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We study the complexity of term rewrite systems compatible with the
Knuth-Bendix order, if the signature of the rewrite system is potentially
infinite. We show that the known bounds on the derivation height are es-
sentially preserved, if the rewrite system fulfils some mild conditions. This
allows us to obtain bounds on the derivational height of non simply termi-
nating rewrite systems. As a corollary, we re-establish an essentially optimal
2-recursive upper bound on the derivational complexity of finite rewrite sys-
tems compatible with a Knuth-Bendix order. Furthermore we link our main
result to results on generalised Knuth-Bendix orders and to recent results on
transfinite Knuth-Bendix orders.

to Alex on this momentous occasion

1 Introduction

Studies into the complexity of term rewrite systems (TRSs for short) are concerned with
the conception of TRSs as computation model and aim to measure the provided programs
with respect to their efficiency. Conceptually one typically limits to terminating TRSs
for such a quest, although almost all known techniques to assess the complexity of a
given TRS entail termination of the input TRS.

Several notions to assess the complexity of a terminating TRS have been proposed
in the literature, compare [7, 16, 9, 14]. In this paper we are mainly concerned with
the derivational complexity and the runtime complexity of terminating TRS. Here the
derivational complexity function (denoted as dcR) with respect to a terminating TRS
R relates the maximal derivation height to the size of the initial term [16]. On the
other hand the runtime complexity function (denoted as rcR) with respect to R relates
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the length of the longest derivation sequence to the size of the initial term, where the
arguments are supposed to be in normal form [14]. The motivation for the second (more
restricted) notion is that often one is not interested into the derivation height of a general
term, but only of a function.

The study of the complexity of TRS is intrinsically related to the study of the termina-
tion of a TRS and often it has been possible to yields an upper bound on the complexity
of a rewrite system R from an analysis of the termination proof of R. We mention
two recent results that show different aspects of interest (see [29] for further references).
For one we mention that the dependency pair framework [12] in conjunction with the
subterm criterion [13] characterises the multiple-recursive functions, cf. [30, 34]. Here
(derivational) complexity analysis yields qualitative information on termination anal-
ysis: rewrite systems that admit derivational complexities beyond multiple-recursive
cannot be handled by the mentioned termination criteria. One the other hand, variants
of interpretations into (vectors) of natural numbers, originally studied for termination,
sometimes yield a derivational and runtime complexity analysis that is precise upto the
degree of the polynomial that bounds the complexity, see for example [27]. Hence, ter-
mination techniques can be refined to yield precise bounds on the complexity of rewrite
systems.

In this paper we are concerned with the complexity of TRSs whose termination can
be shown with (variants) of Knuth-Bendix orders (KBOs for short). Our main result
is concerned with the analysis of standard KBOs, where we show that earlier results
by Lepper [21] yielding an optimal 2-recursive bound on the derivational (and runtime)
complexity for TRS over finite signatures can be generalised to provide bounds on the
derivation height for TRS over infinite signatures (Theorem 7.1). In this context we also
remark on the difficulty to obtain bounds on the derivational (or runtime) complexity
functions for infinite signatures.

Then we apply this result to general KBOs (GKBOs for short) [25] to obtain a 2-
recursive upper bound on the derivation height for TRSs over infinite signatures that
are compatible with GKBOs (Theorem 9.1). GKBOs generalise KBOs in that the weight
function employed in KBOs is replaced by a weakly-monotone simple algebra (A,A).
As the complexity of any TRS R compatible with a GKBO �gkbo is dependent on
the complexity induced by A, this result becomes only directly applicable if further
restrictions are made. In particular we can restrict to finite signatures to establish that
compatibility of a TRS R with �gkbo induces an incredible derivational complexity: dcR
is dominated by HϑΩω , where (Hα)α∈On denotes the Hardy hierarchy and ϑΩω the small
Veblen number (Theorem 9.2). Surprisingly this enormous upper bound is optimal. At
the same time we prove that the order type of any �gkbo (over a finite signature) is very
modest: given that the auxiliary order A is finitely branching, the order type of �gkbo

is ω (Lemma 9.2).
Finally, we study transfinite KBOs (TKBOs for short) [23], where transfinite ordinal

weights may be used as weights. We re-prove a result by Winkler et al. [40] that any
finite TRS compatible with a TKBO is compatible with a KBO. For this we employ the
slow-growing hierarchy (Gα)α∈On. Based on this result we obtain a derivational (and
runtime) complexity analysis of finite TRSs compatible with TKBOs (Theorem 10.1).
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The above results implicitly point to a intricate connection between the order type
of a reduction order � employed to show termination of R and the complexity of R.
Cichon [8] conjectured that the slow-growing hierarchy should provide such a link: if
α is the order type of �, Gα should eventually dominate dcR. Touzet invalidated this
conjecture by encoding suitable large parts of the Hydra battle [18] as TRSs. A compact
counter-argument was given by Lepper: the order type of any KBO �kbo is ωω, but
dcR belongs to Ack(O(n), 0), cf. [21] and Corollary 7.3. This result may suggest that a
fast-growing hierarchy provides the link between order type of a reduction order and the
complexity of a rewrite system. In particular Touzet conjectured: “the Hardy hierarchy
is the right tool for connecting derivation length and order type” [38]. This conjecture is
partly emphasised by the observation that the below presented proof of Lepper’s result
exploits the order type of �kbo and the connection of the Ackermann function to the
Hardy hierarchy. Despite of this, the conjecture does not hold in general. This time
generalised KBO provides a counter-example. As mentioned above the order type of
a GKBO �gkbo may be ω, while this GKBO by induce a derivation complexity that
majorises any Hα for α < ϑΩω.

The remainder of this paper is organised as follows. In the next two section we recall
basic notions and starting points of this paper. In Sections 4–7 we develop our first main
result on the complexity of KBO. Section 8 yields an application of this result to the
complexity analysis of TRSs whose termination has been shown by semantic labelling.
These results have already been presented in [28] and appear here in polished form.
Section 9 establish the results on GKBOs and Section 10 is concerned with TKBOs.

2 Preliminaries

We denote by N the set of natural numbers {0, 1, 2, . . . }. Let R be a binary relation. The
transitive closure of R is denoted by R+ and its transitive and reflexive closure by R∗.
For a binary relation R, we frequently write a R b instead of (a, b) ∈ R. Composition of
binary relations R and S is denoted by R · S, and defined in the usual way. For n ∈ N
we denote by Rn the n-fold composition of R. Similarly, we write fn(·) for the n-fold
iteration of function f .

A binary relation R is well-founded if there exists no infinite chain a0, a1, . . . with
ai R ai+1 for all i ∈ N. Moreover, we say that R is well-founded on a set A if there
exists no such infinite chain with a0 ∈ A. The relation R is finitely branching if for all
elements a, the set {b | a R b} is finite. A proper order is an irreflexive and transitive
binary relation. A preorder is a reflexive and transitive binary relation. An equivalence
relation is reflexive, symmetric and transitive. Every preorder < induces a proper order
�, namely a � b if and only if a < b and not b < a, and an equivalence relation ∼:
a ∼ b iff a < b and b < a. A proper order is called linear (or total) on A if for all
a, b ∈ A, a different from b, a and b are comparable by �. A proper order � on a set A
is well-founded if there exists no infinite descending sequence a1 � a2 � · · · of elements
of A and � is a well partial order if every order that extends � is well-founded. The
lexicographic product of n proper orders �i on Ai is defined as the proper order �nlex
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where (a1, . . . , an) �nlex (b1, . . . , bn) holds if there exists i ∈ {1, . . . , n} such that for all
j ∈ {0, . . . , i − 1} aj = bj and ai �i bi. The lexicographic order on A∗ based on a
proper order � on A is defined as follows: a �∗lex b holds if either (i) |a| > |b|, or (ii)
|a| = |b| =: n and a �nlex b. (Note that �nlex denotes the nth lexicographic product of �.)

2.1 Term Rewriting

We assume familiarity with term rewriting [5, 37] but review basic concepts and notations
from rewriting.

Let V denote a countably infinite set of variables and F a signature. We assume that
F contains at least one constant. The set of terms over F and V is denoted as T (F ,V).
The set of ground terms is written as T (F). The top symbol of a term t is called its root
symbol and denoted as rt(t). The (proper) subterm relation is denoted as E (C). Var(t)
denotes the set of variables occurring in a term t. The size sz(t) of a term is defined as
the number of symbols in t:

sz(t) :=

{
1 if t is a variable ,

1 +
∑

16i6n sz(ti) if t = f(t1, . . . , tn) .

The depth of a term t is denoted as dp(t). The number of occurrences of a symbol
a ∈ F ∪ V in t is denoted as |t|a.

