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Abstract
We present a new method for finding k shortest paths between any two vertices in the
Cayley graph Cay(G, S) of a finite group G with its generating set S closed under
inverses. By using a reduced convergent rewriting system R for G, we first find the
lexicographically minimal shortest path between two vertices in Cay(G, S). Then,
by symmetrizing the length-preserving rules of R, we provide a polynomial time
algorithm (in the size of certain rewrite rules, the lexicographically minimal shortest
path, and k) for finding k shortest paths between two vertices in Cay(G, S). Our
implementation of finding k shortest paths between two vertices in Cay(G, S) is also
discussed.

Keywords k shortest path · Cayley graph · Finite group · String rewriting system

Mathematics Subject Classification 05C25 · 05C30 · 05A05 · 16S15

1 Introduction

Finding a shortest path between two vertices in a graph plays a fundamental role in
graph theory [16, 31]. The traditional algorithms for finding a shortest path between
two vertices in a graph often assume that the graph is weighted [31]. For unweighted
graphs such as Cayley graphs discussed in this paper, those algorithms often rely on
the breadth-first search algorithm which has some scalability issues for Cayley graphs
[10, 11, 32]. (For example, the Cayley graph Cay(Sn, S) of the symmetric groupSn

with its generating set S has O(n!) vertices and O(n!|S|) edges.)
Therefore, the traditional approaches to finding shortest paths are not suitable for

Cayley graphs of finite groups in general.
This paper first discusses how to find the lexicographically minimal shortest path

between two vertices in Cay(G, S) using a (reduced) convergent rewriting system R
forG [26] and a shortlex order≺. By using the length-preserving rules of the preperfect
rewriting system T [6, 19] obtained from the Thue resolution [19] of R, we show how
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to find k-shortest paths1 (if they exist) between two vertices in Cay(G, S) starting with
the lexicographically minimal shortest path between two vertices in Cay(G, S).

We also provide our implementation, called Geodesics, in order to provide a tool
for the k shortest path enumeration algorithm discussed in this paper.

Throughout this paper, we assume that a finite group presentation of G w.r.t. S is
given for Cay(G, S). If Cay(G, S) is given without a group presentation of G w.r.t. S,
one may need to construct a group presentation of G in order to use our rewriting
methods. The reader may refer to [9, 12, 36] for constructing a group presentation of
a finite group G w.r.t. S using the fundamental circuits in Cay(G, S).

2 Preliminaries

Definitions and results used in this section are found in [3, 6, 17, 19, 23–28, 36]. We
assume that the reader has some familiarity with the theory of finite groups.

Let X be a set and X∗ be the free monoid over X . Then X∗ consists of all words
over X , where the empty word is denoted by ε or 1. A (string) rewriting system on
X∗ is a subset R ⊆ X∗ × X∗. An ordered pair (u, v) ∈ R is called a rewrite rule
(or simply called a rule) of R. (We also write u → v ∈ R instead of (u, v) ∈ R.)
Given a rewriting system R on X∗, write x →R y for x, y ∈ X∗ if there exists a rule
(v1, v2) ∈ R and words u, w ∈ X∗ such that x = uv1w and y = uv2w. We write
x → y instead of x →R y if R is clear from context.

Let
∗→ (resp.

∗↔) denote the reflexive and transitive (resp. reflexive, transitive, and

symmetric) closure of →. Write x
∗→ y if x = y or x → x1 → x2 → · · · → y for

some finite chain of arrows →.
Given a monoid M , a rewriting system R on X∗ is called a rewriting system for M if

< X | l = r if (l → r) ∈ R > is a presentation ofM . Here, the relation
∗↔R ⊆ X∗×X∗

is a congruence on X∗. The congruence class [w]R of a word w ∈ X∗ is defined as

[w]R := {v ∈ X∗ | w ∗↔R v}. The congruence classes of ∗↔R on X∗ form a monoid
isomorphic to M .

In the remainder of this paper, if < X | R> is a monoid presentation, then we
denote it by Mon< X | R> in order to differentiate it from a group presentation.

Let X be a set of generators of a finite groupG, let Xα = {xα | x ∈ X , α ∈ {1,−1}},
and let R be a set of relations of G. Then the group defined by the presentation
< X | R> is equivalent to the monoid defined by the presentation Mon< Xα | IX ∪
R>, where IX = {xx−1 = 1 | x ∈ Xα}.

Let S be a set of generators of a finite group G as a monoid, which implies that S is
closed under inverses. A rewriting system R for a finite group G (on S∗) is a rewriting
system for G as a monoid, where the elements of G are congruence classes of

∗↔R on
S∗.

One of the most common orderings used in (string) rewriting systems is the length-
plus-lexicographic ordering, also called the shortlex ordering. Let≺be a shortlex order
on S∗. Then v1 · · · vm ≺ w1 · · · wn , provided either that m < n or that m = n and

1 In this paper, by k shortest paths between two vertices in Cay(G, S) we mean k shortest paths with the
same minimal distance between two vertices in Cay(G, S)
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v1 · · · vm comes beforew1 · · · wm lexicographically using a (strict total) lexicographic
ordering on S. In this paper, the shortlex ordering is total on S∗.

