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Abstract

In conditional term rewrite systems certain properties change their intuitive meaning
when compared to unconditional rewriting. This is due to the fact that in rewrite steps,
the evaluation of the conditions is left implicit. For instance, termination of a conditional
term rewrite system does not imply the absence of infinitely many steps in the conditions.
For this reason, the notion of operational termination has been introduced in the past that
also considers the evaluation of conditions. This paper investigates the case of confluence
in conditional term rewrite systems and introduces the notion of operational confluence, a
confluence property that also implies confluence of the evaluations of conditions.

1 Introduction

Conditional term rewriting is an intuitive extension of term rewriting that plays an important
role in e.g. functional-logic programming languages. In Conditional Term Rewrite Systems
(CTRSs) the applicability of rules is bound to certain conditions that usually depend on the
rewrite relation itself. Although this type of conditions is well-known from functional program-
ming, it causes various problems when compared to unconditional rewriting.

In the case of termination, a CTRS may be terminating meaning that there are no infinite
reduction sequences, yet there still might be infinite recursion. Hence, termination of a CTRS
does not imply termination of the actual interpretation of the CTRS. Therefore, different ter-
mination properties have been introduced, like effective termination [5, 7], but most notably
operational termination [4] that also covers termination of the interpretation of the CTRS.

Concerning confluence, many criteria of unconditional rewriting do not hold anymore.
For instance, neither orthogonality nor the critical pair lemma imply confluence in general.
Nonetheless, if we impose some syntactic restrictions we can still prove confluence via e.g. level-
confluence or conditional critical pairs [3, 2, 8].

Yet, there is another aspect of confluence in conditional rewriting: Confluence implies that
a term that is rewritten in multiple ways always yields the same result after some rewrite steps.
Extending this notion to conditional rewriting and also applying it to the condition would mean
that it should not matter what strategy we use to evaluate the conditions in confluent CTRSs,
we still will always yield the same result. Unfortunately this is not the case in general as the
following example shows:

R =







a → c A → C B → C ⇐ a = b

↓ ↓ ↓
b → d B







Equality here means reducibility. Since the condition is satisfied, the CTRS is confluent.
Nonetheless, if we start rewriting from the left-hand side of the condition a, two rules can be
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applied, yielding the reducts b and c. The latter reduct does not rewrite to b, hence a rewrite
sequence starting with a → c yields a negative result for the condition, although the condition is
satisfied. In the worst case we might have to investigate all possible rewrite sequences starting
from the left-hand side of a condition, even though the CTRS is confluent.

Now, consider another CTRS:

R′ =







a → c A → C B → D ⇐ a →∗ e

↓ ↓ ↓ ր
b → d B







This CTRS is also confluent because the condition a →∗ e is not satisfiable. In this example,
it does not matter whether a is reduced to b or c because in both cases the condition is unsatisfi-
able. Hence, this latter CTRS is not only confluent but satisfies a stronger confluence property
that also considers conditional evaluations. This paper introduces operational confluence as
notion for this stronger confluence property.

2 Preliminaries

We assume basic knowledge of terms and contexts and will use notions and notations similar to
the ones in [7]. A conditional term rewrite system R consists of conditional rules. These rules
are triples 〈l, r, c〉, usually denoted as l → r ⇐ c, where l, r are terms and c is a conjunction of
conditions. The underlying unconditional rewrite system is the set of the unconditional part of
the conditional rules Ru = {l → r | l → r ⇐ c ∈ R}.