Let � denote a proper order on the signature F , called precedence. The rank of a
function symbol is inductively defined by rk(f) = max{0} ∪ {1 + rk(g) | f � g}. A
rewrite rule is a pair (l, r) of terms, in notation l → r, such that l is not a variable and
all variables in r occur also in l. Here l is called the left-hand, and r the right-hand side
of l→ r. A term rewrite system (TRS for short) R over T (F ,V) is a set of rewrite rules.
Let R be a TRS and F a signature. A function symbol f ∈ F that occurs as root symbol
of a left-hand side of R is called defined ; otherwise f is called a constructor symbol. We
decompose F into two sets D and C such that the defined symbols are collected in D,
while the constructor symbols are collected in C; F = D ∪ C. A relation on T (F ,V)
is a rewrite relation if it is closed under contexts and closed under substitutions. The
smallest rewrite relation that contains R is denoted by −→R (or → if the TRS R is clear
from context). A rewrite relation that is also a proper order is called rewrite order. A
well-founded rewrite order is called reduction order.

A term s ∈ T (F ,V) is called a normal form if there is no t ∈ T (F ,V) such that
s → t. Whenever t is a normal form of R we write s !−→R t for s ∗−→R t. The TRS R is
terminating if no infinite rewrite sequence exists. A TRS R and a proper order � are
compatible if R is contained in �, denoted as R ⊆ �. We also say that R is compatible
with � or vice versa. A TRS R is terminating iff it is compatible with a reduction order
�. A TRS R is called confluent if for all s, t1, t2 ∈ T (F ,V) with s ∗−→ t1 and s ∗−→ t2
there exists a term u such that t1

∗−→ u and t2
∗−→ u.
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2.2 Termination

We assume at least nodding acquaintance with the basics of termination analysis in
rewriting, cf. [37, Chapter 6] or [5]. We briefly review the use of the semantic labelling
technique for showing termination.

Let (A, >) denote a well-founded weakly monotone F-algebra; (A, >) consists of a
carrier A, interpretations fA for each function symbol in F , and a well-founded proper
order > on A such that every fA is weakly monotone in all arguments. We define a
quasi-order >A: s >A t if for all assignments α : V → A: [α]A(s) > [α]A(t). Here
> denotes the reflexive closure of > and [α]A(·) denotes the evaluation function with
respect to A. The algebra (A, >) is a quasi-model of a TRS R, if R ⊆ >A.

A labelling ` for A consists of a set of labels Lf together with mappings `f : An → Lf
for every f ∈ F , f n-ary. A labelling is called weakly monotone if all labelling functions
`f are weakly monotone in all arguments. The labelled signature Flab consists of n-ary
functions symbols fa for every f ∈ F , a ∈ Lf , together with all f ∈ F , such that Lf = ∅.
The TRS Dec consists of all rules fa+1(x1, . . . , xn)→ fa(x1, . . . , xn) for all f ∈ F . The
xi denote pairwise different variables. For every assignment α, we inductively define a
mapping labα : T (F ,V)→ T (Flab,V):

labα(t) :=


t if t ∈ V ,

f(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf = ∅ ,

fa(labα(t1), . . . , labα(tn)) otherwise .

The label a in the last case is defined as lf ([α]A(t1), . . . , [α]A(tn)). The labelled TRSRlab

over Flab is defined as Rlab := {labα(l)→ labα(r) | l→ r ∈ R and α an assignment}.

Proposition 2.1 ([42]). Let R be a TRS, (A, >) a well-founded quasi-model for R,
and ` a weakly monotone labelling for (A, >). Then R is terminating iff Rlab ∪ Dec is
terminating.

The proof of the proposition uses the following lemma.

Lemma 2.1. Let R be a TRS, (A, >) a quasi-model of R, and ` a weakly monotone
labelling for (A, >). If s −→R t, then labα(s) ∗−→Dec · −→Rlab

labα(t) for all assignments α.

The derivation height of a term s with respect to a well-founded, finitely branching
relation → is defined as follows:

dheight(s,→) := max{n | ∃t s→n t} .

From Lemma 2.1, we obtain the next corollary.

Corollary 2.1. Let R be a TRS, (A, >) a well-founded quasi-model for R, and ` a
weakly monotone labelling for (A, >). Then for all terms t

dheight(t,−→R) 6 dheight(t,−→Rlab∪Dec) .
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2.3 Complexity of Rewriting

Let R be a TRS and T be a set of terms. The complexity function with respect to a
relation → on T is defined as follows:

comp(n, T,→) = max{dheight(t,→) | t ∈ T and sz(t) 6 n} .

We call a term t = f(t1, . . . , tn) basic or constructor based if f ∈ D and ti ∈ T (C,V) for
all 1 6 i 6 n. Let T b denote the set of basic terms.

Definition 2.1. Let R be a TRS. We define the derivational complexity function dcR(n)
and the runtime complexity function rcR(n) as follows:

dcR(n) := comp(n, T (F ,V),−→R)

rcR(n) := comp(n, T b,−→R) .

Note that the above complexity functions need not be defined. In particular the
rewrite relation −→R need not be well-founded and finitely branching. The next example
illustrates a difference between derivational complexity and runtime complexity.

Example 2.1. Consider the following TRS R1
1

1: x− 0→ x 3: 0÷ s(y)→ 0

2: s(x)− s(y)→ x− y 4: s(x)÷ s(y)→ s((x− y)÷ s(y)) .

Although the functions computed by R1 are obviously feasible this is not reflected in the
derivational complexity of R1. Consider rule 4, which we abbreviate as C[y]→ D[y, y].
Since the maximal derivation height starting with Cn[y] equals 2n−1 for all n > 0, R1

admits (at least) exponential derivational complexity. In general any duplicating TRS
admits (at least) exponential derivational complexity.

For completeness of the exposition we clarify what it means that a TRS computes a
function. One subtlety here is that TRS a typically not confluent, hence the resulting
computation is nondeterministic. However, for our context it suffices to restrict to
confluent TRS; see [2] for the general definition.

Definition 2.2. Let R be a confluent TRS; for each n-ary defined function symbol
f ∈ F we define the function JfK : T (C,V)n → T (C,V) as follows:

JfK(v1, . . . , vn) = w iff f(v1, . . . , vn) !−→R w .

We call JfK the function defined by f in R and say that R computes the function
associated with JfK.

We remark that the runtime complexity of a TRS forms an invariant cost model, that
is, the runtime complexity with respect to a rewrite system R, is polynomial in the
complexity of the function computed by R, cf. [2, 4].

1 This is Example 3.1 in Arts and Giesl’s collection of TRSs [1].
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2.4 Set-Theory

We briefly review a few basic concepts from set-theory in particular ordinals, see [17].
We write > to denote the well-ordering of ordinals. Any ordinal α 6= 0, smaller than ε0,
can uniquely be represented by its Cantor Normal Form (CNF for short):

ωα1n1 + · · ·+ ωαknk with α1 > · · · > αk .

To each well-founded proper order � on a set A we can associate a (set-theoretic)
ordinal, its order type. First we associate an ordinal to each element a of A by setting
otype�(a) := sup{otype�(b) + 1: b ∈ A and b � a}. The order type of �, denoted by
otype(�), is the supremum of otype�(a) + 1 with a ∈ A. For two proper orders � and
�′ on A and A′, respectively, a mapping o : A→ A′ embeds � into �′ if for all p, q ∈ A,
p � q implies o(p) �′ o(q). Such a mapping is an order-isomorphism if it is bijective and
the proper orders � and �′ are linear .

We recall that the order type of the lexicographic product of well-founded proper
orders �i and Ai is the reverse product of the order types of the base orders:

otype(�nlex) = otype(�n) · · · otype(�1) ,

where we employ standard multiplication of ordinals [17].

Lemma 2.2. Let � be well-founded and let otype(�) > ω. Then otype(�∗lex) = otype(�)ω.

Proof. We put α = otype(�) > ω and consider the nth lexicographic product of �. By
the above observation we obtain that otype(�nlex) = αn. Furthermore we have for all n:

αn + αn+1 = αn · (1 + α) = αn · α = αn+1 .

As �∗lex amounts to an infinite concatenation of �nlex we have:

otype(�∗lex) = sup
n<ω

(otype(�1
lex) + · · ·+ otype(�nlex))

= sup
n<ω

(α1 + · · ·+ αn) = sup
n<ω

αn = αω ,

where we have employed that the order type of the concatenation of proper orders is
the sum of the order types of the base orders and in the very last step the definition of
ordinal exponentiation.

