
GeoLogic – Graphical interactive theorem prover
for Euclidean geometry

Miroslav Oľsák1[0000−0002−9361−1921]

University of Innsbruck, Austria,
mirek@olsak.net

Abstract. Domain of mathematical logic in computers is dominated
by automated theorem provers (ATP) and interactive theorem provers
(ITP). Both of these are hard to access by AI from the human-imitation
approach: ATPs often use human-unfriendly logical foundations while
ITPs are meant for formalizing existing proofs rather than problem solv-
ing. We aim to create a simple human-friendly logical system for math-
ematical problem solving. We picked the case study of Euclidean geom-
etry as it can be easily visualized, has simple logic, and yet potentially
offers many high-school problems of various difficulty levels. To make the
environment user friendly, we abandoned strict logic required by ITPs,
allowing to infer topological facts from pictures. We present our system
for Euclidean geometry, together with a graphical application GeoLogic,
similar to GeoGebra, which allows users to interactively study and prove
properties about the geometrical setup.

Keywords: Euclidean geometry · Logical system.

1 Overview

The article discusses GeoLogic 0.2 which can be downloaded from https://

github.com/mirefek/geo_logic. It is a logic system for Euclidean geometry
together with a graphical application capable of automatic visualisation of basic
facts (equal angles, equal distances, point being on a line, ...) and allowing user
interaction with the logic system. GeoLogic can be used for proving many clas-
sical high school geometry problems such as Simson’s line, Pascal’s theorem, or
some problems from International Mathematical Olympiad. Examples of such
proofs are available in the package. In this paper, we first explain our motiva-
tion, then we give a description of the underlying logical system, and finally we
present and example of proving the Simson’s line to demonstrate GeoLogic’s
proving and visualisation capabilities.

There are many mathematical competitions testing mathematical problem
solving capabilities of human beings, presumably most famous of which is the
International Mathematical Olympiad (IMO). Writing an automated theorem
prover (ATP) that could solve a large portion of IMO problems is a challenge

ar
X

iv
:2

00
5.

03
58

6v
1 

 [
cs

.L
O

] 
 7

 M
ay

 2
02

0

https://github.com/mirefek/geo_logic
https://github.com/mirefek/geo_logic


2 M. Oľsák

Fig. 1. GeoLogic screenshot

recognized in the field of artificial intelligence [6], and could potentially lead to
strong ATPs in general.

IMO, as well as many regional mathematical olympiads divide problems into
four categories: algebra, geometry, combinatorics and number theory. From a
human solver’s perspective, computer can significantly help with solving geome-
try problems using an application such as GeoGebra – it allows the user to draw
the configuration precisely, and observe how it changes when moving the initial
points.

This is one of the reasons why we focused on geometry. Our objective is to
capture the steps performed by such human solver in more detail, hoping it could
eventually lead to better understanding of human thinking in general. Therefore,
we are building an interactive theorem prover, while preserving the usability as
an exploration tool. In future, we would like to experiment with machine learning
agents leading to human-like ATPs for geometry. Moreover, geometry is concrete
and visualisable. This allows to add computer vision components to the future
machine learning experiments.

Other advantage of reasoning in Euclidean geometry is that we don’t need
complex logic. Most of geometrical reasoning involves only direct proofs with-
out higher order logic or case analysis. While some geometrical proofs use case
analysis for different topological configurations, we use a different approach. We
allow to infer topological facts (such as orientation of a triangle) from the pic-
ture (numerical model). This apparently proves only one case of the problem
(and its neighborhood), and could potentionally lead to inconsistencies caused
by numerical errors. However, we believe inconsistency caused by a numerical
error is unlikely because we require the fact to be satisfied by a sufficient margin
for postulating it, Softening the logic so that it accepts a proof of just one con-



GeoLogic – Graphical interactive theorem prover for Euclidean geometry 3

figuration is actually an advantage: It is a common case in Euclidean geometry
that a proof of a single configuration can be used for proving the general case
either by case analysis and analogies, or by proving that the configuration is the
only possible. Therefore, introducing a flexible logic can be seen as providing an
intermediate step for finding a formal proof – one first want to proof it in the
flexible logic of GeoLogic, and then to transform the GeoLogic’s proof into a
formal one. Both of the subtasks are typically easier then the original problem,
and such proving procedure would reflect how a human solver usually approach
the problem.

Finally, even though our main motivation was not to make a pedagogical
tool, and we don’t market GeoLogic as an application for an arbitrary high
school student in its current form, we also believe that GeoLogic can be already
interesting for talented students. Our objective of making an user-friendly inter-
active theorem prover for geometry is well-aligned with educational purposes,
and if it will get adopted in the future, it can help us with obtaining data for
machine learning experiments.

2 Logical system

The logical system of GeoLogic consists of a logical core interacting with tools.
The logical core contains the following data.

– The set of all geometrical objects constructed so far. Every object can be
accessed as a reference (for logical manipulation), or as the numerical object
(e.g. coordinates of points, for numerical checking).

– The knowledge database. It consists of a disjoint-set data structure for equal-
ity checking, equation systems for ratios and angles, and a lookup table for
tools.