Depending on the relation used in the conditions we distinguish various types of CTRSs:
Semi-equational CTRSs (s ↔∗ t), join CTRSs (s ↓ t), oriented CTRSs (s →∗ t) and nor-
mal CTRSs (s →∗ t and t is an irreducible ground term w.r.t. Ru, denoted as →! in the
following). We can further classify CTRSs based on the distribution of (extra-)variables:
1-CTRSs (Var(r, c) ⊆ Var(l)), 2-CTRSs (Var(r) ⊆ Var(l)), 3-CTRSs (Var(r) ⊆ Var(l, c))
and 4-CTRSs (no restrictions). We will only consider oriented CTRSs. An oriented 3-rule
l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn is deterministic if Var(si) ⊆ Var(l, t1, . . . , ti−1) for all
i ∈ {1, . . . , n}. A 3-CTRS is a deterministic CTRS (DCTRS) if all its rules are determin-
istic. A CTRS R is strongly deterministic [2], if for all rules l → r ⇐ s1 →∗ t1, . . . , sn →∗ tn
and substitutions σ such that xσ is irreducible w.r.t. R, tiσ is also irreducible w.r.t. R.

3 Operational Confluence

We first recall some definitions of [4]: Let G be a formula in some theory of some logic that is
defined over some inference rules. A proof tree is either an open goal, G, or a derivation tree

T1, . . . , Tk

G
(∆)

In the latter case, ∆ is a derivation rule in the corresponding logic, the proof tree itself is an
instance of ∆ and T1, . . . , Tn are proof trees themselves. We call the formula G the head of T ,
written head(T ). A proof tree T is closed if it does not contain any open goals.

We introduce the following notion of closeable proof trees:

Definition 1 (closeable proof trees). A proof tree T is closeable if it is a closed proof tree, or
for all open goals U in T , there is a proof tree U ′ that is closed.
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The difference between closeable and closed proof trees is important if an inference rule can
be applied infinitely many times.

Definition 2 (operational confluence). A theory S in a logic L defined by inference rules is
operationally confluent for a formula F if for all instances Fσ of F , all proof trees T in S
headed by Fσ the following holds:

If there is a closed proof tree T with head(T ) = Fσ, then all proof trees T ′ with head(T ′) =
Fσ are closeable.

To illustrate the previous definitions consider an inference system with rules (A) and (B),
and a closed proof tree for some Fσ:

T
(B)

U
(B)

Fσ
(A)

If the given inference system is operationally confluent for F , we obtain a closed proof tree
or a proof tree with open goals that is closeable, even if we apply a different inference rule (C)
in one proof step.

T ′
(B) V

(B)

U ′
(A)

Fσ
(C)

Hence, operational confluence implies that it does not matter which rule we apply, we will
always yield a closed proof if the goal is proveable (up to non-termination in non-operationally
terminating inference systems).

4 Operational Confluence of CTRSs

In this section we investigate the case of conditional rewriting for operational confluence. Lucas
et. al. introduce inference rules in [4] for operational termination, yet the transitivity rule

(Tran)
u → u′ u′ →∗ u′′

u →∗ u′′

cannot be used for operational confluence because u′ may be an arbitrary term and thus imme-
diately leads to non-confluence.1 Therefore operational confluence for CTRSs will be defined
using only two rules where (Tran), (Repl) and (Cong) are merged into the single (Appl) rule
which is additionally restricted to the satisfiability of the conditions of the applied rule.

(Refl)
u →∗ u

(Appl)
cσ, u′ →∗ v

u →∗ v
where l → r ⇐ c ∈ R,

u = C[lσ], u′ = C[rσ] and cσ is satisfiable for R

The (Appl) rule can only be applied if the condition of the rule is satisfied. It is undecidable
in general whether a condition is satisfied, i.e., whether there is a closed proof tree, yet such
an inference rule models the usual implementation of conditional rewrite engines to first verify
the conditions and only then apply the rule.

1One of the anonymous referees pointed out this problem in the first submission of this paper.
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Consider a conditional rule l → r ⇐ s →∗ t in an operationally confluent (for →!) CTRS.
The normalform of a term can be obtained without traversing all possible rewrite paths from
sσ. It is sufficient to determine one normalizing rewrite sequence sσ →! u and test whether
u = tσ or not. In the latter case the condition is not satisfiable.