3 Knuth-Bendix Orders

A weight function for F is a pair (w, w0) consisting of a function w : F → N and a
minimal weight w0 ∈ N, w0 > 0 such that w(c) > w0 if c is a constant. A weight
function (w, w0) is called admissible for a precedence � if f � g for all g ∈ F different
from f , when f is unary with w(f) = 0. The function symbol f (if present) is called
special and denoted by i. The weight of a term t, denoted as w(t) is defined as follows:

w(t) :=

{
w0 t is a variable

w(f) + w(t1) + · · ·+ w(tn) if t = f(t1, . . . , tn) .
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We recall the standard definition of the Knuth-Bendix Orders (KBOs for short). Let
(w, w0) denote an admissible weight function for F and let � denote a precedence on F .
The Knuth-Bendix order �kbo on T (F ,V) is inductively defined as follows: s �kbo t if ∀
x: |s|x > |t|x and

1. w(s) > w(t), or

2. w(s) = w(t), and one of the following alternatives holds:

a) t is a variable, s = fk(t), k > 0,

b) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f � g.,

c) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and there exists i ∈ {1, . . . , n} such that
s1 = t1, . . . , si−1 = ti−1 and si �kbo ti.

The above definition is a slight (but equivalent) re-formulation of the original definition
by Knuth and Bendix. However, we do not presuppose finiteness of the signature as is
typically the case, cf. [5], see [35, 41] for the exception.

It is well-known that KBO (over finite signatures) is a reduction order as KBO fulfils
the subterm property and thus (the finitary version of) Kruskal’s Theorem is applicable.
In particular KBO is a simplification order, that is, �kbo extends the subterm relation.

For infinite signatures the situation is less clear, as then the subterm property is no
longer sufficient to yield that KBO is well-founded. Instead one has to verify that KBO
extends the homeomorphic embedding relation. Let � be a well partial order. The TRS
Emb(F ,�) consists of the following rewrite rules for all f, g ∈ F : f(x1, . . . , xn)→ xi and
f(x1, . . . , xn)→ g(xi1 , . . . , xin), where 1 6 i1 < · · · im 6 n and f � g in the second rule.
We write s �emb t if s ∗−→Emb(F ,�] t holds. One can show that for any KBO �kbo induced
by a well-founded precedence �, �kbo is a reduction order. For this observe that � can
be extended to a total order �′, which is a well partial order by definition. Furthermore
from Kruskal’s Theorem (in its general form) it follows that �′kbo is a simplification
order (for arbitrary signatures) as it extends �′emb. Finally �kbo ⊆ �′kbo follows from
the incrementality of KBO.

Proper extensions of the above definition have been studied that use a quasi-order <
instead of the proper order � [35, 41]. The order < is usually called quasi-precedence.
We remark that Kruskal’s theorem is no longer applicable to formulations of KBO over
infinite signatures and quasi-precedences. However it is not difficult to establish well-
foundedness of such a variant [36]. It is an open problem whether our results can be
generalised to KBOs over quasi-precedences. In the literature real-valued KBOs are
studied as well, cf. [24, 10]. However, as established in [19] (see also [41]) any TRS
compatible to a real-valued KBO is also compatible to a KBO in the above sense. We
remark that this holds despite the fact that real-valued and number-valued KBOs are
clearly not equivalent cf. [21].

In the following, we will not use the above definition of KBO, but rather consider a
variant tailored to our later purposes. The variant is taken from [21]. We write s = ias′

if s = ia(s′) and the root symbol of s′ is distinct from the special symbol i.
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Definition 3.1. Let (w, w0) denote an admissible weight function for F and let � denote
a precedence on F . Then s �kbo2 t holds if |s|x > |t|x for all x ∈ V and

1. w(s) > w(t), or

2. w(s) = w(t), s = ias′, t = ibt′, and one of the following cases holds.

a) a > b, or

b) a = b, s′ = g(s1, . . . , sn), t′ = h(t1, . . . , tm), and g � h, or

c) a = b, t′ = f(t1, . . . , tn) and there exists i ∈ {1, . . . , n} such that s1 = t1, . . . ,
si−1 = ti−1 and si �kbo2 ti.

The next lemma is not difficult to see; for a formal proof see [21].

Lemma 3.1. The order �kbo and �kbo2 coincide on T (F ,V), in particular �kbo2 is a
reduction order.

To simplify notation in the following we write �kbo interchangingly for �kbo and
�kbo2, respectively. We conclude this section by exemplifying the definition of KBO for
infinitary signatures.

Example 3.1. Consider the TRS R2 consisting of the following (schematic) rewrite
rules:

1.n : fn+1(h(x))→ fn(i(x)) 2.n : fn+1(x)→ fn(x)

3 : h(a)→ b 4: g(j(x))→ g(h(x))

5 : j(a)→ b .

Furthermore consider the KBO �kbo induced by the (admissible) weight function that
sets w(f) := 1 for all function symbols f and the following precedence �:

fn+1 � fn � . . . � f0 � j � h � g � a � b .

It is easy to see that R2 ⊆ �kbo. Thus termination of R2 is guaranteed.

4 Exploiting the Order-Type of KBOs

We write N∗ to denote the set of finite sequences of natural numbers. Let p ∈ N∗, we
write |p| for the length of p, i.e. the number of positions in the sequence p. The ith element
of the sequence a is denoted as (p)i−1. We write pa q to denote the concatenation of
the sequences p and q. In the following we make use of the lexicographic order >∗lex on
N∗. To simplify notation we write >lex instead of >∗lex. Due to Lemma 2.2 we obtain
that otype(>lex) = ωω, moreover in [21] it is shown that otype(�kbo) = ωω for finite
signatures.

We generalise to infinite signature. Let � be a precedence with otype(�) 6 ω and let
�kbo be induced by �. Then otype(>lex) = otype(�kbo) = ωω, a fact we exploit in later
sections.
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In the sequel of this paper we restrict to precedences of order type ω. This is motivated
by our desired to obtain a clear comparison to Lepper’s results as well as the observa-
tion that in termination proofs via KBO on infinitary signatures it is often possible to
guarantee that otype(�) = ω, cf. Section 8. Furthermore we restrict our attention to sig-
natures F with bounded arities (as in Example 3.1). The maximal arity of F is denoted
as ar(F). For the general case of a precedence � with otype(�) =: α > ω we can apply
Lemma 2.2 and the pattern of the below presented proof to show that otype(�kbo) = αω,
if �kbo is induced by �. However, our subsequent analysis of the derivation height of
TRS compatible with KBO cannot be as easily generalised.

Definition 4.1. Let the signature F and a weight function (w, w0) for F be fixed. We
define an embedding tw : T (F ,V)→ N∗. Set b := max{ar(F), 3}+ 1.

tw(t) :=

{
(w0, a, 0)a0` if t = iax, x ∈ V ,

(w(t), a, rk(g))a tw(t1)a · · ·a tw(tn)a0` if t = iag(t1, . . . , tn) .

The number ` is set suitably, so that |tw(t)| = bw(t)+1. For readability of the definition
we use the triple notation (weight, a, rank) for weightaaarank.

The mapping tw flattens a term t by transforming it into a concatenation of triples.
Each triple holds the weight of the considered subterm r, the number of leading special
symbols and the rank of the first non-special function symbol of r. In this way all the
necessary information to compare two terms via �kbo is expressed as a very simple data
structure: a list of natural numbers. We remark that for signatures of order type > ω
the rank r would not need to be a natural number.

Lemma 4.1. The mapping tw embeds �kbo into >lex: If s �kbo t, then tw(s) >lex tw(t).

Proof. The proof follows the pattern of the proof of Lemma 9 in [21].
Firstly, we make sure that the mapping tw is well-defined, i.e., we show that the length

restriction can be met. We proceed by induction on t; let t = iat′. We consider two cases
(i) t′ ∈ V or (ii) t′ = g(t1, . . . , tn). Suppose the former:

|(w0, a, 0)| = 3 6 bw(t)+1 .

Now suppose case (ii): Let j = rk(g), we obtain

|(w(t), a, j)a tw(t1)a · · ·a tw(tn)| = 3 + bw(t1)+1 + · · ·+ bw(tn)+1

6 3 + n · bw(t) 6 bw(t)+1 .

Secondly, we show the following, slight generalisation of the lemma:

s �kbo t ∧ |tw(s)ar| = |tw(t)ar′| implies tw(s)ar >lex tw(t)ar′ . (1)

To prove (1) we proceed by induction on s �kbo t. Set p = tw(s)ar, q = tw(t)ar′.
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Case w(s) > w(t): By definition of the mapping tw, we have in this case that (tw(s))0 >
(tw(t))0. Thus p >lex q follows.

Case w(s) = w(t): We consider the sub-case where s = iag(s1, . . . , sn) and t = iag(t1, . . . , tn)
and there exists i ∈ {1, . . . , n} such that s1 = t1, . . . , si−1 = ti−1, and si �kbo ti. (The
other cases are treated as in the case above.) The induction hypothesis expresses that
if |tw(si)av| = |tw(ti)av′|, then tw(si)av >lex tw(ti)av′. For j = rk(g), we obtain

p =

w︷ ︸︸ ︷
(w(s), a, j)a tw(s1)a · · ·a tw(si−1)a tw(si)a · · ·a tw(sn)ar ,

q = (w(s), a, j)a tw(s1)a · · ·a tw(si−1)︸ ︷︷ ︸
w

a tw(ti)a · · ·a tw(tn)ar′ .

