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Abstract
Transforming conditional term rewrite systems (CTRSs) into unconditional systems (TRSs) is a
common approach to analyze properties of CTRSs via the simpler framework of unconditional
rewriting. In the past many different transformations have been introduced for this purpose.
One class of transformations, so-called unravelings, have been analyzed extensively in the past.

In this paper we provide an overview on another class of transformations that we call
structure-preserving transformations. In these transformations the structure of the conditional
rule, in particular their left-hand side is preserved in contrast to unravelings. We provide an
overview of transformations of this type and define a new transformation that improves previous
approaches.
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1 Introduction

Term rewriting is a widely accepted framework in computer science and has many applica-
tions. Conditional rewriting is an intuitive extension of term rewriting that appears naturally
in applications like functional programming.

Conditional term rewrite systems (CTRSs) resemble unconditional term rewrite systems
(TRSs), yet adding conditions to term rewriting has several drawbacks. From a theoretical
point of view, many criteria that hold for unconditional rewriting do not hold for CTRSs, and
many properties change their intuitive meaning. From a practical point of view conditional
rewriting is complex to implement.

Hence, many transformations have been defined that eliminate the conditions of CTRSs
and return unconditional TRSs (e.g. [2, 3, 8]). This way the well-understood framework
of unconditional rewriting can be adapted for conditional rewriting, hence giving a better
understanding on conditional rewriting and also from a practical point of view allowing us
to simulate conditional rewrite sequences.
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4 Notes on Structure-Preserving Transformations of Conditional Term Rewrite Systems

We here provide an overview on a class of transformations that we refer to as structure-
preserving and explain similarities and differences to a well-analyzed class of transformations,
so-called unravelings. Definitions of structure-preserving derivations are usually complex
compared to the ones of unravelings and they are usually only defined for CTRSs without
extra variables. Therefore, we here also provide a definition of the transformation of [1] for
CTRSs with (deterministic) extra variables. Since the transformation of [1] returns good re-
sults only for constructor CTRSs we also formally define a transformation of non-constructor
CTRSs into constructor CTRSs. We will show that the combination of both transforma-
tion has better properties than other structure-preserving transformations. Proving further
properties of this transformation will be part of our future work.

2 Preliminaries, Notions and Notations

We assume basic knowledge of conditional term rewriting and follow the basic notions and
notations as they are defined in [13].

A conditional term rewrite system (CTRS) is a rewrite system that consists of conditional
rules l→ r ⇐ c. The condition c is usually a conjunction of equations s1 = t1, . . . , sk = tk.

There are different possible interpretations of equality in the conditions. CTRSs in which
equality is interpreted as joinability ↓ are join CTRSs. Here we mainly consider oriented
CTRSs, in which the conditions are interpreted as reducibility →∗.

In contrast to unconditional TRSs, CTRSs may contain extra variables. We will consider
CTRSs with extra variables that can be determined by rewrite steps (deterministic extra
variables). CTRSs with only deterministic extra variables are called deterministic CTRSs
(DCTRSs). Deterministic conditional rewrite rules l → r ⇐ s1 →∗ t1, . . . , sk →∗ tk satisfy
the condition Var(si) ⊆ Var(l, t1, ti−1) and Var(r) ⊆ Var(l, t1, . . . , tk).

A symbol f ∈ F in the signature of a CTRS (R,F) is a defined symbol (f ∈ D) if it is
the root symbol of the left-hand side of a rule in R. All non-defined symbols are constructor
symbols C. A term is a constructor term if it only contains function symbols of C and
variables. A CTRS is a constructor CTRS if the left-hand sides of all rules are of the shape
f(u1, . . . , un) where the arguments u1, . . . , un are constructor terms.

There are several classes of CTRSs depending on the distribution of extra variables.
A CTRS without extra variables is a 1-CTRS. If additionally the right-hand sides of the
conditions are irreducible ground terms it is a normal 1-CTRS.

In some cases we will use the notation −→X where X is a set of terms. −→X represents the
stream of variables in X in an unspecified but fixed order. Furthermore we will refer to rules
with f as the root symbol on the left-hand side as f -rules.