The following example resembles CTRSs that may be generated by the inversion procedure
for term rewrite systems of [6] and shows that for some relevant cases confluence does not
necessarily imply operational confluence for →!.

Example 3 (non-operationally confluent CTRS). Consider the following CTRS:

R =

{

half (x) → y ⇐ pairs(0, x) →∗ pairs(y, y)

pairs(x, s(y)) → pairs(s(x), y)

}

The CTRS is confluent, yet it is not operationally confluent for →!. Consider the rewrite
sequence half (s(s(0))) →∗ s(0). It gives rise to the following closed proof tree:

pairs(s(0), s(0)) →∗ pairs(s(0), s(0))
(Refl)

pairs(0, s(s(0))) →∗ pairs(s(0), s(0))
(Appl)

half (s(s(0))) →∗ s(0)
(Appl)

Instead of the (Refl)-inference rule also the (Appl) inference rule can be applied, leading to
the following proof tree:

pairs(0, s(s(0))) →∗ pairs(s(0), s(0))

pairs(s(0), s(0)) →∗ pairs(s(0), s(0))
(Appl)

pairs(0, s(s(0))) →∗ pairs(s(0), s(0))
(Appl)

half (s(s(0))) →∗ s(0)
(Appl)

The second proof tree contains one open goal pairs(0, s(s(0))) →∗ pairs(s(0), s(0)) to which
no inference rule can be applied. Therefore, the second proof tree is not closeable so that the
CTRS is not operationally confluent for →!.

In the previous condition, non-operational confluence is caused by an overlap of both in-
ference rules. In normal 1-CTRSs such overlaps do not occur which leads to the following
result:

Lemma 4 (operational confluence of normal 1-CTRSs). Every confluent normal 1-CTRS is
also operationally confluent for →!.

Proof Sketch. Let u →∗ t be the head of a proof tree where t is an irreducible ground term
w.r.t. the underlying TRS. If this condition is satisfiable, then there is a goal t →∗ t in the
proof tree such that the (Refl)-inference rule is applicable. Since t is irreducible w.r.t. underlying
TRS, no other inference rule is applicable. Finally, since the CTRS is confluent, t is the unique
normalform of u.

A generalization of normal 1-CTRSs are strongly deterministic CTRSs. In this class of
CTRSs, the right-hand sides of conditions are also irreducible, provided the image of the matcher
only contains irreducible terms. Although this class of CTRSs plays an important role in proving
confluence it is not sufficient for equivalence of operational confluence and confluence:

Example 5 (strongly deterministic CTRSs). Consider the CTRS R of Example 3. The CTRS
is not strongly deterministic, but the union of R and {s(x) → s(x)} is, because every substitution
that contains an s-rooted term in its image is not normalizing anymore. Hence, this (non-
terminating) CTRS is strongly deterministic but not operationally confluent (for →!).
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5 Conclusion and Related Work

In this paper we introduced a new confluence property for conditional term rewrite systems,
operational confluence. This property implies confluence but also adds the requirement that
the evaluation of conditions does not give rise to different results depending on the evaluation
strategy.

This notion is motivated from experiences in implementing rewrite engines for CTRSs be-
cause checking whether a condition is satisfied after each derivation step and using backtracking
on dead ends adds significant overhead to such implementations. For operationally confluent
CTRSs (for →!) it is sufficient to verify or disprove the condition for one evaluation branch.
The notion of operational confluence hence better captures the intuitive meaning of confluence
for conditional rewriting.

5.1 Relation to ultra-properties

In [5] Marchiori introduces a class of transformations from conditional term rewrite systems
into unconditional ones. In the same paper, the notion of ultra-properties is introduced that
defines properties of CTRSs using the transformed TRS. Informally, a CTRSR has the property
ultra-P if the transformed system U(R) has the property P.

It is plausible that there is a relation between ultra-confluence and operational confluence.
Details to this are ongoing research. Furthermore, there are other transformations that better
preserve confluence than unravelings (e.g. the transformations of [1]).
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