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Abstract
We report on an implementation of elementary interpretations for automatic termination proofs.

1 Introduction

Proving termination of rewrite systems by polynomial interpretations is well-studied. In this
work we go beyond polynomials by considering a subset of elementary functions including
exponentiation. The approach is motivated by Lescanne’s factorial example [3]

0 + x→ x 0 · x→ 0 fact(0)→ s(0)
s(x) + y → s(x+ y) s(x) · y → x · y + y fact(s(x))→ s(x) · fact(x)

x · (y + z)→ x · y + x · z

which does not admit a (direct) termination proof by polynomials. Consider the algebra A
with carrier N>1 and the interpretation functions 0A = 2, sA(x) = x+2, x+Ay = 2x+y+1,
x ·A y = 2xy, and factA(x) = 22x . They establish termination of the TRS, since for every
rule the term interpretation of the left-hand side is larger than that of the right-hand side,
i.e., for all x, y, z ∈ N>1:

x+ 5 > x 22x > 2 222
> 4

2x+ y + 5 > 2x+ y + 3 2x+2y > 2x+1y + y + 1 22x+2
> 2x+222x = 2x+2+2x

2x(2y + z + 1) > 2x+1y + 2xz + 1

In this note we show how to automate the search for such interpretation functions. In
particular one has to (a) find suitable coefficients for the interpretations, (b) evaluate the
term interpretations, and (c) compare two term interpretations. In the sequel we address
these issues in reverse order and also discuss the limitations of this approach.

2 Automation of Elementary Algebras

We assume familiarity with term rewriting [1]. For a set of function symbols F , a (well-
founded) algebra A = (A, {fA | f ∈ F}, >) consists of a carrier A, (a set of) interpretation
functions fA : A×· · ·×A→ A, and a well-founded order > on A. An interpretation function
fA is monotone if a > b implies fA(. . . , ai−1, a, ai+1, . . .) > fA(. . . , ai−1, b, ai+1, . . .). An
algebra is monotone if all its interpretation functions are monotone. A TRS R is compatible
with an algebra A if [α]A(`) > [α]A(r) for every ` → r ∈ R and assignment α. Here
[α]A(t) denotes the value resulting when interpreting the term t in the algebra A under the
assignment α. A TRS is terminating if and only if it is compatible with a well-founded
monotone algebra.

Inspired by the above example we use interpretation functions of the following shape:

I Definition 1. A fixed-base elementary interpretation function (FBI) of depth 0 is a linear
function f(x) =

∑
16i6n xifi + f0 and an FBI of depth d+ 1 has the shape

f(x) =
∑

16i6n
xifi + f0 + bf

′(x)
( ∑

16i6n
xif̂i + f̂0

)
(1)
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where f0, f1, . . . , fn, f̂0, f̂1, . . . , f̂n are natural numbers, f ′(x) is an FBI of depth d, and
b > 2 is a fixed natural number. We use the abbreviations ḟ(x) =

∑
16i6n xifi + f0 and

f̂(x) =
∑

16i6n xif̂i + f̂0. An FBI algebra has N>1 as carrier and FBIs as interpretation
functions for all function symbols in the signature.

We treat an FBI f(x) of depth 0 as
∑

16i6n xifi + f0 + b00 to avoid case distinctions.
Hence in the sequel we will use FBIs f(x) and g(x) of the shape (1).

The following recursive definition reduces the comparison of FBIs to the comparison of
non-linear polynomials.

I Definition 2. Let bbf ′(x)c =
(
(ḟ ′(x) + f̂ ′(x) = 0) ? 1 : b (ḟ ′(x) + f̂ ′(x))

)
. Note that

bf(x) > bbf(x)c. Further let p(x) = ḟ ′(x)+f̂ ′(x)−ġ′(x)−ĝ′(x) and h(x) = bbp(x)cf̂(x)−ĝ(x).
We define

[f(x) > g(x)] = (ĝ(x) > 0→ [f ′(x) > g′(x)]) ∧
(

(f̂(x) > 0 ∧ [f ′(x) b > g(x)]) ∨ (d)

(ḟ(x) > ġ(x) ∧ f̂(x) > ĝ(x) ∧

((f̂(x) > 0 ∧ [f ′(x) > g′(x)]) ∨ ḟ(x) > ġ(x) ∨ f̂(x) > ĝ(x))) ∨ (e)

(h(x) > 0 ∧ p(x) > 0 ∧ f̂ ′(x) > ĝ′(x) ∧

ḟ(x) + bbg
′(x)cbbp(x)cf̂(x) > ġ(x) + bbg

′(x)cĝ(x))
)

(f)

The encodings of comparisons are sound.

I Lemma 3. If [f(x) > g(x)] holds then [α](f(x)) > [α](g(x)) for all assignments α.

The following example shows that FBIs are not closed under addition and composition,
which complicates the evaluation of a term interpretation.

I Example 4. The sum 2x+2y of the FBIs 2x and 2y has no FBI representation. Substituting
the FBI 2y + 1 for x in the FBI 2xx results in 22y+1(2y + 1) = 22y+y+1 + 22y+1, which also
has no equivalent FBI representation.