3 Transformations of CTRSs

3.1 Overview
In [9] a class of transformations is introduced, so-called unravelings, and several properties
are proved or disproved. There are some unravelings defined for some CTRSs (so-called
normal 1-CTRSs and join 1-CTRSs). In [10] and [13] an unraveling is presented for deter-
ministic CTRSs, a class of CTRSs that allows extra variables to a certain extend. This and
similar unravelings have been analyzed extensively in the past (e.g. [11, 5, 12, 6]).

In [16] another transformation is presented that does not match the class of unravelings.
This type of transformation is extended in [1, 14, 4].
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We refer to these transformations as structure-preserving transformations because in
contrast to unravelings these transformations do not encode the conditions in new function
symbols but instead they encode them in the left-hand side of conditional rules. Hence, the
original structure of terms is much better preserved. Such structure-preserving transforma-
tions have not been analyzed as much or consistently as unravelings.

In [15] a structure-preserving transformation is introduced for which “computational
equivalence” is proven. In [4] a framework is introduced that allows the description of
properties of unravelings and structure-preserving derivations consistently. Furthermore,
some theoretical and practical drawbacks of the transformation of [15] are pointed out and
another transformation is introduced that does not show these drawbacks, yet it is only
applicable for a smaller class of CTRSs.

3.2 Transformations for DCTRSs
In transformations for DCTRSs conditions are eliminated by splitting a conditional rule
into multiple unconditional rewrite rules in which the conditions are wrapped. The rule
that introduces the first conditional argument is the introduction rule. After a condition
has successfully been evaluated we switch to the next condition using a switch rule, or we
eliminate the conditional argument using an elimination rule.

T(l→ r ⇐ s1 →∗ t1, . . . , sk →∗ tk) =



l→ C1[s1] introduction rule
C1[t1]→ C2[s2] switch rules

...
... switch rules

Ck[tk]→ r elimination rule


3.3 Unravelings
The class of unravelings that was introduced in [9] contains transformations that keep the
original signature of the transformed system but add some new function symbols in which
the conditions are wrapped while being evaluated. For every conditional rule a new function
symbol is used.

I Example 1. Consider the following simple CTRS

R =
{
α : or(x, y)→ true ⇐ x→∗ true β : or(x, y)→ true ⇐ y →∗ true

}
Using the unraveling of [13] we obtain the following TRS

U(R) =
{

or(x, y)→ Uα1 (x, x, y) or(x, y)→ Uβ1 (y, x, y)

Uα1 (true, x, y)→ true Uβ1 (true, x, y)→ true

}

In order to simulate the conditional rewrite sequence or(true, false) →∗R true we first
apply the introduction rule of α and then the elimination rule:

or(true, false)→U(R) U
α
1 (true, true, false)→U(R) true

If we apply the introduction rule of β we obtain or(true, false)→U(R) U
β
1 (false, true, false)

where the latter term cannot be reduced any further.

WPTE’14



6 Notes on Structure-Preserving Transformations of Conditional Term Rewrite Systems

Observe that in the previous example the unraveled TRS is not confluent although the
original CTRS is confluent. If multiple conditional rules are applicable we must choose
one introduction rule that should be applied. The other conditional rule cannot be applied
then anymore. In [7] we introduced an unraveling that preserves confluence for some con-
fluent CTRSs (including the CTRS of the previous example), yet for overlapping CTRSs,
unravelings usually do not preserve confluence.

3.4 Structure-Preserving Transformations
Structure-preserving transformations stem from [16]. Further transformations of this class
were introduced in [1], [15] and [4].

In structure-preserving transformations no new defined symbols are added by the trans-
formation but instead additional conditional arguments are added to defined symbols but
increases their arity in order to wrap the conditions. Hence, we need to replace function
symbols in terms by the new function symbol. In order to translate terms from the original
CTRS into the transformed TRS we will use an initialization mapping φ. Such a mapping
is not needed in unravelings.

The additional argument in the defined function symbols contains the conditional argu-
ment. If the left-hand sides of multiple conditional rules are rooted by the same function
symbol, the root symbol contains one conditional argument for each condition. An unini-
tialized conditional argument is marked by the constant ⊥.