Due to |p| = |q|, we conclude

|tw(si)a · · ·a tw(sn)ar| = |tw(ti)a · · ·a tw(tn)ar′| .

Hence induction hypothesis is applicable and we obtain

tw(si)a · · ·a tw(sn)ar >lex tw(ti)a · · ·a tw(tn)ar′ ,

which yields p >lex q. This completes the proof of (1).

Finally, to establish the lemma, we assume s �kbo t. By definition either w(s) > w(t)
or w(s) = w(t). In the latter case tw(s) >lex tw(t) follows by (1). While in the former
tw(s) >lex tw(t) follows as w(s) > w(t) implies |tw(s)| > |tw(t)|.

From the lemma we conclude the existence of an embedding from �kbo into >lex. Thus
otype(�kbo) 6 ωω over infinitary signatures, if the above conditions are fulfilled. In order
to show otype(�kbo) = ωω we can rely on a result by Lepper [21, Lemma 8] that yields
that the order type of �kbo is at least ωω, even if restricted to ground terms.

5 Derivation Height of Knuth-Bendix Orders

Let R be a TRS and �kbo a KBO induced by a precedence � such that otype(�) = ω.
Furthermore suppose �kbo is compatible with R; if not stated otherwise R and �kbo are
fixed for the remainder of the section. In this section we establish an upper bound on
the derivation height with respect to R.

We introduce a couple of measure functions for term and sequence complexities, re-
spectively. The first measure sp : T (F ,V) → N bounds the maximal nesting of special
symbols in the term:

sp(t) :=

{
a if t = iax, x a variable ,

max({a} ∪ {sp(tj) | j ∈ {1, . . . , n}}) if t = iag(t1, . . . , tn) .
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The second and third measure rkt : T (F ,V) → N and mrk : T (F ,V) → N collect infor-
mation on the ranks of non-special function symbols occurring:

rkt(t) :=

{
0 if t = iax, x ∈ V ,

j if t = iag(t1, . . . , tn) and rk(g) = j ,

mrk(t) :=

{
0 if t = iax, x ∈ V ,

max({j} ∪ {mrk(ti) | i ∈ {1, . . . , n}}) if t = iag(t1, . . . , tn), rk(g) = j .

The fourth measure max : N∗ → N considers sequences p and bounds the maximal
number occurring in p:

max(p) := max{(p)i | i ∈ {0, . . . , |p| − 1}} .

It is immediate from the definitions that for any term t: sp(t), rkt(t),mrk(t) 6 max(tw(t)).

Lemma 5.1. If r E t, then max(tw(t)) > max(tw(r)).

We informally argue for the correctness of the lemma. Suppose r is a subterm of t.
Then clearly w(r) 6 w(t). The maximal occurring nesting of special symbols in r is
smaller (or equal) than in t. And the maximal rank of a symbol in r is smaller (or equal)
than in t. The mapping tw transforms r to a sequence whose coefficients are less than
w(t), less than the maximal nesting of special symbols and less than the maximal rank
of non-special function symbol in r . Hence max(tw(t)) > max(tw(r)) holds.

Lemma 5.2. If p = tw(t) and q = tw(iat), then max(p) + a > max(q).

Proof. The proof of the lemma proceeds by a case distinction on t.

Lemma 5.3. We write m ·−n to denote max{m−n, 0}. Assume s �kbo t with sp(t) 6 K
and (mrk(t) ·− rkt(s)) 6 K. Let σ be a substitution and set p = tw(sσ), q = tw(tσ). Then
p >lex q and max(p) +K > max(q).

Proof. It suffices to show max(p) +K > max(q) as p >lex q follows from Lemma 4.1. We
proceed by induction on t; let t = iat′.

Case t′ is a variable: Set t′ = x. We consider two sub-cases: Either (i) xσ = iby, y ∈ V
or (ii) xσ = ibg(u1, . . . , um). It suffices to consider sub-case (ii), as sub-case (i) is treated
in a similar way. From s �kbo t, we know that for all y ∈ V, |s|y > |t|y, hence x ∈ Var(s)
and xσ E sσ. Let l := rk(g); by Lemma 5.1 we conclude max(tw(xσ)) 6 max(p). That
is, b, l,max(tw(u1)), . . . ,max(tw(um)) 6 max(p). We obtain

max(q) = max({w(tσ), a+ b, l} ∪ {max(tw(uj)) | i ∈ {1, . . . ,m}})
6 max({w(sσ), sp(t) + max(p),max(p)} ∪ {max(p)})
6 max({w(sσ),max(p) +K} ∪ {max(p)}) = max(p) +K .
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Case t′ = g(t1, . . . , tn): Let j = rk(g). By Definition 3.1 we obtain s �kbo ti. Moreover
sp(ti) 6 sp(t) 6 K and mrk(ti) 6 mrk(t). Hence for all i: sp(ti) 6 K and (mrk(ti) ·−
rkt(s)) 6 K holds. Thus induction hypothesis is applicable: For all i: max(tw(tiσ)) 6
max(p) +K. By using the assumption (mrk(t) ·− rkt(s)) 6 K we obtain:

max(q) = max({w(tσ), a, j} ∪ {max(tw(tiσ)) | i ∈ {1, . . . , n}})
6 max({w(tσ), sp(t), rkt(s) +K} ∪ {max(p) +K})
6 max({w(sσ), sp(t), rkt(sσ) +K} ∪ {max(p) +K})
6 max({w(sσ),K,max(p) +K} ∪ {max(p) +K}) = max(p) +K .

In the following, we assume that the set

M := {sp(r) | l→ r ∈ R} ∪ {(mrk(r) ·− rkt(l)) | l→ r ∈ R} (2)

is finite. We set K := maxM and let K be fixed for the remainder.

Example 5.1 (Example 3.1 continued). With respect to R2, we have

M = {(mrk(r) ·− rkt(l)) | l→ r ∈ R2} .

Note that the signature of R2 doesn’t contain a special symbol. M is finite and it is
easy to see that maxM = 1.

Exemplary, we consider the rule schemata fn+1(h(x)) → fn(i(x)). Observe that the
rank of i equals 4, the rank of h is 3, and the rank of fn is given by n + 5. Hence
mrk(fn(i(x))) = n+ 5 and rkt(fn+1(h(x))) = n+ 6. Clearly (n+ 5 ·− n+ 6) 6 1.

Lemma 5.4. If s −→R t, p = tw(s), q = tw(t), then p >lex q and u(max(p),K) > max(q),
where u denotes a monotone polynomial such that u(m,n) > 2m+ n.

Proof. By definition of the rewrite relation there exists a context C, a substitution σ and
a rule l → r ∈ R such that s = C[lσ] and t = C[rσ]. We prove max(q) 6 u(max(p),K)
by induction on C. Note that C can only have the form (i) C = ia[�] or (ii) C =
iag(u1, . . . , C

′[�], . . . , un) for some a ∈ N.

Case C = ia[�]: By Lemma 5.3 we see max(tw(rσ)) 6 max(tw(lσ)) +K. Employing in
addition Lemma 5.2 and Lemma 5.1, we obtain:

max(q) = max(tw(iarσ)) 6 max(tw(rσ)) + a

6 max(tw(lσ)) +K + a

6 max(p) +K + max(p) 6 u(max(p),K) .
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Case C = iag(u1, . . . , C
′[�], . . . , un): As C ′[lσ] −→R C ′[rσ], induction hypothesis is ap-

plicable: Let p′ = tw(C ′[lσ]), q′ = tw(C ′[rσ]). Then max(q′) 6 u(max(p′),K). For
rk(g) = l, we obtain by application of induction hypothesis and Lemma 5.1:

max(q) = max({w(t), a, l} ∪ {max(tw(u1)), . . . ,max(q′), . . . ,max(tw(un))})
6 max({w(s), a, l} ∪ {max(tw(u1)), . . . , u(max(p′),K), . . . ,max(tw(un))})
6 max({w(s), a, l} ∪ {max(p), u(max(p),K)}) = u(max(p),K) .

Adapting an idea of Buchholz [6], we define a family of approximations (>lex
n )n>0 of

the proper order >lex as follows: p >lex
n q if

p >lex q and u(max(p), n) > max(q) ,

where u(m,n) > 2m+ n. We remark that the approximation >lex
n need not be a proper

order. The following example shows that transitivity may fail.

Example 5.2. Consider the following sequences of length 3: 100, 020, and 004. Clearly
we have 100 >lex 020 >lex 004 and of course also 100 >lex 004. We consider the
approximation >lex

0 and set u(m,n) := 2m+ n so that we obtain:

100 >lex
0 020 >lex

0 004 .