We thus define under- and overapproximations for arithmetic operations.

I Definition 5.
(a) Multiplication of an FBI by a scalar again yields an FBI, i.e.

f(x) a =
∑

16i6n
xifia+ f0a+ bf

′(x)
( ∑

16i6n
xif̂ia+ f̂0a

)
(b) For addition, we first introduce fmin(f, g) and fmax(f, g) as the coefficient-wise minimum

and maximum of FBIs f and g, respectively. These lower (upper) bounds admit the
approximations

f(x) +µ g(x) =
∑

16i6n
xi(fi + gi) + (f0 + g0) + beµ(x)

( ∑
16i6n

xi(f̂i + ĝi) + (f̂0 + ĝ0)
)

f(x) +ν g(x) =
∑

16i6n
xi(fi + gi) + (f0 + g0) + beν(x)

( ∑
16i6n

xi(f̂i + ĝi) + (f̂0 + ĝ0)
)

with eµ(x) abbreviating f̂(x) = 0 ? g′(x) :
(
ĝ(x) = 0 ? f ′(x) : fmin(f ′, g′)(x)

)
and eν(x)

abbreviating f̂(x) = 0 ? g′(x) :
(
ĝ(x) = 0 ? f ′(x) : fmax(f ′, g′)(x)

)
.
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(c) To approximate multiplication of an expression of the form bg
′(x) with f(x) by an FBI,

we may use

bg
′(x) ·µ f(x) = f̂(x) > 0 ? ḟ(x) + bf

′(x)+µg′(x)f̂(x) : bg
′(x)ḟ(x)

bg
′(x) ·ν f(x) = f̂(x) > 0 ? bf

′(x)+νg′(x)
( ∑

16i6n
xi(f̂i + fi) + (f̂0 + f0)

)
: bg

′(x)ḟ(x)

(d) Finally we can give approximations for the composition f(g)(x) = f(g1(x), . . . , gn(x)):

f(g)µ(x) =
µ∑

16i6n
gi(x)fi +µ f0 +µ b

f ′(g)µ(x) ·µ
( µ∑

16i6n
gi(x)f̂i +µ f̂0

)
The overapproximation f(g)ν(x) is obtained by replacing µ by ν in the above expression.

(e) Let t be a term and A an FBI algebra. We define FBIs µA(t) and νA(t) such that
µA(t) = t if t ∈ V and µA(t) = fA(µA(t1), . . . , µA(tn))µ if t = f(t1, . . . , tn). The
overapproximation νA(t) is defined similarly.

Definition 5 yields valid over- and underapproximations.

I Lemma 6. If A is an FBI algebra and t a term then [α](µA(t)) 6 [α]A(t) 6 [α](νA(t))
for all assignments α.

The following example illustrates Definition 5.

I Example 7. We consider the cases for addition and multiplication.
(b) We have fmin(x + 1, x) = x and fmax(x + 1, x) = x + 1, thus 2x+1y +µ 2x(z + 1) =

2x(y + z + 1) but 2x+1y +ν 2x(z + 1) = 2x+1(y + z + 1).
In certain pathological cases the approximations of addition are not commutative. To
be more precise, the resulting FBIs may be syntactically different but denote the same
elementary function. For instance, 2x · 0 +µ 2x+1 · 0 = 2x+1 · 0 while 2x+1 · 0 +µ 2x · 0 =
2x · 0. Still, we do not regard this a problem for our application as the encoding of
comparisons takes these cases into account.

(c) For multiplication we have 2x+1 ·µ22x = 2(x+1)+µ2x = 2x+1+2x and 2x+1 ·ν 22x = 2x+1+2x ,
the approximation is thus precise in these cases. On the other hand, as (x+ 1) +µ 2x =
(x + 1) +ν 2x = x + 1 + 2x we have 2x+1 ·µ (z + 1 + 22xy) = z + 1 + 2x+1+2xy, while
2x+1 ·ν (z + 1 + 22xy) = 2x+1+2x(y + z + 1).

The following example shows that in practice our approximations are very accurate, i.e.,
for the motivating example they are exact, i.e., we get the following constraints

x+ 5 > x 22x > 2 222
> 4

2x+ y + 5 > 2x+ y + 3 2x+2y > y + 1 + 2x2y 22x+2
> 2x+2+2x

2x(2y + z + 1) > 1 + 2x(2y + z)

Monotonicity of an FBI f(x) is expressed by mon(f(x)) =
∧

16i6nmoni(f(x)) where
moni(f(x)) = fi > 0 ∨ f̂i > 0 ∨ (moni(f ′(x)) ∧ f̂(x) > 0) . An FBI f(x) is well-defined if
[f(x) > 0] holds. The main result of this section can now be stated as follows.

I Theorem 8. Let R be a TRS over a signature F and A be an FBI algebra on F . If∧
`→r∈R

[µA(`) > νA(r)] ∧
∧
f∈F

(
[fA(x) > 0] ∧mon(fA(x))

)
holds then R is terminating.
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method YES avg. time Lescanne’s Example [4, Example 1.1] [3, Fig. 1]
poly 125 0.3 (0.2) (0.4) (0.3)
fbi 41 29.7 1443.4 731.0 13540.5
fbi[d] 170 4.7 16.1 10.0 27.8
fbi[d+] 174 4.2 8.9 7.9 24.1

Table 1 Experimental Results for FBI Algebras.