A (string) rewriting system R for a finite group G (on S∗) is said to be Noetherian
(or terminating) if there is no infinite chain of rewritings x → x1 → x2 → · · · for
any word x ∈ S∗.

A rewriting system R for G (on S∗) is said to be compatible with a shortlex order
≺ on S∗ if r ≺ l for each rule (l, r) ∈ R. If a rewriting system R for G is compatible
with a shortlex order ≺, then R is Noetherian.

A rewriting system R forG is said to be confluent if whenever x
∗→ y1 and x

∗→ y2,

there is a z such that y1
∗→ z and y2

∗→ z. A rewriting system R for G is said to be

locally confluent if whenever x → y1 and x → y2, there is a z such that y1
∗→ z and

y2
∗→ z. A rewriting system R for G is said to be convergent if R is Noetherian and

confluent. A word w ∈ S∗ is in R-normal form (or normal form w.r.t. R) if there is
no possible rewriting (or reduction) w → v. A rewriting system R for G is said to
be reduced if each right-hand side is in R-normal form, no word is the left-hand side
of two different rewrite rules, and no left-hand side contains another left-hand side as
a proper subword. (One can convert a convergent rewriting system R for G into its

equivalent reduced convergent rewriting system R′ for G such that
∗↔R= ∗↔R′ [6]). A

rewriting system R for G (on S∗) is said to be finite if both S and R are finite sets.
Given a convergent rewriting system R for G, each of the group elements in G

has its unique R-normal form. A convergent rewriting system for a finite group G
provides a solution to the word problem for G, since each of the group elements can
be represented by its unique R-normal form. A convergent rewriting system R for G
is called a complete presentation for G.

Let ≺ be a shortlex order on S∗. A word w ∈ S∗ is the lexicographically minimal
reduced word (or the shortlex normal word) for g ∈ G if it is the minimal word w.r.t.≺
on S∗ that represents g. If a word w ∈ S∗ is the lexicographically minimal reduced
word for some g ∈ G, then w is said to be in shortlex normal form (w.r.t.≺) in G.

For each pair of not necessarily distinct rewriting rules froma rewriting system R for
G on S∗, say (s1, t1) and (s2, t2), let the set of critical pairs corresponding to this pair
be { < xt1, t2y > | ∃x, y ∈ S∗, xs1 = s2y and |x | < |s2| } ∪ { < t1, xt2y > | ∃x, y ∈
S∗ with s1 = xs2y}. A critical pair < z1, z2 > is said to be resolved in R if there is a

word w such that z1
∗→ w and z2

∗→ w. (Note that if a critical pair xt1 and t2y has
two different normal forms w.r.t. R, then R is not confluent. A similar argument can
be made for a critical pair t1 and xt2y, which does not occur if R is reduced.)

The Knuth-Bendix (completion) procedure using the shortlex ordering creates a
convergent rewriting system R for a finite group G = < X | R> with its monoid
presentation Mon< Xα | IX ∪ R>. It relies on the fact that a Noetherian rewriting
system is convergent if and only if every critical pair is resolved. It takes the set IX ∪R
of initial equations along with a shortlex order ≺ over Xα , and orients equations into
rewrite rules w.r.t.≺. Therefore, the initial set R of rewrite rules consists of the set of
s → t for each equation s = t in IX ∪ R with t ≺ s. The Knuth-Bendix procedure
then checks unresolved critical pairs in the rewriting system. If there is an unresolved
critical pair< z1, z2 >, then rewrite z1 and z2 to words x and y that are in their normal
forms, respectively, in the rewriting system. Then it adds to the rewriting system the
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rule x → y if y ≺ x or y → x if x ≺ y. This procedure continues until there are no
more unresolved critical pairs in the rewriting system. The details of the Knuth-Bendix
procedure with simplification and deletion are discussed in [34].

The Knuth-Bendix procedure necessarily terminates (in principle) for finite groups
(with presentations) using the (total) shortlex ordering so that every finite group with
its presentation admits a finite convergent rewriting system (see Corollary 12.21 in
[26]).

AThue system2 is a rewriting system T ⊆ S∗×S∗ such that the following conditions
hold:
i) If l → r ∈ T , then |l| ≥ |r |. (By |x | we mean the length of a string x ∈ S∗.)
ii) If l → r ∈ T with |l| = |r |, then r → l ∈ T too.

The Thue resolution of a rewriting system R is to symmetrize R by adding every
rule r → l whenever l → r ∈ R and then to remove all the length increasing rules. A
confluent Thue system is called preperfect.

Let G be a finite group and S be a generating set for G which is closed under
inverses. TheCayley graph Cay(G, S) is a simple connected graph, where the vertices
are the elements of G, and the edges are all ordered pairs (g, gs) for g ∈ G, s ∈ S.
The resulting graph can be viewed as being undirected, meaning that the edges are
directed in both ways (see [3, 32]).

The bubble-sort Cayley graph BSn is the Cayley graph of the symmetric groupSn

generated by the adjacent transpositions si = (i i+1), 1 ≤ i < n.
An automorphism of a simple connected graph � = (V , E) is a permutation p of

V such that (u, v) is an edge of � if and only if (p(u), p(v)) is an edge of �. The
automorphisms of � form a subgroup of the group of all permutations of V and is
denoted by Aut(�).

