency pair or formative rule has a symbol
f : [ι]⇒ κ, all collapsing rules of sort κ are formative. And then all their formative
rules are also formative. Thus, this often leads to the inclusion of all rules of a
given sort. In particular for systems with only one sort (such as all first-order
benchmarks in the Termination Problems Data Base), this is problematic.

For this reason, we will consider a new notion, building on the idea of formative
rules and reductions. This notion is based on the observation that it might suffice
to include composite rules rather than the formative rules of all collapsing rules.
To illustrate the idea, assume given a uni-sorted system with rules a→ f(b) and
f(x)→ x. FRbase(c) includes f(x)→ x, so also a→ f(b). But a term f(b) does
not reduce to c. So intuitively, we should not really need to include the first rule.

Instead of including the formative rules of all collapsing rules, we might
imagine a system where we combine rules with collapsing rules that could follow
them. In the example above, this gives R = {a→ f(b), a→ b, f(x)→ x}. Now
we might consider an alternative definition of formative rules, where we still need
to include the collapsing rule f(x)→ x, but no longer need to have a→ f(b).

To make this idea formal, we first consider how rules can be combined. In the
following, we consider systems with only one sort ; this is needed for the definition
to be well-defined, but can always be achieved by replacing all sorts by o.

Definition 22 (Combining Rules). Given an MTRS (Σ,R), let A := {f(x)→
xi | f : [ι1× . . .× ιn]⇒ κ ∈ Σ∧1 ≤ i ≤ n} and B := {`→ p | `→ r ∈ R∧r�p}.
Let X ⊆ A ∪B be the smallest set such that R ⊆ X and for all `→ r ∈ X:

a. if r is a variable, `� f(l1, . . . , ln) and li � r, then f(x1, . . . , xn)→ xi ∈ X;
b. if r = f(r1, . . . , rn) and f(x1, . . . , xn)→ xi ∈ X, then `→ ri ∈ X.

Let Cl := A ∩X and NC = {`→ r ∈ X | r not a variable}. Let AR := Cl ∪NC .

It is easy to see that →∗R is included in →∗AR
: all non-collapsing rules of R

are in NC , and all collapsing rules are obtained as a concatenation of steps in Cl .

Example 23. Consider an unsorted version of Example 1. Then for (P, Q) as in Ex-
ample 18, we have U := UR(P, Q) = {1, 2, 3, 5, 8, 10, 11}. Unfortunately, only (3)

10

is not formative, as the two Rnd rules cause inclusion of all rules in FRbase(S(x), U).
Let us instead calculate X, which we do as an iterative procedure starting from R.
In the following, C ⇒ D1, . . . , Dn should be read as: “by requirement a, rule C
enforces inclusion of each Di”, and C,D ⇒ E similarly refers to requirement b.

2, 1⇒ 12 5, 13⇒ 14 10, 15⇒ 16 16, 13⇒ 18 17, 15⇒ 19
12⇒ 1, 13 14⇒ 15 11, 15⇒ 17 18⇒ 15, 13 19⇒ 15, 13

12. Rnd(S(x))→ x 15. Ack(x, y)→ y 18. Ack(S(x), y)→ y
13. S(x)→ x 16. Ack(S(x), y)→ S(y) 19. Ack(S(x), S(y))→ y
14. Ack(O, y)→ y 17. Ack(S(x), S(y))→ Ack(S(x), y)

Now Cl = {1, 13, 15} and NC = {2, 3, 5, 8, 10, 11, 16, 17}, and AU = Cl ∪NC .

Although combining a system R into AR may create significantly more rules,
the result is not necessarily harder to handle. For many standard reduction pairs,
like RPO or linear polynomials over N, we have: if s % x where x ∈ Var(s) occurs
exactly once, then f(. . . , t, . . .) % t for any t with s� t� x. For such a reduction
pair, AR can be oriented whenever R can be (if R is left-linear).

AR has the advantage that we never need to follow a non-collapsing rule
l→ f(r) by a collapsing step. This is essential to use the following definition:

Definition 24. Let A be a set of rules. The split-formative rules of a term t are
defined as the smallest set SR(t, A) ⊆ A such that:
– if t is not linear, then SR(t, A) = A;

– all collapsing rules in A are included in SR(t, A);

– if t = f(t1, . . . , tn), then SR(ti, A) ⊆ SR(t, A);
– if t = f(t1, . . . , tn), then {`→ r ∈ A | r has the form f(. . .)} ⊆ SR(t, A);

– if `→ r ∈ SR(t, A) and r is not a variable , then SR(`, A) ⊆ SR(t, A).