Finally we address the remaining problem of finding suitable coefficients. To this end
we fix the depth of the FBIs used for interpreting function symbols by some heuristics and
consider f0, . . . , fn, f̂0, . . . , f̂n in (1) as unknowns in the natural numbers. The encodings
from before then reduce the search for coefficients to finding models in the SMT logic
QF_NIA, i.e., existentially quantified non-linear integer arithmetic, for which tools exist.

3 Limitations

There are TRSs where FBI termination proofs require interpretations of arbitrary depth.

I Example 9. Let Rn for n > 0 consist of the rules

x+ 0→ x x+ s(y)→ s(x+ y) exp0(x)→ x

expi+1(0)→ expi(s(0)) expi+1(s(x))→ expi(exp1(x) + exp1(x))

for all 0 6 i < n. Termination of Rn can be shown by the FBI algebra A with base b = 2 and
interpretations 0A = 1, sA(x) = x+ 1, x+A y = x+ 2y, and expi,A(x) = expi2(2x+ 1) where
expi2(x) denotes i-fold exponentiation with base 2, i.e., exp0

2(x) = x and expi+1
2 (x) = 2expi2(x).

It is easy to see that any FBI algebra that orients Rn needs to have at least depth n.

It can be shown that already R1 admits multiple exponential complexity. As to be
expected, actually any TRS compatible with an FBI algebra is bounded by a multiple
exponential function. A more precise upper bound is given by the following lemma.

I Lemma 10. For any TRS R compatible with an FBI algebra A having base b and maximal
depth d− 1, dhR(n) ∈ expdnb (O(n)).

4 Experimental Results

We implemented FBIs in the termination tool TTT2 [2] version 1.15. For experiments1 we
considered the 1463 TRSs in the Standard TRS category of the Termination Problems Data
Base (TPDB 8.0.7)2 and examples from the dedicated literature. If a TRS could not be
handled within 60 seconds, the execution of TTT2 was aborted.

Table 1 compares the power of FBIs (of depth at most 2) with linear polynomial inter-
pretations when used in direct termination proofs (orient all rules by a single interpretation).
For numbers in parentheses TTT2 was not successful. The expressions in brackets indicate
which heuristics have been used. FBIs as well as linear interpretations use two bits to encode
coefficients and seven bits for arithmetic evaluations.

1 Details available from http://cl-informatik.uibk.ac.at/ttt2/ordinals
2 Available from http://termcomp.uibk.ac.at.

http://cl-informatik.uibk.ac.at/ttt2/ordinals
http://termcomp.uibk.ac.at
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Our experiments show the need for the heuristic limiting the depth of the FBIs (setting
[d] in Table 1). We have also experimented with other heuristics [d+] but they are much
less effective, i.e., they either slightly decrease the execution time or increase the number of
systems shown terminating but are not explained here. The systems where FBIs succeed
but linear polynomials fail often require interpretation functions of non-linear shape.

5 Related Work

Lescanne proposed elementary functions for proving (AC-)termination but his implement-
ation is limited to checking the orientation of rules for given interpretations [3]. Lucas has
achieved partial progress by considering so-called linear elementary interpretations (LEIs)
of the shape A(x) + B(x)C(x) where A(x), B(x), and C(x) are linear polynomials [4]. He
proposes an approach based on rewriting, constraint logic programming (CLP), and con-
straint satisfaction problems (CSPs) to also find suitable interpretation functions but leaves
an actual implementation of his method as future work.

6 Conclusion

Our findings are related to Problem #28 in the RTA List of Open Problems,3 which asks
to “develop effective methods to decide whether a system decreases with respect to some
exponential interpretation”. In addition our contribution admits the search for suitable
interpretations.

Generalizing elementary interpretations to a non-fixed base is an obvious choice for future
work. However, we anticipate that suitable approximations will neither give further deep
insights nor significantly improve termination proving power and hence we propose a different
line of research, viz., the study how to employ them for AC termination.

Since non-linear polynomials give rise to an exponential size SMT encoding, such inter-
pretations are hardly used within termination tools. We anticipate that suitable approxim-
ations could improve the performance of these implementations.

Acknowledgments

We thank the program committee for useful comments.

References

1 F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
Cambridge, 1998.

2 M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In
Proc. 20th RTA, volume 5595 of LNCS, pages 295–304, 2009.

3 P. Lescanne. Termination of rewrite systems by elementary interpretations. Formal As-
pects of Computing, 7(1):77–90, 1995.

4 S. Lucas. Automatic proofs of termination with elementary interpretations. In Proc. 9th
PROLE, volume 258 of ENTCS, pages 41–61, 2009.

3 http://www.win.tue.nl/rtaloop/

WST’14

http://www.win.tue.nl/rtaloop/

	Introduction
	Automation of Elementary Algebras
	Limitations
	Experimental Results
	Related Work
	Conclusion