The distance from vertex u to vertex v in � = (V , E), denoted by d(u, v), is the
length of a shortest path from u to v in � = (V , E).

A simple connected graph � = (V , E) is said to be vertex transitive (or vertex
symmetric) if given any pair of vertices u and v, there exists an automorphism α ∈
Aut(�) such that v = α(u), i.e.,Aut(�) acts transitively on V .

A path p from vertex v1 to vertex v2 in Cay(G, S) can be written as a sequence of
generators g1, . . . , gk , gi ∈ S, which can also be written as the word p = g1 · · · gk .
(For k = 0, p is interpreted as the empty path.)

In the remainder of this paper, Cay(G, S) denotes the Cayley graph of a finite group
G with its generating set S which is closed under inverses.

3 Finding the Lexicographically Minimal Shortest Path Between Any
Two Vertices in Cay(G, S)

The problem of finding a shortest path between two vertices in Cay(G, S) has been
studied extensively over several decades (see, in particular, [3, 25, 27, 28].)

2 There are slightly different definitions for Thue systems. We adopt the definition of the Thue system used
in [19].

123



Graphs and Combinatorics           (2024) 40:120 Page 5 of 16   120 

Cayley graphs are vertex-transitive graphs [4, 23, 28], whichmeans that any Cayley
graph looks the same regardless ofwhat vertex it is viewed. Therefore, the same routing
scheme can be adopted at each vertex of a Cayley graph.

Lemma 3.1 [3] The problem of finding a shortest path from vertex v1 to vertex v2 in
Cay(G, S) is reduced to the problem of finding a shortest path from vertex 1 (i.e., the
identity element of G) to vertex v−1

1 v2, which in turn is equivalent to the problem of
finding a minimum-length word (a reduced word) of v−1

1 v2 over S in G.

Since there are often multiple reduced words of g ∈ G when written as a product
of generators in S, we may have multiple shortest paths from one vertex to another in
Cay(G, S). For example, there are two shortest paths s1s3 and s3s1 from vertex 1 to
vertex 2143 ∈ S4 in the bubble-sort Cayley graph BS4,where si = (i i+1), 1 ≤ i < 4.
When we consider a shortest path for Cay(G, S), we may need to choose a particular
shortest path fromvertex v1 to vertex v2 inCay(G, S).We choose the lexicographically
minimal shortest path amongall shortest paths fromvertexv1 to vertexv2 inCay(G, S).

Definition 3.2 A path p from vertex v1 to vertex v2 in Cay(G, S) is a shortlex normal
path if p is in shortlex normal form (w.r.t. a shortlex order ≺ on S∗) in G.

Note that every shortlex normal path is a shortest path, but the converse is not
necessarily true. For example, with respect to the shortlex ordering induced by the
lexicographic ordering s1 ≺ s2 ≺ s3, we see that s1s3 is a shortlex normal path in
BS4, while s3s1 is a shortest path but it is not a shortlex normal path in BS4.

Now, consider Dih3 = < a, b | a3 = 1, b2 = 1, (ab)2 = 1> [26], which is a group
presentation of the dihedral group of order 6. Its corresponding monoid presentation
is Mon< a, a−1, b, b−1 | aa−1 = 1, a−1a = 1, bb−1 = 1, b−1b = 1, a3 = 1, b2 =
1, (ab)2 = 1>. Then we have an initial rewriting system R′ = {aa−1 → 1, a−1a →
1, bb−1 → 1, b−1b → 1, a2 → a−1, b2 → 1, b−1a−1 → ab} for the above monoid
presentation compatible with the shortlex ordering induced by the lexicographic order-
ing a ≺ a−1 ≺ b ≺ b−1. Throughout this paper, we assume that the length of the
left-hand side is greater than the length of the right-hand side of each rewrite rule by
at most 1 except the cases for xy → 1, where x is the inverse of y and vice versa. This
can be done by inverting the last element of the left-hand side and then transferring
it to the end of the right-hand side of each rewrite rule whenever necessary. (See [34]
for details on the “balance” heuristic to improve the performance of string rewriting
systems). For example, a3 → 1 is converted to a2 → a−1 as shown above. This is also
intended not to miss any length-preserving rule for the Thue resolution of a reduced
convergent rewriting system discussed in Sect. 4.