Here the first inequality follows as max(020) = 2 = u(1, 0) = u(max(100), 0); similarly
the second inequality follows as max(020) = 4 = u(max(020, 0)). However 100 6>lex

0 004
as max(020) 66 u(max(100), 0).

Based on the above definition Lemma 5.3 can be succinctly expressed as follows, for
K as above.

Lemma 5.5. If s −→R t, then tw(s) >lex
K tw(t).

Definition 5.1. In the spirit of the definition of derivation height, we define a family
of functions Ahn : N→ N:

Ahn(p) := max{k | ∃p0 · · · pk p = p0 >
lex
n p1 >

lex
n · · · >lex

n pk} .

Theorem 5.1. Let F be a signature with bounded arities and let R be a TRS over F .
Suppose R is compatible with KBO based on a precedence of order type ω such that the
set (2) is finite. Set K := maxM . Then dheightR(t) 6 AhK(tw(t)).

Proof. By assumption there exists an instance of KBO compatible with R, that is,
R ⊆ �kbo. Thus any derivation D over R with start term t is finite:

D : t = t0 → t1 → · · · → tk .

Due to Lemma 5.5 derivation D yields the following descending sequence of the binary
relation >lex

K :
tw(t) = tw(t0) >lex

K t1 >
lex
K · · · >lex

K tw(tk) .

By Definition 5.1 the length of this descending sequence is bounded by AhK(tw(t)) as
claimed.
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In the next section we show that Ahn is bounded by the Ackermann function. Thus
providing the sought upper bound on the derivation height of R.

6 Bounding the Growth of Ahn

Instead of directly relating the functions Ahn to the Ackermann function, we make use
of the fast-growing Hardy functions, cf. [33]. The Hardy functions form a hierarchy of
unary functions Hα : N → N indexed by ordinals. We will only be interested in a small
part of this hierarchy, namely in the set of functions {Hα | α < ωω}.

Definition 6.1. We define the embedding o : N∗ → ωω as follows:

o(p) := ω`−1(p)0 + . . . ω(p)`−2 + (p)`−1 ,

where ` = |p|.

The next lemma follows directly from the definitions.

Lemma 6.1. If p >lex q, then o(p) > o(q).

We associate with every α < ωω in CNF an ordinal αn, where n ∈ N. The sequence
(αn)n is called fundamental sequence of α. (For the connection between rewriting and
fundamental sequences see e.g. [31].)

αn :=


0 if α = 0 ,

β if α = β + 1 ,

β + ωγ+1 · (k − 1) + ωγ · (n+ 1) if α = β + ωγ+1 · k .

Based on the definition of αn, we define Hα : N→ N, for α < ωω by transfinite induction
on α:

H0(n) := n Hα(n) := Hαn(n+ 1) .

Let >(n) denote the transitive closure of (.)n, i.e. α >(n) β iff αn >(n) β or αn = β.

Suppose α, β < ωω. Let α = ωα1n1 + . . . ωαknk and β = ωβ1m1 + . . . ωβlml. Recall
that any ordinal α 6= 0 can be uniquely written in CNF. Hence we can assume that
α1 > · · · > αk and β1 > · · · > βl. Furthermore by our assumption that α, β < ωω, we
have αi, βj ∈ N. We write NF(α, β) if αk > β1.

Before we proceed in our estimation of the functions Ahn, we state some simple facts
that help us to calculate with the function Hα.

Lemma 6.2. 1. If α >(n) β, then α >(n+1) β + 1 or α = β + 1.

2. If α >(n) β and m > n, then Hα(m) > Hβ(m).

3. If n > m, then Hα(n) > Hα(m).

4. If NF(α, β), then Hα+β(n) = Hα ◦ Hβ(n); ◦ denotes function composition.
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We relate the Hardy functions with the Ackermann function. The stated upper bound
is a gross one, but a more careful estimation is not necessary here.

Lemma 6.3. For n > 1: Hωn(m) 6 Ack(2n,m).

Proof. We recall the definition of the Ackermann function:

Ack(0,m) = m+ 1

Ack(n+ 1, 0) = Ack(n, 1)

Ack(n+ 1,m+ 1) = Ack(n,Ack(n+ 1,m))

In the following we sometimes denote the Ackermann function as a unary function,
indexed by its first argument: Ack(n,m) = Ackn(m). To prove the lemma, we proceed
by induction on the lexicographic comparison of n and m. We only present the case,
where n and m are greater than 0. As preparation note that m+ 1 6 Hωn(m) holds for
any n and Ack2

n(m+ 1) 6 Ackn+1(m+ 1) holds for any n,m.

Hωn+1(m+ 1) = Hωn(m+2)(m+ 2)

6 Hωn(m+2)+ωn(m+ 1) Lemma 6.2(3,4)

= H2
ωnHωn(m+1)(m+ 1) Lemma 6.2(4)

= H2
ωnHωn+1(m)

6 Ack2
2nAck2(n+1)(m) induction hypothesis

6 Ack2n+1Ack2(n+1)(m)

= Ack(2(n+ 1),m+ 1) .

Lemma 6.4. Assume u(m,n) 6 2m+ n and set ` = |p|. For all n ∈ N:

Ahn(p) 6 Hω2·o(p)(u(max(p), n) + 1) < Hω4+`(max(p) + n) . (3)

Proof. To prove the first half of (3), we make use of the following fact:

p >lex q ∧ n > max(q) implies o(p) >(n) o(q) . (4)

To prove (4), one proceeds by induction on >lex and uses that the embedding o : N∗ → ωω

is an order-isomorphism. We omit the details.
By definition, we have Ahn(p) = max{Ahn(q)+1 | p >lex

n q}. Hence it suffices to prove

p >lex q ∧ u(max(p), n) > max(q) implies Ahn(q) < Hω2·o(p)(u(max(p), n) + 1) (5)

We fix p fulfilling the assumptions in (5); let α = o(p), β = o(q), v = u(max(p), n). We
use (4) to obtain α >(v) β. We proceed by induction on >lex.
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Case αv = β: As p >lex q, we conclude Ahn(q) 6 Hω2·o(q)(u(max(q), n) + 1) due to
induction hypothesis. It is not difficult to see that for any p ∈ N∗ and n ∈ N, 4max(p)+
2n+ 1 6 Hω2(u(max(p), n)). In sum, we obtain:

Ahn(q) 6 Hω2·o(q)(u(max(q), n) + 1)

6 Hω2·αv
(u(u(max(p), n), n) + 1) max(q) 6 u(max(p), n)

6 Hω2·αv
(4max(p) + 2n+ 1) Definition of u

6 Hω2·αv
Hω2(u(max(p), n))

= Hω2·(αv+1)(u(max(p), n)) Lemma 6.2(4) and definition
of ordinal multiplication

< Hω2·(αv+1)(u(max(p), n) + 1) Lemma 6.2(3)

6 Hω2·α(u(max(p), n) + 1) Lemma 6.2(2)

The application of Lemma 6.2(2) in the last step is feasible as by definition α >(v) αv.
An application of Lemma 6.2(1) yields αv + 1 ≤(v+1) α. From which we deduce
ω2 · (αv + 1) ≤(v+1) ω

2 · α.

Case αv >(v) β: In this case the proof follows the pattern of the above proof, but an
additional application of Lemma 6.2(4) is required. This completes the proof of(5).

To prove the second part of (3), we proceed as follows: The fact that ω` > o(p) is
immediate from the definitions. Induction on p reveals that even ω` >(max(p)) o(p) holds.
Thus in conjunction with the above, we obtain:

Ahn(p) 6 Hω2·o(p)(u(max(p), n) + 1)

6 Hω2+`(u(max(p), n) + 1)

6 Hω4+`(max(p) + n) .

The last step follows as 2max(p) + n+ 1 6 Hω2(max(p) + n) and ` < ω.

As a consequence of Lemma 6.3 and 6.4, we obtain the following theorem.

Theorem 6.1. For all n > 1: Ahn(p) 6 Ack(2|p|+ 8,max(p) + n).

7 Derivation Height of Rewrite Systems Compatible with
Knuth-Bendix Orders

Based on Theorem 5.1 and 6.1 we obtain that the derivation height of t ∈ T (F ,V) is
bounded in the Ackermann function.

Theorem 7.1. Let R be a TRS over a signature F of bounded arity. Suppose R is
compatible with �kbo induced by a precedence of order type ω. Furthermore, assume the
set M := {sp(r) | l→ r ∈ R}∪{(mrk(r) ·−rkt(l)) | l→ r ∈ R} is finite; set K := maxM .
Then

dheight(t,−→R) 6 Ack(2|tw(t)|+ max(tw(t)) +K + 8, 0) .

More succinctly we have dheight(t,−→R) = Ack(O(max{|tw(t)|,max(tw(t)),K}), 0).
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Proof. We set u(m,n) = 2m+ n and keep the definition of u fixed for the sequel of the
section; furthermore let p = tw(t).