I Example 2. Consider the CTRS of Example 1:

R =
{
α : or(x, y)→ true ⇐ x→∗ true β : or(x, y)→ true ⇐ y →∗ true

}
The transformation of [1] (S in the following) increases the arity of or by two because

we need one conditional argument for each conditional rule. If a term matches the left-
hand side of a rule and the conditional argument is not initialized we can introduce the
conditional argument. The other conditional argument is preserved so that both conditions
can be evaluated in parallel.

S(R) =
{

or ′(x, y,⊥, z)→ or ′(x, y, x, z) or ′(x, y, z,⊥)→ or ′(x, y, z, y)
or ′(x, y, true, z)→ true or ′(x, y, z, true)→ true

}
In order to simulate the conditional rewrite sequence or(true, false)→∗R true we obtain

the correct normalform even if we apply the introduction rule of β first:

or ′(true, false,⊥,⊥)→T(R) or ′(true, false,⊥, false)
→T(R) or ′(true, false, true, false)→T(R) true

The advantage of structure-preserving transformations compared to unravelings is that
the conditions are encoded as decorators of the original terms. Hence, other rules remain
applicable even if we evaluate conditions.

Another benefit of this approach is that we can exploit parallelism in reductions. Failed
conditions do not block other derivations, in particular we can introduce other conditional
rules. While in the unravelings of [9] and [13] we need to make an assumption which
condition is satisfied already in the introduction step, we can postpone this decision in
structure-preserving transformations until we evaluated all possible conditions.

One drawback of this type of derivations is their more complex definition. While unrav-
elings have been defined for deterministic CTRSs, such a definition is only hinted in [15]
and [4] for structure-preserving transformations.
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4 Properties of Transformations

4.1 Soundness and Completeness
In order to prove properties of CTRSs by transforming them into unconditional TRSs we
need to show that the rewrite relation of the original CTRS is properly approximated by
the transformed TRS.

There are two main properties that we are interested in. Completeness means that a
rewrite sequence in the original CTRS corresponds to a rewrite sequence in the transformed
TRS. This property is usually satisfied and easy to prove.

The other direction, soundness, means that a rewrite sequence in the transformed system
corresponds to a rewrite sequence in the original system. This property is more difficult to
prove and usually not satisfied which has first been shown in [9]. In the past, unravelings
have been proven to be sound for many syntactic properties and strategies ([5][12][6]).

4.2 Unsoundness of Structure-Preserving Transformations
In order to preserve confluence in transformations structure-preserving transformations en-
code conditions in parallel if multiple rules share the same root symbol on their left-hand
side. Parallel evaluations of conditions of different rules allow us to postpone the decision
which conditional rule will ultimately be applied in the transformed TRS. Yet, this also al-
lows us to interleave multiple conditional rules by applying non-linear rules before applying
an elimination step. This in fact causes unsoundness, even for constructor normal 1-CTRSs
for which unravelings are known to be sound.

I Example 3. Consider the following overlay normal 1-CTRS

R =


a→ c
↗↘

a→ d

g(x, x)→ h(x, x)

f(x)→ C ⇐ x→∗ c
f(x)→ D ⇐ x→∗ d


f is the root symbol of the left-hand side of two conditional rules, hence we append to

conditional arguments to f -terms in the rewrite system and insert the conditional arguments:

S(R) =


a→ c
↗↘

a→ d

g(x, x)→ h(x, x)

f ′(x,⊥, z)→ f ′(x, x, z)
f ′(x, c, z)→ C

f ′(x, z,⊥)→ f ′(x, z, x)
f ′(x, z, d)→ D


In the original CTRS the term g(f(a), f(b)) rewrites to h(C,C) and h(D,D) but not to

h(C,D) because f(a) and f(b) do not have a common reduct that rewrites to both f(a) and
f(b).

The term g(f(a), f(b)) corresponds to the term g(f ′(a,⊥,⊥), f ′(b,⊥,⊥)) in T(R). Ob-
serve the following derivation in the transformed TRS:

g(f ′(a,⊥,⊥), f ′(b,⊥,⊥))→∗ g(f ′(a, a, a), f ′(b, b, b))→∗ g(f ′(c, c, d), f ′(c, c, d))
→∗ h(f ′(c, c, d), f ′(c, c, d))→ h(C, f ′(c, c, d))→ h(C,D)

Since this derivation is not possible in the original CTRS the transformation is unsound.