In order to find a reduced convergent rewriting system for R′, we need to find all
critical pairs in R′ and orient them using the shortlex ordering. (One such critical
pair is < (a−1)2, a >, which is produced by overlapping two rules a2 → a−1 and
a−1a → 1 with the overlap a, which is resolved by orienting it into (a−1)2 →
a.) Once we have a reduced convergent rewriting system for Dih3, which is R =
{aa−1 → 1, a−1a → 1, a2 → a−1, (a−1)2 → a, b2 → 1, b−1 → b, ba →
a−1b, ba−1 → ab} [26], we can find the unique shortlex normal form of each element
g ∈ Dih3. It means that we can find the shortlex normal path from vertex v1 to vertex
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Fig. 1 The rewrite rules of a reduced convergent rewriting system R for the symmetric groupS4 generated
by adjacent transpositions a = (1 2), b = (2 3), and c = (3 4) with the lexicographic ordering a ≺ b ≺ c

v2 in Cay(Dih3, {a, a−1, b, b−1}). For example, finding the shortlex normal path from
vertex ab−1 to vertex baba in Cay(Dih3, {a, a−1, b, b−1}) is reduced to finding the
shortlex normal word of ba−1baba in Dih3 w.r.t. the shortlex ordering induced by the
lexicographic ordering a ≺ a−1 ≺ b ≺ b−1. We have the following reduction steps
for ba−1baba ∈ Dih3 using the rewrite rules of R:

ba−1baba → ab2aba → a2ba → a−1ba → (a−1)2b → ab,

which shows that the shortlex normal path from vertex ab−1 to vertex baba in
Cay(Dih3, {a, a−1, b, b−1}) is ab.

Since a path p from vertex v1 to vertex v2 in Cay(G, S) is written as a product of
generators v−1

1 v2 = g1 · · · gk, gi ∈ S by Lemma 3.1, a reduced convergent rewriting
system R for G compatible with a shortlex order ≺ on S∗ allows one to find the R-
normal form of v−1

1 v2. Let p′ be the R-normal form of v−1
1 v2. It is in shortlex normal

form w.r.t.≺ in G because R is compatible with ≺, and thus it is the shortlex normal
path from v1 to v2 in Cay(G, S). Therefore, we have the following proposition.

Proposition 3.3 Let v1 and v2 be two vertices in Cay(G, S). Then, we can find the
shortlex normal path from v1 to v2 using a reduced convergent rewriting system R for
G compatible with a shortlex order ≺ on S∗.

4 Finding k Shortest Paths Between Any Two Vertices in Cay(G, S)

In this section, we show how to enumerate shortest paths between two vertices in
Cay(G, S) starting with the shortlex normal path between two vertices in Cay(G, S)

(see Proposition 3.3).
First, consider a group presentation of the symmetric group S4 given by S4 =

< a, b, c | aa = bb = cc = 1, aba = bab, bcb = cbc, ac = ca > as an example,
where a = (1 2), b = (2 3), and c = (3 4) are adjacent transpositions. Here, the
associated Cayley graph is the bubble-sort Cayley graph BS4 with its generating set
S = {a, b, c}. (Since a = a−1, b = b−1, and c = c−1, S is closed under inverses.)
We see that an initial rewriting system for S4 w.r.t. the shortlex ordering induced by
a ≺ b ≺ c is R′ = {aa → 1, bb → 1, cc → 1, bab → aba, cbc → bcb, ca → ac}.

Figure 1 shows the rewrite rules of a reduced convergent rewriting system R forS4
compatible with the shortlex ordering induced by a ≺ b ≺ c using R′, obtained by
our Geodesics tool (see Sect. 5 for details). Note that the rewriting rule shown in line
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Fig. 2 The rewrite rules of the preperfect rewriting system T obtained from the Thue resolution of R in
Fig. 1

7 of Fig. 1 has been added after a Knuth-Bendix procedure by resolving the critical
pair produced by overlapping two rules cbc → bcb and ca → ac with the overlap c
in R′.
Lemma 4.1 The rewriting system obtained from the Thue resolution of a convergent
rewriting system R forG (on S∗) compatiblewith a shortlex order≺on S∗ is preperfect.

Proof We see that R for G (on S∗) has no length-increasing rules because R is com-
patible with ≺. Since R is confluent and has no length-increasing rules, the Thue
resolution of R is preperfect (see Lemma 4.5 in [19]). 
�

Figure 2 shows the rewrite rules of the preperfect rewriting system T obtained from
the Thue resolution of R. It is easy to see that this rewriting system is not terminating
and is not compatible with the shortlex ordering over S = {a, b, c}. However, we may
use this rewriting system for enumerating reduced words over S inG. We first separate
the length reducing rules (lines 1−3 in Fig. 2) and the length-preserving rules of T
(lines 4−11 in Fig. 2).

Now, in order to find shortest paths from vertex u to vertex v in BS4, we simply
apply the possible length-preserving rules of T to the shortlex normal path for u−1v.
For example, we describe how to find all shortest paths from vertex ba to vertex acba
in BS4. First, we see that the shortlex normal path from vertex ba to vertex acba in
BS4 is simply abacba. (Here, (ba)−1acba = abacba and abacba is in R-normal
form (see Fig. 1).)