For a set of rules P, we define SR(P, A) =
⋃
s→t∈P SR(s,A).

Definition 24 is an alternative definition of formative rules, where collapsing

rules have a smaller effect (differences to Definition 7 are highlighted). SR is not

a formative rules approximation, as shown by the a-formative reduction f(a)→R
g(a)→R a withR = {f(x)→ g(x), g(x)→ x} but SR(a,R) = {g(x)→ x}. How-
ever, given the relation between R and AR, we find a similar result to Lemma 12:

Lemma 25. Let (Σ,R) be an MTRS. If s →∗R `γ by a formative `-reduction,
then s→∗SR(`,AR) `γ by a formative `-reduction.

Unlike Lemma 12, the altered reduction might be different. We also do not
have that SR(P, AR) ⊆ R. Nevertheless, by this lemma we can use split-formative
rules in reduction pair processors with formative rules, such as Theorem 19.

Proof Sketch: The original reduction s→∗R `γ gives rise to a formative reduction
over AR, simply replacing collapsing steps by a sequence of rules in Cl . So, we
assume given a formative `-reduction over AR, and prove with induction first on
the number of non-collapsing steps in the reduction, second on the length of the
reduction, third on the size of s, that s→∗SR(`,AR) `γ by a formative `-reduction.

This is mostly easy with the induction hypotheses; note that if a root-rule in
NC is followed by a rule in Cl , there can be no internal→∗R reduction in between

11

(as this would not be a formative reduction); combining a rule in NC with a rule
in Cl gives either a rule in NC (and a continuation with the second induction
hypothesis) or a sequence of rules in Cl (and the first induction hypothesis). ut

Note that this method unfortunately does not transpose directly to the higher-
order setting, where collapsing rules may have more complex forms. We also had
to give up sort differentiation, as otherwise we might not be able to flatten a
rule f(g(x))→ x into f(x)→ x, g(x)→ x. This is not such a great problem, as
reduction pairs typically do not care about sorts, and we circumvented the main
reason why sorts are important for formative rules. We have the following result:

Theorem 26. Let (%,�) be a reduction pair and π an argument filtering. The
processor which maps a DP problem (P,R, f) to the following result is sound:

– {(P \ P�,R, f)} if:
• π(`) � π(r) for `→ r ∈ P� and π(`) % π(r) for `→ r ∈ P \ P�;
• u % v for u → v ∈ SR(π(P), Aπ(U)), and Var(t) ⊆ Var(s) for s → t ∈
π(U), where U = R if f = a and U = UR(P,R, π) ∪ Cε if f = m;

– {(P,R, f)} otherwise.

Proof Sketch: Like Theorem 19, but using Lemma 25 to alter the created formative
(π(P), π(U))-chain to a split-formative (π(P),SR(π(P), Aπ(U)))-chain. ut

Example 27. Following Example 23, SR(Big](x, Cons(y, z)) → Big](Ack(x, y),
Upd(z)), AU) = Cl ∪ {8}, and Theorem 26 gives an easily orientable problem.

6 Formative Rules for Innermost Termination

So far, we have considered only full termination. A very common related query
is innermost termination; that is, termination of →in

R, defined by:

– f(l)γ →in
R rγ if f(l)→ r ∈ R, γ a substitution and all liγ in normal form;

– f(s1, . . . , si, . . . , sn)→in
R f(s1, . . . , s

′
i, . . . , sn) if si →in

R s′i.

The innermost reduction relation is often used in for instance program analysis.
An innermost strategy can be included in the dependency pair framework by

adding the innermost flag [9] to DP problems (or, more generally, a component
Q [7] which indicates that when reducing any term with →P or →R, its strict
subterms must be normal with respect to Q). Usable rules are more viable for
innermost than normal termination: we do not need minimality, the Cε rules
do not need to be handled by the reduction pair, and we can define a sound
processor that maps (P,R, f , innermost) to {(P,UR(P,R), f , innermost)}.