WPTE’14



8 Notes on Structure-Preserving Transformations of Conditional Term Rewrite Systems

In the previous example the term f ′(c, c, d) contains two conditional arguments and both
of them are satisfied. Therefore we can apply two elimination rules to this term. If we only
encoded one conditional argument this would not be possible. In fact, the unravelings of
[13] and also [11] are sound for this concrete example.

Therefore, soundness of unravelings do not imply soundness for structure-preserving
derivations.

5 Structure-Preserving Transformations for Non-Constructor CTRSs

The structure-preserving transformation of [1] S is unsound for many non-constructor CTRS:

I Example 4. Consider the following CTRS from [1]:

R =
{
f(g(x))→ x⇐ x→∗ s(0) g(s(x))→ g(x)

}
The CTRS is transformed into the following unconditional TRS:

S(R) =
{

f ′(g(x),⊥)→ f ′(g(x), x) g(s(x))→ g(x)
f ′(g(x), s(0))→ x

}

In R, f(g(s(0))) rewrites to s(0) because the condition is satisfied. It also rewrites to
f(g(0)) using the g-rule. The latter term is in normalform because the condition 0→∗ s(0)
is not satisfied.

In S(R), f(g(s(0))) corresponds to the term f ′(g(s(0)),⊥). We obtain the following
unsound derivation:

f ′(g(s(0)),⊥)→ f ′(g(s(0)), s(0))→ f ′(g(0), s(0))→ 0

In the previous example we obtain unsoundness because both the redex and the reduct
of the rewrite step f(g(s(0)))→ f(g(0)) match the left-hand side of the conditional rule, yet
the variable bindings cannot be reduced to each other. In unravelings this does not cause
soundness because the introduction step destroys the structure of the left-hand side of the
conditional rule and only keeps the variable bindings. In structure-preserving transforma-
tions the structure is preserved and hence it can be modified.

5.1 Transformation Ssr

In [15] a transformation is presented that extends the transformation S so that also overlap-
ping CTRSs can be transformed appropriately. The transformation adds a complex unary
operator that is propagated to outer positions and resets conditional arguments.

I Example 5 (Transformation of [15]). The transformation of [15] extends the transformation
of [1] by a unary function symbol { . } that creates a layer around contracted redexes. The
transformed TRS of the CTRS of Example 4 therefore contains the following rules:

R′1 =
{

f ′(g(x),⊥)→ f ′(g(x), {x}) g(s(x))→ {g(x)}
f ′(g(x), {s(0)})→ {x}

}

Now overlapping rewrite steps are blocked because of the new function symbol:

f ′(g(s(0)),⊥)→ f ′(g(s(0)), {s(0)})→ f ′({g(0)}, {s(0)})
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The new unary symbol is propagated to outer positions by adding one new rule for each
argument of each function symbol. Such propagation steps reset conditional arguments and
thereby avoid that outdated conditional arguments are used in elimination steps. Further-
more the new function symbol must be idempotent:

R′2 =
{
f ′({x}, z)→ {f ′(x,⊥)} g({x})→ {g(x)}

s({x})→ {s(x)} {{x}} → {x}

}

The transformed TRS then is Ssr(R) = R1 ∪R2.
The term f ′({g(0)}, {s(0)}) now can only be reduced by propagating the unary function

symbol to the root position which resets the conditional argument:

f ′({g(0)}, {s(0)})→ {f ′(g(0),⊥)} → {f ′(g(0), {0})}

The last term is irreducible.

5.2 Transformation Sgg

In [4] it is pointed out that the transformation of [15] has some disadvantages. Apart from
the complex definition of the new function symbol { . } it is also non-preserving for many
important syntactic properties like being non-overlapping, being a constructor system or
being an overlay system.

From a practical point of view the transformation resets conditional arguments too often.
The transformation of [4] tries to resolve these problems. Since the transformation of [4] is
very complex in its definition we here provide a simpler refinement.

The main idea of the transformation of [4] is to add information to subterms of redexes to
see whether an overlapping rewrite step was applied and the conditional argument should be
reset. For this purpose we increase the arity of all defined function symbols (instead of just
the root symbol) on the left-hand side of a conditional rule. While the root symbol encodes
the condition, defined symbols strictly below the root contain a check argument. If they are
uninitialized they contain ⊥. After the introduction step these additional check arguments
are marked with > to indicate that they were used in a conditional argument. In a rewrite
step, all these check arguments are reset to ⊥ to indicate that a conditional argument might
be outdated. An elimination step is only allowed if all check arguments contain >. For
the introduction step it is sufficient if the conditional argument or one check argument is
uninitialized. Therefore, one conditional rule might give rise to multiple introduction rules.