Due to Theorem 5.1 we conclude that dheight(t,−→R) 6 AhK(p). It is easy to see that
Ack(n,m) 6 Ack(n+m, 0). Using this fact and Theorem 6.1 we obtain:

AhK(p) 6 Ack(2|p|+ 8,max(p) +K) 6 Ack(2|p|+ max(p) +K + 8, 0) .

Thus the theorem follows.

For fixed t ∈ T (F ,V) we can bound the argument of the Ackermann function in the
above theorem in terms of the size of t. We define

rmax := mrk(t) wmax := max({w(f) | f ∈ F(t)} ∪ {w0}) .

Lemma 7.1. For t be a term, let rmax, wmax be as above. Let b := max{ar(F), 3}+ 1,
and set n := sz(t). Then w(t) 6 wmax · n and sp(t) 6 n. Hence |tw(t)| 6 bwmax·n+1 and
max(tw(t)) 6 wmax · n+ rmax.

Proof. The proof proceeds by induction on t.

Corollary 7.1. Let R be a TRS that fulfils the properties in the theorem. Then there
exists a constant c—depending on R, rmax, and wmax only— such that dheight(t,−→R) 6
Ack(cn, 0), whenever sz(t) 6 n. More succinctly we have dheight(t,−→R) = Ack(2O(sz(t)), 0).

Proof. Combining Theorem 7.1 and Lemma 7.1 we obtain:

dheight(t,−→R) 6 Ack(2|tw(t)|+ max(tw(t)) +K + 8, 0)

6 Ack(2 · bwmax·n+1 + (wmax · n+ rmax) +K + 8, 0)

6 Ack((max{b,K, 8})wmax·n+rmax+2, 0)

6 Ack((max{b,K, 8})(wmax+rmax+2)·n, 0)

= Ack(
(

(max{b,K, 8})(wmax+rmax+2)
)n
, 0) .

Setting c := (max{b,K, 8})(wmax+rmax+2) the corollary follows.

Example 7.1 (Example 3.1 continued). Let t ∈ T (Flab,V) be fixed and set n := sz(t).
The arities of the function symbols in Flab are bounded and in Example 5.1 we indicated
that for M = {(mrk(r) ·− rkt(l)) | l → r ∈ R2}, we have maxM = 1. Corollary 7.1 is
applicable to conclude that dheight(t,−→R2) = Ack(2O(n), 0).

Note that it is not straight-forward to apply Theorem 7.1 to classify the derivational
complexity of R, over infinite signature, compatible with KBO. This is clarified in the
next example.

Example 7.2. Consider the TRS R3 consisting of all rules of the form:

fi+1 → fi for all i > 0 .
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Setting w(fi) = 1 and fi+1 � fi we obtain R3 ⊆ �kbo. Furthermore the arity of the
function symbols is trivially bounded to 0 and for M := {(mrk(r) ·− rkt(l)) | l→ r ∈ R},
we have maxM = 0. Thus Corollary 7.1 is applicable, to conclude that for all fi there
exists a constant ci such that dheight(fi,−→R2) = Ack(2c1 , 0). On the other hand the
derivational complexity function dcR3 is undefined as no natural number can bound the
arbitrarily large derivation heights of size 1 terms.

Example 7.2 may be considered pathological and thus of limited significance. While
we cannot conceptually improve this for KBOs, we show that it is not possible to bind
the derivational complexity function dcR3 of precedence terminating TRSs. Here a TRS
R is precedence terminating, if there exists a well-founded proper order � such that for
all l→ r ∈ R and any non-variable subterm u of r, rt(l) � rt(u). Precedence termina-
tion implies termination. We make use of the following proposition by Middeldorp and
Zantema.

Proposition 7.1 ([26]). Every terminating R admits a well-founded quasi-model (A, >)
with weakly monotone labelling ` such that Rlab ∪ Dec(>) is precedence terminating.

The main idea of the proof is that (T (F ,V),−→R) forms a quasi-model of R, if R is
terminating. Thus self-labelling of left- and right-hand sides of rules yields a precedence
terminating TRS Rlab with respect to the proper order (−→R ∪ B)+.

Lemma 7.2. There is no subrecursive class C of functions (over the naturals) such that
for all precedence terminating TRS R, dcR(n) 6 g(n) and g ∈ C for almost all n.

Proof. We argue indirectly and restrict to subrecursive classes C that extend the class of
primitive recursive functions and admit diagonalisation: there exists a function f : N→
N such that for any g ∈ C, g is majorised by f and f 6∈ C. Furthermore we assume
(without loss of generality) that three exists a recursive ordinal α0 such that f = Hα0 .

By assumption for any precedence terminating TRS R there exists a function gR ∈ C
such that for all terms t: dheight(t,−→R) 6 gR(sz(t)). Furthermore for all g ∈ C there
exists n0 ∈ N such that g(n) < f(n) for all n > n0.

As Hα is computable (cf. [11]), there exists a TRS Rf such that Rf is confluent,
terminating and computes Hα0 . As Rf is terminating, the above proposition yields that

the labelled TRS Rflab ∪Dec(>) is precedence terminating. We fix R′ := Rflab ∪Dec(>)
and consider gR′ ∈ C. We set n such that f(n) > gR′(n). Wlog, we assume that there
exists a ground term s with sz(s) = n such that dheight(s,−→Rf ) > f(sz(s)). We obtain
a contradiction:

f(sz(s)) > gR′(sz(s)) = gR′(sz(lab∅(s)))

> dheight(lab∅(s),−→R′) > dheight(s,−→Rf ) (6)

> f(sz(s)) .

Here lab∅ denotes the labelling function induced by the self-labelling of the TRS Rf and
the empty assignment ∅. We remark that for any term t: sz(t) = sz(lab∅(t)). The first
inequality in (6) follows by definition of f and n. The second is a consequence of the
definition of gR′ and the third inequality follows due to Corollary 2.1.
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We remark that Lemma 7.2 additionally yields that no derivational complexity analysis
of multiset (or lexicographic) path orders over infinite signatures are possible. For any
precedence terminating TRS R there exists a multiset (or lexicographic) path order
compatible with R. For the next results we restrict to finite signatures.

Corollary 7.2. Let R be a TRS, compatible with KBO, such that F is finite. Then
dcR(n) = Ack(2O(n), 0).

Proof. As F is finite, K = max{(mrk(r) ·− rkt(l)) | l → r ∈ R′} and ar(F) are well-
defined. Theorem 7.1 yields that

dheight(t,−→R) = Ack(O(max{|tw(t)|,max(tw(t)),K}), 0) .

Again due to the finiteness of F , for any t ∈ T (F ,V), rmax and wmax can be estimated
independent of t. A similar calculation as in Corollary 7.1 thus yields:

dheight(t,−→R) = Ack(2O(sz(t)), 0) ,

from which the corollary follows.

In order to see that the bound in Corollary 7.2 is essentially optimal, one employs the
following example.

Example 7.3 ([15]). Consider the TRS R4 consisting of the following rewrite rules:

1 : i(x) ◦ (y ◦ z)→ x ◦ (i2(y) ◦ z) 2 : i(x) ◦ (y ◦ (z ◦ w))→ x ◦ (z ◦ (y ◦ w))

3 : i(x)→ x

These rules allow operations on (codes of) lists of natural numbers:

[] := e [k0, . . . , kn] := ik0(e) ◦ [k1, . . . , kn] ,

For example, rule 2 corresponds to [. . . , k + 1, k′, k′′, . . . ]→ [. . . , k, k′′, k′, . . . ]. Hofbauer
showed for tn = [2, 0, . . . , 0] of length n+2, we obtain dheight(tn) > Ack(n, 0) [15]. Thus
the derivational complexity of R4 cannot be bounded by a primitive recursive functions.
We set the precedence � and the weight function (w, 1) as follows:

i � ◦ � e w(i) = w(◦) = 0 w(e) = 1 (7)

It is easy to check that the induced KBO �kbo is compatible with R4.

Remark 7.1. We remark that one can even given an optimal upper bound on the
derivational complexity induced by KBOs over finite signatures, see Lemma 12 and
Corollary 19 in [21]. However, Lepper’s proof in [21] cannot be extended to infinite
signatures.

The next result follows directly from the definitions.
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Corollary 7.3. Let R be a TRS, compatible with KBO, such that F is finite. Then
rcR(n) = Ack(2O(n), 0).

It remains to show that upper bound on the runtime complexity expressed in Corol-
lary 7.3 is (essentially) optimal.

Example 7.4 (Example 7.3 continued). We extend the TRS R4 from Example 7.3 by
the following rules and denote the resulting TRS as R5:

4 : h(0)→ e ◦ e 5: h(s(n))→ e ◦ h(n)

6 : g(n)→ i2(e) ◦ h(n) .