This is not the case for formative rules. Innermost reductions eagerly evaluate
arguments, yet formative reductions postpone evaluations as long as possible. In
a way, these are exact opposites. Thus, it should not be surprising that formative
rules are weaker for innermost termination than for full termination. Theorem 14
has no counterpart for →in

R; for innermost termination we must start the DP
framework with (P,R,m, innermost), not with (P,FR(P,R),m, innermost). The-
orem 17 is only sound if the innermost flag is removed: (P,R, f , innermost) is
mapped to {(P,FR(P,R), a, arbitrary)}. Still, we can safely use formative rules
with reduction pairs. For example, we obtain this variation of Theorem 19:

12

Theorem 28. Let (%,�) be a reduction pair and π an argument filtering. The
processor which maps a DP problem (P,R, f1, f2) to the following result is sound:

– {(P \ P�,R, f1, f2)} if:
• π(`) � π(r) for `→ r ∈ P� and π(`) % π(r) for `→ r ∈ P \ P�;
• u % v for u → v ∈ FR(π(P), π(U)), where U is: UR(P,R, π) if f2 =

innermost; otherwise UR(P,R, π) ∪ Cε if f1 = m; otherwise R.
– {(P,R, f1, f2)} otherwise.

Proof Sketch: The proof of Theorem 19 still applies; we just ignore that the given
chain might be innermost (aside from getting more convenient usable rules). ut

Theorem 26 extends to innermost termination in a similar way.
Conveniently, innermost termination is persistent [4], so modifying Σ does

not alter innermost termination behaviour, as long as all rules stay well-sorted.
In practice, we could infer a typing with as many different sorts as possible, and
get stronger formative-rules-with-reduction-pair processors. With the innermost
switch processor [16, Thm. 3.14], which in cases can set the innermost flag on a
DP problem, we could also often use this trick even for proving full termination.

In Section 4, we used the extra flag f2 as the formative flag. It is not contra-
dictory to use f2 in both ways, allowing f2 ∈ {arbitrary, form, innermost}, since it is
very unlikely for a (P,R)-chain to be both formative and innermost at once! When
using both extensions of the DP framework together, termination provers (human
or computer) will, however, sometimes have to make a choice which flag to add.

7 Implementation and Experiments

We have performed a preliminary implementation of formative rules in the ter-
mination tool AProVE [6]. Our automation borrows from the usable rules of [8]
(see [5, Appendices B+D]) and uses a constraint encoding [2] for a combined search
for argument filterings and corresponding formative rules. While we did not find
any termination proofs for examples from the TPDB where none were known be-
fore, our experiments show that formative rules do improve the power of reduction
pairs for widely used term orders (e.g., polynomial orders [14]). For more informa-
tion, see also: http://aprove.informatik.rwth-aachen.de/eval/Formative

For instance, we experimented with a configuration where we applied depend-
ency pairs, and then alternatingly dependency graph decomposition and reduction
pairs with linear polynomials and coefficients ≤ 3. On the TRS Standard category
of the TPDB (v8.0.7) with 1493 examples, this configuration (without formative
rules, but with usable rules w.r.t. an argument filter) shows termination of 579
examples within a timeout of 60 seconds (on an Intel Xeon 5140 at 2.33 GHz).
With additional formative rules, our implementation of Theorem 19 proved ter-
mination of 6 additional TRSs. (We did, however, lose 4 examples to timeouts,
which we believe are due in part to the currently unoptimised implementation.)

The split-formative rules from Theorem 26 are not a subset ofR, in contrast to
the usable rules. Thus, it is a priori not clear how to combine their encodings w.r.t.
an argument filtering, and we conducted experiments using only the standard
usable rules. Without formative rules, 532 examples are proved terminating. In

13

contrast, adding either the formative rules of Theorem 19 or the split-formative
rules of Theorem 26 we solved 6 additional examples each (where Theorem 19 and
Theorem 26 each had 1 example the other could not solve), losing 1 to timeouts.

Finally, we experimented with the improved dependency pair transformation
based on Theorem 14, which drops non-formative rules from R. We applied DPs
as the first technique on the 1403 TRSs from TRS Standard with at least one
DP. This reduced the number of rules in the initial DP problem for 618 of these
TRSs, without any search problems and without sacrificing minimality.

Thus, our current impression is that while formative rules are not the next
“killer technique”, they nonetheless provide additional power to widely-used orders
in an elegant way and reduce the number of term constraints to be solved in a
termination proof. The examples from the TPDB are all untyped, and we believe
that formative rules may have a greater impact in a typed first-order setting.

8 Conclusions

In this paper, we have simplified the notion of formative rules from [13] to the
first-order setting, and integrated it in the dependency pair framework. We did so
by means of formative reductions, which allows us to obtain a semantic definition
of formative rules (more extensive syntactic definitions are discussed in [5]).