The logical core also possess basic automation techniques for angle and ratio
calculations, and deductions around equality.

A tool is a general concept for construction steps, predicates, or inference
rules. It takes a list of geometrical references on an input (and sometimes ad-
ditional hyper-parameters), possibly adds some objects and some knowledge to
the logical core and returns a list of geometrical references on the output, or
fails. A tool always fails if the numerical data do not fit.

Besides that, every tool can be executed in a check mode, or in a postulate
mode. A tool fails in the check mode (and not in the postulate mode), if it
requires a fact which is not known by the knowledge database. Otherwise the
outcomes of the two modes are the same

Most tools are memoized. When they are called, their input is associated
with their output in the lookup table of the logical core. In the next call of
the same tool on the same input, the tool does not fail (even in check mode)
and returns the stored output (the same logical references). This serves three
purposes: computation optimization, functional extensionality and as a database
for predicates. In particular, a primitive predicate lies on is a memoized tool



4 M. Oľsák

which in postulate mode only checks whether a given point is contained by a
given line or circle. If it is not, it fails, otherwise it returns an empty output. In
check mode, however, this tool always fail. It means that the only way how to
make this tool executable in the check mode is to have the input already stored
in the lookup table by calling it in the postulate mode before. Ths differs from
topological (coexact) predicates such as not on which in both modes only checks
the numerical conditions – whether a given point in not contained by the given
line or circle.

By proving a fact (any tool applied to given input) in the logic system, we
mean executing certain tools in the check mode (proof), so that in the end the
given fact can be also run in the check mode. The graphical interface allows user
to run tools in check mode only.

2.1 Composite tools

A composite tool is basically a sequence of other tool steps applied to the input
objects, or on the outputs of prior tools in the sequence. All composite tools are
loaded from an external file, so we will explain them together with their format.
An example code of the composite tool angle follows.

angle l0:L l1:L -> alpha:A

d0 <- direction_of l0

d1 <- direction_of l1

alpha <- angle_compute 0 d0 -1 d1 1

The first line of a composite tool is a header consisting of name, input ob-
jects, forward arrow ->, and output objects separated by space. Every input or
output object is given by its label before colon, and its type after colon. Types
are given by letters P (point), L (line), C (circle), A (angle), D (ratio / dimen-
sion). Note that the format allows name overloading as long as the input types
are different, so there can be an angle tool accepting two lines, and also an-
other angle tool accepting three points. Following lines describe the tool steps
by output objects, backward arrow <-, tool name and input objects (possibly
with numerical hyperparameters) separated by space. Now, we use only labels
without types since the parser already knows the input types and it can infer
the output types by the used tool. The output labels must be unique, unless
an anonymous label is used. Among the input parameters, there can be also
hyperparameters in the form of integers, floats, or fractions. It is not relevant
how we mix the hyperparameters with the standard parameters but the order
among hyperparameters, and among parameters matters.

The composite tool we described so far is a macro which runs all its tool
steps in the same mode as in what the macro is called. If any of the steps fails,
the entire composite tool fails as well. Next to macros, there can be axioms and
lemmata. Axiomatic tool is such a composite tool that contains a single line
THEN among the steps. All the steps after THEN are then executed in postulate
mode, even if the axiomatic tool is called in a check mode. We call the steps



GeoLogic – Graphical interactive theorem prover for Euclidean geometry 5

before THEN assumptions and the steps after THEN implications. Axiomatic tools
are used for wrapping up primitive constructions (see direction of, and line),
or formulating real axioms (see isosceles ss).

direction_of l:L -> a:A

THEN

a <- prim__direction_of l

line A:P B:P -> p:L

<- not_eq A B

THEN

p <- prim__line A B

<- lies_on A p

<- lies_on B p

isosceles_ss A:P B:P C:P ->

<- not_eq B C

<- eq_dist A B A C

THEN

<- eq_angle A B C B C A

Finally, a lemma is similar to the axiomatic tool with the exception that
there is a third sequence of steps (called proof ) following a PROOF line. When a
lemma is executed in a check-mode, it works the same as an axiomatic tool, but
it also calls a proof check. Proof check constists of the following steps:

1. opening a new logical core for the following steps,

2. adding the numerical values of input objects as the initial objects,

3. running the assumptions in postulate mode,

4. running the proof in check mode,

5. running the implications in check mode.

If all the tools succeed, the proof check is considered successful.

isosceles_aa A:P B:P C:P ->

<- not_collinear A B C

<- eq_angle A B C B C A

THEN

<- eq_dist A B A C

PROOF

<- sim_aa_r C A B B A C

Adding a macro or a lemma to the tool set creates a conservative extension
of the logic – anything that is provable with the usage of lemmata and macros
can be proven without them.



6 M. Oľsák

3 Example – Simson’s line

We provide an example GeoLogic usage on the example of proving Simson’s line.
All the Figures in this section are exported from GeoLogic, demonstrating its
visualisation of known facts. The code below representing the constructions and
reasoning steps was created inside GeoLogic’s graphical interface.

We start by drawing a triangle ABC, and a point X on its circumcircle.