Then g(sn(0)) ∗−→R5 tn using the new rules and we set rn := g(sn(0)). We conclude
dheight(rn) > Ack(n, 0). As rn is a basic term and sz(rn) = O(n), we conclude rcR5(n) >
Ack(n, 0). It remains to verify that R5 is compatible with KBO. For that it suffices to ex-
tend the precedence and weight function defined in (7) to fulfil the following constraints:
h � ◦ and h � e in an admissible way and set w(h) = w(0) = 1 and w(g) = 3.

8 Application

In this section we consider applications of Corollary 7.1 to termination proofs of rewrite
systems that employ semantic labelling. In this way we see that Corollary 7.1 is appli-
cable to non simply terminating TRSs.

Example 8.1 (Example 3.1 continued). Consider the TRSR6 consisting of the following
rewrite rules:

1 : f(h(x))→ f(j(x)) 2 : h(a)→ b

3: g(j(x))→ g(h(x)) 4 : j(a)→ b .

It is not difficult to see that termination of R cannot be established directly with KBO
(or any other path order for that matter). However termination can be established via
semantic labelling.

We use natural numbers as semantics and label only the function symbol f: Lf := N
and for all g ∈ F \ {f}, Lg := ∅. For f we employ the labelling function `f(n) = n. Let
Flab denote the labelled signature. As interpretation for the function symbols in Flab

we use:

aN = bN = gN (n) = fN (n) = 1 jN (n) = n hN (n) = n+ 1 .

The resulting algebra (N , >) (with domain N) is a quasi-model forR6 and the resulting
labelled TRS is R2 (see Example 3.1). Thus, for any term s ∈ T (Flab,V) with sz(s) = n
we obtain dheight(s,−→R2) = Ack(2O(n), 0), cf. Example 7.1. In order to exploit this
to bound the derivation height of R6, we employ Corollary 2.1 to observe that for all
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t ∈ T (F ,V): dheight(t,−→R6) 6 dheight(labα(t),−→R2) for arbitrary assignments α. As
sz(t) = sz(labα(t)) the above calculation yields

dheight(t,−→R6) 6 dheight(labα(t),−→R2) 6 Ack(cn, 0) .

Note that c depends only on Flab, R2 and on �kbo employed in Example 3.1.

We emphasise that practically the upper bound on the derivation height for R6 ob-
tained in Example 8.1 is not impressive. Our tool TCT can verify linear derivational
complexity in less than a second [3]. The interest lies in the fact that semantic labelling
based on infinite signatures can be applied for complexity analysis. In the remainder
of this section, we stress that the method is also applicable to obtain bounds on the
derivational height of non simply terminating TRSs, a feature shared with matrix inter-
pretations [32] (see [27] for recent work on matrix interpretations and complexity).

Example 8.2 (Example 7.3 continued). Consider the TRS R7, which extends the TRS
R4 from Example 7.3 by the following rule:

4 : a(a(x))→ a(b(a(x))) .

Due to the rule 1–3, the derivational complexity of R cannot be bounded by a primitive
recursive function. Furthermore, due to rule 4, R7 is not simply terminating.

Termination of R7 can be shown by semantic labelling, where the natural numbers are
used as semantics and as labels. The following interpretations give rise to a quasi-model:

aN (n) = n+ 1 bN (n) = max({0, n− 1}) iN (n) = n m ◦N n = m+ n .

Using the labelling function `a(n) = n, termination of the labelled TRS in conjunction
with the suitable defined TRS Dec (denoted as R8) can be shown by an instance �kbo

of KBO with weight function (w, 1): w(◦) = w(i) = 0, w(b) = 1, and w(an) = n. As
precedence we use:

i � ◦ � . . . an+1 � an � · · · � a0 � b .

Clearly the arities of the symbols in the labelled signature are bounded. Further, we see
that following definition of M is well-defined:

M = {sp(r) | l→ r ∈ R8} ∪ {(mrk(r) ·− rkt(l)) | l→ r ∈ R8} .

Proceeding as in Example 8.1, we see that for each t ∈ T (F ,V), there exists a constant
c (depending on t, R′ and �kbo) such that dheight(t,−→R) 6 Ack(cn, 0).

9 Generalised Knuth-Bendix Orders

A weakly monotone F-algebra (A,A) is an F-algebra A = (A, {fA : f ∈ F}) together
with a proper order A on A such that for each function symbol f , fA is weakly monotone;
(A,A) fulfils the subterm property if for all n-ary function symbols f , fA(a1, . . . , an) A ai,
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where i ∈ {1, . . . , n} and aj ∈ A for all j = 1, . . . , n. If (A,A) fulfils the subterm property
we call it simple. We write w for the reflexive closure of A and denote with AA (wA)
the usual extension of the orders on A to orders on terms, see Section 2.

The next definition introduces generalised Knuth-Bendix Orders (GKBO for short)
as proposed by Middeldorp and Zantema. Our definition is a slight restriction where
all function symbols have lexicographic status and arguments are compared from left to
right.

Definition 9.1. Let � denote a precedence on F and let (A,A) denote a weakly mono-
tone and simple F-algebra. Then s �gkbo t holds if

1. s AA t, or

2. s wA t and one of the following alternatives holds:

a) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f � g.,

b) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and there exists i ∈ {1, . . . , n} such that
s1 = t1, . . . , si−1 = ti−1 and si �gkbo ti.

Proposition 9.1 ([25]). Let � be a well-founded precedence and let (A,A) be a weakly
monotone F-algebra such that A is well-founded, then the induced GKBO �gkbo is a
reduction order.

We restrict the order type of the precedence � and the order type A on A to ω.
As before we assume the signature only admits bounded arities. This implies that the
construction in Section 4 is applicable and we obtain the following result.

Lemma 9.1. Let � be a precedence with otype(�) = ω and let (A,A) be a weakly
monotone F-algebra such that otype(A) = ω. Then otype(�gkbo) 6 ωω.

Proof. As otype(A) 6 ω we can assume without loss of generality that for the domain A
of A we have A ⊆ N. We adapt the earlier embedding tw : T (F ,V)→ N∗ and overload
the notation. Let m0 ∈ A be minimal with respect to A and let α0 : V → A be defined
as: α0(x) := a0 for all x ∈ V. Furthermore, set b := max{ar(F), 2}+ 1.

tw(t) :=

{
(m0, 0)a0` if t is a variable ,

([t]A, rk(g))a tw(t1)a · · ·a tw(tn)a0` if t = (t1, . . . , tn) .

The number ` is set suitably, so that |tw(t)| = b[t]A+1. Here [·]A denotes the evaluation
function of A fixed to the assignment α0. The proof of the lemma follows the proof of
Lemma 4.1: In order to show well-definedness we argue by induction on t and exploit the
fact the algebra A is simple. Finally the embedding is shown by induction on s �gkbo t.
We omit the details.

For the next lemma, we restrict to well-founded and finitely branching relations on
the algebra (A,A). For applications of GKBOs, where the algebra is defined via inter-
pretations into numbers—as exemplified below—this restriction is fulfilled.
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Lemma 9.2. Let F be finite and �gkbo be a GKBO induced by a precedence � of order
type ω and a weakly-monotone simple algebra (A,A) such that A is well-founded and
finitely branching. Then otype(�gkbo) = ω.

Proof. We prove that the following set is finite:

T := {t ∈ T (F) | [t]A = a} ,

where a ∈ A. Suppose T is finite, then the number of terms with equal value is finite
and thus the order type of �gkbo on T (F) equals ω. As we assume F contains at least
a constant we can embed �gkbo on T (F ,V) into �gkbo on T (F). The result follows.

In order to show finiteness of T , let k = dheight(a,A) and we consider the set T ′ :=
{t ∈ T (F) | dp(t) 6 k}. We claim T ⊆ T ′. Suppose otherwise t ∈ T and dp(t) > k.
Then there exists a sequence t1, t1, . . . , tk+1 of at least k + 1 proper subterms of t such
that t B t1 B t2 B · · · B tk+1 holds. As A admits the subterm property this implies the
existence of the following decreasing sequence elements of A:

a = [t]A A [t1]A A · · · A [tk+1]A ,

which implies that dheight(a,A) > k, contrary to our assumption.

The arguments given in Sections 5–7 generalise without effort to GKBOs and we
obtain the following variant of Theorem 7.1.

Theorem 9.1. Let R be a TRS over a signature F of bounded arity. Suppose R is
compatible with GKBO �gkbo induced by precedence � and a weakly-monotone sim-
ple algebra (A,A). We request otype(�) = otype(A) = ω and assume the set M :=
{(mrk(r) ·− rkt(l)) | l → r ∈ R} is finite and set K := maxM . Then we have
dheight(r,−→R) = Ack(O(max{|tw(t)|,max(tw(t)),K}), 0).

Proof. We adapt the auxiliary functions rkt and mrk defined in Section 5 to terms over F
and employ the measure max to sequence of natural numbers obtained by the embedding
tw as defined in Lemma 9.1. Then we proceed as in the proof of Theorem 7.1.