We have defined three processors to use formative rules in the standard
dependency pair framework for full termination: one is a processor to permanently
remove rules, the other two combine formative rules with a reduction pair.

We also discussed how to strengthen the method by adding a new flag to
the framework – although doing so might require too many changes to existing
processors and strategies to be considered worthwhile – and how we can still use
the technique in the innermost case, and even profit from the innermost setting.

Related Work In the first-order DP framework two processors stand out as
relevant to formative rules. The first is, of course, usable rules; see Section 4
for a detailed discussion. The second is the dependency graph, which determines
whether any two dependency pairs can follow each other in a (P,R)-chain, and
uses this information to eliminate elements of P, or to split P in multiple parts.

In state-of-the-art implementations of the dependency graph (see e.g. [16]),
both left- and right-hand side of dependency pairs are considered to see whether
a pair can be preceded or followed by another pair. Therefore it seems quite
surprising that the same mirroring was not previously tried for usable rules.

Formative rules have been previously defined, for higher-order term rewriting,
in [13], which introduces a limited DP framework, with formative rules (but not
formative reductions) included in the definition of a chain: we simply impose
the restriction that always riγi →∗FR(P,R) `i+1γi+1. This gives a reduction pair
processor which considers only formative rules, although it cannot be combined
with usable rules and argument filterings. The authors do not yet consider rule
removing processors, but if they did, Theorem 21 would also go through.

In the second author’s PhD thesis [11], a more complete higher-order DP
framework is considered. Here, we do see formative reductions, and a variation

14

of Lemma 13 which, however, requires that s is terminating: the proof style used
here does not go through there due to β-reduction. Consequently, Lemma 16
does not go through in the higher-order setting, and there is no counterpart to
Theorems 17 or 19. We do, however, have Theorem 21. Furthermore, the results
of Section 5 are entirely new to this paper, and do not apply in the higher-order
setting, where rules might also have a form l→ x · s1 · · · sn (with x a variable).

Future Work In the future, it would be interesting to look back at higher-order
rewriting, and see whether we can obtain some form of Lemma 16 after all.
Alternatively, we might be able to use the specific form of formative chains to
obtain formative (and usable) rules w.r.t. an argument filtering.

In the first-order setting, we might turn our attention to non-left-linear rules.
Here, we could think for instance of renaming apart some of these variables; a rule
f(x, x)→ g(x, x) could become any of f(x, y)→ g(x, y), f(x, y)→ g(y, x), . . .

References

1. T. Arts and J. Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236(1-2):133–178, 2000.

2. M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann. SAT solving for
termination proofs with recursive path orders and dependency pairs. Journal of
Automated Reasoning, 49(1):53–93, 2012.

3. N. Dershowitz. Termination by abstraction. In Proc. ICLP ’04, 2004.
4. C. Fuhs, J. Giesl, M. Parting, P. Schneider-Kamp, and S. Swiderski. Proving

termination by dependency pairs and inductive theorem proving. Journal of
Automated Reasoning, 47(2):133–160, 2011.

5. C. Fuhs and C. Kop. First-order formative rules. Technical Report arXiv:1404.??

??[cs.LO], 2014. http://arxiv.org/abs/1404.????, TO DO!
6. J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker,

P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Proving termination
of programs automatically with AProVE. In Proc. IJCAR ’14, 2014. To appear.

7. J. Giesl, R. Thiemann, and P. Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Proc. LPAR ’04. 2005.

8. J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination
of higher-order functions. In Proc. FroCoS ’05, 2005.

9. J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

10. N. Hirokawa and A. Middeldorp. Tyrolean termination tool: Techniques and features.
Information and Computation, 205(4):474–511, 2007.

11. C. Kop. Higher Order Termination. PhD thesis, Vrije Univ. Amsterdam, 2012.
12. C. Kop and F. van Raamsdonk. Higher order dependency pairs for algebraic

functional systems. In Proc. RTA ’11, 2011.
13. C. Kop and F. van Raamsdonk. Dynamic dependency pairs for algebraic functional

systems. Logical Methods in Computer Science, 8(2), 2012.
14. D. Lankford. On proving term rewriting systems are Noetherian. Technical Report

MTP-3, Louisiana Technical University, 1979.
15. V. Tannen and G.H. Gallier. Polymorphic rewriting conserves algebraic strong

normalization. Theoretical Computer Science, 83(1):3–28, 1991.
16. R. Thiemann. The DP framework for proving termination of term rewriting. PhD

thesis, RWTH Aachen, 2007.

15