We use our level-search tree to enumerate alternative shortest paths for abacba, in
which abacba is the root (level 0) node of the level-search tree (see Fig. 3). Each node
at level 1 of the level-search tree is found by using a single length-preserving rule
application of T to the level 0 node (i.e.,abacba) in the level-search tree. Therefore,
babcba and abcaba are the nodes at level 1 of the level-search tree. Each node at level
2 of the level-search tree is found by using a single length-preserving rule application
of T to each node at level 1 of the level-search tree, and so on. The visited nodes
are maintained so that the level-search procedure does not go back to a previously
visited node in the level-search tree. This process continues until no more new node
can be discovered. Figure3 shows all shortest paths from vertex ba to vertex acba in
BS4, starting with the shortlex normal path abacba. Table 1 illustrates how each level
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Fig. 3 The tree of shortest paths
from vertex ba to vertex acba in
the bubble sort graph BS4
constructed by using the
length-preserving rules in Fig. 2
and the level-search procedure.
The root node is the shortlex
normal path from vertex ba to
vertex acba in BS4

Table 1 Shortest paths and their
applied rules for each level of the
level-search tree shown in Fig. 3

Level Shortest Path Parent Applied Rule

0 abacba

1 babcba abacba aba −→ bab

abcaba abacba ac −→ ca

2 bacbca babcba bcb −→ cbc

bacbac babcba bcba −→ cbac

abcbab abcaba aba −→ bab

3 bcabca bacbca ac −→ ca

bcabac bacbac ac −→ ca

acbcab abcbab bcb −→ cbc

acbacb abcbab bcba −→ cbac

4 bcbabc bcabac aba −→ bab

cabcab acbcab ac −→ ca

cabacb acbacb ac −→ ca

5 cbcabc bcbabc bcb −→ cbc

cbacbc bcbabc bcba −→ cbac

cbabcb cabacb aba −→ bab

of shortest path(s) is obtained by using the level-search tree in Fig. 3 and the length-
preserving rules shown in Fig. 2. For example, the shortest path babcba at level 1 in
Table 1 is obtained by applying the length-preserving rule aba → bab in Fig. 2 to its
parent node (parent shortest path) abacba.

Lemma 4.2 Let T ⊂ S∗ × S∗ be a rewriting system obtained from the Thue resolution
of a (finite) reduced convergent rewriting system R ⊂ S∗ × S∗ for G compatible with
a shortlex order ≺ on S∗. For any finite word w ∈ S∗ in G and its shortlex normal
word w1 (w.r.t.≺) in G, every reduced word (minimum-length word) wk of w over S
in G can be enumerated by using only the length-preserving part Tp of T such that

w1
∗−→
T p

wk .
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Proof It is easy to see that each w j satisfying w1
∗−→
T p

w j is a reduced word of w over

S in G. As w1 and Tp are both finite, we see that the total number of such w j is finite.
Now, we show that every reduced wordwk ofw over S in G can be obtained by means

of w1
∗−→
T p

wk only. For a contradiction, assume that there exists some reduced word

wr of w over S in G such that w1
∗�−→
T p

wr . As wr is a reduced word of w over S in G,

we have w1
∗←−
T

w
∗−→
T

wr with |w1| = |wr |. Since R is compatible with ≺, R does not

have any length-increasing rule, and neither does T . By Lemma 4.1, T is preperfect,
and thus confluent by the definition of a preperfect rewriting system. Therefore, we

have w1
∗−→
T p

w′ ∗←−
T p

wr for some reduced word w′ of w over S in G. Since the rules

of Tp are symmetric, we also have w′ ∗−→
T p

wr . It follows that w1
∗−→
T p

wr , which is the

required contradiction. 
�
Definition 4.3 The minimum number of rule applications of Tp required from w1 to
reach a reduced word wk of w over S in G in Lemma 4.2 is the depth of wk .

Definition 4.4 Let N be the total number of reduced words of w over S in G and let k
be a positive integer such that 1 ≤ k ≤ N . Then k reduced words of w over S in G are
said to be saturated if the k reduced words contain every reduced word of w over S in
G belonging to each depth i, 0 ≤ i ≤ M − 1, where M is the maximum depth of the
k reduced words of w over S in G if k > 1 and 1 otherwise.

For example, consider the shortlex normal word abacba over S = {a, b, c} in S4
(see Fig. 3). Its four reduced words abacba, abcaba, babcba, and abcbab over S in
S4 shown inFig. 3 are saturated,while its four reducedwordsabacba, abcaba, babcba,
and acbcab over S in S4 in Fig. 3 are not saturated. Now, the following corollary is
immediate from Lemma 4.2 and Definition 4.4.

Corollary 4.5 Let N be the total number of reduced words of w over S in G and w1
be the shortlex normal word of w (w.r.t.≺) in G. For enumerating k reduced words of
w over S in G, we can always choose k saturated reduced words of w and enumerate

them by means of w1
∗−→
T p

wi , where 1 ≤ i ≤ k ≤ N.

Now, we provide our algorithm for enumerating k shortest paths (if they exist)
from vertex u to vertex v in Cay(G, S) based on Corollary 4.5. In the following, Tp

is the length-preserving part of the preperfect rewriting system T obtained from the
Thue resolution of a (finite) reduced convergent rewriting system R for G, where R is
compatible with the shortlex ordering induced by a (total) lexicographic order ≺ on
S.

Algorithm 4.6 ENUMERATION OF k SHORTEST PATHS (k, q, Tp) Input: A posi-
tive integer k > 0, the shortlex normal path q from vertex u to vertex v in Cay(G, S),
and Tp. Output: Enumeration of k shortest paths found from vertex u to vertex v in
Cay(G, S) if they exist. Otherwise, enumerate all shortest paths found from vertex u
to vertex v in Cay(G, S).
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• Set q as the root (level 0) node for the level-search tree of shortest paths from vertex
u to vertex v in Cay(G, S). Set level 0 as the current level of the level-search tree.