I Example 6. The left-hand side of the conditional rule of Example 4 contains the defined
symbol g that therefore is replaces by a new binary symbol g′ where the second argument
is a check argument. If the conditional argument or the check argument is uninitialized we
introduce the conditional argument.

Sgg(R) =
{
f ′(g′(x, z),⊥)→ f ′(g′((x,>)), 〈x〉) f ′(g′(x,>), 〈s(0)〉)→ x

f ′(g′(x,⊥), z)→ f ′(g(′(x,>)), 〈x〉) g′(s(x), z)→ g(x,⊥)

}

Now, f(g(s(0))) gives rise to the following derivation:

f ′(g′(s(0),⊥),⊥)→ f ′(g′(s(0),>), 〈s(0)〉)→ f ′(g′(0,⊥), 〈s(0)〉)→ f ′(g′(0,>), 〈0〉)

It is not possible to reproduce the unsound derivation of Example 4.

WPTE’14



10 Notes on Structure-Preserving Transformations of Conditional Term Rewrite Systems

In contrast to the transformation of [15] the transformation of [4] and also the refinement
that is sketched here preserves many properties like being a constructor system (for normal
1-CTRSs), yet does not return satisfying results in all cases. For non-left-linear confluent
CTRSs we might obtain non-confluence even if [15] returns a confluent CTRS. Furthermore,
in collapsing CTRSs we still might obtain unsoundness (see [4, Example 8]) even though
other transformations are sound.

6 New Transformation

The transformation of [1] is only applicable for constructor normal 1-CTRSs. The trans-
formation of [15] allows the transformation also of non-constructor normal 1-CTRSs, yet
it is syntactically complex. The transformation of [4] conservatively extends the transfor-
mation of [1], but its definition is complex and furthermore it is less powerful than the
transformation of [15].

In our new approach we therefore modularize the transformational approach and use a
transformation from non-constructor CTRSs into constructor CTRS before eliminating the
conditions. This way we only need to consider constructor CTRSs in our new transformation.

First we define the transformation from non-constructor CTRSs into constructor CTRSs.

I Definition 7 (transformation for non-constructor CTRSs). Let α : l → r ⇐ s1 →∗
t1, . . . , sk →∗ tk be a conditional rule, then cons is defined recursively as follows:

cons(α) =


cons(α′) where α′ = l[z]p → r ⇐ z →∗ l|p, s1 →∗ t1, . . . , sk →∗ tk,

z is a fresh new variable (z 6∈ Var(α)) and
l|p (p ∈ Pos(l) \ {ε}) is not a constructor term

α if l|p is a constructor terms for all p ∈ Pos(l) \ {ε}

The mapping cons is extended to CTRSs as follows: cons(R) =
⋃
α∈R cons(α).

I Example 8. Consider the CTRS of Example 4. The conditional rule α : f(g(x)) → x ⇐
x→∗ s(0) is not a constructor rule because g is a defined symbol.

Using cons, the g-subterm is replaced by the fresh new variable z and a condition z →∗
g(x) is added:

cons(α) = f(z)→ x⇐ z →∗ g(x), x→∗ s(0)

Observe that the rule α does not contain extra variables while cons(α) contains the
deterministic extra variable z.

If the left-hand side of a conditional rule contains multiple non-constructor terms as
subterms cons does not imply any order of subterms. Our theoretical results do not depend
on a specific order of positions, yet from a practical point of view choosing outer positions
over inner positions first leads to less conditions.

I Lemma 9. Let R be a deterministic CTRS. Then cons(R) is a constructor DCTRS.

Proof. Straightforward from the definition. J

I Lemma 10 (Completeness). Let R be a DCTRS and s, t ∈ T be two terms. Then s→R t

implies s→cons(R) t.
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Proof. In this case, the variable binding of the left-hand sides of the new conditions imme-
diately matches the right-hand sides. J

I Lemma 11 (Soundness). Let R be a DCTRS and s, t ∈ T be two terms. Then if s→cons(R)
t then also s→+

R t.