For fixed t ∈ T (F ,V) and fixed algebra (A,A) we can bound the argument of the
Ackermann function in the above theorem in terms of the size of t. We exemplify this
for algebras (A, >) with domain N, where all function symbols are interpreted as strongly
linear polynomials. Let f ∈ F be n-ary, then fA(m1, . . . ,mn) =

∑n
i=1mi + k for k ∈ N.

Clearly such strongly linear interpretations are just weight functions and such GKBOs
are equivalent to KBOs without special symbol. Let m0 ∈ N denote the smallest number
in the domain of A and we write w(f) for the weight given to f in A. We define

rmax := mrk(t) wmax := max({w(f) | f ∈ F(t)} ∪ {m0}) ,

Corollary 9.1. Let R be a TRS that fulfils the properties in the theorem. Then there
exists a constant c—depending on R, rmax, and wmax only—such that dheightR(t) 6
Ack(cn, 0), whenever sz(t) 6 n. More succinctly we have dheight(t,−→R) = Ack(2O(sz(t)), 0).
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We remark that for finite signatures Corollary 9.1 yields a gross overestimation of the
derivation height. As GKBOs over strongly linear interpretations are equivalent to KBO
without special symbol, we conclude that dcR(n) = 2O(n), cf. [15, Proposition 5.14]. In
what follows, we assume that F is a finite signature.

Generalised Knuth-Bendix orders (over finite signatures) characterise simple termina-
tion. For a given simply terminating TRS R consider the term algebra T where every
term is interpreted by itself and order T by the rewrite relation +−→R. It is easy to
see that (T , +−→R) is weakly-monotone (even monotone) and admits the subterm prop-
erty (as R is simply terminating). We fix an arbitrary precedence on F . The induced
GKBO �gkbo is compatible with R. Furthermore any TRS compatible with a GKBO
�gkbo is simply terminating as �gkbo is a simplification order. Let ϑΩω denote the small
Veblen number employing Weiermann’s notation system in [39]. We remark that the
small Veblen number forms the supremum of the order type of any lexicographic path
order [31].

Theorem 9.2. Let R be a TRS over a finite signature and let �gkbo be a GKBO over
a weakly-monotone simple algebra, such that R ⊆ �gkbo. Then there exists α < ϑΩω

and there exists n0 ∈ N such that for all n > n0: dcR(n) 6 HϑΩω(n). This bound is
essentially optimal.

Proof. By the above observation we have that compatibility of a TRS R with a GKBO
�gkbo yields that R is simply terminating. By Weiermann’s result [39, Corollary 6.4]
there exists α < ϑΩω such that dcR is eventually dominated by HϑΩω . This establishes
the upper bound.

Furthermore by Lepper’s result [22, Theorem 25] for any α < ϑΩω we can construct a
simply terminating TRS Rα whose derivational complexity eventually dominates Hα. As
Rα is simple terminating, there exists a compatible GKBO. This establishes the lower
bound.

The (essentially optimal) upper bound obtained in Theorem 9.2 is incredible large and
paraphrasing similar expressions in the literature we may say that generalised KBOs are
really really complex.

In concluding this section we mention a remarkable connection between Lemma 9.1
and Theorem 9.2. As remarked above any simply terminating is compatible to a GKBO
�gkbo based on the monotone, simple and well-founded algebra (T , +−→R). As R is finite,
+−→R is finitely branching. Thus Lemma 9.1 is applicable to conclude that the order type
of �gkbo is ω! This small order type stands in no relation to the derivational complexity
induced by GKBO expressed in Theorem 9.2. In particular we conclude that Touzet’s
conjecture, like Cichon’s conjecture fails in general.

10 Transfinite Knuth-Bendix Orders

Following Ludwig and Waldmann, we extend the above notion of weight function to
ordinal weights, cf. [23] and introduce transfinite Knuth-Bendix orders (TKBOs for
short).
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A weight function is a pair (w, w0) such that w : F → ωω and w0 ∈ N, w0 > 0 such
that w(c) > w0 if c is a constant. Let t be a term. The weight of t, denoted by w(t), is
defined inductively as follows:

w(t) :=

{
w0 t is a variable

w(f) ⊕ w(t1) · · · ⊕ w(tn) if t = f(t1, . . . , tn) .

Here ⊕ denotes the natural sum, cf. [17]. Admissibility of a weight function (w, w0),
where w : F → ωω is defined as before, see Section 3.

Definition 10.1. Let (w, w0) denote an admissible weight function for a precedence �.
Then s �tkbo t holds if |s|x > |t|x for all x ∈ V and

1. w(s) > w(t), or

2. w(s) = w(t), and one of the following alternatives holds:

a) t is a variable, s = fk(t), k > 0,

b) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f � g.,

c) s = f(s1, . . . , sn), t = f(t1, . . . , tn), and there exists i ∈ {1, . . . , n} such that
s1 = t1, . . . , si−1 = ti−1 and si �tkbo ti.

We recall the following fact about the TKBO from [23].

Proposition 10.1 ([23]). For any precedence �, the induced TKBO �tkbo is a simpli-
fication order.

The definition of TKBOs proposed in [23] is more general in the respect that weight
functions for arbitrary ordinals less than ε0 are admitted and that so-called subterm
coefficient functions are employed. The latter generalisation is of limited interest in the
present context. Furthermore in [20] Kovacs et al. we have shown that the indicated
ordinal weights suffice.

We say a TKBO �tkbo is finite if all ordinal weights are finite. In the following we
re-prove the following result by Winkler et al. [40].

Proposition 10.2 ([40]). If a finite TRS R is compatible with a TKBO, then R is
compatible with a finite TKBO.

Essentially the proof in [40] makes use of the observation that in a finite TRS it
suffices to employ large enough natural numbers as weights and no ordinals > ω are
necessary. The provided proof is combinatorial and thus needlessly restricted to specific
ordinal notation systems. We generalise the argument by making use of the slow-growing
hierarchy as collapsing functions. The family of slow-growing functions (Gα)α<ωω is
defined as follows:

G0(x) = 0 Gα+1(x) = Gα(x) + 1 Gλ(x) = Gλ[x](x) (λ limit) .

The next example clarifies that the slow-growing hierarchy (over the standard assign-
ment of fundamental sequences) is indeed slow growing.
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Example 10.1.
Gω(x) = x+ 1 Gωωω (x) = (x+ 1)x+1x+1

.

We state some simple facts on the slow-growing hierarchy.

Lemma 10.1. 1. If α >(n) β and m > n, then Gα(m) > Gβ(m).

2. If n > m and α > ω, then Gα(n) > Gα(m).

As a consequence of Lemma 10.1 we obtain that the family (Gα)α∈O forms a hierarchy,
that is, for α > β there exists c such that for all x > c we have Gα(x) > Gβ(x).

Proof of Theorem on Finite TKBOs. It suffices to show that there exists k ∈ N such
that

w(l) ≥(k) w(r) for all rules l→ r ∈ R . (8)

Assuming (8) we obtain Gw(l)(n) > Gw(r)(n) (n > k) for all rules l→ r ∈ R. From this
the theorem follows. In order to prove (8) we set k := max{N(w(r)) | l→ r ∈ R}, where
the norm of an ordinal α < ωω is defined as follows:

N(0) := 0 N(ωk1 + · · ·ωkn) :=
∑
i6n

ki + n .

Exploiting the definition of fundamental sequences we see that if α > β and n = N(β),
then αn > β. In particular we obtain α >(n) β whenever n > N(β). From this we obtain
that w(l) > w(r) implies w(l) ≥(k) w(r) for any rule l→ r.

Essentially as a consequence of Proposition 10.2 and Hofbauer’s and Lepper’s classi-
fications of the derivational complexity of KBOs, we obtain the following result.

Theorem 10.1. If R is a finite TRS over the signature F compatible with a TKBO,
then dcR(n) = Ack(O(n), 0) if F contains a special symbol and dcR(n) = 2O(n) otherwise.
Both bounds are optimal.

Proof. Let R be finite and let �tkbo be a TKBO compatible with �tkbo over a precedence
� and an admissible weight function (w, wo). Due to Proposition 10.2 there exists an
equivalent KBO �kbo induced by � but an altered (but admissible) weight function
(w′, w0). Without loss of generality generality, we assume F contains a special symbol.
Then Lepper’s result [21, Corollary 19] yields the existence of a c ∈ N such that dcR(n) 6
Ack(c · n, 0). Optimality follows from Example 7.3.

We remark that the upper bounds (and their optimality) preserve when we consider
runtime complexity instead of derivational complexity. It suffices to argue for optimal-
ity. For the case of TKBO over a signature containing a special symbol this directly
follows from Example 7.4 and for the case without special symbol a similar adaption of
Proposition 5.8 in [15] can be applied.
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