• Do the following until the level-search tree has k nodes: For each node v at the
current level of the level-search tree, find and add only a new node for the next
level of the level-search tree by using a single rule application of Tp to v. This is
repeated for v until the search of the left-hand sides in Tp is complete.

– If no more length-preserving rule can be applied to the current level node(s),
set the next level as the current level and continue the loop above.When setting
the next level as the current level, if there is no new node for the next level
(i.e., no new node can be discovered by using a single rule application of Tp

to each node at the current level), then stop the loop.

• Enumerate the k shortest paths found from vertex u to vertex v in Cay(G, S) in
the above level-search tree if they exist. Otherwise, enumerate all shortest paths
found from vertex u to vertex v in Cay(G, S) in the above level-search tree.3

Theorem 4.7 (a) Let k > 0 be a positive integer. Algorithm 4.6 correctly enumerates
k shortest paths if they exist from vertex u to vertex v in Cay(G, S).

(b) Algorithm 4.6 runs in polynomial time in the size of k, |q|, and ||Tp|| if k shortest
paths exist from vertex u to vertex v in Cay(G, S), where |q| denotes the length of
q and ||Tp|| denotes ∑

(l,r)∈Tp (|l| + |r |).
Proof Assume that k shortest paths exist from vertex u to vertex v in Cay(G, S). For
the proof of part (a), we proceed by induction on k, the result being clear if k = 1
since it is the shortlex normal path q from vertex u to vertex v in Cay(G, S). So
assume that k > 1 and that q = p1, p2, . . . , pk−1 are k − 1 distinct shortest paths
from vertex u to vertex v added to the level-search tree sequentially by Algorithm 4.6.
Since each edge in the level-search tree is associated with a rule of Tp, we have

q
∗−→
T p

pi , 1 ≤ i ≤ k − 1. As each shortest path from vertex u to vertex v in Cay(G, S)

corresponds to each reduced word of u−1v over S in G and vice versa, it remains to
show that a shortest path pk , which is distinct from q = p1, p2, . . . , pk−1, is found

by Algorithm 4.6 and is added to the level-search tree, i.e.,q
∗−→
T p

pk . By Lemma 4.2,

this will prove the part (a) of the theorem.
We see that the level of each shortest path pi , 1 ≤ i ≤ k − 1, in the level-search

tree corresponds to the depth of pi and that p1, . . . , pk−1 are saturated. Now, if pk−1
is at the level l of the level-search tree, we have the following three different cases for
a shortest path pk by Corollary 4.5. Otherwise, it contradicts the assumption that k
shortest paths exist from vertex u to vertex v in Cay(G, S). We denote the level i of
the level-search tree by LEVEL(i).

Case 1: ps−→
T p

pk , where ps ∈ LEVEL(l − 1) such that ps−→
T p

pk−1.

Case 2: pt−→
T p

pk and pu−→
T p

pk−1, where pt , pu ∈ LEVEL(l − 1) and t �= u.

3 This is the case for example if k is given as a positive number n with n > 0, but there are only m shortest
paths between two vertices u and v, where m < n.
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Case 3: pr−→
T p

pk , where pr ∈ LEVEL(l).

By means of one of the above three cases, the level-search procedure in Algo-

rithm 4.6 finds a shortest path pk and adds it to the level-search tree, i.e.,q
∗−→
T p

pk .

For part (b) of the theorem, it takes polynomial time in the size of |q| and ||Tp|| for
finding whether a shortest path pi with |pi | = |q| contains the left-hand side of a rule
of Tp, and replacing it with its right-hand side if a match occurs (see string matching
algorithm in [16]). Note that for each node (i.e., shortest path) added to the level-search
tree, Algorithm 4.6 searches the left-hand side of each rule of Tp sequentially. If a
match occurs in the node, the left-hand side of the rule in the node is replaced by
its right-hand side. If this rewriting step ends up with a previously found node in the
level-search tree, which can be determined in polynomial time in the size of k and |q|,
the algorithm restores the node and searches the left-hand side of the next rule of Tp.
Otherwise, if this rewriting step finds a new node, the algorithm adds the new node to
the level-search tree, restores the node, and searches the left-hand side of the next rule
of Tp in order to find the next possible match in the node. This process continues until
it completes the search of the left-hand sides in Tp, which takes in polynomial time in
the size of k, |q|, and ||Tp||. We may infer that finding new nodes one by one until the
level-search tree has total k nodes also takes in polynomial time in the size of k, |q|,
and ||Tp|| using the level-search procedure and the construction of the level-search
tree. Thus, the time complexity of Algorithm 4.6 runs in polynomial time in the size
of k, |q|, and ||Tp||. 
�

5 Discussion, RelatedWork, and Implementation

Given a graph � = (V , E), the problem of enumerating shortest paths between two
vertices in � is a well-known problem in graph theory, in which the solution of the
problem has practical applications in interconnection networks in terms of routing
flexibility, connectivity, and fault tolerance [14, 15, 33]. Although Cayley graphs are
widely used as a mathematical framework for the design of symmetric interconnec-
tion networks [3, 25, 28, 32], it is surprising that few researches have been done to
enumerate shortest paths between two vertices in Cayley graphs of finite groups in
general.