Proof. We can extract the rewrite sequences in the new conditions and insert them in the
replaced subterms. This is possible because all new variables are only used once. J

Next, we define the transformation for DCTRSs that conservatively extends the trans-
formation of [1].

In order to transform a CTRS we group conditional rules by the root symbol of their left-
hand side. We then transform these groups. In order to encode CTRSs with extra variables
we sequentially encode all conditions. If a conditional argument matches the right-hand
side of a condition, then we can apply a switch rule to evaluate the next condition. In this
switch rule we do not keep the evaluated conditional argument to avoid derivations similar
to the unsound derivation in Example 4 but instead encode variables that are needed on
the right-hand side of the conditional rule or in one of the following conditions. This set of
variables resembles the variables that are encoded in the optimized unraveling of [11], but
in our case we only need to encode extra variables because we preserve the left-hand side of
the conditional rule.

In order to further distinguish which condition is currently evaluated we also label the
tuples that contain the conditional argument and the bindings of extra variables.

I Definition 12 (structure-preserving transformation for sets of conditional rules). Let Rf be
a set of conditional rules such that the left-hand sides of all rules are rooted by the same
function symbol f with arity n.

Then, the mappings φRfX : T 7→ T ′ and φRf⊥ : T 7→ T ′ are defined as follows:

φ
Rf
⊥ (u) =


f ′(φRf⊥ (u1), . . . , φRf⊥ (un),

|Rf | times︷ ︸︸ ︷
⊥, . . . ,⊥) if u = f(u1, . . . , un)

g(φRf⊥ (u1), . . . , φRf⊥ (um)) if u = g(u1, . . . , um)
u if u is a variable

φ
Rf
X (u) =


f ′(φRfX1

(u1), . . . , φRfXn(un), z1, . . . , z|Rf |) if u = f(u1, . . . , un)
g(φRfY1

(u1), . . . , φRfYm(um)) if u = g(u1, . . . , um)
u if u is a variable

where
{
z1, . . . , z|Rf |

}
⊂ X, X1, . . . , Xn are pairwise distinct subsets of X \

{
z1, . . . , z|Rf |

}
and Y1, . . . , Ym are pairwise distinct subsets of X.

Let iα ∈ {1, . . . , |Rf |} be a unique index of the rule α in Rf . Then the transformed rules
Snew(α) of the rule α ∈ Rf are defined as follows:

Snew(α) =



l′[⊥]n+iα → l′[
〈
φ
Rf
⊥ (s1),−→Z1

〉
1
]n+iα

l′[
〈
φ
Rf
X1

(t1),−→Z1

〉
1
]n+iα → l′[

〈
φ
Rf
⊥ (s2),−→Z2

〉
2
]n+iα

...
...

l′[
〈
φ
Rf
Xk

(tk),−→Zk
〉
k
]n+iα → φ

Rf
⊥ (r)



WPTE’14



12 Notes on Structure-Preserving Transformations of Conditional Term Rewrite Systems

where l′ = φX(l), Zi =
⋃
Var(t1, . . . , ti−1) ∩ Var(ti, si+1, . . . , sk, tk, r) \ Var(l) is the set of

extra variables that are still required for the rule application, and X ∩ Var(α) = ∅ is an
infinite set of fresh variables.

The previous definition shows how to transform conditional rules and how to obtain
mappings to map the signature of terms to the transformed system. Since we will obtain
groups of unconditional rules with a different signature this way we need to provide a
mapping to adjust the signature of other rules.

I Definition 13 (adjusting signature). Let Rf be a set of f -rooted conditional rules. Let
β : l → r ⇐ s1 →∗ t1, . . . , sk →∗ tk be a rule that is not f -rooted such that all subterms of
l are constructor terms.

Then, φRf (β) is defined as follows

φRf (β) = φ
Rf
X0

(l)→ φ
Rf
⊥ (r)⇐ φ

Rf
⊥ (s1)→∗ φRfX1

(t1), . . . φRf⊥ (s1)→∗ φRfXk(tk)

where X0, . . . , Xk are infinite pairwise distinct sets of new variables (Var(β)∩
⋃k
i=0 Xi = ∅).