A <- free_point -79.20758056640625 -119.095947265625

B <- free_point -126.97052001953125 23.91351318359375

C <- free_point 108.5352783203125 19.20867919921875

a <- line B C

b <- line C A

c <- line A B

o <- circumcircle A B C

X <- m_point_on 0.6169557687823527 o

Simson’s line is a line passing through foots Fa, Fb, Fc of the point X to the
sides of the triangle. However, GeoLogic is not aware (yet) of the fact that these
three points are collinear.

Fa <- foot X a

Fb <- foot X b

Fc <- foot X c

d <- line Fc Fa

e <- line Fb Fa



GeoLogic – Graphical interactive theorem prover for Euclidean geometry 7

We can use the fact that the angles CFaX and CFbX are equal (they are both
right angles) to conclude that points C, X, Fa, Fb are concyclic. We consequently
use this fact to obtain that the angles FbFaC and FbXC are equal.

<- angles_to_concyclic C X Fa Fb

<- concyclic_to_angles Fb C X Fa

We can similarly reason that the points B, X, Fa, Fc are concyclic and
consequently the angles BFaFc and BXFc are equal.

<- angles_to_concyclic B X Fc Fa

<- concyclic_to_angles Fc B Fa X

Finally, we use concyclicity of X, A, C, B to conclude that the angle XCA
is equal to the complementary angle of ABX.

<- concyclic_to_angles X A C B

From this point on, GeoLogic’s logical core realizes by itself that

6 BFaFc = 6 BXFc = 90◦ − FcBX = 90◦ − FbCX = CXFb = CFaFb,

and since BFaC are collinear, FcFaFb are collinear as well.



8 M. Oľsák

4 Related work

Jeremy Avigad et al. [1] developed a logical system for formalizing elementary
geometrical proofs from Euclid’s elements, also distinguishing exact and coexact
predicates. Their approach is more formal than ours allowing also proving the
coexact statements in the end but it is less extensible by further tools. Michael
Beeson et al. [2] connected the interactive theorem prover CoQ with GeoGebra
for visualisation of the theorem (but not for the proving procedure). Also note
that using a rigid logic system such as in CoQ does not allow numerical checks
to be trusted in coexact statements.

The logical core of GeoLogic is partially inspired by General Deduction
Database [3] and Full Angle [4] methods for authomated synthetic proofs in
Euclidean Geometry. These methods are supported by a graphical application
Geometry Expert [7] which allows user to state a geometrical problem, run an
automated geometrical theorem prover on it, and visualise the proof. Julien
Narboux presented a similar graphical interface for construction of geometrical
statement traslated to CoQ [5]. None of these tools, however, supports construct-
ing and checking proofs in the graphical interface.

5 Conclusion

We designed a semi-formal logic for Euclidean geometry which can be to great
extent controlled with a graphical interface and allows us to prove many standard
high school problems. In the future, we would like to perform experiments with
machine learning agents.
Acknowledgement. Supported by the ERC starting grant no.714034 SMART.

References

1. Avigad, J., Dean, E., & Mumma, J.: A Formal System for Eu-
clid’s Elements. The Review of Symbolic Logic, 2(4), 700-768 (2009).
https://doi.org/10.1017/S1755020309990098

2. Beeson, M., Boutry, P., Braun, G., Gries, C., Narboux, J.: GeoCoq. 2018,
(swh:1:dir:97ce53176b7d5e89d069bc60f49c3fa186831307) (hal-01912024)

3. Chou, Shang-Ching & Gao, Xiao-Shan & Zhang, Jing-Zhong: A Deductive Database
Approach to Automated Geometry Theorem Proving and Discovering. J. Autom.
Reasoning. 25. 219-246 (2000). https://doi.org/10.1023/A:1006171315513

4. Chou, S., Gao, X. & Zhang, J.: Automated generation of readable
proofs with geometric invariants. J Autom Reasoning 17, 349370 (1996).
https://doi.org/10.1007/BF00283134

5. Narboux, J.: A Graphical User Interface for Formal Proofs in Geometry. Journal
of Automated Reasoning, Springer Verlag, 2007, Special Issue on User Interfaces
in Theorem Proving, 39 (2), pp.161-180. https://doi.org/10.1007/s10817-007-9071-4,
inria-00118903

6. Selsam, D.: IMO Grand Challenge https://imo-grand-challenge.github.io/

https://doi.org/10.1017/S1755020309990098
https://archive.softwareheritage.org/browse/swh:1:dir:97ce53176b7d5e89d069bc60f49c3fa186831307
https://hal.inria.fr/hal-01912024
https://doi.org/10.1023/A:1006171315513
https://doi.org/10.1007/BF00283134
https://doi.org/10.1007/s10817-007-9071-4
https://imo-grand-challenge.github.io/


GeoLogic – Graphical interactive theorem prover for Euclidean geometry 9

7. Ye Z., Chou SC., Gao XS.: An Introduction to Java Geometry Expert. Sturm T.,
Zengler C. (eds) Automated Deduction in Geometry. ADG 2008. Lecture Notes in
Computer Science, vol 6301. Springer, Berlin, Heidelberg.


	GeoLogic – Graphical interactive theorem prover for Euclidean geometry