In [20] Fortin et al. discussed a shortest path routing in Cay(G, S) using rewriting
techniques. Their approach is quite limited and is not applicable to enumerate shortest
paths between any two vertices in Cay(G, S).

The problem of counting/enumerating shortest paths (with or without constraints)
between two vertices has been studied for certain types of graphs [8, 14, 15, 29]. Nar-
raway [29] showed how to find alternative shortest paths in n-cubes. In [14] Cheng et
al. discussed shortest paths between two vertices in arrangement graphs using reduced
decompositions [30] of permutations in terms of arrangement transpositions [14]. See
[15] also for the case of (n, k)-star graphs. However, their methods are not applicable
to enumerate shortest paths between any two vertices in Cay(G, S) in general.
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In [2], Aguirre-Guerrero et al. discussed path computation including the shortest
paths computation in Cayley graphs using an automaton called Diff, which has also
the scalability issue for Cay(G, S) in general (cf.Table 17 in [1]).

Recall that various sets of transpositions generate the symmetric group Sn . Pak
[30] considered reduced decompositions of permutations in terms of star transposi-
tions, while Stanley [35] discussed reduced decompositions of permutations in terms
of adjacent transpositions. If S is a set of transpositions generatingSn , it can be repre-
sented by the transposition graph T (S) [25, 28]. (The transposition graph T (S) is an
undirected graph with vertex set {1, . . . , n} and with vertices i and j being adjacent
in T (S) if and only if (i j) ∈ S.) Note that reduced decompositions of a permutation
p ∈ Sn in terms of transpositions represented by T (S) can be obtained by finding
shortest paths from vertex 1 to vertex p in Cay(Sn, S). Furthermore, the group presen-
tation ofSn w.r.t. S can be constructed explicitly from T (S) (see Theorem 1 in [18]).
This means that our rewriting approach allows one to enumerate reduced decompo-
sitions of permutations in terms of transpositions represented by a wide variety of
transposition graphs.

Now, we briefly describe our implementation, called Geodesics.4 The purpose of
our implementation is to provide a tool for finding the shortlex normal path and enu-
merating k shortest paths (if they exist) between two vertices inCay(G, S).We referred
to the book by Sims [34] for a Knuth-Bendix procedure and its related heuristics, and
referred to the paper by Diekert et al. [19] for the Thue resolution. Our implementa-
tion had been developed using the standard GNU C++ language [21]. In the “data”
directory of our source codes we provide the sample input and output files for different
Cayley graphs with their finite group presentations. The input of our implementa-
tion consists of the source and target vertex in Cay(G, S), a presentation of G w.r.t. a
lexicographically ordered generating set S, the number k for finding k shortest paths (if
they exist) from the source vertex to the target vertex in Cay(G, S), etc. If the number
k is set to 0, the program enumerates every shortest path found from the source vertex
to the target vertex in Cay(G, S), provided that it terminates within a given specified
amount of time. Meanwhile, the output of our implementation yields a reduced con-
vergent rewriting system for G along with its Thue resolution, the shortlex normal
path and k shortest paths (if they exist) from the source vertex to the target vertex in
Cay(G, S), etc. Now, we describe some example outputs obtained by Geodesics. In
the following examples, since S is closed under inverses, the edges of Cay(G, S) are
directed in both ways (i.e., undirected).

Example 5.1 The bubble-sort Cayley graph BS5 of S5 = < a, b, c, d | aa = bb =
cc = dd = 1, aba = bab, bcb = cbc, cdc = dcd, ac = ca, ad = da, bd = db>,
where a = (1 2), b = (2 3), c = (3 4), and d = (4 5) with the lexicographic ordering
a ≺ b ≺ c ≺ d:

BS5 has 120 vertices and 240 undirected edges. The output of Geodesics had 18
length-preserving rules in the preperfect rewriting system obtained from the Thue
resolution of a reduced convergent rewriting system for the above presentation ofS5.
It had 768 shortest paths from 1 to 5 4 3 2 1 ∈ S5, where 5 4 3 2 1 ∈ S5 is the longest

4 Source codes and data for our implementation are freely available under the GPL license [22] at https://
github.com/SortingOnGraphs/Geodesics.
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element inS5 [35]. (The permutation 5 4 3 2 1 ∈ S5 can be converted into the word in
the generators a, b, c, and d by using the bubble-sort algorithm. See [27] for details.)
Note that the number of shortest paths from vertex 1 to vertex n n-1 · · · 2 1 ∈ Sn in
BSn coincides with the number of reduced decompositions of the longest element
n n-1 · · · 2 1 ∈ Sn w.r.t. the generating set {(i i+1) | 1 ≤ i < n}, which is given as
follows [35]:

(n
2

)!
1n−13n−25n−3 · · · (2n − 3)1

.