The final transformation itself groups rules by their root symbols and applies the trans-
formation of Definition 12 to them. Then, the signature is adjusted for all rules according
to the mappings φRf .

I Definition 14 (structure-preserving transformation for DCTRSs). Let R = (R,F) be a con-
structor DCTRS such that f1, . . . , fn are all defined symbols and Rfi contains all conditional
fi-rooted rules (i ∈ {1, . . . , n}). Let furthermore Ruc be all unconditional rules in R. Then
the transformation Snew is defined as follows:

Snew(R) = φRf1
(· · ·φRfn (Ruc) · · · ) ∪

n⋃
i=1

φRf1
(· · ·φRfi−1

(φRfi+1
(· · ·φRfn (Snew(Rfi) · · · )

I Example 15. Consider the following CTRS of Example 4:

R =
{
f(g(x))→ x⇐ x→∗ 0 g(s(x))→ g(x)

}
In order to apply the transformation Tnew we first must apply cons to transform R into

a constructor CTRS.

cons(R) =
{
f(z)→ x⇐ z →∗ g(x), x→∗ s(0) g(s(x))→ g(x)

}
Next, we transform the conditional f -rule and the unconditional g-rule:

Snew(Rf ) =
{
f ′(z,⊥)→ f ′(z, 〈z〉1) f ′(z, 〈g(x)〉1)→ f ′(z, 〈x, x〉2) f ′(z, 〈0, x〉2)→ x

}
φRf (Ruc) =

{
g(s(x))→ g(x)

}
Finally, we obtain Snew(R) by adjusting the signature in the transformed rules. Since

the symbol g is preserved this is equivalent to the union of both subsystems.

Snew(R) =
{
f ′(z,⊥)→ f ′(z, 〈z〉1) f ′(z, 〈g(x)〉1)→ f ′(z, 〈x〉2) f ′(z, 〈0〉2)→ x

g(s(x))→ g(x)

}
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This transformation does not require a resetting-mechanism like the transformation of
[15]. Furthermore it preserves the property of being a constructor system if the rhs’s of the
conditions are constructor terms, and being non-overlapping if the rhs’s of the conditions
are non-overlapping with the lhs’s of the rules. Compared to the transformation of [4] Snew
does not cause non-confluence in connection with non-left-linear rules or unsoundness in
connection with collapsing rules. Finally, our definition of Snew is the only formal definition
known to us of a structure-preserving transformation for deterministic CTRSs.

Our next goals will be to prove soundness properties, in particular to compare our
novel approach with recent properties of unravelings. Although it is known that structure-
preserving transformations are unsound for certain non-erasing CTRSs while some unravel-
ings are sound we hope to present some results in the near future that show a connection in
soundness results.

7 Conclusion

We have presented an overview of transformations that preserve the term structure of left-
hand sides of conditional rule. This class of transformations stems from [16]. We refer to
these transformations as structure preserving transformations.

The transformation of [1] (S) has nice properties for constructor normal 1-CTRSs. Yet
for non-constructor CTRSs we obtain undesirable properties. Therefore, some other trans-
formations were defined in the past that are based on this transformation but also return
appropriate transformed TRSs for non-constructor CTRSs.

The extension of [15] (Ssr) adds a complex resetting mechanism to S that has complex
syntactic properties. The drawbacks of this transformation are discussed in [4] where also
another transformation based on [1] is defined (Sgg) that has better syntactic properties
than Ssr. Since the original definition is very complex we here sketched a simpler refined
version.

The transformation Sgg also has undesirable properties for some collapsing CTRSs. Fur-
thermore none of these transformations is formally defined for deterministic CTRSs. There-
fore we here define a transformation for constructor DCTRSs that is similar to the one of
[1] but it uses a sequential encoding of conditions similar to unravelings for DCTRSs.

In order to also transform non-constructor CTRSs using this CTRS we also define a
transformation of non-constructor CTRSs into constructor DCTRSs. Combining these two
transformations we obtain a new approach that shows promising first results compared to
other structure preserving derivations.

In our future work we hope to provide more formal results and prove the usefulness of
our approach in automated confluence tests of CTRSs.

Acknowledgements. We are deeply grateful to the anonymous referees for their useful
comments.
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