The above formula gives the value 16 for n = 4 and the value 768 for n = 5,
respectively. Indeed, abacba in Fig. 3 corresponds to the longest element 4 3 2 1 ∈ S4.

Example 5.2 The star graph ST5 of S5 = < a, b, c, d | aa = bb = cc = dd =
1, aba = bab, aca = cac, ada = dad, bcb = cbc, bdb = dbd, cdc =
dcd, abcb = bcba, abdb = bdba, bcdc = cdcb, acdc = cdca > (see [18]), where
a = (1 2), b = (1 3), c = (1 4), and d = (1 5) with the lexicographic ordering
a ≺ b ≺ c ≺ d:

The output of Geodesics had 7 length decreasing rules and 126 length-preserving
rules in the preperfect rewriting system obtained from the Thue resolution of a reduced
convergent rewriting system for the above presentation ofS5. It had 24 shortest paths
from vertex 1 to vertex abacdc. Table 2 shows all the shortest paths from vertex 1
to vertex abacdc in ST5 obtained by Geodesics, which also shows each level of the
corresponding level-search tree.

Example 5.3 The Cayley graph Cay(D4, {a, b, c, d}) of the Coxeter group D4 =
< a, b, c, d | a2 = b2 = c2 = d2 = (ac)3 = (bc)3 = (cd)3 = (ab)2 = (ad)2 =
(bd)2 = 1> with the lexicographic ordering a ≺ b ≺ c ≺ d [7]:

As the order of Coxeter group Dn, n ≥ 4, is 2n−1n! [5, 7], Cay(D4, {a, b, c, d})
has 192 vertices and 384 undirected edges. A reduced convergent rewriting system
R for D4 obtained by Geodesics was as follows: R = {aa → 1, bb → 1, cc →
1, dd → 1, cac → aca, cbc → bcb, dcd → cdc, ba → ab, da → ad, db →
bd, cabca → bcabc, cabcb → acabc, dcad → cdca, dcbd → cdcb, dcabd →
cdcab, dcabcdc → cdcabcd}. It had 16 rewrite rules, which coincideswith a reduced
convergent rewriting system for D4 shown in [7]. Since there are 12 length-preserving
rules of the above rewriting system, the output of Geodesics had 24 length-preserving
rules in the preperfect rewriting system obtained from the Thue resolution of R. It also
had total 46 shortest paths from vertex abac to vertex adcabc in Cay(D4, {a, b, c, d}).
Example 5.4 The Cayley graph Cay(B6, {a, b, c, d, e, f }) of the Weyl group B6 =
< a, b, c, d, e, f | a2 = b2 = c2 = d2 = e2 = f 2 = (ab)3 = (ac)2 = (ad)2 =
(ae)2 = (a f )2 = (bc)3 = (bd)2 = (be)2 = (b f )2 = (cd)3 = (ce)2 = (c f )2 =
(de)3 = (d f )2 = (e f )4 = 1> [13] with the lexicographical ordering a ≺ b ≺ c ≺
d ≺ e ≺ f :

As the order of Weyl group of type B6 is 46,080 [13], Cay(B6, {a, b, c, d, e, f })
has 46,080 vertices and 138,240 undirected edges. The output of Geodesics had 132
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Table 2 Enumeration of all the
shortest paths from vertex 1 to
vertex abacdc in ST5 obtained
by Geodesics

Level Shortest Path Parent Applied Rule

0 abacdc

1 babcdc abacdc aba −→ bab

abadcd abacdc cdc −→ dcd

cabadc abacdc abac −→ caba

abcdca abacdc acdc −→ cdca

2 abdcda abcdca cdc −→ dcd

acdcba abcdca bcdc −→ cdcb

cbabdc cabadc aba −→ bab

cdabac cabadc abad −→ daba

babdcd abadcd aba −→ bab

dabacd abadcd abad −→ daba

bacdcb babcdc bcdc −→ cdcb

3 badcdb bacdcb cdc −→ dcd

bcdcab bacdcb acdc −→ cdca

dbabcd dabacd aba −→ bab

dcabad dabacd abac −→ caba

cdbabc cdabac aba −→ bab

cdcaba cdabac abac −→ caba

adcdba acdcba cdc −→ dcd

4 cdcbab cdcaba aba −→ bab

dcdaba cdcaba cdc −→ dcd

dcbabd dcabad aba −→ bab

bdcdab bcdcab cdc −→ dcd

5 dcdbab dcdaba aba −→ bab

length-preserving rules in the preperfect rewriting system obtained from the Thue
resolution of a reduced convergent rewriting system for B6. Note that the num-
ber of length-preserving rules here is significantly smaller than the order of B6
(cf.Theorem 4.7 (b)). It also had total 48 shortest paths from vertex 1 to vertex
abcde f abc in Cay(B6, {a, b, c, d, e, f }).

Finally, we conclude this paper by discussing a future research direction. One possi-
ble future research direction is to apply the variants of our rewriting-based approach for
finding k shortest paths in Cay(G, S) to certain classes of graphs other than Cay(G, S).
In this case, one may need some labeling functions on edges and the associated rewrite
rules on them for those graphs.
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